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INTRODUCTION
The Calogero-Moser system can be obtained by per-
forming a Hamiltonian reduction on the cotangent bun-
dle for gln(C). One can also view this reduction as per-
formed on the cotangent bundle for the space of rep-
resentations of a one-loop quiver. Our objective is to
adapt this result to the Ruijsenaars-Schneider system
and its variants, while transferring as much information
as possible to the algebra defined by the quiver.

METHOD
Van den Bergh’s work [3] is about translating a quasi-
Hamiltonian reduction

Rep� Rep//G (1)

at the algebra level, for a Lie group action G y Rep
on the representation space of an algebra. There is an
explicit construction in the case of the multiplicative
preprojective algebra of an arbitrary quiver.

To use this formalism, we need to define on a noncom-
mutative algebra A :
• A double quasi-Poisson bracket {{−,−}} : A⊗2 → A⊗2

• A multiplicative moment map Φ∈A compatible with
the double bracket

Then, we consider :
• A dimension vector α
• An element gq in a Lie group G(α)

We can form the representation space Rep(A,α), and
any element a ∈ A becomes represented by a matrix
X (a) ∈ O

(
Rep(A,α)

)
. Moreover, X (Φ) is G(α)-valued.

For suitable choices, Rep(A,α) is endowed with a
quasi-Hamiltonian structure and the GIT quotient

Rep(A,α)///q G(α) = X (Φ)−1(gq)//G(α)

is a smooth variety with a nondegenerate Poisson
bracket {−,−}P.
The Poisson bracket {−,−}P is solely defined by the
double bracket {{−,−}}. If we write m : A⊗2 → A the
multiplication on A, we get that {−,−} := m ◦ {{−,−}}
is a Loday bracket, such that for any a, b ∈ A,

{trX (a), trX (b)}P = tr X ({a, b}) (2)

Note that any function on the reduced space is of the
particular form trX (a) ∈ O

(
Rep(A,α)

)G(α).

QUIVER CASE

Consider a quiver Q and let Q̄ be its double. Van den
Bergh defined a double quasi-Hamiltonian structure
on A = CQ̄(1+aa∗)a∈Q̄

(the localisation of the path al-
gebra at (1 + aa∗)a∈Q̄). We set ε : Q̄→ {±1} to be +1 on
elements of Q, the initial quiver, and to be −1 on Q̄−Q,
the set of double arrows.

Proposition 1 [2, Section 2]. For a suitable ordering < on
Q̄, Van den Bergh’s double bracket is given by

{{a, a}} =
1

2
ε(a)

(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
(a∈Q̄)

{{a, a∗}} = eh(a) ⊗ et(a) +
1

2
a∗a⊗ et(a) +

1

2
eh(a) ⊗ aa∗

+
1

2
(a∗ ⊗ a− a⊗ a∗)δh(a),t(a) (a∈Q)

{{a, b}} =
1

2
eh(a) ⊗ ab+

1

2
ba⊗ et(a) (a<b , b 6=a∗)

− 1

2
(b⊗ a)δh(a),h(b) −

1

2
(a⊗ b)δt(a),t(b) ,

where t(a) (resp. h(a)) denotes the vertex which is the tail
(resp. head) of a, and the (ei) are elements of the algebra
indexed by the vertex set such that eiej = δijei.

The multiplicative moment map Φ corresponding to
this structure comes from the defining relation for the
multiplicative preprojective algebra associated to Q.

ONE-LOOP QUIVER

We look at the quiver Q̄, which is the double of the
one-loop quiver x with an extra arrow.
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Set A for the localisation of the path algebra CQ̄ at
(1 + aa∗)a∈Q̄. We have for all k, l ≥ 0 :

{xk, xl} = 0, {yk, yl} = 0,
{(xy)k, (xy)l} = 0, {zk, zl} = 0,

where {−,−} is the left Loday bracket obtained from
Van den Bergh’s double bracket, and the element
z = y + x−1 is defined after localising A at x.

A suitable moduli space of representations is given by the set of matrices

X,Y ∈ Matn×n(C), V ∈ Matn×1(C), W ∈ Mat1×n(C) ,

satisfying (Idn +XY )(Idn +Y X)−1(Idn +VW ) = q0 Idn for some q0 ∈ C×, under the identification of the orbits of
the action of GLn(C) as g.(X,Y, V,W ) = (gXg−1, gY g−1, gV,Wg−1), for g ∈ GLn(C). We write this space Cn,q0 .
On a dense open subset C◦n,q0 of Cn,q0 , each orbit contains an element (X,Y, V,W ) such that, for a set of log-canonical
coordinates (xi, σi), we have X = A with A = diag(x1, . . . , xn) and

Y +X−1 = (Lij) for Lij =
(q0 − 1)

√
σiσj

q0 − xix−1
j

∏
l 6=i

√
q0 − xlx−1

i

1− xlx−1
i

∏
k 6=j

√√√√q0 − xkx−1
j

1− xkx−1
j

(3)

This is the Lax matrix for the trigonometric Ruijsenaars-Schneider model.

The elements in involution at the algebra level give that the following families can define integrable systems :{
trAk

}
k∈N ,

{
tr(L−A)k

}
k∈N ,

{
tr(LA)k

}
k∈N ,

{
trLk

}
k∈N . (4)

Thus, the double quasi-Poisson structure on A implies the integrability of the Ruijsenaars-Schneider model (and
its variants). See [2, Section 3] for further explanations and discussions of these Hamiltonians.

CYCLIC QUIVER

In the extended one-loop quiver Q̄, we can replace the loop x (and its double y) by a cycle consisting of m ≥ 2
vertices labelled by Zm with arrows xs : s → s + 1 (and their doubles ys : s + 1 → s) for all s ∈ Zm. By looking at
the representation space, we get a smooth Poisson variety Cn,t(m) after quasi-Hamiltonian reduction, for a regular
t = (ts) ∈ (C×)m. We can define a dense open subset C◦n,t(m) ⊂ Cn,t(m) and a map ξ : C◦n,t(m) → C◦n,q (the latter is
given above by setting q = tm−1) such that ξ is an isomorphism of Poisson varieties.

By adapting the argument from the one-loop quiver case, we find generalised Ruijsenaars-Schneider models with
(Zm)n-symmetry. Furthermore, the involution of the different families can be checked at the algebra level. They are
defined as {

Gm,k := tr(A−1Lm)k
}
k∈N , and{

Hm,k := tr(A−1P (L))k
}
k∈N , for P (L) =

m−1∏
s=0

(L− t−1
s Idn) .

(5)

Using the map ξ, we can pull back the log-canonical coordinates (xi, σi) at regular points. For any m ≥ 2, the first
element Gm,1 takes the form

Gm,1 =
∑

1≤j0,...,jm−1≤n

(σj0 . . . σjm−1
)x−1
j0

m−1∏
s=0

t− 1

t− xjsx−1
js+1

m−1∏
s=0

n∏
a6=js

t− xax−1
js

1− xax−1
js

. (6)

Note that this expression also makes sense for m = 0, 1. The second family is more general as in the limit ts → ∞,
the function Hm,j tends to Gj,m = tr(A−1Lm)j . It is possible to write explicitly each element Hm,1 as a linear
combination of {Gm′,j |m′ ≤ m}. For example with m = 2

H2,1 = G2,1 − (t−1
0 + t−1

1 )G1,1 + (t0t1)−1G0,1 . (7)

These functions are defined on the same phase space as the Hamiltonian for the trigonometric Ruijsenaars-
Schneider. Their quantum versions appeared recently in the context of supersymmetric gauge theory and cyclotomic
DAHAs, as well as in the context of the Macdonald theory. See [2, Sections 4-5] for additional details.

WORK IN PROGRESS : THE SPIN TRIGONOMETRIC RS MODEL

We are applying this method to obtain the spin version of the trigonometric Ruijsenaars-Schneider model, and we
can prove the conjecture given in [1] that the space variables (qi) and spin variables (fij) form a Poisson algebra with
brackets {qi, qk} = 0, {fij , qk} = −δjkfij and

{fij , fkl} = [coth(qik) + coth(qjl) + coth(qkj) + coth(qli)]fijfkl

+ [coth(qik) + coth(qjl) + coth(qkj + γ)− coth(qil + γ)]filfkj

+ [coth(qki) + coth(qil + γ)]fijfil + [coth(qjk)− coth(qjl + γ)]fijfjl

+ [coth(qki) + coth(qkj + γ)]fkjfkl + [coth(qil)− coth(qlj + γ)]fljfkl

where we set qij = qi − qj . In fact, the elements (fij) can be defined from another set of spin variables (aαi , c
α
i ) by

fij =
∑d
α=1 a

α
i c

α
j , where d is the number of spins. Our formalism allows us to compute the Poisson algebra for the

elements (xi,a
α
i , c

α
i ).

We are also studying some variants, as well as generalised spin models with (Zm)n-symmetry.


