Reduction by stage for finite W-algebras

(Work in progress)

Thibault Juillard (project with Naoki Genra)
October 11, 2022
Université Paris-Saclay (IMO)

Framework

Classical Hamiltonian reduction

Reduction by stage

Conjectures and questions

Framework

Big picture of finite \mathbf{W}-algebras

Big picture of finite W -algebras

\mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

Big picture of finite \mathbf{W}-algebras

\mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

- $\mathscr{U}(\mathfrak{g})$ denote the enveloping algebra of \mathfrak{g} (associative algebra),
- $\mathscr{S}(\mathfrak{g})$ denote its symmetric algebra (Poisson algebra).

Big picture of finite \mathbf{W}-algebras

\mathfrak{g} is a simple algebra and $f \in \mathfrak{g}$ is a nilpotent element.

- $\mathscr{U}(\mathfrak{g})$ denote the enveloping algebra of \mathfrak{g} (associative algebra),
- $\mathscr{S}(\mathfrak{g})$ denote its symmetric algebra (Poisson algebra).

where
- $\mathscr{W}_{\text {qu }}(\mathfrak{g}, f)$ is the quantum finite W -algebra associated to (\mathfrak{g}, f) (associative algebra),
- $\mathscr{W}_{\text {cl }}(\mathfrak{g}, f)$ is the classical finite W -algebra associated to (\mathfrak{g}, f) (Poisson algebra).

Some notations

Some notations

- G is the adjoint group of \mathfrak{g}, which acts by the adjoint action:

$$
\operatorname{Ad}(g) x=g \times g^{-1}, \quad g \in G, \quad x \in \mathfrak{g} .
$$

Some notations

- G is the adjoint group of \mathfrak{g}, which acts by the adjoint action:

$$
\operatorname{Ad}(g) x=g \times g^{-1}, \quad g \in G, \quad x \in \mathfrak{g} .
$$

- $(\cdot \mid \cdot)$ is the Killing form, $\Phi: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}$ is the corresponding isomorphism.

Some notations

- G is the adjoint group of \mathfrak{g}, which acts by the adjoint action:

$$
\operatorname{Ad}(g) x=g \times g^{-1}, \quad g \in G, \quad x \in \mathfrak{g} .
$$

- $(\cdot \mid \cdot)$ is the Killing form, $\Phi: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}$ is the corresponding isomorphism.
- f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- $[h, e]=2 e,[h, f]=-2 f,[e, f]=h$.
- h is semisimple.

Some notations

- G is the adjoint group of \mathfrak{g}, which acts by the adjoint action:

$$
\operatorname{Ad}(g) x=g \times g^{-1}, \quad g \in G, \quad x \in \mathfrak{g} .
$$

- $(\cdot \mid \cdot)$ is the Killing form, $\Phi: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}$ is the corresponding isomorphism.
- f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- $[h, e]=2 e,[h, f]=-2 f,[e, f]=h$.
- h is semisimple.
- $\chi:=\Phi(f)$ is the linear form associated to f.

Some notations

- G is the adjoint group of \mathfrak{g}, which acts by the adjoint action:

$$
\operatorname{Ad}(g) x=g \times g^{-1}, \quad g \in G, \quad x \in \mathfrak{g} .
$$

- $(\cdot \mid \cdot)$ is the Killing form, $\Phi: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}$ is the corresponding isomorphism.
- f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- $[h, e]=2 e,[h, f]=-2 f,[e, f]=h$.
- h is semisimple.
- $\chi:=\Phi(f)$ is the linear form associated to f.

Definition (Slodowy slice)
$S_{f}:=\Phi(f+\operatorname{Kerad}(e))=\chi+\operatorname{Kerad}^{*}(e)$.

Classical Hamiltonian reduction

Regular case [Kostant 1978]

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).
- M is the nilradical of G.

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).
- M is the nilradical of G.
- $f=\left(\begin{array}{cccc}0 & 0 & & \\ & \ddots & \ddots & \\ & & \ddots & 0\end{array}\right)$ in $\mathfrak{s l}_{n}$ and $M=\left\{\left(\begin{array}{ccc}1 & & (*) \\ & \ddots & \\ & & \\ (0) & & 1\end{array}\right)\right\}$ in SL_{n}.

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).
- M is the nilradical of G.
- $f=\left(\begin{array}{cccc}0 & & & \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0\end{array}\right)$ in $\mathfrak{s l}_{n}$ and $M=\left\{\left(\begin{array}{ccc}1 & & (*) \\ & \ddots & \\ (0) & & 1\end{array}\right)\right\}$ in SL_{n}.

There is a Hamiltonian action:

$$
\begin{aligned}
& M \stackrel{\mathrm{Ad}^{*}}{\curvearrowright} \mathfrak{g}^{*} \xrightarrow{\mu} \mathfrak{m}^{*} \\
&\left.\xi \longmapsto(\xi-\chi)\right|_{\mathfrak{m}} .
\end{aligned}
$$

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).
- M is the nilradical of G.

$$
\text { - } f=\left(\begin{array}{cccc}
0 & 0 & & \\
& \ddots & \ddots & \\
& \ddots & \ddots & 0
\end{array}\right) \text { in } \mathfrak{s l}_{n} \text { and } M=\left\{\left(\begin{array}{ccc}
1 & & (*) \\
& \ddots & \\
(0) & & 1
\end{array}\right)\right\} \text { in } \mathrm{SL}_{n} .
$$

There is a Hamiltonian action:

$$
\begin{aligned}
M \stackrel{\mathrm{Ad}^{*}}{\curvearrowright} \mathfrak{g}^{*} \xrightarrow{\mu} \mathfrak{m}^{*} \\
\left.\xi \longmapsto(\xi-\chi)\right|_{\mathfrak{m}} .
\end{aligned}
$$

Theorem
The following map is an isomorphism:

$$
\begin{aligned}
M \times S_{f} & \longrightarrow \mu^{-1}(0)=\Phi(f+\mathfrak{b}) \\
(g, \xi) & \longmapsto \operatorname{Ad}^{*}(g) \xi
\end{aligned}
$$

Regular case [Kostant 1978]

- f is assumed to be regular (i.e. principal).
- M is the nilradical of G.

$$
\text { - } f=\left(\begin{array}{cccc}
0 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right) \text { in } \mathfrak{s l}_{n} \text { and } M=\left\{\left(\begin{array}{ccc}
1 & & (*) \\
& \ddots & \\
(0) & & 1
\end{array}\right)\right\} \text { in } \mathrm{SL}_{n} .
$$

There is a Hamiltonian action:

$$
\begin{aligned}
& M \stackrel{\mathrm{Ad}^{*}}{\curvearrowright} \mathfrak{g}^{*} \xrightarrow{\mu} \mathfrak{m}^{*} \\
&\left.\xi \longmapsto(\xi-\chi)\right|_{\mathfrak{m}} .
\end{aligned}
$$

Theorem
The following map is an isomorphism:

$$
\begin{aligned}
M \times S_{f} & \longrightarrow \mu^{-1}(0)=\Phi(f+\mathfrak{b}) \\
(g, \xi) & \longmapsto \operatorname{Ad}^{*}(g) \xi
\end{aligned}
$$

Hence $S_{f} \cong \mu^{-1}(0) / M$ (Hamiltonian reduction).

Generalization

Generalization

f is any nilpotent element.

Generalization

f is any nilpotent element.
Theorem (Gan-Ginzburg 2002)
One can find a unipotent subgroup M of G such that one has a Hamiltonian action

$$
M \stackrel{\mathrm{Ad}^{*}}{\curvearrowright} \mathfrak{g}^{*} \xrightarrow{\mu} \mathfrak{m}^{*}
$$

and an isomorphism

$$
M \times S_{f} \xrightarrow{\sim} \mu^{-1}(0)
$$

Hence $S_{f} \cong \mu^{-1}(0) / M$ (Hamiltonian reduction).

Generalization

f is any nilpotent element.

Theorem (Gan-Ginzburg 2002)

One can find a unipotent subgroup M of G such that one has a Hamiltonian action

$$
M \stackrel{\mathrm{Ad}^{*}}{\curvearrowright} \mathfrak{g}^{*} \xrightarrow{\mu} \mathfrak{m}^{*}
$$

and an isomorphism

$$
M \times S_{f} \xrightarrow{\sim} \mu^{-1}(0)
$$

Hence $S_{f} \cong \mu^{-1}(0) / M$ (Hamiltonian reduction).

- [Gan-Ginzburg] construction of M for the Dynkin grading.
- [Brundan-Goodwin] construction for any good grading.

Reduction by stage

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Take N a normal subgroup of M and set $K:=M / N$. It can be possible to perform this reduction in two stages.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Take N a normal subgroup of M and set $K:=M / N$. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X / /{ }_{\mu} N$.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Take N a normal subgroup of M and set $K:=M / N$. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X / / \mu_{N} N$.
There is an induced Hamiltonian action of K on $X / / \mu_{N} N$.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Take N a normal subgroup of M and set $K:=M / N$. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X / / \mu_{N} N$.
There is an induced Hamiltonian action of K on $X / / \mu_{N} N$.
Stage 2. Double reduction $\left(X / / \mu_{N} N\right) / / \mu_{K} K$.

Reduction by stage [Marsden, Misiolek, Ortega, Perlmutter and Rati 2007]

X is a Poisson variety with a Hamiltonian action of a Lie group M and a moment map $\mu: X \rightarrow \mathfrak{m}^{*}$.

Definition (Hamiltonian reduction) $X / /{ }_{\mu} M:=\mu^{-1}(0) / M$.

Take N a normal subgroup of M and set $K:=M / N$. It can be possible to perform this reduction in two stages.

Stage 1. Partial reduction $X / / \mu_{N} N$.
There is an induced Hamiltonian action of K on $X / / \mu_{N} N$.
Stage 2. Double reduction $\left(X / /{ }_{\mu} N\right) / / \mu_{K} K$.
With some "stage conditions", one gets a Poisson diffeomorphism:

$$
X / /{ }_{\mu} M \cong\left(X / /{ }_{\mu_{N}} N\right) / /{ }_{\mu_{K}} K
$$

Stage reduction for Slodowy slice

Stage reduction for Slodowy slice

Question

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

Stage reduction for Slodowy slice

Question

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

[Morgan 2015] "stage conditions" and first conjectures in his PhD thesis.

Stage reduction for Slodowy slice

Question

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

[Morgan 2015] "stage conditions" and first conjectures in his PhD thesis.
M_{i} denotes the unipotent group and μ_{i} the moment map associated to $f_{i}, i=1,2$.

Stage reduction for Slodowy slice

Stage reduction for Slodowy slice

Theorem (Genra-J.)

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,
3. $\mathfrak{m}_{0} \subseteq \operatorname{Kerad}\left(f_{1}\right)$.

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,
3. $\mathfrak{m}_{0} \subseteq \operatorname{Kerad}\left(f_{1}\right)$.

Then:

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,
3. $\mathfrak{m}_{0} \subseteq \operatorname{Kerad}\left(f_{1}\right)$.

Then:

1. there is an induced Hamiltonian action

$$
M_{0} \curvearrowright \mathfrak{g}^{*} / /{ }_{\mu_{1}} M_{1} \xrightarrow{\mu_{0}}\left(\mathfrak{m}_{0}\right)^{*},
$$

Stage reduction for Slodowy slice

Theorem (Genra-J.)
We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,
3. $\mathfrak{m}_{0} \subseteq \operatorname{Kerad}\left(f_{1}\right)$.

Then:

1. there is an induced Hamiltonian action

$$
M_{0} \curvearrowright \mathfrak{g}^{*} / /{ }_{\mu_{1}} M_{1} \xrightarrow{\mu_{0}}\left(\mathfrak{m}_{0}\right)^{*},
$$

2. $M_{0} \times S_{f_{2}} \cong \mu_{0}{ }^{-1}(0)$,

Stage reduction for Slodowy slice

Theorem (Genra-J.)

We make the following assumptions:

1. $M_{2}=M_{1} \rtimes M_{0}$,
2. $\left[f_{2}-f_{1}, e_{1}\right]=0$,
3. $\mathfrak{m}_{0} \subseteq \operatorname{Kerad}\left(f_{1}\right)$.

Then:

1. there is an induced Hamiltonian action

$$
M_{0} \curvearrowright \mathfrak{g}^{*} / /{ }_{\mu_{1}} M_{1} \xrightarrow{\mu_{0}}\left(\mathfrak{m}_{0}\right)^{*}
$$

2. $M_{0} \times S_{f_{2}} \cong \mu_{0}{ }^{-1}(0)$,
3. the following reduction by stage holds:

$$
\underbrace{\mathfrak{g}^{*} / /{ }_{\mu_{2}} M_{2}}_{S_{f_{2}}} \cong(\underbrace{\mathfrak{g}^{*} / /{ }_{\mu_{1}} M_{1}}_{S_{f_{1}}}) / /{ }_{\mu_{0}} M_{0} .
$$

Translation in Poisson algebra setting

Translation in Poisson algebra setting

Definition (Classical W-algebra)
$\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{i}\right):=\left(\mathscr{S}(\mathfrak{g}) / I_{\mathrm{cl}, i}\right)^{\text {ad }\left(\mathfrak{m}_{i}\right)}$, where $I_{\mathrm{cl}, i}$ is the ideal spanned by $y-\chi_{i}(y), y \in \mathfrak{m}_{i}$.

Translation in Poisson algebra setting

Definition (Classical W-algebra)
$\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{i}\right):=\left(\mathscr{S}(\mathfrak{g}) / I_{\mathrm{cl}, i}\right)^{\text {ad }\left(\mathfrak{m}_{i}\right)}$, where $I_{\mathrm{cl}, i}$ is the ideal spanned by $y-\chi_{i}(y), y \in \mathfrak{m}_{i}$.

Remark
$\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{i}\right) \cong \mathbf{C}\left[S_{f_{i}}\right]$.

Translation in Poisson algebra setting

Definition (Classical W-algebra)

$\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{i}\right):=\left(\mathscr{S}(\mathfrak{g}) / I_{\mathrm{cl}, i}\right)^{\mathrm{ad}\left(\mathrm{m}_{\mathrm{i}}\right)}$, where $I_{\mathrm{cl}, i}$ is the ideal spanned by
$y-\chi_{i}(y), y \in \mathfrak{m}_{i}$.
Remark
$\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{i}\right) \cong \mathbf{C}\left[S_{f_{j}}\right]$.

Theorem (Genra-J.)

Under the same assumptions as in the previous theorem, we have a Poisson algebra isomorphism

$$
\begin{gathered}
\left(\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{1}\right) / I_{\mathrm{cl}, 0}\right)^{\operatorname{ad}\left(\mathfrak{m}_{0}\right)} \xrightarrow{\sim} \mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{2}\right) \\
\left(F \bmod I_{\mathrm{cl}, 1}\right) \bmod I_{\mathrm{cl}, 0} \longmapsto F \bmod I_{\mathrm{cl}, 2}
\end{gathered}
$$

where $I_{\mathrm{cl}, 0}$ is the ideal of $\mathscr{W}_{\mathrm{cl}}\left(\mathfrak{g}, f_{1}\right)$ spanned by

$$
y-\chi_{2}(y) \bmod I_{\mathrm{cl}, 1},
$$

for $y \in \mathfrak{m}_{0}$.

Stage reduction for quantum W -algebras

Stage reduction for quantum W-algebras

Definition (Quantum W-algebra)
$\mathscr{W}_{\mathrm{qu}}\left(\mathfrak{g}, f_{i}\right):=\left(\mathscr{U}(\mathfrak{g}) / I_{\mathrm{qu}, i}\right)^{\text {ad }\left(\mathfrak{m}_{i}\right)}$, where $I_{\mathrm{qu}, i}$ is the left ideal spanned by $y-\chi_{i}(y), y \in \mathfrak{m}_{i}$.

Stage reduction for quantum W-algebras

Definition (Quantum W-algebra)

$\mathscr{W}_{\mathrm{qu}}\left(\mathfrak{g}, f_{i}\right):=\left(\mathscr{U}(\mathfrak{g}) / I_{\mathrm{qu}, i}\right)^{\text {ad }\left(\mathfrak{m}_{i}\right)}$, where $I_{\mathrm{qu}, i}$ is the left ideal spanned by $y-\chi_{i}(y), y \in \mathfrak{m}_{i}$.

Theorem (Genra-J.)
Under the same assumptions as in the previous theorem, we have an algebra isomorphism

$$
\begin{aligned}
& \left(\mathscr{W}_{\mathrm{qu}}\left(\mathfrak{g}, f_{1}\right) / I_{\mathrm{qu}, 0}\right)^{\mathrm{ad}\left(\mathfrak{m}_{0}\right)} \xrightarrow{\sim} \mathscr{W}_{\mathrm{qu}}\left(\mathfrak{g}, f_{2}\right) \\
& \left(F \bmod I_{\mathrm{qu}, 1}\right) \bmod I_{\mathrm{qu}, 0} \longmapsto F \bmod I_{\mathrm{qu}, 2}
\end{aligned}
$$

where $I_{\mathrm{qu}, 0}$ is the left ideal of $\mathscr{W}_{\mathrm{qu}}\left(\mathfrak{g}, f_{1}\right)$ spanned by

$$
y-\chi_{2}(y) \bmod I_{\mathrm{qu}, 1},
$$

for $y \in \mathfrak{m}_{0}$.

A family of examples: hook type nilpotent elements

A family of examples: hook type nilpotent elements

For $0 \leqslant \ell \leqslant n$, let us consider the nilpotent orbit \mathbf{O}_{ℓ} corresponding to the following Young diagram.

A family of examples: hook type nilpotent elements

For $0 \leqslant \ell \leqslant n$, let us consider the nilpotent orbit \mathbf{O}_{ℓ} corresponding to the following Young diagram.

Theorem (Genra-J.)
Pick two hook type nilpotent elements. Then both reduction by stage theorems hold. For $\ell_{1}<\ell_{2}$:

Conjectures and questions

Conjectures and questions

Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)

Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)
Conjecture. The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)

Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)
Conjecture. The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)
Question. Can we expect such a statement for (simple) quotients?

Conjectures and questions

Conjecture. The reduction by stage holds in the Poisson vertex algebras setting. (work in progress)
Conjecture. The reduction by stage holds in the vertex algebras setting. (a chiralization of the Poisson vertex setting?)
Question. Can we expect such a statement for (simple) quotients?
Question. Can we find links between categories of representations of different W -algebras thanks to this stage reduction? (we have a Skryabin equivalence by stage statement)

Thank you for your attention!

