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Framework



Big picture of finite W-algebras

g is a simple algebra and f ∈ g is a nilpotent element.

• U (g) denote the enveloping algebra of g (associative algebra),
• S (g) denote its symmetric algebra (Poisson algebra).

U (g) S (g)

Wqu(g, f ) Wcl(g, f )

classical limit

Hamiltonian reduction Hamiltonian reduction

classical limit

where

• Wqu(g, f ) is the quantum finite W-algebra associated to (g, f )
(associative algebra),

• Wcl(g, f ) is the classical finite W-algebra associated to (g, f )
(Poisson algebra).
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Some notations

• G is the adjoint group of g, which acts by the adjoint action:

Ad(g)x = gxg−1, g ∈ G , x ∈ g.

• (· | ·) is the Killing form, Φ : g ∼→ g∗ is the corresponding
isomorphism.

• f is embedded in a sl2-triple (e, h, f ).
• [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
• h is semisimple.

• χ := Φ(f ) is the linear form associated to f .

Definition (Slodowy slice)
Sf := Φ(f + Ker ad(e)) = χ + Ker ad∗(e).
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Classical Hamiltonian reduction



Regular case [Kostant 1978]

• f is assumed to be regular (i.e. principal).
• M is the nilradical of G .

• f =

( 0
1 0

. . . . . .
1 0

)
in sln and M =

{(
1 (∗)

. . .
(0) 1

)}
in SLn.

There is a Hamiltonian action:

M Ad∗

↷ g∗ µ−→ m∗

ξ 7−→ (ξ − χ)|m.

Theorem
The following map is an isomorphism:

M × Sf −→ µ−1(0) = Φ(f + b)
(g , ξ) 7−→ Ad∗(g)ξ

Hence Sf ∼= µ−1(0)/M (Hamiltonian reduction).
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Generalization

f is any nilpotent element.

Theorem (Gan-Ginzburg 2002)
One can find a unipotent subgroup M of G such that one has a
Hamiltonian action

M Ad∗

↷ g∗ µ−→ m∗

and an isomorphism
M × Sf

∼−→ µ−1(0).

Hence Sf ∼= µ−1(0)/M (Hamiltonian reduction).

• [Gan-Ginzburg] construction of M for the Dynkin grading.
• [Brundan-Goodwin] construction for any good grading.
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Reduction by stage



Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and
Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a
moment map µ : X → m∗.

Definition (Hamiltonian reduction)
X//µM := µ−1(0)/M.

Take N a normal subgroup of M and set K := M/N. It can be possible
to perform this reduction in two stages.

Stage 1. Partial reduction X//µN N.
There is an induced Hamiltonian action of K on X//µN N.

Stage 2. Double reduction (X//µN N)//µK K .

With some “stage conditions”, one gets a Poisson diffeomorphism:

X//µM ∼= (X//µN N)//µK K .
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Stage reduction for Slodowy slice

Question
f1, f2 ∈ g are two nilpotent elements.

S (g) or U (g)

W (g, f1) W (g, f2)?

[Morgan 2015] “stage conditions” and first conjectures in his PhD thesis.

Mi denotes the unipotent group and µi the moment map associated to
fi , i = 1, 2.
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Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. M2 = M1 ⋊ M0,

2. [f2 − f1, e1] = 0,
3. m0 ⊆ Ker ad(f1).

Then:

1. there is an induced Hamiltonian action

M0 ↷ g∗//µ1M1
µ0−→ (m0)∗

,

2. M0 × Sf2
∼= µ0

−1(0),
3. the following reduction by stage holds:

g∗//µ2M2︸ ︷︷ ︸
Sf2

∼= (g∗//µ1M1︸ ︷︷ ︸
Sf1

)//µ0M0.
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Translation in Poisson algebra setting

Definition (Classical W-algebra)
Wcl(g, fi) := (S (g)/Icl,i)ad(mi ), where Icl,i is the ideal spanned by
y − χi(y), y ∈ mi .

Remark
Wcl(g, fi) ∼= C[Sfi ].

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have a
Poisson algebra isomorphism

(Wcl(g, f1)/Icl,0)ad(m0) ∼−→ Wcl(g, f2)
(F mod Icl,1) mod Icl,0 7−→ F mod Icl,2

where Icl,0 is the ideal of Wcl(g, f1) spanned by

y − χ2(y) mod Icl,1,

for y ∈ m0.

10



Translation in Poisson algebra setting

Definition (Classical W-algebra)
Wcl(g, fi) := (S (g)/Icl,i)ad(mi ), where Icl,i is the ideal spanned by
y − χi(y), y ∈ mi .

Remark
Wcl(g, fi) ∼= C[Sfi ].

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have a
Poisson algebra isomorphism

(Wcl(g, f1)/Icl,0)ad(m0) ∼−→ Wcl(g, f2)
(F mod Icl,1) mod Icl,0 7−→ F mod Icl,2

where Icl,0 is the ideal of Wcl(g, f1) spanned by

y − χ2(y) mod Icl,1,

for y ∈ m0.

10



Translation in Poisson algebra setting

Definition (Classical W-algebra)
Wcl(g, fi) := (S (g)/Icl,i)ad(mi ), where Icl,i is the ideal spanned by
y − χi(y), y ∈ mi .

Remark
Wcl(g, fi) ∼= C[Sfi ].

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have a
Poisson algebra isomorphism

(Wcl(g, f1)/Icl,0)ad(m0) ∼−→ Wcl(g, f2)
(F mod Icl,1) mod Icl,0 7−→ F mod Icl,2

where Icl,0 is the ideal of Wcl(g, f1) spanned by

y − χ2(y) mod Icl,1,

for y ∈ m0.

10



Translation in Poisson algebra setting

Definition (Classical W-algebra)
Wcl(g, fi) := (S (g)/Icl,i)ad(mi ), where Icl,i is the ideal spanned by
y − χi(y), y ∈ mi .

Remark
Wcl(g, fi) ∼= C[Sfi ].

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have a
Poisson algebra isomorphism

(Wcl(g, f1)/Icl,0)ad(m0) ∼−→ Wcl(g, f2)
(F mod Icl,1) mod Icl,0 7−→ F mod Icl,2

where Icl,0 is the ideal of Wcl(g, f1) spanned by

y − χ2(y) mod Icl,1,

for y ∈ m0.
10



Stage reduction for quantum W-algebras

Definition (Quantum W-algebra)
Wqu(g, fi) := (U (g)/Iqu,i)ad(mi ), where Iqu,i is the left ideal spanned by
y − χi(y), y ∈ mi .

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have an
algebra isomorphism

(Wqu(g, f1)/Iqu,0)ad(m0) ∼−→ Wqu(g, f2)
(F mod Iqu,1) mod Iqu,0 7−→ F mod Iqu,2

where Iqu,0 is the left ideal of Wqu(g, f1) spanned by

y − χ2(y) mod Iqu,1,

for y ∈ m0.
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A family of examples: hook type nilpotent elements

For 0 ⩽ ℓ ⩽ n, let us consider the nilpotent orbit Oℓ corresponding to the
following Young diagram.

12· · ·ℓ − 1ℓ

ℓ + 1

...

n

Theorem (Genra-J.)
Pick two hook type nilpotent elements. Then both
reduction by stage theorems hold. For ℓ1 < ℓ2:

S (g) or U (g)

W (g, Oℓ1) W (g, Oℓ2)
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Conjectures and questions



Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex
algebras setting. (work in progress)

Conjecture. The reduction by stage holds in the vertex algebras
setting. (a chiralization of the Poisson vertex setting?)

Question. Can we expect such a statement for (simple) quotients?
Question. Can we find links between categories of representations of

different W-algebras thanks to this stage reduction? (we
have a Skryabin equivalence by stage statement)
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Thank you for your attention!
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