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Abstract

We consider the largest connected components in the percolation of a (large) finite
vertex-transitive graph. A geometrical condition reminiscent of the one in Nachmias
[Nac09] is formulated. Under this condition, the many-to-two formula allows one to
compute the size of the largest components in the weak subcritical regime up to fluctu-
ations. The result applies to Hamming graphs up to dimension 3 and expander.

1 Introduction
Let Gn be a vertex-transitive graph on n vertices, and call Gn(p) the random subgraph
of Gn obtained by deleting every edge of Gn independently and with the same probability
1 − p for p ∈ (0, 1). The number of vertices in the connected components of Gn(p) is
one of the simplest functionals of the graph Gn. Following a long tradition, we study the
number of vertices, or sizes, of the largest of these connected components. In the setting
of an arbitrary vertex-transitive graph, the problem has been started in the series of papers
[BCvdH+05a, BCvdH+05b, BCvdH+06] and continued in [Nac09, vdHN15, HN20]. Specific
graphs Gn had been considered much before: the case of Kn(p) with Kn the complete graph
on n vertices is the classical Erdös-Rényi [ER60] random graph model that has been examined
in detail by Erdös and Rényi in the ’60s. A convenient parametrisation for the probability p
of retaining an edge is in this case

p =
λ

n
for λ > 0 a constant independent of n (1)

For large values of n, the size of the largest component of Kn(p) expects a double jump
when λ is increased: it is ΘP(log(n)) 1 when λ < 1,ΘP

(
n2/3

)
when λ = 1, and ΘP(n) when

λ > 1. As for the size of the second largest component of Kn(p) : it is ΘP(log(n)) when
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λ < 1,ΘP
(
n2/3

)
when λ = 1, and ΘP(log(n)) again when λ > 1. The three regimes are

respectively called the subcritical, the critical and the supercritical regime. A distinctive
feature of the critical regime is the non-concentration of the size of the largest component,
that weakly converges as n→∞ towards a non-degenerate random variable. Aldous [Ald97]
gives a construction of that random variable from the sample path of a Brownian motion
with a quadratic drift.

Always in the Kn(p) case, Bollobás [Bol84] and Łuczak [Łuc90] discovered new regimes
of interest around the critical value λ = 1: these regimes are parametrized by sequences
λ = λ(n) with limit 1. Many qualitative features of the critical case λ = 1 are retained when
λ = λ(n) approaches 1 fast enough: |λ− 1| = O

(
n−1/3

)
, and this regime is called the critical

regime. An essential feature of that regime is the non-concentration of the sizes ΘP
(
n2/3

)
of

the largest components. The two remaining regimes are parametrised by positive sequences
ε = ε(n) satisfying 2

λ = 1± ε with ε→ 0 and ε3n→ +∞.

Choosing the minus sign defines the weak subcritical regime in which the largest component
has size (2 + oP(1)) ε−2 log (ε3n), a quantity that interpolates between log(n) and n2/3 for ε in
the range described above. Choosing the plus sign defines the weak supercritical regime, in
which the size of the largest component is (2 + oP(1)) εn, a quantity that interpolates between
n2/3 and n. In the weak supercritical regime, the second largest component is negligible with
respect to the largest component, therefore called the giant component.

In this paper, we consider a sequence (Gn)n∈N of vertex-transitive graphs on n vertices in
place of the complete graph Kn. By vertex-transitivity, the degree ` of a vertex in Gn is the
same for all the vertices, and we shall (mainly) consider sequences ` = `(n) diverging with
n. We choose the percolation probability to be

p =
λ

`− 1
(2)

and, again, we consider λ = λ(n). The choice (2) is the natural generalisation of (1): the
expected total number of edges in Gn(p) is for instance in both cases equal to λn/2. In the
same setting, Nachmias [Nac09] investigates the critical and in the weak supercritical regime.
Under condition (63) mentioned at the end of this article, he proves that the largest compo-
nents in the critical regime have ΘP

(
n2/3

)
many vertices; in the weak supercritical regime,

under a slightly stronger condition, he gives a lower bound on the size of the largest com-
ponent, δεn/ log (ε3n) for some fixed constant δ > 0 independent of n; this latter result has
been since superseded by the more general work [vdHN15], that catches the correct asymp-
totic value 2εn (1 + oP(1)). If the choice (2) is natural, it is not always adequate: for many
interesting graphs, at the percolation probability 1/(`−1), |C1| = oP

(
n2/3

)
so this value does

not lie in the so-called critical window. A line of research investigates the analogy between
the percolation of those graphs with the percolation of Kn(p) by first defining an appropriate
notion of critical probability, see the series [BCvdH+05a, BCvdH+05b, BCvdH+06] and the
recent works [vdHN15, HN20] for significant successes.

2ε shall always denote a positive quantity in this paper
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2 Statement of the results and discussion.
Let Gn be a sequence of vertex transitive graphs on n vertices. The degree of a vertex is
` = `(n) > 3. We will mainly work under the assumption

`(n)→ +∞ (3)

although the case where `(n) has a finite limit is also discussed at the end of the article.
The edges of Gn are retained independently with probability p, and we denote by Gn(p) the
resulting random subgraph of Gn. We let

p± =
1± ε
`− 1

, for ε = ε(n)→ 0, and ε3n→∞ (4)

a positive sequence, and we call weak sub-critical the regime in which p = p− and weak
super-critical regime the regime in which p = p+

A function that is useful in describing the sizes of the largest components of Gn(p) is

δ±(ε, `− 1) = − log(1± ε)− (`− 2) log

(
1− ±ε

`− 2

)
(5)

It is connected to the tail of the size of a Bin (`− 1, p±)-Galton-Watson tree (GW-tree here-
after), see (29) and (30). Taking the ` → ∞ limit in (5) we find that lim`→∞ δ±(ε, ` − 1) =
− log(1±ε)±ε, a function that is ubiquitous in the study of the Erdös-Rényi random graph.
It is useful to keep in mind the equivalent

δ±(ε, `− 1) ∼ ε2

2
when ε→ 0 and `→∞ (6)

The probability that the non-backtracking random walk on Gn (a random walk on the vertices
of Gn not allowed to traverse the same edge on two consecutive steps) started at a vertex
v ∈ Gn returns at v after k > 2 steps is denoted by P k(v, v). By vertex-transitivity, this
quantity does not depend on the vertex v, and we write P k for P k(v, v). We also introduce
the two parameters

t± = δ−1± s and s = log
(
ε3n
)

Notice that, when n and ` diverge, t± ∼ 2ε−2 log (ε3n). Our key (asymptotic) condition on
the (sequence of ) graphs Gn then writes:

∃ a constant c < 1/2 such that: (t±)1/2
∑
k>3

ke−ck
2/t±P k = o

(
1

s

)
as n→∞ (7)

Condition (7) contains two conditions, the one with t+ and the one with t−, we distinguish
them by writing (7)+ and (7)− when needed. Condition (7) is a condition on the geometry of
the graphs Gn, where by "geometry" we simply mean the collection of numbers

(
P k, k ∈ N

)
.

We stress on the implicit dependence of the parameters t±, P k and s on ε and/or n. The
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quantity ke−ck
2/t is an upper bound on the expected number of vertices at distance k from the

root in a (critical) GW-tree with finite variance and t vertices, and the bound is uniform in
k ∈ {1, . . . , t}. See Addario-Berry et al [ABDJ13] for related estimates for GW-trees whose
offspring distribution is critical and has a finite variance. The quantity t1/2 that multiplies
the sum in (7) is the expected distance of a random vertex to the root in such a GW-tree.
We will clarify in Section why o(1/s) in the RHS of (7) is indeed the precision needed to
state the following Theorem :

Theorem 2.1. Assume ε satisfies (4), ` satisfies (3) and let p− = (1− ε)/(`− 1). Assume
also that the non-backtracking random walk on Gn satisfies condition (7)−. Let (Pj, j ∈ N)
be the points, arranged in non-increasing order, of a Poisson point measure with intensity

(4
√
π)−1e−xdx (8)

on the real line R. The sizes (|Cj| , j ∈ N) of the largest components of Gn (p−) arranged in
non-increasing order converge in distribution for the product topology, in the sense that for
each fixed k ∈ N, as n→∞, we have:(

δ−(ε, `− 1) |Cj| −
(

log
(
ε3n
)
− 5

2
log log

(
ε3n
))

, 1 6 j 6 k

)
=⇒ (Pj, 1 6 j 6 k) · (9)

Remark 2.2 (On the right-hand side in (9)). The computation:

P (P1 < y) = e−
∫
[y,∞)(4

√
π)−1e−xdx = e−(4

√
π)−1e−y , y ∈ R

ensures the rightmost point of the Poisson measure in (8) exists and is Gumbel distributed.
The convergence in distribution of a vector entails the convergence in distribution of its first
coordinate. Also, the Gumbel distribution has no atom. Therefore (9) implies, for y ∈ R :

P
(
δ−(ε, `− 1) |C1| −

(
log
(
ε3n
)
− 5

2
log log

(
ε3n
))

> y

)
→ 1− e−(4

√
π)−1e−y

as n→∞. In the same way, it is possible to write down explicitly the limiting distribution
of the size of the k-th largest component for k ∈ N fixed. Another byproduct is that the
(rescaled) spacing between the two largest random variables weakly converges towards an
exponential random variable with parameter 1 : P (δ−(ε, `− 1) (|C1| − |C2|) > x) → e−x as
n→∞.
Remark 2.3. (On the left-hand side in (9)) From (6) and (9), we deduce the first order
asymptotics: |Cj| = (1 + oP(1)) δ−1(ε, ` − 1) log (ε3n) = (1 + oP(1)) 2ε−2 log (ε3n). Beware
one cannot in general replace δ−(ε, ` − 1) by ε2/2 in (9). Replacing δ− = δ−(ε, ` − 1) by
another quantity δ̃− on the left-hand side of (9) is possible as long as

(
δ− − δ̃−

)
/δ̃− = o(1/s)

as n→∞. From the expansion:

δ− =
∑
k>2

εk

k

(
1 +

(−1)k

(`− 2)k−1

)
(10)

we see that δ− = (1 + O(ε + 1/`))ε2/2 as ` → ∞ and ε → 0. The choice δ̃− = ε2/2 is thus
possible under the conditions (ε log (ε3n) = o(1) and log (ε3n) = o(`)).
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Remark 2.4. (Weakly dependent random variables) For v ∈ Gn, call C(v) the component
that contains the vertex v in the random subgraph Gn(p). The n coordinates of the vector
(|C(v)|, v ∈ Gn) are identically distributed, with the tail of their common distribution given
by (31), but not quite independent. Were these random variables also independent, then the
statement of Theorem 2.1 would hold with only ε3n replaced by εn on the LHS of (9). The
slight difference reflects the (weak) dependence between the random variables (|C(v)|, v ∈ Gn)
that is caused by repetitions : if |C(v)| = t for some vertex v in Gn, then |C(u)| = t for at
least t− 1 other vertices u, the ones that belong to that component.

Remark 2.5. (Further illustration of the weak dependence) The difference is also visible
when computing the expected number of components with size larger than t. It is in general
bounded by (and, for the aforementioned choice of t, in fact equivalent to) (n/t)P(|C(v)| > t)
and not to nP(|C(v)| > t) = Θ(1) as it would be in the independent case: the division by t
precisely accounts for the aforementioned repetitions. The proof will show it is possible to
deduce the correct order of magnitude for t from this first moment argument : setting t = δ−1s
in the equation (n/t)P(|C(v)| > t) = 1, the LHS is by (31) equivalent to (ε3n) · s−5/2 · e−s
up to multiplicative constant, and this is 1 when s = log (ε3n) − 5/2 log log (ε3n) + O(1).
Notice the log (ε3n) term comes from the exponential decay, and the log log (ε3n) from the
polynomial correction.

With the help of the estimates on the kernel of the non-backtracking random walk com-
puted in [Nac09], one can check condition (7)− holds for some new classes of graphs. A
sequence of connected graphs Gn is called an expander family if the largest eigenvalue in
absolute value of the transition matrix of the simple random walk on Gn, distinct from ±1,
is strictly smaller than 1, uniformly in n. The girth of a graph is the length of a shortest
cycle in the graph. The d-dimensional Hamming graph is the cartesian products of d com-
plete graphs, it has vertex set V = {1, . . . , n}d and two vertices are linked by an edge iff the
associated d-tuples differ at a single coordinate. Also bxc ∈ Z denotes the integer part of
x ∈ R.

Proposition 2.6. Assume the sequence ε satisfies (4). Condition (7) holds for the following
graphs Gn :

• the transitive expander graphs with girth g = g(n) and vertex degree ` = `(n) that
satisfy (

1

`(n)− 1

)bg(n)/2c
n1/3 log2(n) = O(1) (11)

• the Hamming graph in dimension d = 3.

Remark 2.7 (Hamming graphs). The Hamming graphs are expanders that in dimension 1
and 2 satisfy condition (11) in the first statement. The Hamming graph in dimension 1 is
the complete graph, hence the result on the Erdös-Rényi random graph by Łuczak [Łuc90] is
recovered, whereas the result in dimension 2 and 3 is new. See Section 2.1 below for recent
results on these graphs that are valid in any dimension.
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Theorem 2.1 (together with the verification of condition (7)) are the highlights of this
paper. Slight improvements are conceivable: for instance the assumption of transitivity of
the graph could be slightly relaxed to include regular graphs. Simlarly, in our theorem, P k

could possibly be replaced by the (slightly smaller) probability that the random walk draws
a self-avoiding loop 3 of length k : in view of the form of condition (7), one expects little
benefit on the applicability of Theorem 2.1 however. Our results follows the line of inquiry
set up by Nachmias [Nac09]. Because the precise study of the weak subcritical regime is
not relevant for studying the width of the critical window, this work paid little attention
to this regime, see the bottom of p.1173 in [Nac09]. That left aside a key feature of the
weak subcritical regime, namely that it allows for a sharp estimate of the size of the largest
components under general assumptions. That omission was subsequently repaired by the
important work [HN20] that tackles the more general setting where the critical probability is
implicitly defined only. If the largest components in the weak subcritical regime are notably
smaller, hence "easier" to deal with, than their counterparts in the critical and supercritical
regimes, finding a sharp estimate with the right multiplicative constant may represent a
technical challenge, see [HN20] again. Our setting, where the critical probability is explicit,
is easier, and allows one to obtain the optimal precision (fluctuations) by carefully controlling
the difference between a (conditioned) GW-tree and the component containing a given vertex
in Gn(p). This crucially requires to work with GW-trees conditioned by the size and not by
the height like in [Nac09, HN20]: the former conditioning better approximates the geometry
of the largest components in Gn(p) in our regime. A key technical tool to succeed is the
"many-to-two" formula, that we rederive from scratch, see formula (19). If the use of a
many-to-k formula seems new in the context of random graphs, the tool, that goes back to
back to Ikeda et al [INW69] in the case k = 2, has already proved very useful in the study of
branching Brownian motion. A generic version, the many-to-k (or many-to-few) formula is
discussed in Harris and Roberts [HR15]; when k = 1, it reduces to the standard many-to-one
formula, see [ABDJ13] or chapter 12 of the book [LP17].

2.1 Previous work

Let us try to summarize the state of affairs concerning the study of the size of the largest
components in the weak subcritical regime:

• The complete graph model Kn(p) : The fluctuations of the random variable |Cj|, j ∈ N,
have been identified by Łuczak [Łuc90] in a sharpening of a result by Bollobás [Bol84].
We warn the reader of a small typo in the statement of the result in [Łuc90]: ε2/2
should be replaced by δ for the result to hold along the critical window, see Remark
1.3 or [BR09] p.50.

• The configuration model: The fluctuations of |C1| are (among other) given in Riordan
[Rio12], they involve the same Gumbel distribution as in our result.

3a path v0, v1, . . . , vk = v0 where 0 ≤ i < j < k ⇒ vi 6= vj
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• The Achlioptas bounded-size rules: Riordan and Warnke [RW17] offer a complete study
of the transition phase in the context of iteratively constructed random graphs, in which
edges come by pair (say) and some amount of choice in the edge to be added is allowed.
Again, the authors are able to compute the fluctuations of |C1|, see their Theorem 2.7.

• The Gn(p) model: Deterministic graphs Gn distinct from the complete graph require
very different methods; upper and lower bounds on |Cj| , j ∈ N, have been known
for some time now under a finite size version of the triangle condition known as the
"strong" triangle condition, see Theorem 1.2 in Borgs, Chayes, van der Hofstad and
Spencer [BCvdH+05a] but these bounds were separated by a multiplicative log (ε3n)
factor. Only very recently has this gap been reduced to a multiplicative constant factor,
see [HN20] : |C1| = ΘP (ε−2 log (ε3n)). A key difficulty in these works is that the critical
probability is only defined implicitly; we should also mention in this direction some
recent progress concerning the asymptotic expansion of the critical probability in the
special case of the Hamming graph in (fixed) dimension d > 1, see [FVDHDHH20].

An important convention concerning the ± index: when the index is omitted like in δ, t, one
should understand that the statement holds for both values δ±, t±. An identity with such a
quantity therefore contains two identities: the one with the •+ index and the one with the
•− index.

2.2 Ideas of proof

The key parameters involved in the study are, in term of δ = δ(ε, `− 1), ε and n :

t = δ−1s, s = log
(
ε3n
)
− 5

2
log log

(
ε3n
)

+ u (12)

We do not show the dependence of these parameters on ε and n;u will be either a fixed
constant, or a very slow function of n. We denote by t : R → R the function defined by
t = t(u) and by t−1 its inverse function. Write Cj for the j-th largest component of Gn(p) as
measured by its total number of vertices |Cj| (ties are broken in an arbitrary way). Key to
the proof of Theorem 2.1 is the understanding of the following random measure:

N(dx) =
∑
j>0

δt−1(|Cj |)(dx) (13)

and of its convergence in distribution in particular. Define J = (u1, u2) with −∞ < u1 6
u2 < +∞, and let t(J) = (t1, t2). We first want to check the convergence of the random
variable N−(J) (the minus index refers to the subcritical regime) as n tends to ∞. Let C(v)
denote the component of Gn(p) that contains the vertex v. Using the estimate t1 ∼ t2 as
n→∞, we find that the first moment of N(J) satisfies:

E(N(J)) = E

(∑
v∈Gn

1{|C(v)|∈t(J)}
|C(v)|

)
∼ n

P (|C(v)| ∈ (t1, t2))

t1
as n→∞ (14)
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Another easy fact is that the tail P(|C(v)| > t) is bounded from above by the quantity
P (|Tm| > t), where Tm is a "modified" GW-tree with Bin

(
`− 1{v=ρ}, p

)
offspring distribu-

tion. The complementary lower bound is the difficult step. Different ideas can be developed
to estimate it, let us review three different possibilities.

First, writing Tm = Tm
` to show the dependence of Tm on `, a step-by-step exploration

of C(v) reveals that:

P
(∣∣Tm

`−t
∣∣ > t

)
6 P(|C(v)| > t) 6 P (|Tm

` | > t)

In case t is small with respect to `, like in the complete graph Kn, (` = n − 1), the two
bounds are equivalent sequences as n → ∞. The computation of the successive moments
of |C(v)| does not raise additional difficult, and one finds sharp asymptotics on |C1| . The
same strategy works for "mean-field" model like the configuration model, see [Rio12] around
formula (7.5). There are other classes of graphs for which a uniform control of the number
of already explored vertices is possible, for instance the Hamming graph in dimension 2
[vdHL10]. Second, Nachmias [Nac09] introduced the idea of pruning off the upper bound
tree Tm from the so-called path-impure vertices to find a sub-tree of Tm that is stochastically
smaller than |C(v)|. The path-impure vertices are the vertices that are present in the GW-
tree but have no counterpart in the exploration of C(v). The set of path-impure vertices is
denoted by I1 (Tm). A simple bound is, for 1 6 t 6 t′ :

P
(
|Tm| > t′,

∣∣I1 (Tm)
∣∣ 6 t′ − t

)
6 P(|C(v)| > t) 6 P (|Tm| > t) (15)

Based on this bound, plus the second moment method, Nachmias derives in his Lemma 14 a
lower bound on the probability that |C(v)| exceeds ε−2, that is not sharp in the weak subcrit-
ical regime of interest to us (essentially because the method of proof relies on conditioning
a GW-tree by the height). The third method is the one developed in this paper, it is based
on conditioning the GW-trees by the size. Consider J ′ = (u,∞). From (14), the estimate
(27) on the total progeny of a GW-tree gives that E (N− (J ′)) 6 e−u/(4

√
π). One asks under

what condition (1− o(1))e−u/(4
√
π) is a lower bound. Examining (27) again, we see that if

t′ close to t = δ−1s in the sense that t′ − t = o (δ−1) then the ratio P (Tm > t′) /P (Tm > t)
has limit 1 as n diverges. But the difference between C(v) and Tm is controlled by the
set I1 (Tm) of path-impure vertices, so, by the first moment method, we only need to show
E (|I1 (Tm)| ||Tm |= t) = o (δ−1). The latter is proved in Proposition 3.8 under condition (7),
and the proof of that Proposition is in turn based on a many-to-two formula, Lemma 3.1
with k = 2, that is indeed our key tool. Under (7) the lower bound matches the upper bound,
and:

E (N−(J)) = (1 + o(1))
1

4
√
π

(
e−u1 − e−u2

)
· (16)

The rest of the proof is routine: the RHS is also the expectation of a Poisson random variable
with parameter the integral over J = (u1, u2) of the intensity measure (8). To claim the
convergence in distribution through the method of moments, see e.g. Section 6.1 of [JLR11]
it remains to check the convergence of the higher factorial moments E

(∏
06i<k (N−(J)− i)

)
,

which require a last technical point: (16) has to be proved with G\G0 the graph induced by
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G on V (G)\V (G0), for G0 ⊆ G a subgraph with size O(t). The next and last section contains
the (self-contained) proof; it starts in Section 3.1 with the many-to- k formula. The required
estimates on the size of the GW-trees of interest are stated in Section 3.2. In Section 3.3
GW-trees are randomly embedded in the graph Gn and the number of path-impure vertices
in a GW-tree with a given size is estimated. The short subsection 3.4 is a remark on how
to translate our estimates in term of modified GW-trees. We start to work with the Gn(p)
model itself only at Section 3.5 where we compute the moment of the number of components
in a given interval, and also give the few additional ingredients needed to prove the main
theorem. The extension to bounded degree graphs is discussed in Section 3.6. In Section 3.7
we obtain, as a by-product of our analysis in the weak subcritical regime, a lower bound on
the expected number of components in certain intervals in the weak supercritical regime: yet
we fail to get the lower bound on the size of the second largest component that is suggested
by this estimate. In the last Section 3.8 we prove the Proposition 2.6 on condition (7).

3 Proof
The set of integers is denoted by Z, the subset of non-negative integers {0, 1, 2, . . .} by Z+,
the subset of positive integers {1, 2, . . .} by N and the set of real numbers by R. Unless
explicitly advertised, all the limits and asymptotic are as n the size of the graph Gn goes
to ∞. Also, we use the Landau notation o and O (but no more probabilistic counterpart
from now on). Sums over an empty set are 0, and products over an empty set are 1. If
G = (V,E) is a graph, |G| will denote its number of vertices, or size, of G. For V 0 ⊆ V , the
graph induced by G on V 0 is the graph with vertex set V 0 and edge set the restriction of
the original edge set E to V 0 × V 0. Assume another graph G′ = (V ′, E ′) is given. A map
f : V → V ′ is called a graph homomorphism when adjacent vertices in G are mapped to
adjacent vertices in G′, (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E ′ for each u, v ∈ V It is called a graph
isomorphism when f is a bijection from V to V ′ and two vertices are adjacent in G iff their
images are adjacent in G′, that is (u, v) ∈ E iff (f(u), f(v)) ∈ E ′.

We may need to attach several distinguished vertices to a graph, that we shall call the
pointed vertices: for k ∈ N, and u1, u2, . . . , uk ∈ V,G = (V,E, u1, u2, . . . , uk) is a pointed
graph, and if G′ = (V ′, E ′, u′1, u

′
2, . . . , u

′
k) for u′1, u′2, . . . , u′k ∈ V ′ is another pointed graph,

we say a graph-homomorphism f from (V,E) to (V ′, E ′) preserves the pointed vertices when
f (ui) = u′i for 1 6 i 6 k. The trees we will encounter will be planar and rooted. Such
trees are embedded in the so-called Ulam tree: this is the graph with vertex set the finite
sequences of integers

U =
⋃
n>0

Nn.

The root of the Ulam tree is the vertex N0, that we shall denote by ρ. A vertex dis-
tinct from the root, u = (u(1), u(2), . . . , u(k)) ∈ U , k > 1, has a unique father a(u) :=
(u(1), u(2), . . . , u(k − 1)), and there is one edge between every vertex distinct from the root
and its father. Notice that the Ulam tree is a locally-infinite. The integer k is the generation
of u, denoted by |u|. By convention, |ρ| = 0. For i 6 k, define u(i) = (u(1), u(2), . . . , u(i)) the
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ancestor of u at generation i. When u is an ancestor of v we write u � v, and u ≺ v when
also u 6= v; in the latter case, u is called a strict ancestor of v. � defines a partial order on U
called the ancestral order. A subset t of U is a planar rooted tree when: (i) t contains ρ. (ii)
v = (v(1), . . . , v(k − 1), v(k)) ∈ t implies (v(1), . . . , v(k − 1), i) ∈ t for any i ∈ {1, . . . , v(k)}
(iii) v = (v(1), . . . , v(k)) ∈ t implies v(j) = (v(1), . . . , v(j)) ∈ t, for any j ∈ {1, . . . , k} A
vertex v ∈ t is a leaf when its set of children ct(v) := {w ∈ t, a(w) = v} is empty. We write
c(v) for ct(v) when t is clear from the context. The number |c(v)| of children of v ∈ t is
called the outdegree of v in t. We call T the set of planar rooted trees.

There is a second natural order defined on U : the breadth-first order. We write u ≺bfs

v when |u| < |v|, or |u| = |v| and there exists i < |u| such that (j 6 i ⇒ u(j) = v(j)) and
u(i+ 1) < v(i+ 1) ). We write u �bfs v when u ≺bfs v or u = v. Unlike the ancestral order,
the breadth-first order is a total order. Again, we shall not distinguish between the order
�bfs and its restriction to t ∈ T .

If k is an integer and u1, . . . , uk are k distinct vertices of t ∈ T distinct from the root
ρ, we call tk = (t, u1, . . . , uk) a pointed planar rooted tree, and Tk the set of pointed planar
rooted trees. Let us stress that the pointed vertices come in a specific order: (t, u1, u2) and
(t, u2, u1) are for instance two distinct elements of T2. In case every vertex in tk ∈ Tk is
an ancestor of a pointed vertex (possibly itself), we say that tk is spanned by its pointed
vertices, or simply that tk is spanned. Notice that the set of pointed vertices of a spanned
tree tk contains its set of leaves. Two pointed planar rooted trees tk, t′k ∈ Tk are equivalent
when there exists a graph-isomomorphism between tk and t′k that preserves the root and the
pointed vertices. We call T s

k the set of equivalence classes of spanned pointed rooted trees
(we emphasise that those trees are no more ordered.)

For tk ∈ Tk and 0 6 i 6 k, let Vi ⊆ V be the set of vertices with precisely i children that
are ancestors of pointed vertices: Vi = {v ∈ t, |{w ∈ c(v),∃j, w � uj}| = i}. In the special
case tk ∈ T

s

k, every vertex is the ancestor of a pointed vertex, and Vi is the subset of the
vertices with i children. The following is a partition of the set of vertices, V =

⋃
0≤i6k Vi,

and we set
`i = |Vi| . (17)

The definitions of `i and Vi extend to a tree tk ∈ T s
k .

Let p = (pk, k > 0) be a distribution on the non negative-integers, and (Xu, u ∈ U) be a
collection of i.i.d. random variables indexed by U with distribution p. Call T the random
tree in which the number of children of a vertex u is given by Xu in T , provided Xv 6= 0
for every strict ancestor v of u. The tree T is distributed as the GW-tree with offspring
distribution p. Formally, ρ ∈ T and for every u ∈ U\{ρ}, u ∈ T iff for every 1 6 i 6 |u|

u(i) 6 Xa(u(i)).

3.1 Many-to-k formula

Certain functions on T can be decomposed as a sum over the different k-tuples of the vertices
of t. The expected value of such functions evaluated on GW-trees is then computed using a
many-to- k formula (19).
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Consider p = (pk, k > 0) a probability distribution on the set Z+. Let kmax(p) =
max

{
` > 0,Σkk

`pk <∞
}
, and k0(p) = max {k > 0, pk 6= 0} ∈ Z+ ∪ {∞}. If i ∈ Z+ satisfies

i 6 min {kmax, k0}, the i-th factorial moment and the i-th size-biased probability distribution
p(i) =

(
p
(i)
k , k > 0

)
are defined by:

mi =
∑
k>i

[ ∏
06j<i

(k − j)

]
pk, and p

(i)
k =

∏
06j<i(k − j)

mi

pk (18)

According to our convention that products over an empty set are 1, p(0) = p. Also, for
k < i, p

(i)
k = 0 since the product in the RHS of (19) contains a null factor. If i > k0(p)

mi = 0, and p(i) is not defined. Fix tk = (t, v1, . . . , vk) ∈ T k with k 6 kmax(p), k0(p). From
p and tk, we build Tk = Tk (tk) = (T, u1, . . . , uk) ∈ Tk a random tree that contains tk as a
subtree. Formally, there is a copy 4 T ′ ⊆ T of t embedded in T ; for a vertex in T ′ the offspring
distribution is p(i) the i-th size-biased distribution, where i is the number of children of the
corresponding vertex in t. For a vertex in T\T ′, the offspring distribution is p(0) = p. A
precise definition uses an induction: The trees T ′ and T, T ′ ⊆ T , and the graph isomorphism
ω : t→ T ′ are defined by the following steps:

• Initialization: The root ρ belongs to T and T ′, it is the image of ρt the root in t :
ρ = ω (ρt).

• Induction 1 : If u ∈ T ′, its number of children in T is distributed as p(i) where i = |c(v)|
is the number of children of v = ω−1(u) in t. Furthermore, if (vj, 1 6 j 6 i) are the
ordered children of v in t, then (ω(vj), 1 6 j 6 i) is a random sequence of i distinct
children 5 of u in T , with uniform distribution. These i children of u belong to T ′, and
the remaining children of u belong to T\T ′.

• Induction 2 : If u ∈ T\T ′, its number of children is distributed as p = p(0), all of them
belong to T\T ′.

• Induction 3 : distinct vertices in T have an independent number of children.

• The pointed vertices in Tk are (u1, . . . , uk) = (ω (v1) , . . . , ω (vj))

In the next formula, mi = mi(p) is the i-th factorial moment of the distribution p, see
(18), and `i = `i (tk) simply counts the number of vertices with precisely i children since
tk ∈ T s

k or tk ∈ T s
k , see (17).

Lemma 3.1 (Many-to-k formula). Let p be a distribution on Z+, and let k ∈ N satisfy
k 6 kmax(p), k0(p). For F a non-negative measurable function on the set of pointed trees Tk,

4T ′ does not belong to T since item (ii) in the definition of T is not satisfied, so the word "tree" that we
use here is an abuse

5this is a.s. possible since the number of children of v in T , with distribution p(i), is a.s. > i

11



and T ∈ T a GW -tree with offspring distribution p, it holds:

E

( ∑
u1,...,uk

F (T, u1, . . . , uk)

)
=
∑
tk

(∏
i>1

m`i
i

)
E (F (Tk (tk))) (19)

where:

• the first sum is over the vertices u1, . . . , uk of T such that no one is an ancestor of
the other, and the second sum is over the trees tk in T sk that are spanned by k pointed
leaves,

• or the first sum is over the pairwise distinct vertices u1, . . . , uk of T , and the second
sum is over the trees tk in Tk

s

The so-called many-to-one formula is the k = 1 case. The generation of the leaf uniquely
specifies a tree in T s

1 , which identifies the latter set with the set of non-negative integers Z+,
while the product on the RHS reduces to m`1

1 = mh1
1 .

The restriction to k 6 k0(p) is for the sake of simplicity: in case k > k0(p), the correct
formula is obtained by discarding those trees tk that have vertices with outdegree larger than
k0 in the sums (i) and (ii).

The sequence (`i, i ≥ 1) has finitely many non-null terms, hence the product
(∏

i>1m
`i
i

)
is well defined.

Proof. Let t0k = (t0, v1, . . . , vk) ∈ Tk be a pointed planar rooted tree. We first check (19)
for F = 1t◦k

. The subtree of t0k spanned by v1, . . . , vk is denoted tk ∈ T s
k . For i > 0, set

V 0
i = Vi (t

0
k) , `

0
i = `i (t

0
k) and `i = `i (tk). For i > 1, notice that `0i = `i. Using the definition

(18) of p(i), we find:

P
(
T = t0

)
=

∏
u∈V (t0)

p|c(u)|

=

( ∏
16i6k0

m`i
i

) ∏
06i6k0

∏
u∈V 0

i

1∏
06j<i(|c(u)| − j)

p
(i)
|c(u)|

=

( ∏
16i6k0

m`i
i

)
P
(
Tk (tk) = t0k

)
(20)

Formula (20) is formula (19) with the choice F = 1t◦k
, since one single tree, the tree tk defined

above, contributes to the sum on the RHS of (19). A function F on Tk may be decomposed as
a sum of indicator functions, and relation (19) is linear in F : Formula (20) therefore implies
(19), with the sum as in (ii). Adding the restriction that, in the collection v1, . . . , vk, no
one is an ancestor of another is equivalent to summing over the trees tk spanned by pointed
leaves, giving (i).
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3.2 Asymptotics for the size of GW-trees

We restrict in this section our views to a particular class of GW-trees. These are, for ε > 0
and ` > 2 an integer

T = T± ∈ T the GW-tree with Bin (`− 1, p±) offspring distribution. (21)

Although the notation does not show it, T depends on ε and `. The next Lemma bounds
the probability that a forest of GW-trees distributed as (21) has a given size in term of the
probability that a single GW-tree has that same size. We stress the statement is valid for ε
fixed (i.e., condition (4) is not assumed).

Lemma 3.2. Let (Ti, i > 1) be independent GW -trees distributed as T = T± ∈ T the GW -
tree in (21). Let c < 1/2. There exists `0 = `0(c) such that, for ` > `0, and for 1 6 h 6 j :

P

(∑
16i6h

|Ti| = j

)
6 h

(
1− p
1± ε

)h−1
e−c

h(h−1)
j P(|T | = j) (22)

Remark 3.3. For critical GW-trees with a finite variance, similar bounds may be deduced
from the estimates in Addario-Berry, Devroye and Janson [ABDJ13], see formulae (17) and
(19) in this article.

Proof. Let (Zt, t > 0) be a random walk started at Z0 = 0 with independent increments
distributed as X − 1, X a Bin(` − 1, p) random variable. For h ∈ N, we let H−h(Z) =
inf {j > 1, Zj = −h} be the hitting time of −h. Also, let T ∈ T be a GW-tree with offspring
distribution the distribution of X. If ρ = v1, . . . , v|T | is the sequence of the vertices of T
arranged in breadth-first order, then there is the identity in distribution

(Zj, 1 6 j 6 H−1(Z)) =

(∣∣⋃
i6j

{c (vi)} \
⋃
i6j

{vi}
∣∣, 1 6 j 6 |T |

)
(23)

where the RHS counts the number of vertices among the children of the vertices v1 . . . vj that
do not belong to v1 . . . vj. The identity (23) implies in particular:

|T | = H−1(Z) (24)

which extends in a straightforward way to a collection of h > 1 independent GW-trees
(Ti, 1 6 i 6 h) distributed as T : ∑

16i6h

|Ti| = H−h(Z)

We also use the following combinatorial identity, known as Spitzer lemma [Spi56], that con-
nects the distribution of the hitting time of a random walk with the marginal distribution of
that random walk 6

jP (|H−h(Z)| = j) = hP (Zj = −h)

6the proof only requires invariance by cyclic shift of the distribution of the increments of the random walk,
see e.g. Pitman [Pit02]
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We deduce from this and the convolution property of the Binomial distribution that:

P

(∑
16i6h

|Ti| = j

)
=
h

j
P (Zj = −h)

=
h

j
P(Bin((`− 1)j, p) = j − h)

=
h

j

(
(`− 1)j

j − h

)
pj−h(1− p)(`−1)j−(j−h) (25)

Expanding the binomial coefficient in the last expression allows to relate the above probability
to the same probability when h is set to 1,P (|T1| = j) :

h

(
1− p
p

)h−1 ∏
16i<h(j − i)∏

j−h6i<j−1(`− 1)j − i
·
(

1

j

∏
06i<j−1(`− 1)j − i

(j − 1)!
pj−1(1− p)(`−1)j−(j−1)

)
= h

(
1− p
p

)h−1 ∏
16i<h(j − i)∏

j−h6i<j−1(`− 1)j − i
P (|T1| = j)

Using the definition of p = p± in (4), one can estimate the prefactor:

h

(
1− p
p

)h−1 ∏
16i<h(j − i)∏

j−h6i<j−1(`− 1)j − i

= h

(
1− p
1± ε

)h−1 ∏
16i<h

(
1− i

j

)
∏

j−h6i<t−1

(
1− i

j(`−1)

) (26)

= h

(
1− p
1± ε

)h−1
e−

h(h−1)
2j (1−O( 1

` ))

For ` large enough, O
(
1
`

)
< 1− 2c, and the inequality (22) is proved.

Another key ingredient is a precise estimate on the tail of the size of a single tree T . Such
estimates generally follow from two ingredients: a local central limit theorem on the random
walk, plus a centering (or tilting) operation, see Riordan [Rio12] for an implementation of
that combination. Our example allows for direct computations. Unlike the previous Lemma,
we now assume that ε and ` depend on n in a way specified by conditions (3) and (4)

Proposition 3.4. Let T = T± ∈ T be the GW -tree given by (21), with sequences ε and `
satisfying (4) and (3) respectively. Let v be a sequence that satisfies vn = o (log log (ε3n)).
Then, for t = t(u) given by (12), it holds that:

n

t
P(t 6 |T | <∞) = (1 + o(1))

1

4
√
π

e−u as n→∞ (27)

with o(1) uniform over the sequences u = (un) such that |un| 6 vn, n ∈ N.
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Under (4), the sequence (ε3n)n>1 diverges and the condition |un| 6 vn allows for constant
sequences (un). Also, the restriction to finite trees on the LHS of (27) is necessary in the case
of supercritical GW-trees only, since subcritical GW-trees are a.s. finite. Last, (27) entails
|T+| and |T−| have equivalent tail (not equal, though).

Proof. We first consider a given GW-tree, associated with a fixed n and `. The symbol oj(1)
stand for a sequence with null limit as j →∞. Formula (25) with h = 1 reads:

P(|T | = j) =
1

j

(
(`− 1)j

j − 1

)
pj−1(1− p)(`−1)j−(j−1) (28)

Stirling formula under the form

j! = (1 + oj(1))
√

2πjj+1/2e−j

allows to approximate the Binomial coefficient and to estimate:

P(|T | = j) =
1

j

((`− 1)j)!

(j − 1)!((`− 2)j + 1)!
pj−1(1− p)(`−1)j−(j−1)

= (1 + oj(1))
1

j

1√
2π

((`− 1)j)(`−1)j+1/2

(j − 1)j−1/2((`− 2)j + 1)(`−2)j+3/2
pj−1(1− p)(`−1)j−(j−1)

= (1 + oj(1))
1

j

1√
2π

[
jj−1

(j − 1)j−1/2

(
(`− 1)j

(`− 2)j + 1

)(`−2)j+3/2
]

(1± ε)j−1(1− p)(`−2)j+1

The term under bracket requires some care, and may be evaluated using:

jj−1

(j−1)j−1/2

(
(`−1)j

(`−2)j+1

)(`−2)j+3/2

= j−1/2
(

j
j−1

)j−1/2 (
(`−2)j

(`−2)j+1

)(`−2)j+3/2 (
(`−1)j
(`−2)j

)(`−2)j+3/2

= j−1/2
(

1 + 1
j−1

)j−1/2 (
1− 1

(`−2)j+1

)(`−2)j+3/2 (
1 + 1

`−2

)(`−2)j+3/2

= j−1/2 (e1 + oj(1)) (e−1 + oj(1))
(
1 + 1

`−2

)(`−2)j+3/2

This entails

P(|T | = j) = (1 + oj(1))
1√
2π

1

j3/2

(
1 +

1

`− 2

)(`−2)j+3/2

(1± ε)j−1(1− p)(`−2)j+1

= (1 + oj(1)) q1
1√
2π

1

j3/2
qj2 (29)

with the notation

q1 =

(
1 +

1

`− 2

)3/2

(1± ε)−1(1− p) and q2 =

(
1 +

1

`− 2

)`−2
(1± ε)(1− p)`−2

We now recognise that
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q2 = e−δ, with δ = δ(`− 1, ε) defined in (5) (30)

by the following computation:(
1 +

1

`− 2

)
(1− p) =

(
1 +

1

`− 2

)(
1− 1± ε

`− 1

)
= 1 +

1

`− 2
− 1± ε
`− 1

− 1± ε
(`− 1)(`− 2)

= 1 +
(`− 1)− (1± ε)(`− 2)

(`− 1)(`− 2)
− 1± ε

(`− 1)(`− 2)

= 1 +
(`− 1)(1− (1± ε)) + (1± ε)

(`− 1)(`− 2)
− 1± ε

(`− 1)(`− 2)

= 1− ±ε
`− 2

Summing the equivalents in (29) we find that:

P(|T | > j) = (1 + o(1))
q1√
2π

∑
i>j

i−3/2e−δi

We now set j = t and assume the parameters ε and ` depend on n, with ε→ 0 and `→∞.
The next o(1) are on(1) as usual. Plainly, q1 = 1 + o(1). The map x 7→ x−3/2e−δx is non
increasing on [t,∞), this implies:

1√
2π

∑
i>t

i−3/2e−δi = (1 + o(1))
1√
2π

∫
x>t

x−3/2e−δxdx

Integrating the latter expression we find that

P(t 6 |T | <∞) = (1 + o(1))
1√
2π
δ−1t−3/2e−δt (31)

The upper bound follows from the bound x−3/2 6 t−3/2 in the integrand, and a lower bound
is given by the same integral over [t, t′] instead of [t,∞). Then we choose t′ in such a way that
δ (t′ − t)→∞ with t′ = (1 + o(1))t. To complete the proof, it remains to expand t = δ−1s :

n

t
δ−1t−3/2e−δt =

n

δ−1s
δ−1

(
δ−1s

)−3/2
e−δ(δ

−1s) =
nδ3/2

s5/2
e−s

and then s = s(u), using also δ = (1 + o(1))ε2/2 from (5) (recall ε→ 0 and `→∞) as well
as ε3n→∞

2−3/2 ε3n

(log(ε3n)− 5
2
log(log(ε3n))+u)

5/2 e−(log(ε3n)− 5
2
log(log(ε3n))+u)

=
(
2−3/2 + o(1)

)
e−u

with o(1) in the last expression uniform in |u| 6 v with v = o (log log (ε3n)). Bearing in mind
the 1/

√
2π factor in (31), the Proposition is proved.
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Remark 3.5 (Duality of GW-trees.). Let p+ = (1 + ε)/(`− 1) and p̄− = (1− ε̄)/(`− 1). We
have, from (5), that p+ (1− p+)`−2 = p̄− (1− p̄−)`−2 if and only if δ+(ε, `− 1) = δ−(ε̄, `− 1)
For a fixed ε > 0, the latter equation has a unique solution ε̄ > 0, from the definition of the
function δ±. (28) then implies that, for the GW-trees T+ and T̄− respectively associated with
p+ and p̄− as above:

(T+ | |T+| <∞) is distributed as T̄−
It is a general fact that supercritical GW-trees conditioned on being finite have the same
distribution as certain subcritical GW-trees. The specificity of the Binomial GW-trees is
that the corresponding subcritical GW-tree again are Binomial GW-trees.

We notice the following stability property of the Bin(` − 1, p) distribution under size-
biaising.

Lemma 3.6. Let ` ∈ N, i ∈ {0, 1, . . . , `− 1}, and p ∈ (0, 1]. If p is the Bin(`, p) distribution,
then

(
p
(i)
i+k, k ∈ Z+

)
is the Bin(`− i, p) distribution.

Proof. The generating function of p the Bin(`, p) distribution is given by:∑
k>0

skpk = (1− p(1− s))`

The i-th factorial moment of p is:

mi = pi
∏

06j<i

(`− j)

and the size-biased distribution p(i) satisfies:

p
(i)
k =

∏
06j<i(k − j)

pi
∏

06j<i(`− j)

(
`
k

)
pk(1− p)`−k

=

(
`− i
k − i

)
pk−i(1− p)(`−i)−(k−i)

Therefore
(

p
(i)
i+k, k ∈ Z+

)
is the Bin(`− i, p) distribution. Consider a tree tk ∈ Tk

s, and the
corresponding random tree Tk (tk). The next Lemma estimates the number of vertices in the
latter tree, that is the random variable |Tk (tk)|. We set h + 1 := |tk|. Recall the definition
of `i in (17). We have

h =
∑
i>1

i`i (32)

since both sides count the number of non-root vertices in tk.

Lemma 3.7. Let T = T± ∈ T be the GW-tree in (21). Let j > 3, and c < 1/2. There exists
`0 = `0(c) such that, for ` > `0

P (|Tk (tk)| = j) 6 (h+ 1)(1± ε)−he−c
h(h+1)

j P(|T | = j) (33)
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Proof. We first compare p(i) and p, for p the Bin(` − 1, p) distribution. Using Lemma 3.6,
and expanding the binomial coefficient, we find, for 1 6 k 6 `− i, that:

p
(i)
k+i =

(
`− 1− i

k

)
pk(1− p)`−1−i−k

=

∏
06j<i(`− 1− j − k)∏

06j<i(`− 1− j)
· 1

(1− p)i
·
(
`− 1

k

)
pk(1− p)`−1−k

6
1

(1− p)i
· pk (34)

where the inequality follows by bounding the first factor of the product by 1.
Let tk = (t, u1, . . . , uk) ∈ Tk. Denote by (vj)16j6h+1 the ancestors (large or strict) of

the k pointed vertices (including the pointed vertices themselves) in tk ranked by breadth-
first order. (This definition of h is consistent with the one in (32)). Consider, for i ∈
{1, . . . , h+1}, Ui the set of vertices of tk whose most recent common ancestor in {(vj)16j6h+1}
is vi, and define t[i] ∈ T the tree induced by t on Ui and rooted at vi. We apply this
construction to Tk (tk) ∈ Tk, shortened in Tk in the following lines. Recall T ′ is the random
tree embedded in Tk. Conditionally on T ′, the random tree T [i]

k is a GW-tree with offspring
distribution p, except for the root that has offspring distribution p

(j)
j+·, for j = |cT ′ (vi)| the

number of children of vi in T ′. With the help of (34), we see that:

P
(
T

[i]
k = t

)
6 (1− p)−|cT ′ (vi)|P(T = t)

Now, the trees T [i]
k are independent. Let (Ti)16i6h+1 be a collection of independent trees

distributed as T . The latter identity and
∑

16i6h+1 |cT ′ (vi)| = h together imply that

P (|Tk| = j) = P

( ∑
16i6h+1

|T [i]
k | = j

)
6 (1− p)−hP

( ∑
16i6h+1

|Ti| = j

)

Combined with (22) and the inequality 1− p 6 1, the latter gives (33)

3.3 The number of path-impure vertices in one large GW-tree.

Let Gn be a vertex transitive graph on n vertices with a pointed vertex called the root, and
let t ∈ T . Call ` the common degree of the vertices in Gn, and assume that the number of
children of every vertex in t is 6 `− 1, except the root of t that may have up to ` children.
Conditionally on t, we first define ι : t→ Gn a random graph homomorphism by induction:

• ι(ρ) is a random vertex x in Gn

• If v ∈ t has i children, denoted by v1, . . . , vi, then (ι(vj), 1 6 j 6 i) is a random,
uniformly distributed, sequence of i distinct elements of the set of neighbours of ι(v)
in Gn, also distinct from ι(a(v)) in case v 6= ρ.

18



• The vertices of t are seen in the breadth-first order.

Conditionally on t and ι, a vertex w ∈ t is called impure if there exists a vertex v smaller
than w in the breadth-first order, v ≺bfs w, such that ι(v) = ι(w). In that case, say that v
makes w impure; also, a vertex w ∈ t is called path-impure if it has an ancestor in t that is
impure. This means that there exists v � w, and a vertex u ≺bfs v such that ι(u) = ι(v);
say that u makes w path-impure in this case. We denote by I1(t) the subset of path-impure
vertices of t.

Fix a graph G0 ⊆ G = Gn. Define G\G0 the graph induced by G on the vertex set
V (G)\V (G0). Conditionally on t and ι, a vertex of t is called G0-impure if it is mapped by
ι to a vertex in G0, and is called G0-path-impure if it has an ancestor (strict or large) in t
that is G0-impure. We denote by I0(t) the subset of G0-path-impure vertices of t.

For v a vertex of G, we let C0(v) be the component that contains v in the percolation of
G\G0. We set, for t ∈ T ,

I(t) = I0(t) ∪ I1(t) (35)

We shall consider successively the expected number of path-impure vertices and of G0− path-
impure vertices in a large GW-tree. To bound the expected number of path-impure vertices,
we need the special case k = 2 in formula (19) (many-to-two formula).

Proposition 3.8. Let T ∈ T be the GW -tree given by (21). Assume ε satisfies (4) and `
satisfies (3). Let also I1 = I1(T ) be the subset of the path-impure vertices of T , and let P k be
the kernel of the non-backtracking random walk on Gn. Let c < 1/2. There exists `0 = `0(c)
such that, for ` > `0 and for any j > 1

E
(∣∣I1(T )

∣∣ ∣∣ |T | = j
)
6

π1/2

25/2c3/2

(∑
k>3

ke−c
k2

j P k

)
j3/2 (36)

Notice that, for the RHS of (36) to be o(j), we need the term in parenthesis to be o
(
j−1/2

)
We first fix some notation. Let t2 ∈ T2

s be a tree spanned by 2 pointed vertices. We denote
by h0 the generation of the most common ancestor of the two pointed vertices, and by h0+h1
and h0 + h2 the generations of the two pointed vertices, with h0 + h1 6 h0 + h2 In this way,
the triplet h = (h0, h1, h2) uniquely defines a tree t2 ∈ T2

s, and we abuse notation by writing
T2(h) for T2 (t2) the associated GW-tree in this case. Let us point that the number h of
non-root vertices in t2 then satisfies:

h = h0 + h1 + h2 (37)

Proof. Let j ∈ N. We use the many-to-two formula in Lemma 3.1 with the index of
summation (ii). For v, w distinct vertices of T , the choice

F (T, v, w) = 1{w makes v path-impure in T, |T | = j}

allows to estimate the size of I1(T ) the subset of the path-impure vertices in the GW-tree T .
(The function F is, through ι, a random function, but the many-to-two formula still holds
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for such a function.) Recall the notation T2(h) = (T (h), u1, u2) and the notation u0 for the
most recent common ancestor of u1 and u2. Recall the definition of h in (37) and the equality
(32) on `1 + 2`2. We point out that m1 = p(` − 1) = 1 ± ε and m2 = p2(` − 1)(` − 2) 6
(p(`− 1))2 6 (1± ε)2, so the product that appears in (19) satisfies∏

16i6k0

m`i
i = m`1

1 m
`2
2 6 (1± ε)`1+2`2 = (1± ε)h. (38)

Recall u(i)1 denotes the ancestor of u1 at generation i. Fix j and apply (19) to find:

E
(∣∣I1∣∣ , |T | = j

)
6 E

 ∑
v 6=w∈T\{ρ}

F (T, v, w)

 (39)

6
∑

h0,h1,h2

(1± ε)hP (u2 makes u1 path-impure in T2(h), |T2(h)| = j)

6
∑

h0,h1,h2,i

(1± ε)hP
(
u2 ≺bfs u

(i)
1 , ι(u2) = ι(u

(i)
1 ), |T2(h)| = j

)
6

∑
h0,h1,h2,i

(1± ε)h1{h0+h26i6h0+h1}P
(
ι(u2) = ι(u

(i)
1 ), |T2(h)| = j

)
=

∑
h0,h1,h2,k

(1± ε)h1{h2+h26k6h2+h1}P kP (|T2(h)| = j) . (40)

At the third line, we use the definition of path-impurity of u1 in term of its ancestors. For
any two vertices u and v, u ≺bfs v implies |u| 6 |v|, whence the inequality at the fourth line.
We set k = h2 + i− h0 at the fifth line, k is the graph distance between the vertices u2 and
u
(i)
1 . Also we use that, for two vertices of T2(h) that are mapped to the same vertex of Gn by
ι, the image in Gn of the unique path in T2(h) between these vertices is distributed as a loop
of the non-backtracking random walk: this follows by construction of ι. We now fix k, and,
motivated by (33), compute a sum over h0, h1, h2 in (40): Fix c > 0 an arbitrary positive
number, and set

A =
∑

h0,h1,h2

1{h2+h26k6h2+h1} (h0 + h1 + h2) e−c
(h0+h1+h2)

2

j .

First we can sum over h0 > 1, using a simple comparison with an integral. This leaves

A 6
j

2c

∑
h1,h2

1{h2+h26k6h2+h1}e
−c (h1+h2)

2

j .

There remains two sums to perform. Set i = h1 + h2; due to the restriction, h2 + h2 6 k a
given value of i appears at most k/2 times:

A 6
j

2c

∑
h1,h2

1{h2+h26k6h2+h1}e
−c (h1+h2)

2

j 6
j

2c

∑
i>k

k

2
e−c

i2

j
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The last sum is estimated writing i = k + i′

∑
j′>0

e−c
(k+i′)2

j 6 e−c
k2

j

∑
i′>0

e−c
(i′)2

j 6

(
jπ

2c

)1/2

e−c
k2

j

so that

A 6
π1/2

25/2c3/2
ke−c

k2

j j3/2.

Inserting (33) into (40) and using the bound on A, we finally deduce for any c < 1/2:

E
(∣∣I1∣∣ , |T | = j

)
6

π1/2

25/2c3/2

(∑
k>3

ke−c
k2

j P k

)
j3/2P(|T | = j)

and this is estimate (36). In the latter formula, the sum over k starts from k = 3 because the
non-backtracking walk can not do shorter loops. The Proposition now follows by definition
of the conditional expectation.

To bound the expected number of G0-path-impure vertices, we only need the special case
k = 1 in formula (19)

Proposition 3.9. Let T ∈ T be the GW -tree given by (21). Let I0 = I0(T ) be the subset of
the G0-path-impure vertices of T constructed from the random homomorphism ι from T to
Gn. Let c < 1/2. There exists `0 = `0(c) such that, for ` > `0, and for any j > 1

E
(∣∣I0(T )

∣∣ ∣∣ |T | = j
)
6

π1/2

2c3/2
j3/2 |G0|

n
(41)

Notice that, whenever ι(ρ) ∈ G0, we have I0(T ) = T. The fact that ι(ρ) is random is
therefore important to avoid starting from G0 too often.

For a tree t1 ∈ T1
s spanned by 1 pointed vertex, we denote by h the generation of the

pointed vertex, which uniquely defines the tree t1 ∈ T s
1 . We abuse notation by writing T1(h)

for T1 (t1) in this case.

Proof. We do the choice

F (T, v) = 1
{
v G0-path-impure in T, |T | = j

}
and we use the many-to-one formula: this formula involves the tree T1(h) with one single
pointed vertex at generation h. We find, after (38), that the product

∏
16i6k0

m`i
i in (19)

simplifies to:
m`1

1 = (1± ε)h1
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Recall u(ı)1 is the ancestor of u1 at generation i. We apply (19) to the GW-tree T to find:

E
(∣∣I0(T )

∣∣ , |T | = j
)
6 E

 ∑
v∈T\{ρ}

F (T, v)


=
∑
h

(1± ε)hP
(
u1G

0 -path-impure in T1(h), |T1(h)| = j
)

6
∑
i6h

(1± ε)hP
(
ι(u

(i)
1 ) ∈ G0, |T1(h)| = j

)
=
∑
i6h

(1± ε)hP
(
ι(u

(i)
1 ) ∈ G0

)
P (|T1(h)| = j)

6
|G0|
n

∑
h

(1± ε)hhP (|T1(h)| = j) (42)

For the last estimate, we used that P
(
ι
(
u
(i)
1

)
∈ G0

)
= |G0| /n for any 1 6 i 6 h, which

holds because ι(ρ) is a random vertex in G. We now use Lemma 3.7 :∑
h

(1± ε)hhP (|T1(h)| = j) 6
∑
h

h2e−ch
2/jP(|T | = j)

6
j

2c

∑
h>1

e−ch
2/jP(|T | = j)

6
π1/2

2c3/2
j3/2P(|T | = j) (43)

The estimate (41) follows from (42) and (43).

We now bound I1(T ) and I0(T ) using the basic

Lemma 3.10. Let Xn > 0 be a sequence of non-negative random variables with a finite
first moment, and dn be a sequence such that E (Xn) = o (dn) . There exists a sequence bn
satisfying

bn = o (dn) and P (Xn > bn) = o(1)

Proof. Set an = E (Xn) and choose bn =
√
andn = o (dn) . By Markov inequality, P (Xn >

bn) 6 E (Xn) /bn = (an/dn)1/2 = o(1).

Lemma 3.10 entails the following Corollary to Proposition 3.8.

Corollary 3.11. Let t be given by (12) and β′ be a non-negative sequence such that t+β′ ∼ t.
In the setting of Proposition 3.8, and under condition (7), there exists a sequence β1 such
that

β1 = o
(
δ−1
)
and sup

t6t′6t+β′
P
(∣∣I1∣∣ > β1

∣∣ |T | = t′
)

= o(1). (44)
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Proof. Using condition (7) and the estimate (36) we find the bound:

sup
t6t′6t+β′

E
(∣∣I1∣∣ ∣∣|T | = t′

)
6

π1/2

25/2c3/2

(∑
k>3

ke−c
k2

t′ P k

)
(t+ β′)

3/2

The assumption t+ β′ ∼ t and the condition (7) ensure the RHS is o (δ−1) . The existence of
a sequence β1 satisfying (44) now follows from Lemma 3.10.

Corollary 3.12. Let t be given by (12), and β′ be a non-negative sequence such that t+β′ ∼ t.
In the setting of Proposition 3.9 if ε satisfies (4), there exists a sequence β0 such that

β0 = o
(
δ−1
)
and sup

t′,G0

P
(∣∣I0∣∣ > β0

∣∣|T | = t′
)

= o(1) (45)

with the sup over (t′, G0) such that t 6 t′ 6 t+ β′ and G0 6 ct for c a finite constant.

Proof. We set j = t in (41) and observe, using (12) that

t5/2

n
=
δ−5/2s5/2

n
= o

(
δ−1
)
.

Together with (41), we obtain: supt′,G0 E (|I0(T )| ||T |= t′) = o (δ−1) with the sup as indicated
above. Lemma 3.10 now applies to give (45).

The following Proposition is key to the proof of Theorem 2.1. Notice Proposition 3.4
makes a similar statement without taking into account the path-impure vertices.

Proposition 3.13. Let T = T± ∈ T be the GW-tree in (22). Assume ε satisfies (4), `
satisfies (3), and t = t(u) is given by (12). There exists a sequence β such that β = o (δ−1)
and

n

t
P(t+ β 6 |T | <∞, |I(T )| 6 β) = (1 + o(1))

1

4
√
π

e−u (46)

with o(1) uniform over the sequences |u| 6 v such that v(n) = o (log log (ε3n)).

Crucial in this estimate is the choice of β : it should be larger than the typical values of
I(T ), but small enough so the replacement of t by t + β on the LHS in (27) and (46) does
not change the limit in the RHS.

Proof. We set β = β0+β1 given by the two Corollaries, and we notice that t+β = δ−1(s+o(1)).

Also, we set u′ = (log log (ε3n))
1/2 and7 β′ = δ−1u′. With this definition, we have that

t+ β′ ∼ t+ β ∼ t. Proposition 3.4 applies and we find that the three quantities:

P (t+ β 6 |T | 6 t+ β′) ,P(t+ β 6 |T | <∞), and P(t 6 |T | <∞) (47)

are equivalent as n→∞. We have the lower and upper bounds:(
1− supt+β6t′6t+β′ P (|I| > β||T |= t′)

)
P (t+ β 6 |T | 6 t+ β′) 6 P(t+ β 6 |T | <∞, |I| 6 β)

6 P(t+ β 6 |T | <∞)

By (44), (45), the definition of β and (47), the two bounds are equivalent as n→∞, moreover
(n/t)P(t+ β 6 |T | <∞, |I| 6 β) = (1 + o(1))e−u/(4

√
π).

7any sequence u′ satisfying 1� u′ � log log
(
ε3n
)
works as well
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3.4 Modified GW-trees.

In the modified GW-tree Tm
± ∈ T , every vertex v has a random independent number of

offspring distributed as Bin (`− 1v 6=ρ, p) . It is called "modified" because the distinct offspring
distribution is different at the root. In the case (3) that ` diverges, this change affects the
asymptotic of the tree only slightly, and the following dominations hold between the tails of
|Tm| and |T |.

Lemma 3.14. Let j ∈ N. The tail of the random variables |T | and |Tm| satisfy:

P(|T | > j) 6 P (|Tm| > j) 6 (1 +O(1/`))P(|T | > j) (48)

Proof. We call natural coupling of T and Tm the coupling that uses the same Bernoulli
random variables to define the Binomial number of offspring at each vertex. In this coupling,
only the number of children of the root may differ, by at most 1. We have T ⊆ Tm, whence
the lower bound in (50). If we consider T1 and T2 two independent copies of T and B an
independent random variable such that P(B = 1) = 1− P(B = 0) = 1/(`− 1) then we have

|Tm| = |T1|+B |T2| . (49)

in this coupling. We also point out that P (|T1|+ |T2| > j) 6 2(1 + O(ε))P(|T | > j) follows
from (23) with h = 2. These two equations entail the upper bound in (48).

P (|Tm| > j) 6 P (|T1| > j) + P(B = 1)P (|T1|+ |T2| > j)

6 (1 +O(1/`))P(|T | > j)

Recall the definition of C0(v) a few lines before (35).

Lemma 3.15. There exists a coupling in which, if v is a uniformly chosen random vertex
independent of the percolation of G :

|Tm\I (Tm)| 6
∣∣C0(v)

∣∣ 6 |Tm| (50)

This is essentially the statement of Proposition 11 in [Nac09], with the only difference that
we take v a uniformly chosen random vertex in G (consider the case of a fixed, deterministic
v ∈ G0 to see why this is needed). We do not repeat the proof. The lower bound in (50) may
be strict: this is because a vertex w ∈ T can be path-impure because of a vertex v ∈ T that
is itself path-impure.

Pruning off the path-impure vertices does not necessarily preserve the inclusion of trees:
T ⊆ Tm does not imply in general T\I(T ) ⊆ Tm\I (Tm) . However, in the coupling (49), T
and Tm agree in distribution on the event B = 0, and we always have the lower bound:

P (|Tm\I (Tm)| > j) > P(|T\I(T )| > j, B = 0)

> (1−O(1/`))P(|T | > j + β, |I(T )| 6 β)
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3.5 The number of components of Gn(p) with size in a given interval.

The results collected so far are applied in this section to the random graph of interest. For
G0 ⊆ G = Gn recall G\G0 is the graph induced by G on the vertex set V (G)\V (G0) . Call(
C0j , j > 1

)
the largest components of (G\G0) (p) arranged in non-increasing order of size.

Recall the definition of the mapR→ R, u 7→ t(u) in (12), and set t−1 for the inverse function
of t. A point measure recording the sizes of the components in (G\G0) (p) is defined by:

N0 =
∑
j>1

δt−1(|C0j |)

and we set N for N0 when G0 is the empty graph. The goal of this section is to show the
convergence, in a sense to be precised, of the random measure N towards a Poisson point
measure whose intensity measure µ is given by (8). A first step is to compute the first
moment of the random measure N0 evaluated on intervals. Call an interval J = (u1, u2)
bounded when −∞ < u1 6 u2 < ∞, and bounded from the left when −∞ < u1 6 u2 6 ∞.
In the following, we set t1 = t (u1) and t2 = t (u2) . We stress that the next two propositions
are concerned with the weak subcritical regime.

Proposition 3.16. Let J be a bounded interval. Assume ε satisfies (4), ` satisfies (3), t is
given by (13) and P k satisfies condition (7). The first moment of the random variable N0

−(J)
satisfies:

E
(
N0
−(J)

)
→
∫
J

µ(dx) as n→∞

and the convergence is uniform over the graphs G0 ⊆ G such that |G0| 6 Ct for any constant
C independent of n.

Proof. Let j, j′ ∈ N with j 6 j′. The inequality in Lemma 3.15 :

P (|Tm\I (Tm)| > j) 6 P
(∣∣C0(v)

∣∣ > j
)
6 P (|Tm| > j)

can also be written8 in term of T :

(1−O(1/`))P(|T\I(T )| > j) 6 P
(∣∣C0(v)

∣∣ > j
)
6 (1 +O(1/`))P(|T | > j)

using the natural coupling of T and Tm for the lower bound, see the proof of Lemma
3.14 , and again Lemma 3.14 for the upper bound. We can now put the pieces together.
We multiply the last inequality by n/j and then observe that P(|T\I(T )| > j) > P (j′ 6
|T | <∞, |I(T )| 6 j′ − j) . Also we choose j = t and j′ = t + β. The estimates in (27),(46)
entail that

lim
n→∞

n

t
P
(∣∣C0−(v)

∣∣ > t
)

=
1

4
√
π

e−u (51)

The first moment of N0
−(J) then satisfies:

8this step could have been avoided by stating a many-to-two formula for modified GW-trees
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E
(
N0
−(J)

)
= E

(∑
v

1{|C0(v)|ε(t1,t2)}
|C0(v)|

)
= (1 + o(1))

n

t1
P
(∣∣C0(v)

∣∣ ∈ (t1, t2)
)

= (1 + o(1))
1

4
√
π

(
e−u1 − e−u2

)
(52)

when n→∞. Notice we used t1 ∼ t2 for the second equality. The RHS of (52) is the integral
of µ given by (8) on J , which concludes the proof.

Recall that N stands for N0 when G0 is the empty graph.

Proposition 3.17. Let J be a bounded interval. Assume ε satisfies (4), ` satisfies (3), t is
given by (12) and P k satisfies condition (7). The second factorial moment of N−(J) satisfies:

E (N−(J) (N−(J)− 1))→
(∫

J

µ(dx)

)2

(53)

Proof. We start by writing:

E(N(J)(N(J)− 1)) = E

(∑
w

1{|C(w)|∈t(J)}
|C(w)|

(N(J)− 1)

)

= n
∑
j∈t(J)

E(N(J)− 1, |C(w)| = j)

j

where the sum at the first equality is over the vertices w of Gn, and w may be any vertex
(by vertex transitivity) at the second equality. The latter expression may be written

(1 + o(1))
n

t1

∑
G0⊆Gn,|G0|∈(t1,t2)

E
(
N(J)− 1 | C(w) = G0

)
P
(
C(w) = G0

)
(54)

In term of N0
−, this also writes:

E
(
N−(J)− 1 | C(w) = G0

)
= E

(
N0
−(J)

)
= (1 + o(1))

∫
J

µ(dx) (55)

using Proposition 3.16 for the latter identity, where o(1) is uniform over the graphs G0 ⊆ Gn

such that |G0| ∈ (t1, t2) . Putting this into (54) and using (55) with G0 reduced to the empty
graph, we conclude that (53) holds.

Let J denote the set of finite unions of intervals bounded from the left.

Lemma 3.18. Propositions 3.16 and 3.17 are valid for J ∈ J .

We stress that Propositions 3.16 and 3.17 are stated in the weak subcritical regime.
Proposition 3.16 does not hold for every J ∈ J in the weak supercritical regime.
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Proof. We start with Proposition 3.16. First consider the case when J is an interval, J =
(u1, u2) with u2 = ∞. The equivalent t1 ∼ t2 does no more hold in the equality (52). An
inequality replaces that equality:

E
(
N0
−(J)

)
6
n

t1
P
(∣∣C0(v)

∣∣ ∈ J) = (1 + o(1))
1

4
√
π

e−u1 . (56)

The converse inequality is proved by approximating J by an increasing sequence of finite
intervals, and we obtain lim infn→∞ E

(
N0
−(J)

)
> e−u1/4

√
π. Linearity of the expectation

entails that (52) extends to an arbitrary J ∈ J . We turn to Proposition 3.17. First consider
J = (u1, u2) with u2 = ∞. As before, a lower bound is achieved by approximation through
an increasing sequence of finite intervals: lim infn→∞ E (N−(J) (N−(J)− 1)) > (e−u1/4

√
π)

2
.

For the upper bound, we notice that |C0(v)| 6 |C(v)| and this entails, since u2 =∞, that:

E
(
N0(J)

)
6
n

t1
P
(∣∣C0(v)

∣∣ ∈ J) 6 n

t1
P(|C(v)| ∈ J).

We compute as in (54)

E(N(J)(N(J)− 1)) 6
n

t1

∑
|G0|∈t(J)

E
(
N0(J)

)
P
(
C(w) = G0

)
6

(
n

t1

)2

P(|C(v)| ∈ t(J))
∑

|G0|∈t(J)

P
(
C(w) = G0

)
6

(
n

t1
P(|C(v)| ∈ t(J))

)2

But we know from (56) with G0 the empty graph that (n/t1)P(|C(v)| ∈ t(J)) = (1+
o(1))e−u1/4

√
π in the weak subcritical regime, and the upper bound lim supn→∞ E (N−(J) (N−(J)−

1) ) 6 (e−u1/4
√
π)

2 follows. The case of an arbitrary J ∈ J is similar.

Let M(R) be the set of locally finite measures on the Borel sigma-algebra of R. A
measure M ∈ M(R) is called a point measure when M(J) takes values in N for any J
bounded Borel set; a point measure is further called simple when M({x}) ∈ {0, 1} for any
x ∈ R. A random element of M(R) is called a random measure. A sequence (Mn)n∈N of
random measures weakly converges (resp. vaguely converges) towards a random measure
M when the sequence of random variables

∫
Mn(dx)f(x) weakly converge to

∫
M(dx)f(x)

for each f continuous and bounded (resp. continuous bounded and compactly supported).
Proposition 16.17 in [Kal02], reproduced below, gives a criterion for the vague convergence
of probability measures in term of the void probabilities.

Proposition 3.19. Let (Mn)n>1 be a sequence of random point measures on R, and let M
be a random simple point measure. Then (Mn)n>1 vaguely converges to M if the following
two conditions hold:

• limn→∞ P (Mn(J) = 0) = P(M(J) = 0), for any J finite union of bounded intervals of
R.
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• lim supn→∞ E (Mn(K)) 6 E(M(K)), for any compact set K.

Theorem 2.1 requires the weak convergence of the measures restricted to intervals bounded
from the left. The latter may be turned into vague convergence by compactification of the
space.

Proof of Theorem 2.1. To stress on the dependence in n, we write Nn for N in this proof.
Let k > 1, and J ∈ J . By an induction argument, we arrive at the following generalisation
of Proposition 3.17 : the k-th factorial moment satisfies

E

( ∏
06i6k−1

(Nn(J)− i)

)
= (1 + o(1))

(∫
J

µ(dx)

)k
(57)

For k ∈ N, the k-th moment of a random variable is a linear combination of the i-th factorial
moments for 1 6 i 6 k, hence the convergence (57) of the factorial moments entails that
of the usual moments. Moreover, the Poisson distribution is uniquely determined by its
moments. By the method of moments, see e.g. Section 6.1 of [JLR11] and the Theorem
6.1 in particular, Nn(J) weakly converges towards the Poisson distribution with parameter∫
J
µ(dx). This implies in particular the convergence of the void probabilities:

lim
n→∞

P (Nn(J) = 0) = e−
∫
J µ(dx) (58)

The proof is concluded applying Proposition 3.19 to Nφ
n the push-forward of Nn by an in-

creasing diffeomorphism φ : R→ (−∞, 0), e.g. x 7→ −e−x. Call µφ the push-forward measure
µ by the mapφ. Let J be a finite union of bounded intervals. Equation (58) is equivalent to:

lim
n→∞

P
(
Nφ
n (J) = 0

)
= e−

∫
J µ

φ(dx)

Let ε > 0, andK be a compact set of the real line. For x ∈ R, set d(x,K) = inf{d(x, y), y ∈
K} for the distance of x to K. For η > 0, the set Oη = {x; d(x,K) < η} is an open set of the
real line, hence it can be written as a union of open intervals, that is furthermore finite. By
monotone convergence there exists η > 0 so that µφ (Oη\K) < ε. Proposition 3.16 applies:

E
(
Nφ
n (K)

)
6 E

(
Nφ
n (Oη)

)
→
∫
Oη

µφ(dx) 6
∫
K

µφ(dx) + ε

and this proves, since ε is arbitrarily small, that

lim sup
n→∞

E
(
Nφ
n (K)

)
6
∫
K

µφ(dx), (59)

for K a compact set. (58) and (59) are the assumptions to apply Proposition 3.19, which
entails the vague convergence of Nφ

n towards the Poisson measure with intensity µφ. The
latter in turn is equivalent to the weak convergence of Nn to the Poisson measure with
intensity µ, when both measures are restricted to intervals bounded from the left. This is
the statement of Theorem 1.1.
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3.6 Adaptation to the case of graphs with bounded degrees

Interesting examples of expander graphs with bounded degrees are known (the Ramanajuan
graphs constructed in [LPS88] for instance), and we would like them to be included in our
analysis. This requires modifications in the both the statement and the proof of Theorem
2.1. Precisely, assume

`(n) > 3, lim
n→∞

`(n) = L <∞

which means that `(n) is constant equal to L for n large enough. Theorem (2.1) then holds
with the intensity of the Poisson point measure in that Theorem replaced by its multiple

1

4
√
π

L

L− 1
e−xdx

Observe that, when L = ∞, the convention L/(L − 1) = 1 allows to recover the original
intensity measure. If ` = `(n) and ε = ε(n) satisfy (4) and n goes to infinity, one has

δ±(ε, `− 1) ∼ (L− 1)(L− 3)

(L− 2)2
ε2

2
as n→∞ :

and the first order of the size of the largest components is now 2ε−2 log (ε3n) (L− 2)2/((L−
1)(L−3). To prove Theorem 2.1 in this new setting, we first observe using the decomposition
(51) and the exact computation (31) for the size of the union of h = 2GW trees that the
estimate (50) on the tail of the modified GW tree has to be replaced by

n

t
P
(∣∣Tm
−
∣∣ > t

)
= (1 + o(1))

1

4
√
π

L

L− 1
e−u as n→∞ (60)

in other words, T− and Tm
− have no more equivalent tails (in the scale t = t(u)). We then need

an estimate similar to (60) with Tm
− \I

(
Tm
−
)
in place of Tm

− in order to prove the analogue
of (51). There is no way round but to find a many-to-k formula in the context of modified
GW-trees. This modification is achieved as follows: in Lemma 3.1, if m̃i denotes the i-th
factorial moment of the offspring distribution at the root, the RHS in (22) is multiplied by
m̃ctk (ρ)

/mctk (ρ)
(remember that the root only has a distinct offspring distribution in modified

GW-trees). In our case, the ratio m̃i/mi is `/(`− i), and the upper bounds in the estimates
(36) and (41) are multiplied by a positive constant independent of n. Since condition (7) is
not sensitive to constants, we conclude that, under (7)

n

t
P
(∣∣Tm
− \I

(
Tm
−
)∣∣ > t

)
= (1 + o(1))

1

4
√
π

L

L− 1
e−u as n→∞ (61)

and the rest of the proof follows unchanged from this point on.

3.7 A remark on the second largest component in the weak super-
critical regime.

Recall the definition of the quantity ε̄ in Remark 3.5. There is a conjectured parallel, known as
the discrete duality principle, between the largest components in Gn (p̄−) , p̄− = (1−ε̄)/(`−1)
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and the largest components from the second one in Gn (p+) p+ = (1 + ε)/(` − 1). This
principle has been proved for a few graphs, among which the complete graph [NP07] and the
configuration model [Rio12]. The proof usually relies on the possibility to characterise the
(random) graph induced by Gn (p+) on the complement of C1 in a simple way. We believe that
an analogous result should hold in our case, yet the assumption we make or the methods we
use in this paper only give a lower bound for the expected number of components in certain
intervals, as shown below. The random measure of interest is again

N =
∑
j>1

δt−1(|Cj |)

and the lower bound is on the expected number of components with size in the interval
t (u1, u2) = (t1, t2), as follows.

Proposition 3.20. Assume ε satisfies (4), ` satisfies (3), and let p+ = (1 + ε)/(` − 1).
Assume the non-backtracking random walk on Gn satisfies (7). It holds, for J = (u1, u2),
−∞ < u1 6 u2 <∞, that:

E(N(J)) > (1 + o(1))
1

4
√
π

(
e−u1 − e−u2

)
as n→∞.

Proof. The set I1(T ) is the subset of path-impure vertices in T defined from the random
homomorphism ι from T to Gn. For β = o (δ−1) as in Corollary 3.11, we have:

E(N(J)) = (1 + o(1))
n

t1
P (|C(v)| ∈ (t1, t2))

> (1 + o(1))
n

t1
P
(
|T | ∈ (t1 + β, t2) ,

∣∣I1∣∣ 6 β
)

= (1 + o(1))
1

4
√
π

(
e−u1 − e−u2

)
using t1 ∼ t2 at the first and second line and Proposition 3.4 (with condition (7)) at the
second line.

With respect to the computation (52), we obtain an inequality in place of an equality at
the second line. Let η > 0 and j ∈ N be fixed, independent of n. The lower bound above
suggests that, with high probability as n→∞, the j-th largest component has size at least
δ+(ε, `− 1)−1 (log (ε3n)− (5/2 + η) log log (ε3n))

P
(
δ+(ε, `− 1) |Cj| − log (ε3n)

log log (ε3n)
> −(5/2 + η)

)
= 1− o(1) (62)

To prove this statement, it would be enough to have an upper bound on the second (factorial)
moment. For v, w ∈ V (Gn), we write v 6∼ w if v and w are not connected by a path of open
edges. Now, N(J)(N(J)− 1) counts the number of ordered pair of distinct components, and

30



It follows that if V and W stand for two independent uniform vertices in V (Gn) under
P,

E(N(J)(N(J)− 1)) = (1 + o(1))

(
n

t1

)2

P(|C(V )| ∈ t(J), |C(W )| ∈ t(J), V 6� W )

We did not find 9 an obvious way to bound P(|C(V )| ∈ t(J), |C(W )| ∈ t(J), V 6∼ W ) by
P(|C(V )| ∈ t(J))2, which is the first step to implement the second moment method and
conclude to (67). It may be that further conditions are necessary to prove (62).

3.8 Verification of condition (7)

We rely on [Nac09] to check condition (7). To that aim, it is useful first to relate (7) with
the assumption

n1/3

n1/3∑
k=1

kP k = O(1) (63)

made by Nachmias in the study of the critical regime. Assumption (63) alone is not enough to
check condition (7). One also needs the following condition 10: there exists a finite constant
c independent of n such that for n large enough,

P k 6
c

n
for k > n1/3. (64)

Lemma 3.21. Assume the sequence ε satisfies (4). Conditions (63) and (64) imply (7).

Proof. The first n1/3 terms in the sum in (7) are bounded using Nachmias condition (63)

t1/2
n1/3∑
k=1

ke−c
k2

t P k 6 t1/2n−1/3

n1/3

n1/3∑
k=1

kP k

 = O

(
s1/2

(δ3/2n)
1/3

)

and it is simple to check that s1/2/
(
δ3/2n

)1/3
= o(1/s). For the subsequent terms in the sum,

we have from assumption (64) that:

t1/2
∞∑

k=n1/3

ke−c
k2

t P k = O

(
t3/2

n

)
with room to spare. Then

t3/2

n
=

(δ−1s)
3/2

n
=

s3/2

δ3/2n
= o

(
1

s

)
(65)

9The possibility of closed edges with endvertices in both |C(V )| and |C(W )| prevents us from using the
van den Berg-Kesten-Reimer (BKR) inequality

10In practice, checking (64) usually does not raise additional difficulties with respect to (63). In [Nac09]
for instance, (63) is checked by proving in the first place that the bound on P k in (64) holds for k > log(n)
which entails (64).
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using for the last estimate that δ3/2n =
(
2−3/2 + o(1)

)
ε3n, as follows from (10), and then

log5/2 (ε3n) = o (ε3n), as follows from (4). Both terms in the sum in the LHS of (7) are
o(1/s), hence the condition is satisfied.

Estimates on the kernel of the non-backtracking walk computed in [Nac09] then yield
Proposition 2.6.

Proof of Proposition 2.6. For the two graphs, condition (63) is checked in Theorem 2 and,
under condition 11, in Theorem 6 of [Nac09]. Also, condition (64) is checked along the proofs
of these two theorems: see p.1177 for the expander graphs and p.1178 for the Hamming graph
in that same reference. Lemma 3.21 concludes the proof.

In the case of the Hamming graph in dimension 1, 2 and 3, one may check (7) by hand,
without the intermediate step of checking condition (63). Linking conditions (7) and (63)
allows us not to display tedious but straightforward computations.

Acknowledgments. We are grateful to M.J. Luczak for asking us a question about the
percolation of Hamming graphs that started this work and for sharing her expertise in the
field.
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