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OVERVIEW 2. RUIJSENAARS-SCHNEIDER SYSTEM FROM A QUIVER

A fruitful research direction in non-commutative
algebraic geometry consists in following the
Kontsevich-Rosenberg principle: given a classical
structure P defined over commutative algebras,

Idea: We derive a space whose Poisson bracket is determined by a double quasi-Poisson bracket asso-
ciated with a quiver. We follow the general scheme outlined in Part 1.

Step 1: Form the double @, of Q;. We can de-
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a structure P,. on an associative algebra A has e \,Q | :{“ij—_é, | fine a double quasi-Poisson bracket { —, —} on a
algebro-geometric meaning if it induces P on the 8 | w s | localisation A; of the path algebra CQ);,.

representation spaces of A. The work of Van
den Bergh [5] deals with the introduction of non-
commutative Poisson geometry in this context,
and it encodes the non-commutative version of
(quasi-)Hamiltonian reduction. We explain how
to obtain integrable systems in this framework
by extending cyclic quivers.

___________________________________ 1 Step 2: Rep(Ay, (1,n)) is formed of (X, Z,V, W)
(see left) with 1 + VW # 0, and inherits a quasi-
Poisson bracket by Equation (1).

—

Step 3: Fixing ¢ € C*, we get a Poisson variety
Cng ={XZX 1771 =¢(1d,+VW)}// GL,(C)

S and the functions ( tr(Z")), _, Poisson commute.

. \Z € GL,(C)

Result: We can understand the Poisson structure on C,, , using the double bracket {—, —}. In local
1. BACKGROUND coordinates, Z is the Lax matrix of the complex trigonometric Ruijsenaars-Schneider (RS) system [1].

Given a unital associative algebra A over C and
N € N*, the representation space Rep(A, N) is
the affine scheme defined by the coordinate ring
generated by symbols a;; fora € 4,1 <1i,5 < N,
C-linear in a and satistying

Zj a@-jbjk — (ab)zk ] 17;]' — 5@' .
If we write X' (a) for the N x N matrix (a;;) rep-
resenting a, we get the rules X (a)X' () = X (ab)
and X'(1) = Idy.
There is a natural GL(C) action on Rep(A, N)
by simultaneous conjugation.

3.2. SPIN RS SYSTEM
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Starting with ()4, we follow Steps 1-3 of Part 2 to

Starting with @;", we follow Steps 1-3 of Part get a Poisson variety C,, , 4 of dimension 2nd.

2 to get a Poisson variety cm which is locally

- k
isomorphic to some C,, , as a Poisson variety. We can prove that the functions (tr(Z"%)) yez TEP-
. resenting the “double” of the loop-arrow form a

We can realise the RS system on C,, , as well as degenerate integrable system.

cyclic generalisations of this system [1]. Quan- | | In local coordinates, Z is the Lax matrix of the
tum analogues of these ditferent systems have trigonometric spin RS system [2]. We can also
appeared in supersymmetric gauge theory, or in | | write down the Poisson bracket in terms of those
relation to Double Affine Hecke Algebras and coordinates and solve a conjecture formulated by
MacDonald theory [1]. Arutyunov and Frolov in 1998.

We want a Poisson structure on Rep(A, N) com-
pletely determined on A. Following [5], we put

{aijabkl} = {{CL, b};{] {aab}};/l ’ (1)
where {a,b} = {a,b} @ {a,b}’ € A® Ais ob-
tained from a double Poisson bracket

f—, -} A% A®Z

This bilinear map satisties non-commutative
skewsymmetry/derivation rules, and a Jacobi
identity in A®?, making (1) a Poisson bracket.
An element 11, € A is a moment map if

fr,,al =a®1—-1®a.

4. GENERALISED RS SYSTEMS FROM CYCLIC QUIVERS
Fixm >2,d=(ds;) e N",and q = (¢s) € (C*)™

Consider ng) as the cyclic quiver on m vertices
with d; extra arrows to the vertex s in the cycle

We can follow Steps 1-3 of Part 2 to get Cg';z)j a4,
which is a variety with a Poisson bracket induced
by a double quasi-Poisson bracket { —, —}

Theorem 1 ([5]) Fix (A,{—,—},u,) as above.
Using X (i, ) : Rep(A, N) — gly, A € C, the space
X (ny)” (Adn)// GLn(C)

inherits the Poisson bracket of Rep(A, N) which is
determined by {—, — } through (1).

. : (m)
We can explicitly parametrise the space C,,

Xs, Zs € GL,(C), Vs, € Mat(l xn,C), W, € Mat(n x1,C), 1<a<ds;, 0<s<m—1,
Remark 2 We will use an analogue of Theorem 1 in @8 satisfying the m relations X, Z, X 5 Z. %, = ¢, []%_, (Id,, + Wy o Vi o), where we take orbits of

the quasi-Poisson setting. We end up with a genuine _ _ _ -
Poisqs()n bracket on a rediced space [;159] s g- (X87 Zs; Ws,om Vts,oz) — (ngsgs-:p gs—I—Ings 17 gsWS,Ow ‘/:S,Oégs 1) y g = (gs) c GLn(C) :

4 In terms of the matrices

I Jouble brack Result: We can understand the Poisson structure on Ci”f;f 4 using the double bracket { —, —J}. In local
femarke3 Ve con construct Foibe rackels Jrom coordinates, Zy := Z,_1...Zy and (X, Z,)"' can be interpreted as Lax matrices for generalisations

quivers [5]. We then use a reduction by some diag-

onal subgroup T[. GL,_(C)  GLy/(C). of the trigonometric spin RS system, whose symmetric functions are degenerately integrable [4].

The case d = (dy,0,...,0), dy > 2, is treated in [3]; the subcase dy = 1 appears in [1] (see Part 3.1).
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e Fix one of the quivers () described above. The functions forming the integrable system can be lifted
to the representation space of CQ, where the flows can be constructed explicitly.

e We can understand the action-angle duality of the basic cases as a map “reversing arrows”.

o What is the real version of all these systems?

o Can we derive other systems (elliptic RS, Van Digjen, ...) from a non-commutative algebra?
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