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1. Harmonic measure in the classical case

Before we talk about our degenerate case, we describe very rapidly
the classical case with boundaries of co-dimension 1.

We start with (the Brownian path) definition for the harmonic
measure.

Let 2 be a nice domain in R”.
Just for the discussion below, say €2 is bounded and smooth.

We define the harmonic measure w” (centered at X € Q) by this:

For A C E, wX(A) is the probability for a Brownian trajectory
starting from X to lie in A the first time it hits E.

This looks intuitive; this would require some work to write down,
and appropriate assomptions too. And in practice we'll use another
definition.



Classical Harmonic measure (w*(A) is harmonic)

Observe that as a function of X, wX(A) is harmonic in Q.

Proof by conditional expectation:
We will use the fact that for continuous functions f on €2, f is
harmonic on €2 iff it satisfies the mean value property: for

0 < r < dist(X, 09),

B 1

- a(0B(X,r)) YEdB(X,r)

To see this, pick a small circle C = dB(X, r) centered at X. Before
it leaves 2, each Brownian path must hit C a first time.

This happens with equal probability to hit any Y € C.

And the Brownian path after Y is independent of the past.

So wX(A) is the average on C of w” (A), as needed.

f(X) f(Y)do(Y).

wX(A) is harmonic, so by Harnack: for X, Y € Q (connected),
C(X, Y)Y (A) < wX(A) < C(X, Y)w (A).



Classical Harmonic measure; other properties

We also expect that  wX(A) = 1when X €Q = (€ A
and

wX(A) = 0 when X € Q = £ € 9B\ A.

And, roughly speaking, these properties (harmonicity and limits)

should characterize w”X.

So w”X is a probability measure, and we want to relate its

properties to the geometry of 0f2.

Harnack above says that this depends only mildly on X (at least in
the middle of a connected component of 2).



Classical Harmonic measure; simple examples

Especially with the definition above, it is not easy to define or
compute wX. Except in some simple cases below.

Example 1: Q = B(0,1) C R”, X = 0; then w” is the uniform
probability measure on 9B(0, 1).

Example 2: when n = 2, it is not so hard to see that w is invariant
under conformal mappings. Indeed, if ¢ is an analytic mapping,
f o1 is harmonic when f is harmonic.

So if Q C R? ~ C is simply connected and we know a conformal
mapping ¢ : Q — D(0, 1) such that ¥(X) = 0, we can compute
wX(A) = length(:p(A)).



Classical Harmonic measure; a more pleasant definition

Recall: for A C 09Q, wX(A) is harmonic and “tends to” 14 on O9.

And wX(A) = / 1 A(E)dw (€).

o012
Next definition (as guessed): when € is “regular,” for each
g € C(09) (that is, continuous on 0L2), there is a unique harmonic
extension f of g to Q (continuous on Q). (Perron method, say).
Then for each X € Q, g — f(X) is a continuous linear form on
C(09Q) and by a theorem of Riesz there is a finite measure w” on

OS2 such that
f(X) = /69 g(ﬁ)dwx(f) for g € C(09).

This definition coincides with the previous one, with g = 1 4, in
the good cases.

Easier to manipulate in general.



Elliptic operators; elliptic measure

This was for harmonic functions and the Laplacian A = Zle %.
J

But the definitions work also for some other “elliptic operators”.
Let us consider only the operators in divergence form:

(1) L = div AV

where A = A(X) is an n X n real matrix (measurable in X), and we
require the usual boundedness property

(2) AX)| < C for X € Q2
and ellipticity condition

(3) (A(x)E,€) > CH¢)? for X € Q and £ € R".

Then it is possible to define elliptic measure wi( as above, but with

solutions of Lf = 0. We rather call wf elliptic measure. See later.



2. Some classical regularity results for Harmonic measure

How is the regularity of w” connected to the geometry of E = 97

For instance, when is w” absolutely continuous with respect to
surface measure (we'll also write H"~1, the Hausdorff measure)?

Very rich subject. Only a few examples here:

e F. and M. Riesz in 1916 (conformal mappings): If Q C R? is
simply connected and H1(9Q) < +o0o (here H! is the length),
¢ : D — Q is conformal, then [, [®'| < 400 and wa << H|18§2-

e Lavrentiev in 1936: If E C R? is a chord-arc curve, then

wX € AOO(H|189).
Here Ay is the Muckenhoupt class, given by a nicely invariant
quantitative condition of mutual absolute continuity, defined below.

e Dahlberg in 1977: w”* € AOO(H%}; (the surface measure) when
(2 is a Lipschitz domain in R".



Ahlfors regular sets and measures

Before we continue, define Ahlfors regular sets and measures.
Let E C R"” be closed. An Ahlfors regular measure of dimension d
supported on E is a measure u such that

4 Clrf < w(ENnB(x,r)) < Cr? forxe E and r > 0.
L4

Notation: p € AR(d). We say that the set E is Ahlfors regular
when its supports some u € AR(d).

Then we can take pu = ?—[|dE. That is, ”H‘dE € AR(d) too.

We chose unbounded sets here (closer to what we will do in these
lectures).

We'll restrict to AR sets below: this is not needed, but this will
simplify our life.



A need for geometric conditions

First, connectedness. If Q is not connected, w” only charges a
piece of 02 (the boundary of the component of X in Q).
But we'll assume €2 is connected.

If Q is badly connected, w” will be very small on some parts of OX
(and, iterating, this could prevent H1 << wX).

If Q has a simple cusp at 0 € 0€2, harmonic functions (such as
wX(A)) may have singularities at 0.

If 2 C C and €2 is a sector of angle «, a typical analytic function
near 0 is z™/®, and harmonic measure looks like |z|~**a d¢ near 0.

Same sort of behavior when 2 C R" is (looks like) a cone near 0.
Spherical harmonics: homogeneous harmonic functions come from

eigenfunctions of the Laplacian on Q2 N 9B(0,1) C 9B(0,1), and
their homogeneity depends on eigenvalues of that Laplacian.



Uniform connectedness and NTA

Harmonic (or elliptic) measure is not nice unless €2 is sufficiently
connected. Thus one often asks for :

e [ he existence of “corkscrew balls” in €2: there is C > 1 such
that for x € E = 92 and r > 0, we can find

Xx.r € 2 such that B(X. ,, Clrycq.
e The existence of “Harnack chains” in €2: for X, Y € €, there is a
thick path, not to long, that connects X to Y in €2. See the next
page.
e Not always but often, we demand corkscrew balls in R" \ﬁ.

NTA (non tangential access) is the conjunction of the three.
One-sided NTA would be the first two only.
Terminology from Jerison-Kenig.



Definition of the Harnack condition in £

A notation first (we always assume ) £ Q # R"):
o(X) = dist(X,R" \ Q) = dist(X;09) for X € €.

The standard definition with balls: €2 has Harnack chains if for
each A > 0 there is N = N(A, Q) such that:

if X, Y €Q, with | X — Y| <Amin(6(X),d(Y)), there is a chain
of balls By, By,...,By CQ, X € By, Y € By, each 2B; C 2, and
B; meets Bj 1 for 1 </ < N.

Hence by Harnack we control u(X)/u(Y) when u is positive
harmonic on €2.

Equivalent variant with thick paths: there exist constants ¢ > 0
and C > 1 such that, for X, Y € Q and setting R = | X — Y|, we
can find a path v =, , : [0, R] — Q, with v(0) = X, v(R) =Y,
v (t)] < C for t € [0, R] 6(v(t)) > c(t+ (X)) for 0 <t < R/2,
and 0(y(t)) > c((R—t)+d(Y)) for R/2<t <1



What does NTA vyield?

Many domains satisfy the NTA condition without having an Ahlfors
regular boundary of co-dimension 1. Think about snowflakes.

Yet some nice things can be said about w”X for those €. For
instance, w” is doubling:

wX (02N B(x,2r)) < Cw® (02N B(x,r)) for x € 0Q and r > 0.
Also, positive harmonic functions on €2 have extra nice properties:
they are locally Holder continuous up to 0€2, and there is a
comparison principle: if x € 0€2 and r > 0, and u, v are harmonic
and positive on N B(x, 2r), and vanish on 02 N B(x, 2r), then

u(X) v(Y)

)
< () < €

(5) ¢

for X, Y € QN B(x,r).

See Jerison, Kenig, and precursors (Ancona, etc.).

Techniques of potential theory and PDE’s. Including Caccioppoli
inequalities, Moser iteration, etc.



Regularity results for Harmonic measure (2)

Now assume E = 022 is Ahlfors regular of codimension 1. We can

try to compare w” with the “surface measure” 1 = ”H‘”E_l

The main breakthrough in dimensions n > 2 is Dahlberg 1977:
wX € AOO(H(’E_l) when Q is a Lipschitz domain in R".

The proof is more complicated; if | recall, Carleson measures, the
Rellich identity that connects normal and tangential derivatives,
and estimates.



Regularity results for Harmonic measure (3)

Under our AR + NTA assumptions, things are all right:

D.-Jerison or Semmes 1990: w* € A, (H""1) when

E € AR(n — 1) and (Condition B) there exists C > 1 such that for
x € E and r > 0 we can find z1, 2z € B(x, r), with

dist(z;, E) > Ctr, z €Q, and z» ¢ Q.

Indeed, the NTA condition implies Condition B (corkscrew points
on both sides).

Condition B (and E € AR(n — 1)) implies the uniform rectifiability
of E, and more: E contains big pieces of Lipschitz graphs, and
even with the corresponding Lipschitz domains contained in €2.

Then wX € Aso(H" 1) comes from Dahlberg's result and
(essentially) the maximum principle.



Regularity results for Harmonic measure (4)

Then there are weaker conditions that still imply w”® € Aoo(HfE_l),
or a slightly weaker quantitative mutual absolute continuity result.
For instance, one-sided NTA and uniform rectifiability. Optimal
results by S. Hofmann and X. Tolsa, | think.

Also, very nice non uniform results by Azzam, Hofmann, Martell,
Mayboroda, Mourgoglou, Nystrom, Uriarte-Tuero, Tolsa, Toro,

Volberg, and others, involving rectifiability (not uniform) and
density (instead of AR)!

And, with even more authors (Garnett, Pipher, etc.): a good part
is still true for the nice enough elliptic operators.

Comment. For the converse part, important use of the result of

Nazarov-Tolsa-Volberg on the boundedness of the Riesz transform
(iff E € UR).




3. Elliptic measure in co-dimensions > 1

Why do we try to take E = 02 of dimension d < n—17

e Curiosity: do some things go through? What is so special about
codimension 17 What is the role of the Riesz transform?

e The urge to do the forbidden thing.

e Interesting things showed up eventually.

Why forbidden?
Harmonic measure (for A) is not always defined on €: if
d < n— 2, almost every Brownian trajectory avoids E altogether.

Same problem with the Dirichlet problem: harmonic functions
extend harmonically through E, so we would be looking at
restriction to E of harmonic functions near E.

What do we do?
Replace A with well chosen degenerate elliptic operators L more
suited to the geometry, but that depend on E.
Instead J. Lewis & K. Nystrom replaced A with a p-Laplacian (a
non linear operator).



Degenerate Elliptic Operators

From now on, E = 092 € AR(d) for some d < n.

So we'll study elliptic measure, associated to degenerate elliptic
operators of the form

(6) L = —div[A(X)V],

where A is a n X n matrix-valued function A with real coefficients,
satisfying some degenerate elliptic condition. From homogeneity
considerations, we chose the class Mo of matrices A of the form

(7) A(X) = dist(X, E)T"A(X) =: w(X)A(X)

where A satisfies the usual boundedness and ellipticity conditions
(2) and (3) above.



Usual conditions/Comments

Recall the usual conditions:

(2)  JAX)E-¢| < Clgll¢] for X e Qand £,¢ € R,

(3) AX)E-€> CTHEPR for X € Qand € € R,

Comments.

The weight w(X) and the coefficients tend to infinity near E (in
an ordered way).

This way, when E = R? C R", and A(X) = Id, “radial” solutions
u=u(x,ly|), with x € R9 and y € R""9, come from harmonic
functions on Rffl.

We'll see later that things do not need to be so rigid.

When A = Id, the associated process is a Brownian Motion with a
drift in the direction of Vw (thus towards E).



Elliptic measure in this framework

With only the assumptions above, we can will reproduce the usual
theory of elliptic measure, but not more precise absolute continuity
results.

Notice that when d < n—1, we don't need to assume the
existence of Corkscrew Balls and Harnack chains in €2 (the one
sided NTA property), because this follows from AR(d).

And the basic statement in this context is: for E € AR(d),
d<n—1,and A € M., we can define elliptic measures wf,
X € €2, with the usual properties.

That is, assuming E € AR(d) and L = —div[A(X)V] for some
Ae My, -



Properties of elliptic measure

- First we study weak solutions, essentially obtained by
Lax-Milgram (see below).

- We prove Moser estimates, interior Holder estimates, Harnack
inequalities for solutions, Caccioppoli, Moser, Harnack, Holder
estimates on the boundary.

- We use this to prove a maximum principle, and solve the
Dirichlet problem: for f € Cy(E) we can find a solution of Lu =0
on €2, with Trace(u) = f on E (more about the trace soon).

- Hence by Riesz, we define, for X € €2, a probability measure

wX = w{* such that u(X) = [ fdw* for f and u as above.

- This measure does not depend wildly on X (by Harnack).

- We can define Green functions and estimate them.

- We prove comparison principles (at the boundary) and that wy is
doubling.



Why does it still work? Elementary geometry

The main point (to me) is that, associated to the weight
(8) w(X) = dist(X, E)9H1n
in €2, there is a weighted Sobolev space
(9) W = {f € Li,.(Q); VFf € L*(Q,w(X)dX)},

a good trace operator Tr: W — H = HY/2(E, du), and a good
extension operator: Ext : H — W, such that Tro Ext = [ on H.
Here u € AR(E) and H is the analogue of the Sobolev space (half
a derivative in L?(E), defined by the condition

!X - y\d“

[For E = RY, this is the same space; proof by a Fourier transform
computation.]



Sobolev space and Poincaré estimates

The boundedness of Tr comes from integrating derivatives of u on
line segments. Since d < n— 1, almost no line meets E.
The power in the weight w is chosen so that homogeneity is right.

The extension operator is the usual Whitney extension operator.
We use the same sort of estimates to evaluate f(x) — Ext(f)(X)
when x € E and X € Q.

We replace barrier functions by a weighted Poincaré estimate

2 I’2 u 2W
(1) /B L OOPw)ax < € /B IVUOOPw(X)aX

when x € E, r > 0 and u € W (or smoother) is such that

Tr(u) =0 on EN B(x,2r).

Which is proved essentially as the boundedness of Tr (we chose w
well, and we can find lots of paths from X € QN B to y € EN B).



Weak solutions (1)

Return to a first definition of solutions for L = — div[A(X)V],
where A(X) = w(X).A(X) satisfies the usual estimates (2) and (3)

(as in (6) and (7)).
We'll write this A € ./\/lde//(Q), or even L € ./\/lde//(Q).

Define a form F on W x W, by

Flu,v) = /Q AV u(X), Vv (X)) w(X)dX

(12)
= /g)(A(X)Vu(X), Vv(X))dX.

Notice that C1||u||?, < F(u,u) < C||u]l3,, by (6) and (7).



Weak solutions (2)

We say that u is a weak solution of Lu = 0 when

(13) F(u,v) =0 for v € W such that Tr(v) = 0.

We could take v € C1(Q); it would be the same by density.
Notice that this fits when u is smooth; integrate by parts.

Now we solve a Dirichlet-like problem with the extension operator.

Consider f € H and look for f € W such that Tr(u) = f and that
minimizes F(u, u).

The trace condition defines a closed affine subspace.

Unique minimizer: by convexity and since F(u, u) ~ ||ul[3,.

This minimizer is a weak solution because

F(u+ Av,u+ Av) > F(u,v) for ve W; Tr(v) =0 and X € R.
By the same computation, every weak solution u is a minimizer
(for f = Tr(u)).

Hence u is the only weak solution with Tr(u) = f.

Often one just says “Lax-Milgram.”



Harmonic measure

Let us admit that the restrictions to E of C! functions with
compact support lie in Co(E) N H and are dense in Cy(E) with the
uniform norm. Not really hard, but let us not bother.

For such f, the solution u of Lu =0 with Tr(u) = f is continuous
on 2 (standard elliptic theory).

It is also bounded by ||f||o., because otherwise we may truncate,
get a smaller energy F(u, u), and contradict the uniqueness (2 is
connected). This is a form of maximum principle.

Then for any given X € Q the linear functional f — u(X) is a
bounded linear form on the dense class, By Riesz it extends to
f € Co(E) and the extension is given by a finite measure wX. That

is, u(X) = [ ek f(y)dwX(y) as above.

This is also a way to solve the Dirichlet problem (but in fact we
proceed slightly differently, and first prove good estimates for the
weak solutions).



What we'll skip here

Once we have weak solutions, we follow a standard route in elliptic
theory.

We study the weak solutions, their regularity in €2, their behavior
near E, prove the maximum principle, solve the Dirichlet problem
for functions of Cy(E) (i.e., continuous that tend to 0), define w*
by Riesz as above, and prove additional estimates on w”® (such as
the doubling property and change of poles properties), harmonic
functions (like the comparison principle (5)), or the Green function.

Barrier functions are not needed, because of the boundary Poincaré
estimate (11).



PART 2 : Absolute continuity and geometric properties

Now we worry about more specific operators, and the relations
between the geometry of E and, for instance, the mutual absolute
continuity of wX and u (defined soon).

We wish to imitate Dahlberg’s result, and a long collection of
further ones, linking (under the NTA assumption, say) the uniform
rectifiability of E and the A, property of w* (defined soon).

In the classical case, one either keeps L = A, or one restricts to
nice operators that can often be taken to be perturbations of A in
some way. Typically, one asks for Carleson conditions on the
derivatives of A, so that L looks like a constant coefficient
operator.

In particular there are counterexamples to absolute continuity when
A is really matrix-valued. For instance obtained by applying
quasiconformal but not bilipschitz change of variables (we'll see
change of variables formulas below).



4. Our good operators L

So we take specific operators, to replace A in our context.

We prefer to take scalar matrices A, i.e.,
(13) L = —div[A(X)V] with A(X) = D(X) "4+,
where D is a function, which we choose such that

(14) C716(X) < D(X) < C8(X), where §(X) = dist(X, E).

This way we avoid the examples with bad isotropy, and by (14)
A lies in our good class A € M 4e1(€2).

The simplest would be to take D(X) = §(X), but we shell prefer
the smoother variants below (and in dimensions d > 1 we don't
have a proof of absolute continuity as below.



The good distance D,

We pick a > 0, choose u € AR(d) on E, and set
(15) Do(X) = Ry(X)"V with R,(X) = / X—y| " du(y)
E

Think that D, (X) is a smoother substitute for dist(X, E), defined
as intrinsically as we could.

Homogeneity is correct : R, (X) ~ §(X)™%, so Dy(X) ~ 6(X) and
A€ ./\/lde//(Q).

With E =R C R9*t! and p = dx, we would get L = cA.

So we take A is as nice as we can, and we expect L = L, to have
good properties when the geometry of E is nice.



5. Classical sufficient conditions for A

We start again with the classical case and uniform rectifiability.

Recall: in the classical case, B. Dahlberg said that if @ C R" is a
Lipschitz domain and L = A, then wa € Ax(0), where o = ”H‘”E_l
Is the surface measure.

And D.-Jerison (and soon later S. Semmes) extended this to €2
such that E € AR(n — 1) and the NTA condition holds.

In this case E is automatically (more than) uniformly rectifiable,
just because of AR and the corkscrew in 2 and the complement.

UR sets are a little more general than Lipschitz graphs or
bilipschitz images of R? inside R”. One of the many definitions is
by “Big Pieces of Lipschitz Images (BPLI)": ...



Uniform rectifiability

Let E C RY be Ahlfors regular of dimension d < n.

We say that E € UR(d) when there exists # > 0 and M > 1 such
that for x € E and r > 0, there is a M-Lipschitz function
f: B(0,r) NRY — R” such that HI(E N f(B(0,r))) > 6r.

e Notice: only integer dimensions d now.
e For sets E with finite diameters, just consider 0 < diam(E).

e Many other definitions exist. Characterizations by P. Jones
B-numbers and by X. Tolsa a-numbers; see below.

In general uniform rectifiability is a regularity condition on E that
we like because of its invariance properties and different
characterizations (geometric and analytic).



The A mutual absolute continuity condition

We give an ad hoc definition of A that corresponds to our
geometric NTA case, with a basic measure o = 7—[|dE and a

collection of measures (the harmonic measures wX, X € ), all
doubling and with some change of poles properties.

The standard (true) definition of A, would be slightly different
but the basic properties would be the same. See the books of
Journé or Garcia-Cuerva.

So here is our definition of w € A (o) (given the context):
Ve > 0,3 > 0 such that for B = B(x, r) centered on E,
X € QN B a corkscrew point for B, and A C E N B (measurable),

(16) HI(A) < SHYENB) = w*(A) < ewX(ENB).

Symmetric relation: for doubling measures as here, w € A (o) if
and only if 0 € Ao(w).

And the quantifyers 3¢ € (0,1),36 € (0, 1) would work as well.

Or more precise decay estimates of w* (A)/wX(E N B) in terms of
HI(A)/HIENB).



Sufficient conditions for A, when d < n—1

Take E € AR(d), u € AR(d) on E, a > 0, D,, as in (9), and
[ = —div[A(X)V] our good operator as in (15). Consider w = wjy.

If E C R" is the graph of the Lipschitz function F : R — R"—¢
and ||V F||« is small enough, then w € A ().

[An extension of Dahlberg’s result.]

Tueorem (D+M, not yet written down, “beautiful” proof)

If E C R" is uniformly rectifiable, then w € A (11).

TueoreMm (J. Feneuil, not yet written either, simpler proof!)

If d < n—2and E C R" is uniformly rectifiable, then w € A (14).




Comments about the statements

Green = hope.

The three statements come from a statement for R ¢ R”, with
more general (slightly non isotropic) coefficients, and then a
change of variables. A standard idea, but we'll see that we have to
respect some symmetries.

For the first theorem, the change of variables is easier to find
because the geometry is simple.

For the second one, the method is a natural extension of the
previous one (do suitable parameterizations of UR sets), but
technically very complicated because we have to cut. Some
comments later.

For the third one, a miracle occurs wich simplifies the algebra, but
so far does not work in co-dimension 2.

Anyway, we will first study operators L in the simple situation of
E=RICR"



6. A sufficient condition on A when E = RY ¢ R”

So we take E = Ep = R ¢ R”, Q = Qg :R”\]Rd and try to
prove that w € Ay (o) for a large class of coefficients

A € Myei(€20). Here o is the Lebesgue measure on RY.

Write the variable (x, t) € R" x R"~9, and take L = — div[A(X)V]
and A(x, t) = [t|7"T9FIM(x, t), with

~( MY(x,t) C?(x, t)
(17) Mix, 1) = ( C3(x,t)  b(x, t)l,_qg + C*(x, t) ) ’

where M1(X) is an elliptic d x d matrix, the |C/|? satisfy Carleson

measure estimates, /,_4 is the identity matrix, and b is a function
on Qo such that C! < b < C and |t|?|V b|? satisfies a Carleson
measure estimate. [More general than usual even when d = n— 1.]

Under these assumptions, w; is absolutely continuous with respect
to the Lebesgue measure on RY, with an AL density.




Definitions and comments

We say that f satisfies a Carleson estimate when

dxdt
dm = f(x, t) \t\)’(”'—d is a Carleson measure on 2. That is,
(18) m(Q N B(x,r)) < Cr? for x € E and r > 0.

The proof uses

e A (localized) estimate like ||Su||5 < C||Nul|3 for solutions:
integrations by parts and Carleson measure estimates;

e As a consequence, Carleson measure estimates on the square
function of solutions of the Dirichlet problem with bounded
boundary values on RY;

e A general argument, roughly as in Kenig-Kirchheim-Pipher-Toro
or Dindos-Petermichl-Pipher, to go from there to A..

Carleson merasures are usual to measure “small most of the time".

It is important in the proof that b(x, t)/,_4 acts the same way in
all directions orthogonal to RY. We'll see some part.



Proof (1) : Maximal functions and Carleson’s theorem

Here easier geometry: E = RY C R”; but this part goes through.
For F : 2 — R, define a nontangential maximal function MF by

(19) MF(x) =sup {|F(y,t)|; |t| > |x—y|} forxe€E.

Carleson’s theorem says that if ¢ is a Carleson measure on £2,

(20) /Q F(X)IPdu(X) < C, /E MF(x)Pdx

This is true for any p > 0; in fact
nw({X; F(X) > A}) < Cul{x; MF(x) > A} for A > 0.
Easy proof with a covering of {X; F(X) > )\} and the geometry

of tents.
Often MF(x) is itself bounded by the Hardy-Littlewood maximal
function of some g. For instance if F is a Poisson extension of g.



Proof (2) : Square function and Maximal function

Two important quantities for solutions u of L, that one likes to
estimate in term of each other. Assume here that the functions are
smooth and all the integrals converge.

Call v(x) = {(y,t) € Q; |t| > |x — y|} the access cone above x.

The square function (of u) is given by

dydt
(21) SulcP = [ (Vuly )P
(v, t)ev(x) ]
And the maximal function is
(22) Nu(x) = Mu(x) = sup u(y,t)

(y;t)ev(x)

Normally we should play with apertures and truncate, but let us
just cheat.



Proof (3) : The “usual’ estimates

The Ay estimate follows from a “well-known” general plan, where
we first prove that

(23) ||Sull> < C||Nul|> or equivalently ||Sul|3 < C||Nul|2||Sull

and in fact a local Carleson measure version of that.

This is our main estimate and we'll try to give hints.

Then one proves a weaker version of a Carleson measure estimate
for solutions of a Dirichlet problem (with bounded boundary value
f), except that we concentrate on characteristic functions f = 14,
H C E, and require that the extension uy(X) = w” (H) satisfies
the Carleson condition

dydt
(24) 1t 72| Vup(y, t)]z‘ﬂ),:_d is a Carleson measure.



The “usual” estimates (2)

... Finally one proves that w € A, (o) as soon as we have the
estimate (24).

The second and third part are less surprising to the experts. Owes
to Kenig, Kirchheim, Koch, Pipher, Toro, and then Dindos,
Petermichl, and Pipher. I'll pretend to understand, skip, and
concentrate on the part (23) that contains the main assumptions
and Carleson estimates!

Except for the the fact that | dont believe this leads to a proof,
you can see (23), or rather its version (25) below (localized on a
cube @) as connected to the desired harmonic measure estimate.
We are given E C Q and we consider the solution u = wX(E). We
know that if u(E)/u(Q) is small the integral of its boundary values
is small, and we can hope the same for ||[N®ul|5. If we have nice
small bounds for S® as in (25), we can expect to integrate Vu on
lots of paths between @ \ E and a small ball B centered on a
corkscrew point Xy for Q, and get that u(Xp) is small, as needed.



The square function estimate (1)

Now xatch me integrate by parts!

Recall we want a local version of (23), localized by a cube
QR C RY, of the form

(25) 15%ull2 < CIIN?u]|>

where SQu is defined by

dydt
26)  SCu(x?= [ Vuly. )P 2L
(v.£)ex(x) and |t <diam(Q) t]

for x € Q and SQu(x) = 0 otherwise (say).

We integrate on x € Q to get ||S%ul|3, and use Fubini.
Notice that y € CQ because |y — x| < |t| < diam(Q).
Integrating in x adds an extra diam(Q); thus...




The square function estimate (2)

dvdtd
15u|3 = / / Vuly, £)]2 o
xXEQCE J(y,t)ev(x);|t|<diam(Q) ‘t‘
dydt
< C / Vu(y, 1) 2
y€CQ,|t|<diam(Q) ]

dydt
< C [ IVuly. O uly. 0 X5

where 1 = 1 ¢ is an appropriate cut-off function that forces
y € CQ and [t| < diam(Q).

The square in 1)(X)? is more convenient in computations later.

Also, we can make 1) compactly supported in £2, at almost no cost
(but ¢ will have a large derivative in a thin region near E).

Finally, we will cheat, give the same name to different cut-off
functions v, and not worry about the difference.



The square function estimate (3)

Recall that A(X) = §(X)""971A(X) is elliptic. So

Vu(y, t)|” < C{A(y, t)Vu(y,t), Vu(y, t))
= Clt|"" " {A(y, t)Vu(y, t), Vu(y, t)).

Also recall that b(y,t) ~ 1 by assumption. Hence...

dyd
ISull3 < C [ [Vuty. O vly. P Y55 < U
with
@) J= [(A,OTuly. 1), Vuly, 0) by, 02 el s

. . . 1 . .
In due time, in some estimate p~— will cancel with a b(y,t)

coming from A.



The square function estimate (4)

Now a soft integration by parts.
Set p = u¢2]t|m. This is a test function, so

(28) / (Aly, t)Vu(y,t), Vo(y, t)) dydt =0

We write Vi as a sum of terms; (28) shows that a sum of
integrals is 0, and the first one will be J.

t]

1 1 1
2 2 2
Vo =V tl— 4+ 2uypVy— + VI tl— + b
) Uy ] \ upN Uy ] \ U=V b(y, t)2

This yields
J< Nh+ b+ )

and we have three integrals to estimate (and we used one
assumption).



The square function estimate (5)

We start with J3. We will use the Carleson condition on Vb. We
have to estimate

t
s _/| (AV 4, byup? LU |‘dydt
< C [ 1AIValuv(y. © Vbl tldyet
< C/\vu\uzp?ywut\”d—”dydt

We apply Cauchy Schwarz (we always do):

1/2

1/2
J; < C{/|vu\2¢2|t\2+d—"dydt} {/u2¢2|v13|2yt|2+d—"dydt}

The first part is almost the same as ||SQul| (slightly larger set of
integration, but we can manage). To be eaten by left-hand side.



The square function estimate (6)

Recall that |t]|?|Vb|?|t|?~"dydt is a Carleson measure. So by the
Carleson theorem (20) the second part is at most

cf [ 1M} < cineul.

This yields the desired estimate for J3 (compare with (23).

The term J; is almost the same. This time we use the fact that

V|| t|9~"dydt is a Carleson measure, which one can prove by
hand with the definition of .



The square function estimate (7)

We are left with

¢2
b = ‘/ AV, V\t\}—dydt‘

and here we use the decomposition of A.
First there are the three Carleson pieces A’ coming from the C'.

That is, |A’'| = [t|9T1="|C'| and t9~"|C'|? is a Carleson measure.
Then

Jy < C/\A"Hvuy u)® dydt = C/\c"uvu\ uh? |t 1T dydt
because |V|t|| = 1. We apply Cauchy-Schwarz as usual:

. 1/2 .
g < cf [IvuPrieprardyde} { [ aotic e dyde

The frst part is almost like ||S®ul|, and for the second we apply
Carleson’s theorem as above!

1/2



The square function estimate (8)

We are left with J° coming from the roughly diagonal terms in A.

The top d x d piece M! does not contribute because V|t| = t/|t|
lives in R"~9. We are left with the piece ||~ "bl,_q4 on the

bottom. This part of (AVu, V|t|) is equal to b|t|9+1~ ”Z 2—;’ i{|

the two b cancel as promised, and

t;
Jp = |/u¢226u L|t|9 T dydlt|.
J

0t; | t|

Time to use the (important) radial invariance!
Notice that the radial derivative of u? is 9,(u?) = 2u ZJ S2ti /|,

so the integrand looks like |[t|9t1~" times a radial derlvatlve.
We claim that

= /ﬁp(u2¢2)\t\d+1_”dydt = 0.



The square function estimate (9)

Recall the claim : J3 := /ap(u2¢2)\tyd+1—"dydt = 0.

Fix y and integrate only on t € R"~9. Then integrate in
“spherical” coordinates; the weight disappears and we get

B) = cna [ 0, (1202) (£€) dsdt.
£€0B(0,1) Js>0

Now the interior integral is the integral of 0,(u?%?) on a ray.
Vanishes because 1) is compactly supported away from R¢.

Whence the claim.
Compare J> with JS; we get

Controlled as usual because Vi gives a Carleson measure.

End of proof (almost). All assumptions were used.
Some approximate rotation invariance in R"~9 seems needed.



7. The general case; first a generic change of variable

We want to see how the equation Lu = 0 on € transforms.
Write u = v o g, where g : Q — Qg is a (local) diffeomorphism.

For the derivative, Du(Y) = Dv(g(Y)) o Dg(Y); we identify the
derivatives with matrices, so Du and Dv are line matrices, and Vu
and Vv are their transposed matrices. Say, Vu = Du*.

Also let © be a test function on €2 and ) = p o g the
corresponding test function on €g. Set X = g(Y); then

(A(Y)Vu(Y),Ve(Y)) = Vp(Y)A(Y)Vu(Y)
— D(Y)A(Y)Du(Y)*
= Dy(X)Dg(Y)A(Y)Dg(Y)*Dv(X)

~

= (A(X)Vv(X), V(X))

~

with | A(X) = Dg(Y)A(Y)Dg(Y)*|.




Formula for the changes of variable (2)

Let f : Qo — € be the inverse of g. So Y = f(X).
Recall that u is a weak solution when for every o,

0= / AY)Vu(Y), Vio(Y))dY = / (AX)VV(X), V(X)) dY
Q Q

~

_ /Q AV v(X), V(X)) JF(X)dX

where Jf is the Jacobian determinant of f : 29 — 2. So v is a
weak solution for L when v is a weak solution for Lg, and the
relation between A and the matrix Ag for Lg is

Ao(X) = JF(X) Dg(Y)A(Y)Dg(Y)"
= JF(X) DF(X)LA(F(X))(DF (X)),



Comments on the changes of variable formula

e If we start from a scalar matrix D(Y)9T1=7/, as we like, we still
get a complicated matrix

@ do=(0on®™ur [or oYy

which is symmetric but not scalar!

Logical: quasiconformal mappings do not hurt the ellipticity of A,
but mess up its symmetry and can be bad for the absolute
continuity of wy.

e We start from the nice domain €2, and need to find a good
mapping f = Qo — €2, so that when we compute Ap in (29), we
find one of the good matrices of our previous theorem!

So we'll be need to be careful, in particular so that f almost acts
in an isotropic way (i.e., almost like a dilation) in the orthogonal
variables t € R" 9. Trivial when d = n — 1, but not here!



8. The proof of the Dahlberg theorem

Recall we claim that for L = div Dt1="V, w; € Ay(1) when D,
is one of our nice distance functions in (15), E is the graph of a
small Lipschitz function F : R — R"9 and pu = 7—[|dE.

You guessed the idea: find a nice bilipschitz change of variable
f: Qo — Q (where Qy = R”\ RY as before), and prove that Ay in
(29) satisfies the assumptions our the previous theorem.

And it fits just right.

Bilipschitz ensures that Ag has the right size, and also that Ay
transfers through f, because f.u is AR on E.

The main point is that, with errors whose squares satisfy a
Carleson condition, the mapping f respects the directions t
perpendicular to E and acts as a dilation there.

Very amusing that in the geometry below, Square Carleson
conditions are the right thing too.



How do we parameterize E and Q7 (1)

Still think about the graph of F : R — R"9. In the past,
changes of variables with simple parameterizations of {2 by €2y were
used to solve elliptic problems.

The simplest is f(x,t) = (x, t 4+ F(x)). Works some times, but not
so smooth, which creates problems.

More careful : f(x,t) = (x,t + @) * F(x)), where the convolution
with |, is a smooth approximation of identity (less smooth near
the boundary, as it should be).

But this is not good enough yet. Even when F is a linear mapping
(important case), these two mappings are the same and move
points sideways. They do not try to preserve the tangent and
normal directions, or act as a dilatation in the t-variables.



How do we parameterize E and Q27 (2)

Fortunately, there is another standard way to parameterize sets E
(and their complement 2), that comes from the Reifenberg
topological disk theorem.

Usually the set E is just Reifenberg flat (er-good approximation of
E by a d-plane in each ball B(x, r) centered on E, with a small
fixed €), and the parameterization is not bilipschitz. But when E is
nice the constructed mapping is bilipschitz too.

The parameterization is constructed as a composition of finer and
finer approximations (at scales 10~%), using slowly moving
approximations by planes, the associated projections, and partitions
of unity.

Here E is sufficiently nice for this to work, and we can even find a
formula (using rotations Ry¢(x)) without iterations.

Anyway, thinking about the approximate tangent direction and
forgetting about horizontal and vertical helps.



Where is the geometry of E?

Formulas are simpler when E is a Lipschitz graph, but most of the
Carleson estimates on Df come from estimates on the P. Jones
B-numbers, that actually work for general uniformly rectifiable sets.
Here is a definition.

Let E € AR(d) and pu € AR(d) be supported on E. Take E
unbounded for convenience. Let 1 < g < +00 be given
(unfortunately, p = 400 does not work well here when d > 2).

For x € E and r > 0 set

(30)  Balx.1) = i?f{r_d/ [r~ dist(y, P)]qdu(y)}l/q

ENB(x,r)

where the infimum is taken over all affine d-planes P (through x if
you really insist).

Dimensionless numbers. You may also account for holes with a
bilateral variant of (.



Beta numbers (2)

It turns out [D.-Semmes]| that for g > d2—_d2, E is uniformly

rectifiable if and only if the 3,(x, r)? satisfy a Carleson condition.
That is, if

a0 [ [ e T < o
xE€B(xp,r) J0<r<n r

for xo € E and rhp > 0. So E is often close to a d-plane.

For Lipschitz graphs and g = 2 (hence 1 < p < 2 by Holder), this
is easy and comes from a Fourier computation [J. Verdera, | think].

And here g = 1 is enough | think.



X. Tolsa’s Alpha numbers

But many of our computations also concern the variations and
approximation of the smooth distance D, by distances to d-planes,
or it turns out, approximation in balls B(x, r) of our AR measure u
by flat measures Ap.

A flat measure is a positive multiple of 7—[|dP (or the Lebesgue
measure on P), for an affine d-plane P.

This comes in computations where, in the formula (15) for R, and
D,., one replaces © with a Ap to get an approximation of D,.

The distance is measured by a variant of the Wasserstein

1-distance of optimal transportation: Given measures u, A and a
ball B(x, r), we measure the distance

(32) dir(pt,0) = r 9 Lsup ’/fd,u—/fda
f

where the sup is taken over all 1-Lipschitz functions f that are
supported on B(x, r), and r—971j

)

Is a normalization to make
dx r(pt, o) and a(x, r) below dimensionless.



Alpha numbers (2)

Xavier Tolsa sets

(33) a(x,r) = a,(x,r) = inf dy (1, 0).
Mlat

And again proves (among other things) that if E € AR(d) and

1t € AR is supported by E, E is uniformly rectifiable if and only if
the v, (x, r)? satisfy a Carleson condition (same definition as
above).

It looks like this could have depended on u, but not really. But the
case of a density measure on the plane is already interesting!

Again, easier for small Lipschitz graphs. And notice the square!

Here we only use one direction, but it is god to know that we have
the right condition.

In summary: estimates on the 8 and o numbers are used a lot in
the proof and they hold for general uniformly rectifiable sets. The
small Lipschitz graph property is used to find a formula that gives
a bilipschitz mapping.



w € Ay for the uniformly rectifiable sets

The case of a general uniformly rectifiable set looks much harder.

At least when d = n — 2 when J. Feneuil does not have an
Incredible trick.

The plan is to follow the same general route, but it becomes
technical: we only have good parameterizations in “stopping time
regions”, so we need arguments to glue results from different
regions. Some geometry (we need some good control on the
algorithm of [D.-Toro]), plus a (complicated to me) trick called
“extrapolation,” plus a way to compare domains because sawtooth
domains do not have a large co-dimensional boundary.

So, not for here [and also, to be written!]

This feels good because the UR condition seems to be optimal. It
was (modulo finesses with the NTA condition) in codimension 1.



PART 3. Converse, magic, other quantities

Taking the A result for UR for granted, what about the converse?

That is, take D, and assume that w; € A (1); can we say that E
is uniformly rectifiable?

Can w; € Ax(t) ever happen when d ¢ N7

Recall: this is OK but quite hard in co-dimension 1, with the help
of NTV on the boundedness of the Riesz transform.

Even assume that = o = H‘dE if you want.

A statement of order 0, corresponding to a blow-up limit at a point
of density of Z—‘(‘; would be welcome: suppose w™ = o; is E flat?

Later in the lectures: other relevant properties, either geometric or
connected to solutions L = L.



9. Magic ALPHA (D.-Engelstein-Mayboroda)

We (with Max Engelstein) found a special case where things are
simpler, and we expected that the converse would be easier to
prove in this case, i.e., when

(34) a=n—d—2 hencen>d+ 2, but d¢ N is allowed).

d
Then Ry (X) = 1) is harmonic, and by a computation
X —y|"?

(35) Do (x) = Ra(x)™Y satisfies Lu = 0.

Assume to simplify that E is rectifiable and © = o.

By another computation, %—g (the normal derivative) is constant on
E. Hence D is the Green function for L, with pole at oc.

That is, > = 0.

Very strange! (Think about paint and the Brownian paths.)

Even when E is merely Ahlfors regular and u € AR(d), we get that
w << o, with a density h such that C-' < h< C.



Ask other questions then?

Not at all what we expected!
Does what happens when o« = n — d — 2 mean something special?

Now we (maybe) conjecture that w; € Ax (o) implies E € UR as
soon as & # n — d — 2. But we have a hard time doing this.

In the mean time, try to characterize UR in terms of other
properties connected to D,, or L.

Examples below, but probably we'll concentrate on the Green
function because it is connected to L., even though we don't have
full answers.

But all that follows about the Green function is subject to at least
more checking!

Feneuil above (E € UR implies w; € Ax(0) when n > d + 2) uses
information from the magic exponents!



10. The Green function

Let E € AR(d), n € AR(d) supported on E, and
| = div DIT1="V be given. For X € Q = R"\ E, there is a Green

function GX, associated to w”.

Let us only say that G* is L,-harmonic in Q\ {X}, positive, has a
vanishing trace on E, and has a reasonable singularity at X, i.e.,

looks like — log(|Y — X|) when n =2 and |Y — X|>~" when n > 2.

This makes G*X unique modulo a multiplicative constant. And it
has the same sort of estimates as in the classical case, in particular
relative to changes of pole X.

And by a limiting process, we can define a Green function with
pole at oo, G = G, which is harmonic on €2, positive, with a

reasonable size at oo, and vanishes on E.

Essentially unique too (see below for more about this and G*°).

Classically, in the smooth case, the density of w* against do is a

. D X
constant times the normal derivative 83%.



The Green function and D,

There are very few cases where we can compute G. Here are the
two main ones, where in addition G = D,,.

Case 1. When E =RY, 1, = Hf’E, and for any a > 0. Then
G(Y) =cD,(Y) = c'dist(Y,E).

Just by invariance and essential uniqueness.

Case 2. When d < n—2 and aa = n— d — 2 is magic, because

then D, is L,-harmonic and by essential uniqueness.

Natural Question 1: conversely, if D, is L,-harmonic, are we in
Case 1 or Case 27

Comment: if D, is L,-harmonic, it is the Green function.
So we really ask when the Green function G°° is a multiple of D,,.




10. When is D, a L,-harmonic function?

We can at least start to compute.

Suppose LoD, =0, i.e., div[D¢T1="vD,] = 0.
Suppose d # n—2, let v =d + 2 — n, and consider D,.

Then VD) = vD2 'V D, = vDI*+1="V D,, hence AD] = 0.

So we found a plain harmonic function, D, to work with!
Two main cases: d < n—2and d > n— 2.

[We expect d = n — 2 to be more complicated.]



When d < n — 2 and -y is negative

[The following needs to be checked!]

Set D =D, = D,,. So ADY =0, withy=d+2—-n<0.
Given the size of D7 (controlled singularity near E), we claim that
there is a representation of D7 as a potential from charges on E,

N e

and even with a mesure v € AD(d) supported on E. [At least we
can easily check that the left-hand side is harmonic and has about
the right size; then (36) should be a matter of taking weak limits
and integrating by parts.]

Recall that the magic number is g = n—d —2 = —~ and call
Do = D,, . the distance associated to ag and v; (36) says that

D(X) = Dy (X) = / ‘Xd_”XXZ 2}_1/% — Do(X).

This naturally leads to our second question:




Natural Question 2: Suppose that D, ,, = Dg,, with p,v € AD(d)
and a # 3, can we say that d is an integer and E is a d-plane?

Here we are mostly interested in the case when d < n— 2 and

B =n—d—2= —vis magic. Also, if this happens, we can
continue the argument, compute the asymptotics of D,, Dg near
E, and compute v in terms of u, so that for instance if u = HIdE
we get v = Cp.

As for Question 1, this seems quite plausible but we have no clue!
Both question are about different expressions involving
convolutions of i, v with the usual Green kernel (and maybe its
derivatives), and “miraculous algebraic relations” between those,
to be satisfied on R” \ E.



When d > n — 2 and ~y is positive

Here D7, with a positive exponent, is Holder near E and is (a
multiple of ) the Green function for A. This uniqueness is, as for
G above, a refinement of the comparison principle that says that
when two positive harmonic functions u, v are defined on a much
larger ball than B, then u/v varies very little on B.

We claim that, thanks to a relation between the Green function
and the harmonic measure, we have the estimate

C1rd <wX(B(y,r)) < Cr? when X ¢ B(y, 10r),

with C independent of X, y,r. That is, the (standard!) harmonic
measure is locally AR, and is absolutely continuous with respect to
1, with a weight (locally) bounded and bounded from below.



Summary of claims

At this point:

When n—2 < d < n—1, | thought | had an argument, but | get
confused about dimensions so let’'s not claim anything, except that
having an A% harmonic measure like that for a low dimensional
boundary is strange.

When d = n — 1, the classical case, recent results show that since
w € A®(u), so E is uniformly rectifiable. This will be enough for
the converse later. Probably, having G*° = CD,, implies that E is
flat, but no proof that | recall.

When n —1 < d < n, we assume one-sided NTA, and then our
initial problem also makes sense. And we claim a contradiction,
because the Green function G°° is not allowed to be that small at
a point of contact of a ball B with E. See below.



Some Green function estimates (1)

We start with the following estimate, for B = B(x, r) centered on
E, Xo a corkscrew point for that ball, and X € Q\ B(x, 10r):

wWwX(BNE) ~ r"2G*(Xp)

with an equivalence constant that depends only on the geometric
constants. In the case of our L = L, it would be

WX (BN E)~ rf 16X (Xo).

Fix X for simplicity, and use the comparison principle on the
functions GX and G = CD”: this gives

WwX(BNE) >~ r"2G®(Xy) ~ r" 2t = r9

with constants that depend on X and the choice of G°°, but not
on x, r as long as B(x, r) stays in a fixed ball depending on X.

As we claimed. And with L., a similar computation would have
given w (BN E) ~ r? too.



Green function estimates (2)

Now pick a touching ball B = B(Xp, d(Xp)).

Consider the Green function Ggo (for the operator A) and G = D7
(we assume it is harmonic).

Apply the maximum principle to these functions on the domain
A= B\ B(Xp,5(Xo)/2). On the interior boundary, G3° < CG,
just by Harnack. We don't care if C is huge.

On 0B, Ggo < CG too because G;(O =0and G > 0.
So G3° < CG.

Now assume that G = D7 with v > 1. Then near the point & of
ENdB, G(X) < C|IX —¢&]", while G&° > C~1dist(X,0B).
The needed contradiction.



11. Positive results for the Green function

Again, everything here should be checked.

Take d < n, but if d > n— 1 add the assumption that €2 is one
sided NTA (then our definitions makes sense).
Or just assume d < n — 1 as before.

We claim that if d is an integer and E is uniformly rectifiable, the
Green function G*° is very close to a multiple of D, on most balls!

Let us first state closeness in weak terms. Let 7, € be small
parameters. We say that the ball B(x, r) (centered on E) is good,

and we write (x, r) € G(7,¢) when there is a positive constant \
such that

(37) (1 —&)AD(X) < G(X) < (1 +e)ADy(X)

for every X € B(x,771r) such that dist(X, E) > 7r.



Positive results for the Green function (2): weakly nice

And we say that G is weakly nice when for each choice of ¢, T,
the complement B(7,¢) of G(7,¢) satisfies a Carleson Packing
condition. That is, there exists C = C(T, ) such that

d d
(38) / 13(re)(x, r) p(x)dr < C(r,e)rd
(x,r)€B(xo,r0) % (0,r0] r

Fans of UR should love this!
This fits the notion of being close to a AD,, most of the time.
And the first positive result is that

If E is uniformly rectifiable and L, D, are as usual, then G*° is
weakly nice.




Positive results for the Green function (3): comments

e Since p is close to a flat measure Carleson-most of the time, this
means that G*° is close to an affine function most of the time!

But for the converse it seems more natural to compare G with
D,. because both vanish on E.

e \We also claim a stronger result, which says that for each 7 > 0,
the quantity

(39) b(x,r) = inf

/ AV G — D,[2dX
A>0 J xeQnB(x,r—1r; dist(X,E)>7r

satisfies the quadratic Carleson condition

b(x, )2 2

(40) / <
(x,r)eB(x0,r0)x(0,r] r

.

More complicated proof (and to be checked) though!



|dea of proof for the weak result

By limits and compactness. There are a few believable ingredients.
e Compactness 1: given a sequence {Ex} of sets of AR(d) and for
each E, a measure i, supported on Ex and uniformly AR,
assuming 0 € E,, there is a subsequence so that E, tends to some
Eo, 1tk tends weakly to (1o, and i is AR and supported on E.
e Compactness 2: In the situation above, for a subsequence we
also have that after renormalization, G.° converges uniformly on
compact sets to a positive harmonic function G and...

e Uniqueness of the Green function: ... and G is the Green
function at infinity for the operator L, associated to the limit of
the D, = Da,k-

Then the proof. Let 7 and ¢ be given. Let k > 0 be very small, to
be chosen depending on 7 and «¢.



Idea of proof for the weak result (2)

Consider the new good set G'(k) of pairs (x, r) such that x € E
and r > 0 are such that on B(x,x71r), E is kr close to a d-plane
P and p is k2 close (in Wasserstein distance as above) to a flat
measure on P.

And the bad set B'(k) = E x R} \ G'(k). If we prove that
G'(k) C G(1,¢) and hence B(r,¢) C B'(k), then (38) follows
because UR and Tolsa say that B’(k) satisfies a Carleson condition.

And if this fails, start from a counterexample ( Ex, p1x) with
k = 27K with x =0 and r = 1 (allowed by invariance)

and extract converging subsequences as above.
By definition of G'(k), Ex is a d-plane and i is flat.
Then we compute that G2 (X) = Cdist(X, P) = CD(X).

But G ° converges uniformly on compact sets to G35
And (x,r) = (0,1) € B(r,¢) is impossible for k large! ]



What about the converse?

We only have a partial converse, and this is related to Question 1
above, about when can we have L,D, = 07 Let us explain.

For k > 0 small, define the good set G”(k) of the pairs (x, r), with
x € E and r > 0, such that E is kr-close to a d-plane P in B(x,r)
(in Hausdorff distance).

We know that if for each £ > 0, the complement of G”(k) satisfies
a Carleson measure condition as in (38), then E is uniformly
rectifiable.

Hence to prove that if G is weakly nice, then d is an integer and
E is uniformly rectifiable, it is enough to prove that for each x > 0,
we can find 7 > 0 and € > 0 such that G(7,¢) C G"(k).

We start the proof by compactness. Suppose not. Let x > 0 be
given. Let E, and p provide a counterexample with 7 = ¢ = 27K,

By invariance, we may assume that this happens for B(0,1). Take
a convergent subsequence as above.



Converse (2)

... Since (0,1) € G(7,¢), G° is closer and closer to a multiple of
D, in any compact set of €2.

Then G35 = D, ;. and so G5 is Ls-harmonic, where L, is
associated with Eo, and .

If the answer to Question 1 is positive, and if « is not magic
(otherwise, we actually expect that G = D,, for all E, and we
know it for sure for rectifiable sets), then E is a plane, this
contradicts our assumption that (0,1) ¢ G”(x), and we get the
desired UR result.

When d < n — 2 we don't know this but would bet on it.
When d = n — 2, a little less clear, agreed.

When n— 2 < d < n—1, this is the case that | left out. Good
hopes too.

When d > n — 1, we got a contradiction.

When d = n — 1, we do not exactly get that E is a plane, but it
is uniformly rectifiable....



Converse (3)

In this case we modify the argument, and instead of asking E to be
close to a plane we ask for a corkscrew ball in the complement
(Condition B).

The fact that E, is uniformly rectifiable and one-sided NTA (by
another limiting argument) implies that we can find a corkscrew
ball in the complement for E,,, and then we prove that this ball
also works for Ej, k large.

We skip the details.

Provisional conclusion: using the Green function G*° rather that
the harmonic measure w seems to give a better chance for a
converse.

But we don't really know how to go from w to G*°, so this may
not help for w.



The square functions (DEM)

Can we characterize something else than w; € A7
For instance, the USFE? The relevant square function here is

F(X) = s(X)(VIVDa* (X))l
where §(X) = dist(X, E), and the USFE means that
F(X)?5(X)™""9dX is a Carleson measure on Q.

That is, the measure of a ball of radius r centered on E is < Cr9.

And we (DEM) show that for E € AR(d), d < n, the USFE holds
if and only if d is an integer and E is uniformly rectifiable.

Here the value of & > 0 does not matter.
But the connection with w or a Riesz transform is not obvious.

|dea of proof here?



Nontangential limits of |V D,

Similarly, for E Ahlfors regular of dimension d < n, the function
'VD,|(X) has a nontangential limit p-almost everywhere on E if
and only if d is an integer and E is uniformly rectifiable.

Nice, explains why we like D,, but again only geometry here, no
real operator.

Proofs by a-numbers in one direction, by compactness and the
case when |V D,| is constant in the other direction.

Hope for more geometric characterizations, valid only when « is
not magic.
A good example being with the Green function above.



Doubling measures 1 and sets E of varying dimensions

Just a short description. In higher co-dimensions described above,
it seems harder to copy the sawtooth domains arguments. How do
we approximate a domain 2 with a larger, possibly more regular
one?

Let us just take an example. Let E be a Lipschitz graph of
dimension d < n—1in R". Then for some reason build a
sawtooth region around some part of E. That is, a domain 2 C ,
bounded in part by a subset Z C E, and in part by conical surfaces
S of co-dimension 1 around E \ Z.

Keep the same operator L as for E. Thus, less singular near S.
Can we discuss the associated elliptic measure?

There is a natural measureon E=Q=Z2ZUS: keep 11 on Z, and
take something like 6(X)"~9~!do on S.

This measure (1 is doubling, and behaves in intermediate
dimensional ways on intermediate balls.

Can we study the elliptic measures w; relative to the size of that
measure, and prove results as above?



Doubling measures and varying dimensions (2)

Turns out, yes. With more work but ideas similar to the above.

Need to be more careful at the beginning, with Sobolev spaces
W= {uel2 (Q); Vue L?>(wdX)} and H = HY/2(E,du).

loc
And we use arguments from Heinonen, Kilpelainen, Martio,

Hajtasz, Koskela, and others. The theory needs:

- A doubling measure on E, such as p before or 11 just above.

- A doubling measure m = w(X)dX on € (a component of

R"\ E), such as 6(X)9t1="dX as above, but for instance slightly
different exponents would be allowed, and m could have mild
singularities inside 2.

- A relation between the two measures, where one does not grow
much faster that the other. See below.

- When n — 1 < d < n (this is allowed now), require as usual the
existence of Corkscrew balls and Harnach chains (one-sided NTA).
- A Weak Poincaré estimate away from E, see below.



Doubling measures and varying dimensions (3)

Let me not explain much about the weak Poincaré estimate. It
consists mostly in an estimate like

ﬁ/]g'u_ mp(u)| < Cr (%/B\Vulzdmy/z

when B is a ball of radius r such that 2B C (2.

For the relation between m and p, set, for x € E and r > 0,
p(x,r) = rtu(EN B(x, r)) tm(Qn B(x,r)).

Notice that this would be about constant in the basic example
above. One requires that for x € E and 0 < s < r,

IO(er) r/s 1—¢
p.s) = U

A way to say that their “local” dimensionalities are not so different.

Comments: surprised it works so well, in a context where | would
not have dared to study L (even in the classical case).
Even some AL results seem to hold here too.



