APPENDIX A

Results from Riemannian geometry

Recall the following equation satisfied by the hessian of the distance function to a point outside the cut-locus of that point:

Lemma A.1. Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Let p in M and let $r_{p}:=d_{g}(p, \cdot)$. Denote by $h=h_{r}$ the second fundamental form of the geodesic spheres $S_{g}(p, r)$. Then for X and Y tangent to $S_{g}(p, r)$,

$$
\nabla_{\nabla^{g_{r_{p}}}}^{g} h_{r}(X, Y)=-\operatorname{Rm}(g)\left(X, \nabla^{g} r_{p}, \nabla^{g} r_{p}, Y\right)-h_{r} \circ h_{r}(X, Y)
$$

at point where r_{p} is smooth. In particular, the mean curvature H_{r} of $S_{g}(p, r)$ satisfies:

$$
\nabla_{\nabla^{g} r_{p}}^{g} H_{r}=-\operatorname{Ric}(g)\left(\nabla^{g} r_{p}, \nabla^{g} r_{p}\right)-\left|h_{r}\right|_{g}^{2} \leq-\operatorname{Ric}(g)\left(\nabla^{g} r_{p}, \nabla^{g} r_{p}\right)-\frac{H_{r}^{2}}{n-1}
$$

Proof. The second equation for H_{r} is simply obtained by tracing the first equation holding on h_{r}. For the sake of readability, let is remove the dependence of r_{p} on the point p and the Levi-Civita connection on the metric g :

$$
\begin{aligned}
\nabla_{\nabla_{r}} h_{r}(X, Y) & =\nabla_{\nabla_{r}}\left(h_{r}(X, Y)\right)-h_{r}\left(\nabla_{\nabla_{r}} X, Y\right)-h_{r}\left(X, \nabla_{\left.\nabla_{r} Y\right)}\right. \\
& =g\left(\nabla_{\nabla_{r}} \nabla_{X} \nabla r, Y\right)+g\left(\nabla_{X} \nabla r, \nabla_{\nabla_{r}} Y\right)-g\left(\nabla_{\nabla_{\nabla_{r} X}} \nabla r, Y\right)-g\left(\nabla_{X} \nabla r, \nabla_{\nabla_{r}} Y\right) \\
& =-g\left(\left[\nabla_{X}, \nabla_{\left.\nabla_{r}\right]}\right] r, Y\right)+g\left(\nabla_{\left[X, \nabla_{r}\right]} \nabla r, Y\right)-g\left(\nabla_{\nabla_{X} \nabla r} r, Y\right) \\
& =-\operatorname{Rm}(X, \nabla r, \nabla r, Y)-h_{r}\left(\nabla_{X} \nabla r, Y\right) \\
& =-\operatorname{Rm}(X, \nabla r, \nabla r, Y)-h_{r} \circ h_{r}(X, Y) .
\end{aligned}
$$

Here we have used the definition of the curvature tensor in fourth line together with the vanishing $\nabla_{\nabla r} \nabla r=0$

Define for $k \in \mathbb{R}$ the following function:

$$
f_{k}(r):= \begin{cases}\frac{\sin (\sqrt{k} t)}{\sqrt{k}} & \text { pour } t \in(0, \pi / \sqrt{k}) \text { si } k>0 \\ t & \text { pour } t>0 \text { si } k=0 \\ \frac{\sinh (\sqrt{-k} t)}{\sqrt{-k}} & \text { pour } t>0 \text { si } k<0\end{cases}
$$

Theorem A.2. Let $\left(M^{n}, g\right)$ satisfies $k \leq K_{g} \leq K$. Then for X orthogonal to $\nabla^{g} r_{p}$,

$$
\frac{f_{K}^{\prime}(r)}{f_{K}(r)} g(X, X) \leq \nabla^{g, 2} r_{p}(X, X) \leq \frac{f_{k}^{\prime}(r)}{f_{k}(r)} g(X, X)
$$

This inequality holds at points where r_{p} is smooth.
Before proving this theorem, we recall the following comparison estimate for Ricatti equation:
Lemma A.3. Let $y:(0, a) \rightarrow \mathbb{R}$ differentiable be such that $-K \leq y^{\prime}(r)+y^{2}(r) \leq-k$ on $(0, a)$. If $y(r)=r^{-1}+o(1)$ as r goes to 0 then:

$$
\frac{f_{K}^{\prime}(r)}{f_{K}(r)} \leq y(r) \leq \frac{f_{k}^{\prime}(r)}{f_{k}(r)}
$$

as long as $f_{K}(r)>0$ and $f_{k}(r)>0$.

Proof. Let us prove the upper bound only as the proof for the lower bound is analogous. Define $y_{k}(r):=\frac{f_{k}^{\prime}(r)}{f_{k}(r)}$ and observe by a direct computation that y_{k} satisfies

$$
y_{k}^{\prime}(r)+y_{k}^{2}(r)=-k, r \in(0, a), \quad y_{k}(r)=\frac{1}{r}+O(r)
$$

In particular, the function $z(r):=y(r)-y_{k}(r)$ satisfies:

$$
v^{\prime}(r) \leq-\left(y_{k}(r)+y(r)\right) v(r), r \in(0, a), \quad v(r)=O(r)
$$

Grönwall lemma ensures that

$$
v(r) \leq \exp \left(-\int_{s}^{r}\left(y_{k}(u)+y(u)\right) d u\right) v(s), \quad 0<s<r
$$

By sending s to 0 and since $v(s)=o(1)$, the result follows.

We are now in a position to prove Theorem A.2;
Proof of Theorem A.2. Let us prove the upper bound only as the proof for the lower bound is analogous.

Let X be a unit vector tangent to $S_{g}(p, r)$ and parallel transport it along a geodesic to p. Recall that $h=\nabla^{g, 2} r_{p}$. Then applying Lemma A. 1 to X gives:

$$
\nabla_{\nabla^{g_{r_{p}}}}^{g}(h(X, X)) \leq-k-h \circ h(X, X)
$$

Observe that by Cauchy-Schwarz inequality, $h \circ h(X, X) \geq \mid h(X, X)^{2}$ since $|X|_{g}=1$. Therefore,

$$
\nabla_{\nabla^{g} r_{p}}^{g}(h(X, X)) \leq-k-|h(X, X)|^{2}
$$

Applying Lemma A. 3 then lets us conclude. Indeed, $2 \nabla^{g, 2} r_{p}=\mathcal{L}_{\nabla^{g} r_{p}} g$ and g coincides with Euclidean metric up to first order in geodesic coordinates which implies in particular, $\nabla^{g, 2} r_{p}=$ $\left(r_{p}^{-1}+o(1)\right) g$.

Theorem A. 4 (Volume comparison theorem: lower bounds). Let (M^{n}, g) be a complete Riemannian manifold with bounded positive sectional curvature, i.e. $K_{g} \leq K$ for some K. Then for each point $p \in M$,

$$
\operatorname{vol}_{g} B_{g}(p, r) \geq \operatorname{vol}_{\mathbb{M}^{n}(K)} B_{\mathbb{M}^{n}(K)}(r), \quad 0 \leq r \leq \operatorname{inj}_{g}(p)
$$

where $B_{\mathbb{M}^{n}(K)}(r)$ denotes a geodesic ball of radius r in the n-dimensional simply connected space of constant sectional curvature K.

Proof. According to Theorem A.2, in geodesic coordinates, $\partial_{r} g_{r} \geq 2 \frac{f_{K}^{\prime}(r)}{f_{K}(r)} g_{r}$ where $\exp _{p}^{*} g=$: $d r^{2}+g_{r}$. By integrating this differential inequality from 0 to r, one gets $g_{r} \geq f_{K}^{2}(r) g_{\mathbb{S}^{n-1}}$, i.e. $\exp _{p}^{*} g \geq d r^{2}+f_{K}^{2}(r) g_{\mathbb{S}^{n-1}}=: g_{K}$. By integrating on $B_{g}(p, r)$:

$$
\operatorname{vol}_{g} B_{g}(p, r)=\int_{\mathbb{B}\left(0_{p}, r\right)} d \mu_{\exp _{p}^{*} g} \geq \int_{0}^{r} f_{K}^{n-1}(s) d s=\operatorname{vol}_{\mathbb{M} n(K)} B_{\mathbb{M} n(K)}(r)
$$

as desired.

