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1. Harmonic measure in the classical case

Before we talk about our degenerate case, we describe very rapidly
the classical case with boundaries of co-dimension 1.

We start with (the Brownian path) definition for the harmonic
measure.

Let Ω be a nice domain in Rn.
Just for the discussion below, say Ω is bounded and smooth.

We define the harmonic measure ωX (centered at X ∈ Ω) by this:

For A ⊂ E , ωX (A) is the probability for a Brownian trajectory
starting from X to lie in A the first time it hits E .

This looks intuitive; this would require some work to write down,
and appropriate assomptions too. And in practice we’ll use another
definition.



Classical Harmonic measure (ωX (A) is harmonic)

Observe that as a function of X , ωX (A) is harmonic in Ω.

Proof by conditional expectation:

We will use the fact that for continuous functions f on Ω, f is
harmonic on Ω iff it satisfies the mean value property: for
0 < r < dist(X , ∂Ω),

f (X ) =
1

σ(∂B(X , r))

∫
Y∈∂B(X ,r)

f (Y )dσ(Y ).

To see this, pick a small circle C = ∂B(X , r) centered at X . Before
it leaves Ω, each Brownian path must hit C a first time.
This happens with equal probability to hit any Y ∈ C.
And the Brownian path after Y is independent of the past.
So ωX (A) is the average on C of ωY (A), as needed.

ωX (A) is harmonic, so by Harnack: for X ,Y ∈ Ω (connected),

C (X ,Y )−1ωY (A) ≤ ωX (A) ≤ C (X ,Y )ωY (A).



Classical Harmonic measure; other properties

We also expect that ωX (A)→ 1 when X ∈ Ω→ ξ ∈ A
and

ωX (A)→ 0 when X ∈ Ω→ ξ ∈ ∂B \ A.

And, roughly speaking, these properties (harmonicity and limits)
should characterize ωX .

So ωX is a probability measure, and we want to relate its
properties to the geometry of ∂Ω.

Harnack above says that this depends only mildly on X (at least in
the middle of a connected component of Ω).



Classical Harmonic measure; simple examples

Especially with the definition above, it is not easy to define or
compute ωX . Except in some simple cases below.

Example 1: Ω = B(0, 1) ⊂ Rn, X = 0; then ωX is the uniform
probability measure on ∂B(0, 1).

Example 2: when n = 2, it is not so hard to see that ω is invariant
under conformal mappings. Indeed, if ψ is an analytic mapping,
f ◦ ψ is harmonic when f is harmonic.

So if Ω ⊂ R2 ∼ C is simply connected and we know a conformal
mapping ψ : Ω→ D(0, 1) such that ψ(X ) = 0, we can compute
ωX (A) = length(ψ(A)).



Classical Harmonic measure; a more pleasant definition

Recall: for A ⊂ ∂Ω, ωX (A) is harmonic and “tends to” 1A on ∂Ω.

And ωX (A) =

∫
∂Ω

1A(ξ)dωX (ξ).

Next definition (as guessed): when Ω is “regular,” for each
g ∈ C(∂Ω) (that is, continuous on ∂Ω), there is a unique harmonic
extension f of g to Ω (continuous on Ω). (Perron method, say).
Then for each X ∈ Ω, g → f (X ) is a continuous linear form on
C(∂Ω) and by a theorem of Riesz there is a finite measure ωX on
∂Ω such that

f (X ) =

∫
∂Ω

g(ξ)dωX (ξ) for g ∈ C(∂Ω).

This definition coincides with the previous one, with g = 1A, in
the good cases.

Easier to manipulate in general.



Elliptic operators; elliptic measure

This was for harmonic functions and the Laplacian ∆ =
∑n

j=1
∂
∂xj

.

But the definitions work also for some other “elliptic operators”.
Let us consider only the operators in divergence form:

(1) L = divA∇

where A = A(X ) is an n× n real matrix (measurable in X ), and we
require the usual boundedness property

(2) |A(X )| ≤ C for X ∈ Ω

and ellipticity condition

(3) 〈A(x)ξ, ξ〉 ≥ C−1|ξ|2 for X ∈ Ω and ξ ∈ Rn.

Then it is possible to define elliptic measure ωX
L as above, but with

solutions of Lf = 0. We rather call ωX
L elliptic measure. See later.



2. Some classical regularity results for Harmonic measure

How is the regularity of ωX connected to the geometry of E = ∂Ω?

For instance, when is ωX absolutely continuous with respect to
surface measure (we’ll also write Hn−1, the Hausdorff measure)?

Very rich subject. Only a few examples here:

• F. and M. Riesz in 1916 (conformal mappings): If Ω ⊂ R2 is
simply connected and H1(∂Ω) < +∞ (here H1 is the length),
Φ : D→ Ω is conformal, then

∫
∂D |Φ

′| < +∞ and ωX
Ω << H1

|∂Ω.

• Lavrentiev in 1936: If E ⊂ R2 is a chord-arc curve, then
ωX ∈ A∞(H1

|∂Ω).
Here A∞ is the Muckenhoupt class, given by a nicely invariant
quantitative condition of mutual absolute continuity, defined below.

• Dahlberg in 1977: ωX ∈ A∞(Hn−1
|∂Ω ) (the surface measure) when

Ω is a Lipschitz domain in Rn.



Ahlfors regular sets and measures

Before we continue, define Ahlfors regular sets and measures.
Let E ⊂ Rn be closed. An Ahlfors regular measure of dimension d
supported on E is a measure µ such that

(4) C−1rd ≤ µ(E ∩ B(x , r)) ≤ Crd for x ∈ E and r > 0.

Notation: µ ∈ AR(d). We say that the set E is Ahlfors regular
when its supports some µ ∈ AR(d).

Then we can take µ = Hd
|E . That is, Hd

|E ∈ AR(d) too.

We chose unbounded sets here (closer to what we will do in these
lectures).

We’ll restrict to AR sets below; this is not needed, but this will
simplify our life.



A need for geometric conditions

First, connectedness. If Ω is not connected, ωX only charges a
piece of ∂Ω (the boundary of the component of X in Ω).
But we’ll assume Ω is connected.

If Ω is badly connected, ωX will be very small on some parts of ∂Ω
(and, iterating, this could prevent Hn−1 << ωX ).

If Ω has a simple cusp at 0 ∈ ∂Ω, harmonic functions (such as
ωX (A)) may have singularities at 0.
If Ω ⊂ C and Ω is a sector of angle α, a typical analytic function
near 0 is zπ/α, and harmonic measure looks like |z |−1+ π

α d` near 0.

Same sort of behavior when Ω ⊂ Rn is (looks like) a cone near 0.
Spherical harmonics: homogeneous harmonic functions come from
eigenfunctions of the Laplacian on Ω ∩ ∂B(0, 1) ⊂ ∂B(0, 1), and
their homogeneity depends on eigenvalues of that Laplacian.



Uniform connectedness and NTA

Harmonic (or elliptic) measure is not nice unless Ω is sufficiently
connected. Thus one often asks for :

• The existence of “corkscrew balls” in Ω: there is C ≥ 1 such
that for x ∈ E = ∂Ω and r > 0, we can find

Xx ,r ∈ Ω such that B(Xx ,r ,C
−1r) ⊂ Ω.

• The existence of “Harnack chains” in Ω: for X ,Y ∈ Ω, there is a
thick path, not to long, that connects X to Y in Ω. See the next
page.

• Not always but often, we demand corkscrew balls in Rn \ Ω.

NTA (non tangential access) is the conjunction of the three.
One-sided NTA would be the first two only.
Terminology from Jerison-Kenig.



Definition of the Harnack condition in Ω

A notation first (we always assume ∅ 6= Ω 6= Rn):

δ(X ) = dist(X ,Rn \ Ω) = dist(X ; ∂Ω) for X ∈ Ω.

The standard definition with balls: Ω has Harnack chains if for
each A > 0 there is N = N(A,Ω) such that:
if X ,Y ∈ Ω, with |X − Y | ≤ Amin(δ(X ), δ(Y )), there is a chain
of balls B1,B2, . . . ,BN ⊂ Ω, X ∈ B1, Y ∈ BN , each 2Bj ⊂ Ω, and
Bj meets Bj+1 for 1 ≤ i < N.

Hence by Harnack we control u(X )/u(Y ) when u is positive
harmonic on Ω.

Equivalent variant with thick paths: there exist constants c > 0
and C ≥ 1 such that, for X ,Y ∈ Ω and setting R = |X − Y |, we
can find a path γ = γ

X ,Y
: [0,R]→ Ω, with γ(0) = X , γ(R) = Y ,

|γ′(t)| ≤ C for t ∈ [0,R] δ(γ(t)) ≥ c(t + δ(X )) for 0 ≤ t ≤ R/2,
and δ(γ(t)) ≥ c((R − t) + δ(Y )) for R/2 ≤ t ≤ 1.



What does NTA yield?

Many domains satisfy the NTA condition without having an Ahlfors
regular boundary of co-dimension 1. Think about snowflakes.
Yet some nice things can be said about ωX for those Ω. For
instance, ωX is doubling:
ωX (∂Ω ∩ B(x , 2r)) ≤ CωX (∂Ω ∩ B(x , r)) for x ∈ ∂Ω and r > 0.
Also, positive harmonic functions on Ω have extra nice properties:
they are locally Hölder continuous up to ∂Ω, and there is a
comparison principle: if x ∈ ∂Ω and r > 0, and u, v are harmonic
and positive on Ω ∩ B(x , 2r), and vanish on ∂Ω ∩ B(x , 2r), then

(5) C−1 ≤ u(X ) v(Y )

u(Y ) v(X )
≤ C

for X ,Y ∈ Ω ∩ B(x , r).
See Jerison, Kenig, and precursors (Ancona, etc.).
Techniques of potential theory and PDE’s. Including Caccioppoli
inequalities, Moser iteration, etc.



Regularity results for Harmonic measure (2)

Now assume E = ∂Ω is Ahlfors regular of codimension 1. We can
try to compare ωX with the “surface measure” µ = Hn−1

|E .

The main breakthrough in dimensions n > 2 is Dahlberg 1977:
ωX ∈ A∞(Hn−1

|E ) when Ω is a Lipschitz domain in Rn.

The proof is more complicated; if I recall, Carleson measures, the
Rellich identity that connects normal and tangential derivatives,
and estimates.



Regularity results for Harmonic measure (3)

Under our AR + NTA assumptions, things are all right:

D.-Jerison or Semmes 1990: ωX ∈ A∞(Hn−1) when
E ∈ AR(n − 1) and (Condition B) there exists C ≥ 1 such that for
x ∈ E and r > 0 we can find z1, z2 ∈ B(x , r), with
dist(zi ,E ) ≥ C−1r , z1 ∈ Ω, and z2 /∈ Ω.

Indeed, the NTA condition implies Condition B (corkscrew points
on both sides).
Condition B (and E ∈ AR(n − 1)) implies the uniform rectifiability
of E , and more: E contains big pieces of Lipschitz graphs, and
even with the corresponding Lipschitz domains contained in Ω.

Then ωX ∈ A∞(Hn−1) comes from Dahlberg’s result and
(essentially) the maximum principle.



Regularity results for Harmonic measure (4)

Then there are weaker conditions that still imply ωX ∈ A∞(Hn−1
|E ),

or a slightly weaker quantitative mutual absolute continuity result.
For instance, one-sided NTA and uniform rectifiability. Optimal
results by S. Hofmann and X. Tolsa, I think.

Also, very nice non uniform results by Azzam, Hofmann, Martell,
Mayboroda, Mourgoglou, Nyström, Uriarte-Tuero, Tolsa, Toro,
Volberg, and others, involving rectifiability (not uniform) and
density (instead of AR)!

And, with even more authors (Garnett, Pipher, etc.): a good part
is still true for the nice enough elliptic operators.

Comment. For the converse part, important use of the result of
Nazarov-Tolsa-Volberg on the boundedness of the Riesz transform
(iff E ∈ UR).



3. Elliptic measure in co-dimensions > 1

Why do we try to take E = ∂Ω of dimension d < n − 1?

• Curiosity: do some things go through? What is so special about
codimension 1? What is the role of the Riesz transform?
• The urge to do the forbidden thing.
• Interesting things showed up eventually.

Why forbidden?
Harmonic measure (for ∆) is not always defined on Ω: if
d ≤ n − 2, almost every Brownian trajectory avoids E altogether.

Same problem with the Dirichlet problem: harmonic functions
extend harmonically through E , so we would be looking at
restriction to E of harmonic functions near E .

What do we do?
Replace ∆ with well chosen degenerate elliptic operators L more
suited to the geometry, but that depend on E .
Instead J. Lewis & K. Nyström replaced ∆ with a p-Laplacian (a
non linear operator).



Degenerate Elliptic Operators

From now on, E = ∂Ω ∈ AR(d) for some d < n.

So we’ll study elliptic measure, associated to degenerate elliptic
operators of the form

(6) L = − div[A(X )∇],

where A is a n × n matrix-valued function A with real coefficients,
satisfying some degenerate elliptic condition. From homogeneity
considerations, we chose the class Mdell of matrices A of the form

(7) A(X ) = dist(X ,E )d+1−nA(X ) =: w(X )A(X )

where A satisfies the usual boundedness and ellipticity conditions
(2) and (3) above.



Usual conditions/Comments

Recall the usual conditions:

(2)
∣∣A(X )ξ · ζ

∣∣ ≤ Ce |ξ||ζ| for X ∈ Ω and ξ, ζ ∈ Rn,

(3) A(X )ξ · ξ ≥ C−1
e |ξ|2 for X ∈ Ω and ξ ∈ Rn.

Comments.

The weight w(X ) and the coefficients tend to infinity near E (in
an ordered way).

This way, when E = Rd ⊂ Rn, and A(X ) ≡ Id , “radial” solutions
u = u(x , |y |), with x ∈ Rd and y ∈ Rn−d , come from harmonic
functions on Rd+1

+ .

We’ll see later that things do not need to be so rigid.

When A = Id , the associated process is a Brownian Motion with a
drift in the direction of ∇w (thus towards E ).



Elliptic measure in this framework

With only the assumptions above, we can will reproduce the usual
theory of elliptic measure, but not more precise absolute continuity
results.

Notice that when d < n − 1, we don’t need to assume the
existence of Corkscrew Balls and Harnack chains in Ω (the one
sided NTA property), because this follows from AR(d).

And the basic statement in this context is: for E ∈ AR(d),
d < n − 1, and A ∈Mdell , we can define elliptic measures ωX

L ,
X ∈ Ω, with the usual properties.

That is, assuming E ∈ AR(d) and L = − div[A(X )∇] for some
A ∈Mdell , ...



Properties of elliptic measure

- First we study weak solutions, essentially obtained by
Lax-Milgram (see below).
- We prove Moser estimates, interior Hölder estimates, Harnack
inequalities for solutions, Caccioppoli, Moser, Harnack, Hölder
estimates on the boundary.
- We use this to prove a maximum principle, and solve the
Dirichlet problem: for f ∈ C0(E ) we can find a solution of Lu = 0
on Ω, with Trace(u) = f on E (more about the trace soon).
- Hence by Riesz, we define, for X ∈ Ω, a probability measure
ωX = ωX

L such that u(X ) =
∫

E fdωX for f and u as above.
- This measure does not depend wildly on X (by Harnack).
- We can define Green functions and estimate them.
- We prove comparison principles (at the boundary) and that ωL is
doubling.



Why does it still work? Elementary geometry

The main point (to me) is that, associated to the weight

(8) w(X ) = dist(X ,E )d+1−n

in Ω, there is a weighted Sobolev space

(9) W =
{
f ∈ L2

loc (Ω) ; ∇f ∈ L2(Ω,w(X )dX )
}
,

a good trace operator Tr : W → H = H1/2(E , dµ), and a good
extension operator: Ext : H →W , such that Tr ◦ Ext = I on H.
Here µ ∈ AR(E ) and H is the analogue of the Sobolev space (half
a derivative in L2(E ), defined by the condition

(10) ||f ||2H :=

∫
E

∫
E

|f (x)− f (y)|2dµ(x)dµ(y)

|x − y |d+1
< +∞.

[For E = Rd , this is the same space; proof by a Fourier transform
computation.]



Sobolev space and Poincaré estimates

The boundedness of Tr comes from integrating derivatives of u on
line segments. Since d < n − 1, almost no line meets E .
The power in the weight w is chosen so that homogeneity is right.

The extension operator is the usual Whitney extension operator.
We use the same sort of estimates to evaluate f (x)− Ext(f )(X )
when x ∈ E and X ∈ Ω.

We replace barrier functions by a weighted Poincaré estimate

(11)

∫
B(x ,r)

|u(X )|2w(X )dX ≤ Cr2

∫
B(x ,r)

|∇u(X )|2w(X )dX

when x ∈ E , r > 0 and u ∈W (or smoother) is such that
Tr(u) = 0 on E ∩ B(x , 2r).
Which is proved essentially as the boundedness of Tr (we chose w
well, and we can find lots of paths from X ∈ Ω ∩ B to y ∈ E ∩ B).



Weak solutions (1)

Return to a first definition of solutions for L = − div[A(X )∇],
where A(X ) = w(X )A(X ) satisfies the usual estimates (2) and (3)
(as in (6) and (7)).

We’ll write this A ∈Mdell (Ω), or even L ∈Mdell (Ω).

Define a form F on W ×W , by

(12)

F (u, v) =

∫
Ω
〈A(X )∇u(X ),∇v(X )〉w(X )dX

=

∫
Ω
〈A(X )∇u(X ),∇v(X )〉dX .

Notice that C−1||u||2W ≤ F (u, u) ≤ C ||u||2W , by (6) and (7).



Weak solutions (2)

We say that u is a weak solution of Lu = 0 when

(13) F (u, v) = 0 for v ∈W such that Tr(v) = 0.

We could take v ∈ C 1
c (Ω); it would be the same by density.

Notice that this fits when u is smooth; integrate by parts.

Now we solve a Dirichlet-like problem with the extension operator.

Consider f ∈ H and look for f ∈W such that Tr(u) = f and that
minimizes F (u, u).

The trace condition defines a closed affine subspace.
Unique minimizer: by convexity and since F (u, u) ∼ ||u||2W .
This minimizer is a weak solution because
F (u + λv , u + λv) ≥ F (u, v) for v ∈W ;Tr(v) = 0 and λ ∈ R.
By the same computation, every weak solution u is a minimizer
(for f = Tr(u)).
Hence u is the only weak solution with Tr(u) = f .
Often one just says “Lax-Milgram.”



Harmonic measure

Let us admit that the restrictions to E of C 1 functions with
compact support lie in C0(E ) ∩ H and are dense in C0(E ) with the
uniform norm. Not really hard, but let us not bother.

For such f , the solution u of Lu = 0 with Tr(u) = f is continuous
on Ω (standard elliptic theory).

It is also bounded by ||f ||∞, because otherwise we may truncate,
get a smaller energy F (u, u), and contradict the uniqueness (Ω is
connected). This is a form of maximum principle.

Then for any given X ∈ Ω the linear functional f → u(X ) is a
bounded linear form on the dense class, By Riesz it extends to
f ∈ C0(E ) and the extension is given by a finite measure ωX . That
is, u(X ) =

∫
y∈E f (y)dωX (y) as above.

This is also a way to solve the Dirichlet problem (but in fact we
proceed slightly differently, and first prove good estimates for the
weak solutions).



What we’ll skip here

Once we have weak solutions, we follow a standard route in elliptic
theory.

We study the weak solutions, their regularity in Ω, their behavior
near E , prove the maximum principle, solve the Dirichlet problem
for functions of C0(E ) (i.e., continuous that tend to 0), define ωX

by Riesz as above, and prove additional estimates on ωX (such as
the doubling property and change of poles properties), harmonic
functions (like the comparison principle (5)), or the Green function.

Barrier functions are not needed, because of the boundary Poincaré
estimate (11).



PART 2 : Absolute continuity and geometric properties

Now we worry about more specific operators, and the relations
between the geometry of E and, for instance, the mutual absolute
continuity of ωX and µ (defined soon).
We wish to imitate Dahlberg’s result, and a long collection of
further ones, linking (under the NTA assumption, say) the uniform
rectifiability of E and the A∞ property of ωX (defined soon).

In the classical case, one either keeps L = ∆, or one restricts to
nice operators that can often be taken to be perturbations of ∆ in
some way. Typically, one asks for Carleson conditions on the
derivatives of A, so that L looks like a constant coefficient
operator.

In particular there are counterexamples to absolute continuity when
A is really matrix-valued. For instance obtained by applying
quasiconformal but not bilipschitz change of variables (we’ll see
change of variables formulas below).



4. Our good operators L

So we take specific operators, to replace ∆ in our context.

We prefer to take scalar matrices A, i.e.,

(13) L = − div[A(X )∇] with A(X ) = D(X )−n+d+1 In

where D is a function, which we choose such that

(14) C−1δ(X ) ≤ D(X ) ≤ Cδ(X ), where δ(X ) = dist(X ,E ).

This way we avoid the examples with bad isotropy, and by (14)
A lies in our good class A ∈Mdell (Ω).

The simplest would be to take D(X ) = δ(X ), but we shell prefer
the smoother variants below (and in dimensions d > 1 we don’t
have a proof of absolute continuity as below.



The good distance Dα

We pick α > 0, choose µ ∈ AR(d) on E , and set

(15) Dα(X ) = Rα(X )−1/α with Rα(X ) =

∫
E
|X−y |−d−αdµ(y).

Think that Dα(X ) is a smoother substitute for dist(X ,E ), defined
as intrinsically as we could.

Homogeneity is correct : Rα(X ) ∼ δ(X )−α, so Dα(X ) ∼ δ(X ) and
A ∈Mdell (Ω).

With E = Rd ⊂ Rd+1 and µ = dx , we would get L = c∆.

So we take A is as nice as we can, and we expect L = Lα to have
good properties when the geometry of E is nice.



5. Classical sufficient conditions for A∞

We start again with the classical case and uniform rectifiability.

Recall: in the classical case, B. Dahlberg said that if Ω ⊂ Rn is a
Lipschitz domain and L = ∆, then ω∆ ∈ A∞(σ), where σ = Hn−1

|E
is the surface measure.

And D.-Jerison (and soon later S. Semmes) extended this to Ω
such that E ∈ AR(n − 1) and the NTA condition holds.

In this case E is automatically (more than) uniformly rectifiable,
just because of AR and the corkscrew in Ω and the complement.

UR sets are a little more general than Lipschitz graphs or
bilipschitz images of Rd inside Rn. One of the many definitions is
by “Big Pieces of Lipschitz Images (BPLI)”: ...



Uniform rectifiability

Let E ⊂ Rd be Ahlfors regular of dimension d < n.

We say that E ∈ UR(d) when there exists θ > 0 and M ≥ 1 such
that for x ∈ E and r > 0, there is a M-Lipschitz function
f : B(0, r) ∩ Rd → Rn such that Hd (E ∩ f (B(0, r))) ≥ θrd .

• Notice: only integer dimensions d now.

• For sets E with finite diameters, just consider 0 < diam(E ).

• Many other definitions exist. Characterizations by P. Jones
β-numbers and by X. Tolsa α-numbers; see below.

In general uniform rectifiability is a regularity condition on E that
we like because of its invariance properties and different
characterizations (geometric and analytic).



The A∞ mutual absolute continuity condition

We give an ad hoc definition of A∞ that corresponds to our
geometric NTA case, with a basic measure σ = Hd

|E and a

collection of measures (the harmonic measures ωX , X ∈ Ω), all
doubling and with some change of poles properties.
The standard (true) definition of A∞ would be slightly different
but the basic properties would be the same. See the books of
Journé or Garcia-Cuerva.

So here is our definition of ω ∈ A∞(σ) (given the context):
∀ε > 0, ∃δ > 0 such that for B = B(x , r) centered on E ,
X ∈ Ω ∩ B a corkscrew point for B, and A ⊂ E ∩ B (measurable),

(16) Hd (A) ≤ δHd (E ∩ B) =⇒ ωX (A) ≤ εωX (E ∩ B).

Symmetric relation: for doubling measures as here, ω ∈ A∞(σ) if
and only if σ ∈ A∞(ω).
And the quantifyers ∃ε ∈ (0, 1), ∃δ ∈ (0, 1) would work as well.
Or more precise decay estimates of ωX (A)/ωX (E ∩ B) in terms of
Hd (A)/Hd (E ∩ B).



Sufficient conditions for A∞ when d < n − 1

Take E ∈ AR(d), µ ∈ AR(d) on E , α > 0, Dα as in (9), and
L = − div[A(X )∇] our good operator as in (15). Consider ω = ωL.

THEOREM (DFM)

If E ⊂ Rn is the graph of the Lipschitz function F : Rd → Rn−d

and ||∇F ||∞ is small enough, then ω ∈ A∞(µ).

[An extension of Dahlberg’s result.]

THEOREM (D+M, not yet written down, “beautiful” proof)

If E ⊂ Rn is uniformly rectifiable, then ω ∈ A∞(µ).

THEOREM (J. Feneuil, not yet written either, simpler proof!)

If d < n− 2 and E ⊂ Rn is uniformly rectifiable, then ω ∈ A∞(µ).



Comments about the statements

Green = hope.

The three statements come from a statement for Rd ⊂ Rn, with
more general (slightly non isotropic) coefficients, and then a
change of variables. A standard idea, but we’ll see that we have to
respect some symmetries.

For the first theorem, the change of variables is easier to find
because the geometry is simple.

For the second one, the method is a natural extension of the
previous one (do suitable parameterizations of UR sets), but
technically very complicated because we have to cut. Some
comments later.

For the third one, a miracle occurs wich simplifies the algebra, but
so far does not work in co-dimension 2.

Anyway, we will first study operators L in the simple situation of
E = Rd ⊂ Rn.



6. A sufficient condition on A when E = Rd ⊂ Rn

So we take E = E0 = Rd ⊂ Rn, Ω = Ω0 = Rn \ Rd and try to
prove that ω ∈ A∞(σ) for a large class of coefficients
A ∈Mdell (Ω0). Here σ is the Lebesgue measure on Rd .

Write the variable (x , t) ∈ Rn ×Rn−d , and take L = − div[A(X )∇]
and A(x , t) = |t|−n+d+1M(x , t), with

(17) M(x , t) =

(
M1(x , t) C2(x , t)
C3(x , t) b(x , t)In−d + C4(x , t)

)
,

where M1(X ) is an elliptic d × d matrix, the |Cj |2 satisfy Carleson
measure estimates, In−d is the identity matrix, and b is a function
on Ω0 such that C−1 ≤ b ≤ C and |t|2|∇b|2 satisfies a Carleson
measure estimate. [More general than usual even when d = n− 1.]

THEOREM (DFM)

Under these assumptions, ωL is absolutely continuous with respect
to the Lebesgue measure on Rd , with an A∞ density.



Definitions and comments

We say that f satisfies a Carleson estimate when

dm = f (x , t)
dxdt

|t|n−d
is a Carleson measure on Ω. That is,

(18) m(Ω ∩ B(x , r)) ≤ Crd for x ∈ E and r > 0.

The proof uses
• A (localized) estimate like ||Su||22 ≤ C ||Nu||22 for solutions:
integrations by parts and Carleson measure estimates;
• As a consequence, Carleson measure estimates on the square
function of solutions of the Dirichlet problem with bounded
boundary values on Rd ;
• A general argument, roughly as in Kenig-Kirchheim-Pipher-Toro
or Dindos-Petermichl-Pipher, to go from there to A∞.

Carleson merasures are usual to measure “small most of the time”.

It is important in the proof that b(x , t)In−d acts the same way in
all directions orthogonal to Rd . We’ll see some part.



Proof (1) : Maximal functions and Carleson’s theorem

Here easier geometry: E = Rd ⊂ Rn; but this part goes through.
For F : Ω→ R, define a nontangential maximal function MF by

(19) MF (x) = sup
{
|F (y , t)| ; |t| > |x − y |

}
for x ∈ E .

Carleson’s theorem says that if µ is a Carleson measure on Ω,

(20)

∫
Ω
|F (X )|pdµ(X ) ≤ Cµ

∫
E
MF (x)pdx

This is true for any p > 0; in fact
µ
({

X ; F (X ) > λ
})
≤ Cµ

∣∣{x ; MF (x) > λ
}∣∣ for λ > 0.

Easy proof with a covering of
{
X ; F (X ) > λ

}
and the geometry

of tents.
Often MF (x) is itself bounded by the Hardy-Littlewood maximal
function of some g . For instance if F is a Poisson extension of g .



Proof (2) : Square function and Maximal function

Two important quantities for solutions u of L, that one likes to
estimate in term of each other. Assume here that the functions are
smooth and all the integrals converge.

Call γ(x) =
{

(y , t) ∈ Ω ; |t| > |x − y |
}

the access cone above x .

The square function (of u) is given by

(21) Su(x)2 =

∫
(y ,t)∈γ(x)

|∇u(y , t)|2 dydt

|t|n−2

And the maximal function is

(22) Nu(x) =Mu(x) = sup
(y ,t)∈γ(x)

u(y , t)

Normally we should play with apertures and truncate, but let us
just cheat.



Proof (3) : The “usual” estimates

The A∞ estimate follows from a “well-known” general plan, where
we first prove that

(23) ||Su||2 ≤ C ||Nu||2 or equivalently ||Su||22 ≤ C ||Nu||2||Su||2

and in fact a local Carleson measure version of that.

This is our main estimate and we’ll try to give hints.

Then one proves a weaker version of a Carleson measure estimate
for solutions of a Dirichlet problem (with bounded boundary value
f ), except that we concentrate on characteristic functions f = 1H ,
H ⊂ E , and require that the extension uH(X ) = ωX (H) satisfies
the Carleson condition

(24) |t|−2|∇uH(y , t)|2 dydt

|t|n−d
is a Carleson measure.

....



The “usual” estimates (2)

... Finally one proves that ω ∈ A∞(σ) as soon as we have the
estimate (24).

The second and third part are less surprising to the experts. Owes
to Kenig, Kirchheim, Koch, Pipher, Toro, and then Dindoš,
Petermichl, and Pipher. I’ll pretend to understand, skip, and
concentrate on the part (23) that contains the main assumptions
and Carleson estimates!

Except for the the fact that I dont believe this leads to a proof,
you can see (23), or rather its version (25) below (localized on a
cube Q) as connected to the desired harmonic measure estimate.
We are given E ⊂ Q and we consider the solution u = ωX (E ). We
know that if µ(E )/µ(Q) is small the integral of its boundary values
is small, and we can hope the same for ||NQu||2. If we have nice
small bounds for SQ as in (25), we can expect to integrate ∇u on
lots of paths between Q \ E and a small ball B centered on a
corkscrew point X0 for Q, and get that u(X0) is small, as needed.



The square function estimate (1)

Now xatch me integrate by parts!

Recall we want a local version of (23), localized by a cube
Q ⊂ Rd , of the form

(25) ||SQu||2 ≤ C ||NQu||2

where SQu is defined by

(26) SQu(x)2 =

∫
(y ,t)∈γ(x) and |t|≤diam(Q)

|∇u(y , t)|2 dydt

|t|n−2

for x ∈ Q and SQu(x) = 0 otherwise (say).
We integrate on x ∈ Q to get ||SQu||22, and use Fubini.
Notice that y ∈ CQ because |y − x | ≤ |t| ≤ diam(Q).
Integrating in x adds an extra diam(Q)d ; thus...



The square function estimate (2)

||Su||22 =

∫
x∈Q⊂E

∫
(y ,t)∈γ(x) ; |t|≤diam(Q)

|∇u(y , t)|2 dydtdx

|t|n−2

≤ C

∫
y∈CQ,|t|≤diam(Q)

|∇u(y , t)|2 dydt

|t|n−d−2

≤ C

∫
|∇u(y , t)|2 ψ(y , t)2 dydt

|t|n−d−2

where ψ = ψQ is an appropriate cut-off function that forces
y ∈ CQ and |t| ≤ diam(Q).

The square in ψ(X )2 is more convenient in computations later.

Also, we can make ψ compactly supported in Ω, at almost no cost
(but ψ will have a large derivative in a thin region near E ).

Finally, we will cheat, give the same name to different cut-off
functions ψ, and not worry about the difference.



The square function estimate (3)

Recall that A(X ) = δ(X )n−d−1A(X ) is elliptic. So

|∇u(y , t)|2 ≤ C 〈A(y , t)∇u(y , t),∇u(y , t)〉
= C |t|n−d−1〈A(y , t)∇u(y , t),∇u(y , t)〉.

Also recall that b(y , t) ∼ 1 by assumption. Hence...

||Su||22 ≤ C

∫
|∇u(y , t)|2 ψ(y , t)2 dydt

|t|n−d−2
≤ CJ,

with

(27) J =

∫
〈A(y , t)∇u(y , t),∇u(y , t)〉ψ(y , t)2 |t| dydt

b(y , t)
.

In due time, in some estimate 1
b(y ,t) will cancel with a b(y , t)

coming from A.



The square function estimate (4)

Now a soft integration by parts.
Set ϕ = uψ2|t| 1

b(y ,t) . This is a test function, so

(28)

∫
〈A(y , t)∇u(y , t),∇ϕ(y , t)〉 dydt = 0

We write ∇ϕ as a sum of terms; (28) shows that a sum of
integrals is 0, and the first one will be J.

∇ϕ = ∇uψ2|t|1
b

+ 2uψ∇ψ 1

b
+ uψ2∇|t|1

b
+ uψ2∇b |t|

b(y , t)2

This yields
J ≤ J1 + J2 + J3,

and we have three integrals to estimate (and we used one
assumption).



The square function estimate (5)

We start with J3. We will use the Carleson condition on ∇b. We
have to estimate

J3 =

∫ ∣∣∣〈A∇u,∇b〉uψ2 |t|
b2

∣∣∣dydt
≤ C

∫
|A||∇u|uψ(y , t)2|∇b||t|dydt

≤ C

∫
|∇u|uψ2|∇b||t|2+d−ndydt

We apply Cauchy Schwarz (we always do):

J3 ≤ C
{∫
|∇u|2ψ2|t|2+d−ndydt

}1/2{∫
u2ψ2|∇b|2|t|2+d−ndydt

}1/2
.

The first part is almost the same as ||SQu|| (slightly larger set of
integration, but we can manage). To be eaten by left-hand side.



The square function estimate (6)

Recall that |t|2|∇b|2|t|d−ndydt is a Carleson measure. So by the
Carleson theorem (20) the second part is at most

C
{∫

E
|M(uψ)|2

}1/2
≤ C ||NQu||.

This yields the desired estimate for J3 (compare with (23).

The term J1 is almost the same. This time we use the fact that
|∇ψ|2|t|d−ndydt is a Carleson measure, which one can prove by
hand with the definition of ψ.



The square function estimate (7)

We are left with

J2 =
∣∣∣ ∫ 〈A∇u,∇|t|〉 uψ2

b
dydt

∣∣∣
and here we use the decomposition of A.
First there are the three Carleson pieces Ai coming from the C i .
That is, |Ai | = |t|d+1−n|C i | and td−n|C i |2 is a Carleson measure.
Then

J i
2 ≤ C

∫
|Ai ||∇u| uψ2dydt = C

∫
|C i ||∇u| uψ2|t|1+d−ndydt

because |∇|t|| = 1. We apply Cauchy-Schwarz as usual:

J i
2 ≤ C

{∫
|∇u|2ψ2|t|2+d−ndydt

}1/2{∫
u2ψ2|C i |2|t|d−ndydt

}1/2
.

The frst part is almost like ||SQu||, and for the second we apply
Carleson’s theorem as above!



The square function estimate (8)

We are left with J0 coming from the roughly diagonal terms in A.

The top d × d piece M1 does not contribute because ∇|t| = t/|t|
lives in Rn−d . We are left with the piece |t|d+1−nbIn−d on the
bottom. This part of 〈A∇u,∇|t|〉 is equal to b|t|d+1−n

∑
j
∂u
∂tj

tj

|t| ,

the two b cancel as promised, and

J2 =
∣∣∣ ∫ uψ2

∑
j

∂u

∂tj

tj

|t|
|t|d+1−ndydt

∣∣∣.
Time to use the (important) radial invariance!

Notice that the radial derivative of u2 is ∂ρ(u2) = 2u
∑

j
∂u
∂tj

tj/|t|,
so the integrand looks like |t|d+1−n times a radial derivative.
We claim that

J0
2 :=

∫
∂ρ(u2ψ2)|t|d+1−ndydt = 0.



The square function estimate (9)

Recall the claim : J0
2 :=

∫
∂ρ(u2ψ2)|t|d+1−ndydt = 0.

Fix y and integrate only on t ∈ Rn−d . Then integrate in
“spherical” coordinates; the weight disappears and we get

J0
2 (y) = cn−d

∫
ξ∈∂B(0,1)

∫
s>0

∂ρ(u2ψ2)(tξ)dsdξ.

Now the interior integral is the integral of ∂ρ(u2ψ2) on a ray.
Vanishes because ψ is compactly supported away from Rd .
Whence the claim.
Compare J2 with J0

2 ; we get

J2 =
∣∣∣ ∫ u2ψ

∑
j

∂ψ

∂tj

tj

|t|
|t|d+1−ndydt.

∣∣∣
Controlled as usual because ∇ψ gives a Carleson measure.

End of proof (almost). All assumptions were used.
Some approximate rotation invariance in Rn−d seems needed.



7. The general case; first a generic change of variable

We want to see how the equation Lu = 0 on Ω transforms.

Write u = v ◦ g , where g : Ω→ Ω0 is a (local) diffeomorphism.

For the derivative, Du(Y ) = Dv(g(Y )) ◦ Dg(Y ); we identify the
derivatives with matrices, so Du and Dv are line matrices, and ∇u
and ∇v are their transposed matrices. Say, ∇u = Du∗.

Also let ϕ be a test function on Ω and ψ = ϕ ◦ g the
corresponding test function on Ω0. Set X = g(Y ); then

〈A(Y )∇u(Y ),∇ϕ(Y )〉 = ∇ϕ(Y )∗A(Y )∇u(Y )

= Dϕ(Y )A(Y )Du(Y )∗

= Dψ(X )Dg(Y )A(Y )Dg(Y )∗Dv(X )

= 〈Ã(X )∇v(X ),∇ψ(X )〉

with Ã(X ) = Dg(Y )A(Y )Dg(Y )∗ .



Formula for the changes of variable (2)

Let f : Ω0 → Ω be the inverse of g . So Y = f (X ).
Recall that u is a weak solution when for every ϕ,

0 =

∫
Ω
〈A(Y )∇u(Y ),∇ϕ(Y )〉dY =

∫
Ω
〈Ã(X )∇v(X ),∇ψ(X )〉dY

=

∫
Ω0

〈Ã(X )∇v(X ),∇ψ(X )〉Jf (X )dX

where Jf is the Jacobian determinant of f : Ω0 → Ω. So u is a
weak solution for L when v is a weak solution for L0, and the
relation between A and the matrix A0 for L0 is

A0(X ) = Jf (X )Dg(Y )A(Y )Dg(Y )∗

= Jf (X )Df (X )−1A(f (X ))(Df (X )−1)∗.



Comments on the changes of variable formula

• If we start from a scalar matrix D(Y )d+1−nIn as we like, we still
get a complicated matrix

(29) A0 =
(
D ◦ f

)d+1−n
Jf
[
Df −1(Df −1)∗

]
which is symmetric but not scalar!
Logical: quasiconformal mappings do not hurt the ellipticity of A,
but mess up its symmetry and can be bad for the absolute
continuity of ωL.
• We start from the nice domain Ω, and need to find a good
mapping f = Ω0 → Ω, so that when we compute A0 in (29), we
find one of the good matrices of our previous theorem!
So we’ll be need to be careful, in particular so that f almost acts
in an isotropic way (i.e., almost like a dilation) in the orthogonal
variables t ∈ Rn−d . Trivial when d = n − 1, but not here!



8. The proof of the Dahlberg theorem

Recall we claim that for L = divDd+1−n
α ∇, ωL ∈ A∞(µ) when Dα

is one of our nice distance functions in (15), E is the graph of a
small Lipschitz function F : Rd → Rn−d , and µ = Hd

|E .

You guessed the idea: find a nice bilipschitz change of variable
f : Ω0 → Ω (where Ω0 = Rn \ Rd as before), and prove that A0 in
(29) satisfies the assumptions our the previous theorem.

And it fits just right.

Bilipschitz ensures that A0 has the right size, and also that A∞
transfers through f , because f∗µ is AR on E .

The main point is that, with errors whose squares satisfy a
Carleson condition, the mapping f respects the directions t
perpendicular to E and acts as a dilation there.
Very amusing that in the geometry below, Square Carleson
conditions are the right thing too.



How do we parameterize E and Ω? (1)

Still think about the graph of F : Rd → Rn−d . In the past,
changes of variables with simple parameterizations of Ω by Ω0 were
used to solve elliptic problems.

The simplest is f (x , t) = (x , t + F (x)). Works some times, but not
so smooth, which creates problems.

More careful : f (x , t) = (x , t + ϕ|t| ∗ F (x)), where the convolution
with ϕ|t| is a smooth approximation of identity (less smooth near
the boundary, as it should be).

But this is not good enough yet. Even when F is a linear mapping
(important case), these two mappings are the same and move
points sideways. They do not try to preserve the tangent and
normal directions, or act as a dilatation in the t-variables.



How do we parameterize E and Ω? (2)

Fortunately, there is another standard way to parameterize sets E
(and their complement Ω), that comes from the Reifenberg
topological disk theorem.

Usually the set E is just Reifenberg flat (εr -good approximation of
E by a d-plane in each ball B(x , r) centered on E , with a small
fixed ε), and the parameterization is not bilipschitz. But when E is
nice the constructed mapping is bilipschitz too.

The parameterization is constructed as a composition of finer and
finer approximations (at scales 10−k ), using slowly moving
approximations by planes, the associated projections, and partitions
of unity.

Here E is sufficiently nice for this to work, and we can even find a
formula (using rotations R|t|(x)) without iterations.
Anyway, thinking about the approximate tangent direction and
forgetting about horizontal and vertical helps.



Where is the geometry of E?

Formulas are simpler when E is a Lipschitz graph, but most of the
Carleson estimates on Df come from estimates on the P. Jones
β-numbers, that actually work for general uniformly rectifiable sets.
Here is a definition.

Let E ∈ AR(d) and µ ∈ AR(d) be supported on E . Take E
unbounded for convenience. Let 1 ≤ q < +∞ be given
(unfortunately, p = +∞ does not work well here when d ≥ 2).

For x ∈ E and r > 0 set

(30) βq(x , r) = inf
P

{
r−d

∫
E∩B(x ,r)

[
r−1 dist(y ,P)

]q
dµ(y)

}1/q

where the infimum is taken over all affine d-planes P (through x if
you really insist).

Dimensionless numbers. You may also account for holes with a
bilateral variant of βq.



Beta numbers (2)

It turns out [D.-Semmes] that for q > 2d
d−2 , E is uniformly

rectifiable if and only if the βq(x , r)2 satisfy a Carleson condition.
That is, if

(31)

∫
x∈B(x0,r0)

∫
0<r<r0

βq(x , r)2 dµ(x)dr

r
≤ Crd

0

for x0 ∈ E and r0 > 0. So E is often close to a d-plane.

For Lipschitz graphs and q = 2 (hence 1 ≤ p ≤ 2 by Hölder), this
is easy and comes from a Fourier computation [J. Verdera, I think].

And here q = 1 is enough I think.



X. Tolsa’s Alpha numbers

But many of our computations also concern the variations and
approximation of the smooth distance Dα by distances to d-planes,
or it turns out, approximation in balls B(x , r) of our AR measure µ
by flat measures λP .

A flat measure is a positive multiple of Hd
|P (or the Lebesgue

measure on P), for an affine d-plane P.

This comes in computations where, in the formula (15) for Rα and
Dα, one replaces µ with a λP to get an approximation of Dα.

The distance is measured by a variant of the Wasserstein
1-distance of optimal transportation: Given measures µ, λ and a
ball B(x , r), we measure the distance

(32) dx ,r (µ, σ) = r−d−1 sup
f

∣∣∣ ∫ fdµ−
∫

fdσ
∣∣∣,

where the sup is taken over all 1-Lipschitz functions f that are
supported on B(x , r), and r−d−1 is a normalization to make
dx ,r (µ, σ) and α(x , r) below dimensionless.



Alpha numbers (2)

Xavier Tolsa sets

(33) α(x , r) = αµ(x , r) = inf
λflat

dx ,r (µ, σ).

And again proves (among other things) that if E ∈ AR(d) and
µ ∈ AR is supported by E , E is uniformly rectifiable if and only if
the αµ(x , r)2 satisfy a Carleson condition (same definition as
above).
It looks like this could have depended on µ, but not really. But the
case of a density measure on the plane is already interesting!

Again, easier for small Lipschitz graphs. And notice the square!

Here we only use one direction, but it is god to know that we have
the right condition.

In summary: estimates on the β and α numbers are used a lot in
the proof and they hold for general uniformly rectifiable sets. The
small Lipschitz graph property is used to find a formula that gives
a bilipschitz mapping.



ω ∈ A∞ for the uniformly rectifiable sets

The case of a general uniformly rectifiable set looks much harder.

At least when d = n − 2 when J. Feneuil does not have an
incredible trick.

The plan is to follow the same general route, but it becomes
technical: we only have good parameterizations in “stopping time
regions”, so we need arguments to glue results from different
regions. Some geometry (we need some good control on the
algorithm of [D.-Toro]), plus a (complicated to me) trick called
“extrapolation,” plus a way to compare domains because sawtooth
domains do not have a large co-dimensional boundary.

So, not for here [and also, to be written!]

This feels good because the UR condition seems to be optimal. It
was (modulo finesses with the NTA condition) in codimension 1.



PART 3. Converse, magic, other quantities

Taking the A∞ result for UR for granted, what about the converse?

That is, take Dα and assume that ωL ∈ A∞(µ); can we say that E
is uniformly rectifiable?

Can ωL ∈ A∞(µ) ever happen when d /∈ N?

Recall: this is OK but quite hard in co-dimension 1, with the help
of NTV on the boundedness of the Riesz transform.

Even assume that µ = σ := Hd
|E if you want.

A statement of order 0, corresponding to a blow-up limit at a point
of density of dω

dσ would be welcome: suppose ω∞ = σ; is E flat?

Later in the lectures: other relevant properties, either geometric or
connected to solutions L = Lα.



9. Magic ALPHA (D.-Engelstein-Mayboroda)

We (with Max Engelstein) found a special case where things are
simpler, and we expected that the converse would be easier to
prove in this case, i.e., when

(34) α = n − d − 2 hence n > d + 2, but d /∈ N is allowed).

Then Rα(X ) =

∫
E

dµ(y)

|X − y |n−2
is harmonic, and by a computation

(35) Dα(x) = Rα(x)−1/α satisfies Lu = 0.

Assume to simplify that E is rectifiable and µ = σ.
By another computation, ∂D

∂n (the normal derivative) is constant on
E . Hence D is the Green function for L, with pole at ∞.
That is, ω∞ = σ.

Very strange! (Think about paint and the Brownian paths.)

Even when E is merely Ahlfors regular and µ ∈ AR(d), we get that
ω << σ, with a density h such that C−1 ≤ h ≤ C .



Ask other questions then?

Not at all what we expected!

Does what happens when α = n − d − 2 mean something special?

Now we (maybe) conjecture that ωL ∈ A∞(σ) implies E ∈ UR as
soon as α 6= n − d − 2. But we have a hard time doing this.

In the mean time, try to characterize UR in terms of other
properties connected to Dα, or L.

Examples below, but probably we’ll concentrate on the Green
function because it is connected to Lα, even though we don’t have
full answers.

But all that follows about the Green function is subject to at least
more checking!

Feneuil above (E ∈ UR implies ωL ∈ A∞(σ) when n > d + 2) uses
information from the magic exponents!



10. The Green function

Let E ∈ AR(d), µ ∈ AR(d) supported on E , and
L = divDd+1−n

α ∇ be given. For X ∈ Ω = Rn \ E , there is a Green
function GX , associated to ωX .

Let us only say that GX is Lα-harmonic in Ω \ {X}, positive, has a
vanishing trace on E , and has a reasonable singularity at X , i.e.,
looks like − log(|Y −X |) when n = 2 and |Y −X |2−n when n > 2.

This makes GX unique modulo a multiplicative constant. And it
has the same sort of estimates as in the classical case, in particular
relative to changes of pole X .

And by a limiting process, we can define a Green function with
pole at ∞, G = G∞, which is harmonic on Ω, positive, with a
reasonable size at ∞, and vanishes on E .
Essentially unique too (see below for more about this and G∞).

Classically, in the smooth case, the density of ωX against dσ is a
constant times the normal derivative ∂G X

∂n .



The Green function and Dα

There are very few cases where we can compute G . Here are the
two main ones, where in addition G = Dα.

Case 1. When E = Rd , µ = Hd
|E , and for any α > 0. Then

G (Y ) = cDα(Y ) = c ′ dist(Y ,E ).
Just by invariance and essential uniqueness.

Case 2. When d < n − 2 and α = n − d − 2 is magic, because
then Dα is Lα-harmonic and by essential uniqueness.

Natural Question 1: conversely, if Dα is Lα-harmonic, are we in
Case 1 or Case 2?

Comment: if Dα is Lα-harmonic, it is the Green function.
So we really ask when the Green function G∞ is a multiple of Dα.



10. When is Dα a Lα-harmonic function?

We can at least start to compute.

Suppose LαDα = 0, i.e., div[Dd+1−n
α ∇Dα] = 0.

Suppose d 6= n − 2, let γ = d + 2− n, and consider Dγ
α.

Then ∇Dγ
α = γDγ−1

α ∇Dα = γDd+1−n
α ∇Dα hence ∆Dγ

α = 0.

So we found a plain harmonic function, Dγ
α, to work with!

Two main cases: d < n − 2 and d > n − 2.

[We expect d = n − 2 to be more complicated.]



When d < n − 2 and γ is negative

[The following needs to be checked!]
Set D = Dα = Dα,µ. So ∆Dγ = 0, with γ = d + 2− n < 0.
Given the size of Dγ (controlled singularity near E ), we claim that
there is a representation of Dγ as a potential from charges on E ,

(36) Dγ(X ) =

∫
x∈E

dν(x)

|X − x |n−2
,

and even with a mesure ν ∈ AD(d) supported on E . [At least we
can easily check that the left-hand side is harmonic and has about
the right size; then (36) should be a matter of taking weak limits
and integrating by parts.]
Recall that the magic number is α0 = n − d − 2 = −γ and call
D0 = Dα0,ν the distance associated to α0 and ν; (36) says that

D(X ) = Dα(X ) =
{∫

E

dν(x)

|X − x |n−2

}−1/α0

= D0(X ).

This naturally leads to our second question:



Question 2

Natural Question 2: Suppose that Dα,µ = Dβ,ν , with µ, ν ∈ AD(d)
and α 6= β, can we say that d is an integer and E is a d-plane?

Here we are mostly interested in the case when d < n − 2 and
β = n − d − 2 = −γ is magic. Also, if this happens, we can
continue the argument, compute the asymptotics of Dα, Dβ near
E , and compute ν in terms of µ, so that for instance if µ = Hd

|E
we get ν = Cµ.

As for Question 1, this seems quite plausible but we have no clue!
Both question are about different expressions involving
convolutions of µ, ν with the usual Green kernel (and maybe its
derivatives), and “miraculous algebraic relations” between those,
to be satisfied on Rn \ E .



When d > n − 2 and γ is positive

Here Dγ , with a positive exponent, is Hölder near E and is (a
multiple of) the Green function for ∆. This uniqueness is, as for
G∞ above, a refinement of the comparison principle that says that
when two positive harmonic functions u, v are defined on a much
larger ball than B, then u/v varies very little on B.

We claim that, thanks to a relation between the Green function
and the harmonic measure, we have the estimate

C−1rd ≤ ωX (B(y , r)) ≤ Crd when X /∈ B(y , 10r),

with C independent of X , y , r . That is, the (standard!) harmonic
measure is locally AR, and is absolutely continuous with respect to
µ, with a weight (locally) bounded and bounded from below.



Summary of claims

At this point:

When n − 2 < d < n − 1, I thought I had an argument, but I get
confused about dimensions so let’s not claim anything, except that
having an A∞ harmonic measure like that for a low dimensional
boundary is strange.

When d = n − 1, the classical case, recent results show that since
ω ∈ A∞(µ), so E is uniformly rectifiable. This will be enough for
the converse later. Probably, having G∞ = CDα implies that E is
flat, but no proof that I recall.

When n − 1 < d < n, we assume one-sided NTA, and then our
initial problem also makes sense. And we claim a contradiction,
because the Green function G∞ is not allowed to be that small at
a point of contact of a ball B with E . See below.



Some Green function estimates (1)

We start with the following estimate, for B = B(x , r) centered on
E , X0 a corkscrew point for that ball, and X ∈ Ω \ B(x , 10r):

ωX (B ∩ E ) ' rn−2GX (X0)

with an equivalence constant that depends only on the geometric
constants. In the case of our L = Lα, it would be

ωX (B ∩ E ) ' rd−1GX (X0).

Fix X for simplicity, and use the comparison principle on the
functions GX and G∞ = CDγ ; this gives

ωX (B ∩ E ) ' rn−2G∞(X0) ' rn−2+γ = rd

with constants that depend on X and the choice of G∞, but not
on x , r as long as B(x , r) stays in a fixed ball depending on X .

As we claimed. And with Lα, a similar computation would have
given ωX

L (B ∩ E ) ' rd too.



Green function estimates (2)

Now pick a touching ball B = B(X0, δ(X0)).

Consider the Green function GX0
B (for the operator ∆) and G = Dγ

(we assume it is harmonic).

Apply the maximum principle to these functions on the domain
A = B \ B(X0, δ(X0)/2). On the interior boundary, GX0

B ≤ CG ,
just by Harnack. We don’t care if C is huge.

On ∂B, GX0
B ≤ CG too because GX0

B = 0 and G ≥ 0.

So GX0
B ≤ CG .

Now assume that G = Dγ with γ > 1. Then near the point ξ of
E ∩ ∂B, G (X ) ≤ C |X − ξ|γ , while GX0

B ≥ C−1 dist(X , ∂B).
The needed contradiction.



11. Positive results for the Green function

Again, everything here should be checked.

Take d < n, but if d ≥ n − 1 add the assumption that Ω is one
sided NTA (then our definitions makes sense).
Or just assume d < n − 1 as before.

We claim that if d is an integer and E is uniformly rectifiable, the
Green function G∞ is very close to a multiple of Dα on most balls!

Let us first state closeness in weak terms. Let τ , ε be small
parameters. We say that the ball B(x , r) (centered on E ) is good,
and we write (x , r) ∈ G(τ, ε) when there is a positive constant λ
such that

(37) (1− ε)λDα(X ) ≤ G∞(X ) ≤ (1 + ε)λDα(X )

for every X ∈ B(x , τ−1r) such that dist(X ,E ) ≥ τ r .



Positive results for the Green function (2): weakly nice

And we say that G∞ is weakly nice when for each choice of ε, τ ,
the complement B(τ, ε) of G(τ, ε) satisfies a Carleson Packing
condition. That is, there exists C = C (τ, ε) such that

(38)

∫
(x ,r)∈B(x0,r0)×(0,r0]

1B(τ,ε)(x , r)
dµ(x)dr

r
≤ C (τ, ε)rd

0

Fans of UR should love this!
This fits the notion of being close to a λDα most of the time.
And the first positive result is that

THEOREM (DM)

If E is uniformly rectifiable and Lα, Dα are as usual, then G∞ is
weakly nice.



Positive results for the Green function (3): comments

• Since µ is close to a flat measure Carleson-most of the time, this
means that G∞ is close to an affine function most of the time!

But for the converse it seems more natural to compare G∞ with
Dα. because both vanish on E .

• We also claim a stronger result, which says that for each τ > 0,
the quantity

(39) b(x , r) = inf
λ>0

∫
X∈Ω∩B(x ,τ−1r ; dist(X ,E)≥τ r

|λ∇G∞ − Dα|2dX

satisfies the quadratic Carleson condition

(40)

∫
(x ,r)∈B(x0,r0)×(0,r0]

b(x , r)2 dµ(x)dr

r
≤ C (τ)rd

0 .

More complicated proof (and to be checked) though!



Idea of proof for the weak result

By limits and compactness. There are a few believable ingredients.
• Compactness 1: given a sequence {Ek} of sets of AR(d) and for
each Ek a measure µk supported on Ek and uniformly AR,
assuming 0 ∈ Ek , there is a subsequence so that Ek tends to some
E∞, µk tends weakly to µ∞, and µ∞ is AR and supported on E∞.
• Compactness 2: In the situation above, for a subsequence we
also have that after renormalization, G∞k converges uniformly on
compact sets to a positive harmonic function G∞∞ and...
• Uniqueness of the Green function: ... and G∞∞ is the Green
function at infinity for the operator Lα associated to the limit of
the Dα = Dα,k .
Then the proof. Let τ and ε be given. Let κ > 0 be very small, to
be chosen depending on τ and ε.



Idea of proof for the weak result (2)

Consider the new good set G′(κ) of pairs (x , r) such that x ∈ E
and r > 0 are such that on B(x , κ−1r), E is κr close to a d-plane
P and µ is κ2 close (in Wasserstein distance as above) to a flat
measure on P.

And the bad set B′(κ) = E × R∗+ \ G′(κ). If we prove that
G′(κ) ⊂ G(τ, ε) and hence B(τ, ε) ⊂ B′(κ), then (38) follows
because UR and Tolsa say that B′(κ) satisfies a Carleson condition.

And if this fails, start from a counterexample (Ek , µk ) with
κ = 2−k , with x = 0 and r = 1 (allowed by invariance)

and extract converging subsequences as above.

By definition of G′(κ), E∞ is a d-plane and µ∞ is flat.

Then we compute that G∞∞ (X ) = C dist(X ,P) = CD∞(X ).

But G∞k converges uniformly on compact sets to G∞∞ .
And (x , r) = (0, 1) ∈ B(τ, ε) is impossible for k large!



What about the converse?

We only have a partial converse, and this is related to Question 1
above, about when can we have LαDα = 0? Let us explain.

For κ > 0 small, define the good set G′′(κ) of the pairs (x , r), with
x ∈ E and r > 0, such that E is κr -close to a d-plane P in B(x , r)
(in Hausdorff distance).

We know that if for each κ > 0, the complement of G′′(κ) satisfies
a Carleson measure condition as in (38), then E is uniformly
rectifiable.

Hence to prove that if G∞ is weakly nice, then d is an integer and
E is uniformly rectifiable, it is enough to prove that for each κ > 0,
we can find τ > 0 and ε > 0 such that G(τ, ε) ⊂ G′′(κ).

We start the proof by compactness. Suppose not. Let κ > 0 be
given. Let Ek and µk provide a counterexample with τ = ε = 2−k .

By invariance, we may assume that this happens for B(0, 1). Take
a convergent subsequence as above.



Converse (2)

... Since (0, 1) ∈ G(τ, ε), G∞k is closer and closer to a multiple of
Dα,µk

in any compact set of Ω.

Then G∞∞ = Dα,µ∞ and so G∞∞ is L∞-harmonic, where L∞ is
associated with E∞ and µ∞.
If the answer to Question 1 is positive, and if α is not magic
(otherwise, we actually expect that G∞ = Dα for all E , and we
know it for sure for rectifiable sets), then E∞ is a plane, this
contradicts our assumption that (0, 1) /∈ G′′(κ), and we get the
desired UR result.

When d ≤ n − 2 we don’t know this but would bet on it.

When d = n − 2, a little less clear, agreed.

When n − 2 < d < n − 1, this is the case that I left out. Good
hopes too.

When d > n − 1, we got a contradiction.

When d = n − 1, we do not exactly get that E∞ is a plane, but it
is uniformly rectifiable....



Converse (3)

In this case we modify the argument, and instead of asking E to be
close to a plane we ask for a corkscrew ball in the complement
(Condition B).
The fact that E∞ is uniformly rectifiable and one-sided NTA (by
another limiting argument) implies that we can find a corkscrew
ball in the complement for E∞, and then we prove that this ball
also works for Ek , k large.
We skip the details.

Provisional conclusion: using the Green function G∞ rather that
the harmonic measure ω seems to give a better chance for a
converse.
But we don’t really know how to go from ω to G∞, so this may
not help for ω.



The square functions (DEM)

Can we characterize something else than ωL ∈ A∞?
For instance, the USFE? The relevant square function here is

F (X ) = δ(X )|
(
∇|∇Dα|2(X )

)
|,

where δ(X ) = dist(X ,E ), and the USFE means that

F (X )2δ(X )−n+ddX is a Carleson measure on Ω.

That is, the measure of a ball of radius r centered on E is ≤ Crd .

And we (DEM) show that for E ∈ AR(d), d < n, the USFE holds
if and only if d is an integer and E is uniformly rectifiable.

Here the value of α > 0 does not matter.
But the connection with ω or a Riesz transform is not obvious.

Idea of proof here?



Nontangential limits of |∇Dα|

Similarly, for E Ahlfors regular of dimension d < n, the function
|∇Dα|(X ) has a nontangential limit µ-almost everywhere on E if
and only if d is an integer and E is uniformly rectifiable.

Nice, explains why we like Dα, but again only geometry here, no
real operator.

Proofs by α-numbers in one direction, by compactness and the
case when |∇Dα| is constant in the other direction.

Hope for more geometric characterizations, valid only when α is
not magic.
A good example being with the Green function above.



Doubling measures µ and sets E of varying dimensions

Just a short description. In higher co-dimensions described above,
it seems harder to copy the sawtooth domains arguments. How do
we approximate a domain Ω with a larger, possibly more regular
one?

Let us just take an example. Let E be a Lipschitz graph of
dimension d < n − 1 in Rn. Then for some reason build a
sawtooth region around some part of E . That is, a domain Ω̃ ⊂ Ω,
bounded in part by a subset Z ⊂ E , and in part by conical surfaces
S of co-dimension 1 around E \ Z .

Keep the same operator L as for E . Thus, less singular near S .
Can we discuss the associated elliptic measure?

There is a natural measure on Ẽ = Ω̃ = Z ∪ S : keep µ on Z , and
take something like δ(X )n−d−1dσ on S .
This measure µ̃ is doubling, and behaves in intermediate
dimensional ways on intermediate balls.
Can we study the elliptic measures ωL relative to the size of that
measure, and prove results as above?



Doubling measures and varying dimensions (2)

Turns out, yes. With more work but ideas similar to the above.
Need to be more careful at the beginning, with Sobolev spaces
W =

{
u ∈ L2

loc (Ω) ; ∇u ∈ L2(wdX )
}

and H = H1/2(E , dµ).
And we use arguments from Heinonen, Kilpeläinen, Martio,
Haj lasz, Koskela, and others. The theory needs:

- A doubling measure on E , such as µ before or µ̃ just above.
- A doubling measure m = w(X )dX on Ω (a component of
Rn \ E ), such as δ(X )d+1−ndX as above, but for instance slightly
different exponents would be allowed, and m could have mild
singularities inside Ω.
- A relation between the two measures, where one does not grow
much faster that the other. See below.
- When n − 1 ≤ d < n (this is allowed now), require as usual the
existence of Corkscrew balls and Harnach chains (one-sided NTA).
- A Weak Poincaré estimate away from E , see below.



Doubling measures and varying dimensions (3)

Let me not explain much about the weak Poincaré estimate. It
consists mostly in an estimate like

1

m(B)

∫
B
|u −mB(u)| ≤ Cr

( 1

m(B)

∫
B
|∇u|2dm

)1/2

when B is a ball of radius r such that 2B ⊂ Ω.

For the relation between m and µ, set, for x ∈ E and r > 0,
ρ(x , r) = r−1µ(E ∩ B(x , r))−1m(Ω ∩ B(x , r)).
Notice that this would be about constant in the basic example
above. One requires that for x ∈ E and 0 < s < r ,

ρ(x , r)

ρ(x , s)
≤ C (r/s)1−ε.

A way to say that their “local” dimensionalities are not so different.

Comments: surprised it works so well, in a context where I would
not have dared to study L (even in the classical case).
Even some A∞ results seem to hold here too.


