Reduction by stage for finite W-algebras

(Work in progress)

Thibault Juillard (project with Naoki Genra) October 11, 2022

Université Paris-Saclay (IMO)

Framework

Classical Hamiltonian reduction

Reduction by stage

Conjectures and questions

Framework

Big picture of finite W-algebras

 \mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

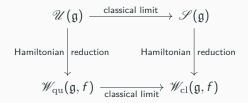
 \mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

- $\mathscr{U}(\mathfrak{g})$ denote the enveloping algebra of \mathfrak{g} (associative algebra),
- $\mathscr{S}(\mathfrak{g})$ denote its symmetric algebra (Poisson algebra).

Big picture of finite W-algebras

 \mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

- $\mathscr{U}(\mathfrak{g})$ denote the enveloping algebra of \mathfrak{g} (associative algebra),
- S(g) denote its symmetric algebra (Poisson algebra).



where

- \$\mathcal{W}_{qu}(\mathcal{g}, f)\$ is the quantum finite W-algebra associated to (\mathcal{g}, f) (associative algebra),
- *W*_{cl}(g, f) is the classical finite W-algebra associated to (g, f) (Poisson algebra).

$$\operatorname{Ad}(g)x = gxg^{-1}, \quad g \in G, \quad x \in \mathfrak{g}.$$

$$\operatorname{Ad}(g)x = gxg^{-1}, \quad g \in G, \quad x \in \mathfrak{g}.$$

• $(\cdot \mid \cdot)$ is the Killing form, $\Phi : \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ is the corresponding isomorphism.

$$\operatorname{Ad}(g)x = gxg^{-1}, \quad g \in G, \quad x \in \mathfrak{g}.$$

- $(\cdot \mid \cdot)$ is the Killing form, $\Phi : \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ is the corresponding isomorphism.
- f is embedded in a sl₂-triple (e, h, f).
 - [h, e] = 2e, [h, f] = -2f, [e, f] = h.
 - *h* is semisimple.

$$\operatorname{Ad}(g)x = gxg^{-1}, \quad g \in G, \quad x \in \mathfrak{g}.$$

- $(\cdot | \cdot)$ is the Killing form, $\Phi : \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ is the corresponding isomorphism.
- f is embedded in a \mathfrak{sl}_2 -triple (e, h, f).
 - [h, e] = 2e, [h, f] = -2f, [e, f] = h.
 - *h* is semisimple.
- $\chi := \Phi(f)$ is the linear form associated to f.

$$\operatorname{Ad}(g)x = gxg^{-1}, \quad g \in G, \quad x \in \mathfrak{g}.$$

- $(\cdot | \cdot)$ is the Killing form, $\Phi : \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ is the corresponding isomorphism.
- f is embedded in a \mathfrak{sl}_2 -triple (e, h, f).
 - [h, e] = 2e, [h, f] = -2f, [e, f] = h.
 - *h* is semisimple.
- $\chi := \Phi(f)$ is the linear form associated to f.

Definition (Slodowy slice) $S_f := \Phi(f + \operatorname{Ker} \operatorname{ad}(e)) = \chi + \operatorname{Ker} \operatorname{ad}^*(e).$

Classical Hamiltonian reduction

• *f* is assumed to be regular (i.e. principal).

- *f* is assumed to be regular (i.e. principal).
- *M* is the nilradical of *G*.

- *f* is assumed to be regular (i.e. principal).
- *M* is the nilradical of *G*.

•
$$f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ & \ddots & \ddots \\ & & 1 & 0 \end{pmatrix}$$
 in \mathfrak{sl}_n and $M = \left\{ \begin{pmatrix} 1 & (*) \\ & \ddots & \\ & (0) & 1 \end{pmatrix} \right\}$ in SL_n .

- *f* is assumed to be regular (i.e. principal).
- *M* is the nilradical of *G*.

•
$$f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & 0 \\ \vdots & \ddots & 0 \end{pmatrix}$$
 in \mathfrak{sl}_n and $M = \left\{ \begin{pmatrix} 1 & (*) \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ in SL_n .

There is a Hamiltonian action:

$$egin{aligned} \mathcal{M} \stackrel{\mathsf{Ad}^*}{\curvearrowright} \mathfrak{g}^* \stackrel{\mu}{\longrightarrow} \mathfrak{m}^* \ & \xi \longmapsto (\xi - \chi)|_\mathfrak{m}. \end{aligned}$$

- *f* is assumed to be regular (i.e. principal).
- *M* is the nilradical of *G*.

•
$$f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & 0 \\ \vdots & \ddots & 0 \end{pmatrix}$$
 in \mathfrak{sl}_n and $M = \left\{ \begin{pmatrix} 1 & (*) \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ in SL_n .

There is a Hamiltonian action:

$$M \stackrel{\operatorname{Ad}^*}{\curvearrowright} \mathfrak{g}^* \stackrel{\mu}{\longrightarrow} \mathfrak{m}^*$$
$$\xi \longmapsto (\xi - \chi)|_{\mathfrak{m}}.$$

Theorem

The following map is an isomorphism:

$$egin{aligned} M imes S_f &\longrightarrow \mu^{-1}(0) = \Phi(f+\mathfrak{b})\ (g,\xi) &\longmapsto \operatorname{Ad}^*(g)\xi \end{aligned}$$

- *f* is assumed to be regular (i.e. principal).
- *M* is the nilradical of *G*.

•
$$f = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \vdots & \vdots & 0 \\ \vdots & \ddots & 0 \end{pmatrix}$$
 in \mathfrak{sl}_n and $M = \left\{ \begin{pmatrix} 1 & (*) \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ in SL_n .

There is a Hamiltonian action:

$$M \stackrel{\operatorname{\mathsf{Ad}}^*}{\curvearrowright} \mathfrak{g}^* \stackrel{\mu}{\longrightarrow} \mathfrak{m}^*$$
$$\xi \longmapsto (\xi - \chi)|_{\mathfrak{m}}.$$

Theorem

The following map is an isomorphism:

$$egin{aligned} M imes S_f &\longrightarrow \mu^{-1}(0) = \Phi(f+\mathfrak{b})\ (g,\xi) &\longmapsto \operatorname{Ad}^*(g)\xi \end{aligned}$$

Hence $S_f \cong \mu^{-1}(0)/M$ (Hamiltonian reduction).

f is any nilpotent element.

f is any nilpotent element.

Theorem (Gan-Ginzburg 2002) One can find a unipotent subgroup M of G such that one has a Hamiltonian action

$$M \stackrel{\mathsf{Ad}^*}{\curvearrowright} \mathfrak{g}^* \stackrel{\mu}{\longrightarrow} \mathfrak{m}^*$$

and an isomorphism

$$M \times S_f \xrightarrow{\sim} \mu^{-1}(0).$$

Hence $S_f \cong \mu^{-1}(0)/M$ (Hamiltonian reduction).

f is any nilpotent element.

Theorem (Gan-Ginzburg 2002)

One can find a unipotent subgroup M of G such that one has a Hamiltonian action

$$M \stackrel{\operatorname{\mathsf{Ad}}^*}{\curvearrowright} \mathfrak{g}^* \stackrel{\mu}{\longrightarrow} \mathfrak{m}^*$$

and an isomorphism

$$M \times S_f \xrightarrow{\sim} \mu^{-1}(0).$$

Hence $S_f \cong \mu^{-1}(0)/M$ (Hamiltonian reduction).

- [Gan-Ginzburg] construction of *M* for the Dynkin grading.
- [Brundan-Goodwin] construction for any good grading.

Reduction by stage

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

Take N a normal subgroup of M and set K := M/N. It can be possible to perform this reduction in two stages.

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

Take N a normal subgroup of M and set K := M/N. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X//_{\mu_N}N$.

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

Take N a normal subgroup of M and set K := M/N. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X//_{\mu_N}N$. There is an induced Hamiltonian action of K on $X//_{\mu_N}N$.

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

Take N a normal subgroup of M and set K := M/N. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X / / \mu_N N$.
There is an induced Hamiltonian action of K on $X / / \mu_N N$.Stage 2. Double reduction $(X / / \mu_N N) / / \mu_K K$.

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \to \mathfrak{m}^*$.

Definition (Hamiltonian reduction) $X//_{\mu}M \coloneqq \mu^{-1}(0)/M.$

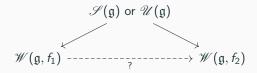
Take N a normal subgroup of M and set K := M/N. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X//_{\mu_N}N$.
There is an induced Hamiltonian action of K on $X//_{\mu_N}N$.Stage 2. Double reduction $(X//_{\mu_N}N)//_{\mu_K}K$.

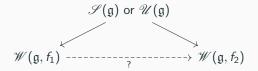
With some "stage conditions", one gets a Poisson diffeomorphism:

 $X//_{\mu}M\cong (X//_{\mu_N}N)//_{\mu_K}K.$

Question $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

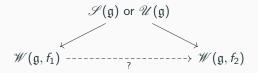


Question $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.



[Morgan 2015] "stage conditions" and first conjectures in his PhD thesis.

Question $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.



[Morgan 2015] "stage conditions" and first conjectures in his PhD thesis. M_i denotes the unipotent group and μ_i the moment map associated to f_i , i = 1, 2. Theorem (Genra-J.)

Theorem (Genra-J.)

We make the following assumptions:

Theorem (Genra-J.)

We make the following assumptions:

1. $M_2 = M_1 \rtimes M_0$,

Theorem (Genra-J.)

We make the following assumptions:

1.
$$M_2 = M_1 \rtimes M_0$$

2.
$$[f_2 - f_1, e_1] = 0$$
,

Theorem (Genra-J.)

We make the following assumptions:

- 1. $M_2 = M_1 \rtimes M_0$,
- 2. $[f_2 f_1, e_1] = 0$,
- 3. $\mathfrak{m}_0 \subseteq \operatorname{Ker} \operatorname{ad}(f_1)$.

Theorem (Genra-J.)

We make the following assumptions:

- 1. $M_2 = M_1 \rtimes M_0$,
- 2. $[f_2 f_1, e_1] = 0$,
- 3. $\mathfrak{m}_0 \subseteq \operatorname{Ker} \operatorname{ad}(f_1)$.

Then:

Theorem (Genra-J.)

We make the following assumptions:

- 1. $M_2 = M_1 \rtimes M_0$,
- 2. $[f_2 f_1, e_1] = 0$,
- 3. $\mathfrak{m}_0 \subseteq \operatorname{Ker} \operatorname{ad}(f_1)$.

Then:

1. there is an induced Hamiltonian action

$$M_0 \curvearrowright \mathfrak{g}^* //_{\mu_1} M_1 \stackrel{\mu_0}{\longrightarrow} (\mathfrak{m}_0)^*,$$

Theorem (Genra-J.)

We make the following assumptions:

- 1. $M_2 = M_1 \rtimes M_0$,
- 2. $[f_2 f_1, e_1] = 0$,
- 3. $\mathfrak{m}_0 \subseteq \operatorname{Ker} \operatorname{ad}(f_1)$.

Then:

1. there is an induced Hamiltonian action

$$M_0 \curvearrowright \mathfrak{g}^* //_{\mu_1} M_1 \stackrel{\mu_0}{\longrightarrow} (\mathfrak{m}_0)^*,$$

2. $M_0 \times S_{f_2} \cong \mu_0^{-1}(0)$,

Theorem (Genra-J.)

We make the following assumptions:

- 1. $M_2 = M_1 \rtimes M_0$,
- 2. $[f_2 f_1, e_1] = 0$,
- 3. $\mathfrak{m}_0 \subseteq \operatorname{Ker} \operatorname{ad}(f_1)$.

Then:

1. there is an induced Hamiltonian action

$$M_0 \curvearrowright \mathfrak{g}^* //_{\mu_1} M_1 \stackrel{\mu_0}{\longrightarrow} (\mathfrak{m}_0)^*,$$

- 2. $M_0 \times S_{f_2} \cong \mu_0^{-1}(0)$,
- 3. the following reduction by stage holds:

$$\underbrace{\mathfrak{g}^*/\!/_{\mu_2}M_2}_{S_{f_2}}\cong(\underbrace{\mathfrak{g}^*/\!/_{\mu_1}M_1}_{S_{f_1}})/\!/_{\mu_0}M_0$$

Definition (Classical W-algebra)

 $\mathscr{W}_{\mathrm{cl}}(\mathfrak{g}, f_i) \coloneqq (\mathscr{S}(\mathfrak{g})/I_{\mathrm{cl},i})^{\mathrm{ad}(\mathfrak{m}_i)}$, where $I_{\mathrm{cl},i}$ is the ideal spanned by $y - \chi_i(y), y \in \mathfrak{m}_i$.

Translation in Poisson algebra setting

Definition (Classical W-algebra)

 $\mathscr{W}_{\mathrm{cl}}(\mathfrak{g}, f_i) \coloneqq (\mathscr{S}(\mathfrak{g})/I_{\mathrm{cl},i})^{\mathrm{ad}(\mathfrak{m}_i)}$, where $I_{\mathrm{cl},i}$ is the ideal spanned by $y - \chi_i(y), y \in \mathfrak{m}_i$.

Remark $\mathscr{W}_{cl}(\mathfrak{g}, f_i) \cong \mathbf{C}[S_{f_i}].$

Definition (Classical W-algebra) $\mathscr{W}_{cl}(\mathfrak{g}, f_i) \coloneqq (\mathscr{S}(\mathfrak{g})/I_{cl,i})^{ad(\mathfrak{m}_i)}$, where $I_{cl,i}$ is the ideal spanned by $y - \chi_i(y), y \in \mathfrak{m}_i$.

Remark $\mathscr{W}_{cl}(\mathfrak{g}, f_i) \cong \mathbf{C}[S_{f_i}].$

Theorem (Genra-J.)

Under the same assumptions as in the previous theorem, we have a Poisson algebra isomorphism

$$(\mathscr{W}_{\mathrm{cl}}(\mathfrak{g}, f_1)/I_{\mathrm{cl},0})^{\mathrm{ad}(\mathfrak{m}_0)} \xrightarrow{\sim} \mathscr{W}_{\mathrm{cl}}(\mathfrak{g}, f_2)$$

(*F* mod $I_{\mathrm{cl},1}$) mod $I_{\mathrm{cl},0} \longmapsto$ *F* mod $I_{\mathrm{cl},2}$

where $I_{\mathrm{cl},0}$ is the ideal of $\mathscr{W}_{\mathrm{cl}}(\mathfrak{g},f_1)$ spanned by

 $y - \chi_2(y) \mod I_{cl,1},$

for $y \in \mathfrak{m}_0$.

Definition (Quantum W-algebra) $\mathscr{W}_{qu}(\mathfrak{g}, f_i) := (\mathscr{U}(\mathfrak{g})/I_{qu,i})^{ad(\mathfrak{m}_i)}$, where $I_{qu,i}$ is the left ideal spanned by $y - \chi_i(y), y \in \mathfrak{m}_i$. **Definition (Quantum W-algebra)** $\mathscr{W}_{qu}(\mathfrak{g}, f_i) := (\mathscr{U}(\mathfrak{g})/I_{qu,i})^{ad(\mathfrak{m}_i)}$, where $I_{qu,i}$ is the left ideal spanned by $y - \chi_i(y), y \in \mathfrak{m}_i$.

Theorem (Genra-J.) Under the same assumptions as in the previous theorem, we have an algebra isomorphism

$$\begin{split} & (\mathscr{W}_{\mathrm{qu}}(\mathfrak{g}, f_1) / I_{\mathrm{qu}, 0})^{\mathrm{ad}(\mathfrak{m}_0)} \xrightarrow{\sim} \mathscr{W}_{\mathrm{qu}}(\mathfrak{g}, f_2) \\ & (F \text{ mod } I_{\mathrm{qu}, 1}) \text{ mod } I_{\mathrm{qu}, 0} \longmapsto F \text{ mod } I_{\mathrm{qu}, 2} \end{split}$$

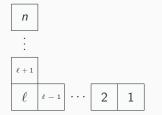
where $I_{\mathrm{qu},0}$ is the left ideal of $\mathscr{W}_{\mathrm{qu}}(\mathfrak{g},f_1)$ spanned by

 $y - \chi_2(y) \mod I_{\mathrm{qu},1},$

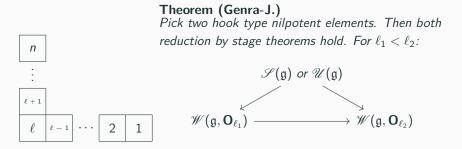
for $y \in \mathfrak{m}_0$.

A family of examples: hook type nilpotent elements

For $0 \le \ell \le n$, let us consider the nilpotent orbit \mathbf{O}_{ℓ} corresponding to the following Young diagram.



For $0 \le \ell \le n$, let us consider the nilpotent orbit \mathbf{O}_{ℓ} corresponding to the following Young diagram.



Conjectures and questions

Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)

Conjecture. The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)

- **Conjecture.** The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)
- **Conjecture.** The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)

Question. Can we expect such a statement for (simple) quotients?

- **Conjecture.** The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)
- **Conjecture.** The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)
 - Question. Can we expect such a statement for (simple) quotients?
 - Question. Can we find links between categories of representations of different W-algebras thanks to this stage reduction? (we have a Skryabin equivalence by stage statement)

Thank you for your attention!