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Ne pas hésiter à signaler ce que vous pensez être une erreur.

Exercice 1
1. Comme f est de classe C1 sur ] − 1, 1[, f ′ est continue sur ] − 1, 1[ donc l’image de ] − 1, 1[ par f ′ hérite

du caractère connexe par arcs de l’intervalle ] − 1, 1[. On a bien f ′(] − 1, 1[) qui est connexe par arcs.
2. (a) Soit t ∈] − 1, 1[. Si t ≤ 0, alors f(t) − f(0) = (0, 0). Sinon,

f(t) − f(0)
t

=
(

t sin
(1

t

)
, t cos

(1
t

))
et puisque cos et sin sont bornées,(

t sin
(1

t

)
, t cos

(1
t

))
−→
t→0

(0, 0).

Ainsi, f est dérivable en 0 et f ′(0) = (0, 0).
Ensuite, f est dérivable sur ] − 1, 1[\{0} car, composante par composante, elle est C∞ sur R∗.
Si t < 0, f est constante donc f ′ est nulle sur ]−1, 0]. Si t > 0, on dérive composante par composante :

∀t ∈]0, 1[, f ′(t) =
(

2t sin
(1

t

)
− cos

(1
t

)
, 2t cos

(1
t

)
+ sin

(1
t

))
.

(b) On calcule :

∀t ∈]0, 1[, ∥f ′(t)∥2 =
(

2t sin
(1

t

)
− cos

(1
t

))2
+
(

2t cos
(1

t

)
+ sin

(1
t

))2

= (4t2 + 1)
(

sin2
(1

t

)
+ cos2

(1
t

))
= 4t2 + 1 ≥ 1.

Notons N = ∥ · ∥ ◦ f ′. Si f ′(] − 1, 1[) était connexe par arcs, alors par continuité de la norme,
N(] − 1, 1[) est une partie connexe par arcs de R donc un intervalle. Comme 0 = N(0) ∈ N(] − 1, 1[)
et 2 = N

(1
2

)
∈ N(] − 1, 1[), [0, 2] ⊂ N(] − 1, 1[) donc par exemple, le réel 1

π
est atteint par N . Or

N est soit nulle, soit supérieure ou égale à 1 donc ne peut prendre la valeur 1
π

. Ainsi, f ′(] − 1, 1[)
n’est pas connexe par arcs.

Exercice 2
3. f est de classe C2 sur R2 par théorèmes généraux. Ainsi,

∀x, y ∈ R, ∂1f(x, y) = −2(2 − x − y) − 2(1 − x) − 4(1 − 2x − y)
= −4 + 2x + 2y − 2 + 2x − 4 + 8x + 4y

= −10 + 12x + 6y
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et

∀x, y ∈ R, ∂2f(x, y) = −2(2 − x − y) − 2(1 − 2x − y)
= −4 + 2x + 2y − 2 + 4x + 2y

= −6 + 6x + 4y.

Ainsi,

∀x, y ∈ R, ∇f(x, y) = (0, 0) ⇐⇒
{

12x + 6y = 10
6x + 4y = 6 ⇐⇒

(
x
y

)
= 1

12

(
4 −6

−6 12

)(
10
6

)
=
(

1/3
1

)
.

Calculons maintenant la hessienne. On a

Hessf(x, y) =
(

12 6
6 4

)

donc la hessienne est constante. Son déterminant est 12 ̸= 0 et sa trace est 16 ≥ 0. Ainsi, la hessienne est
définie positive donc f admet un minimum local en (1/3, 1) : (1/3, 1) est donc bien un extremum local
de f . On admet que ce minimum est global : on calcule

f(1/3, 1) = 4
3 .

4. Déjà, u et v sont libres donc F est bien un plan vectoriel. Soit π projection orthogonale sur F . Alors
a − b = a − π(a) ∈ ker(π) = F ⊥ donc comme u, v ∈ F , ⟨a − b, u⟩ = ⟨a − b, v⟩ = 0. Ainsi, ⟨b, u⟩ = ⟨a, u⟩ et
⟨b, v⟩ = ⟨a, v⟩. Puisque b ∈ F , b s’écrit λu + µv donc

⟨b, u⟩ = λ∥u∥2 + µ⟨u, v⟩ = ⟨a, u⟩ ; ⟨b, v⟩ = λ⟨u, v⟩ + µ∥v∥2 = ⟨a, v⟩.

On a donc l’équation matricielle (
∥u∥2 ⟨u, v⟩
⟨u, v⟩ ∥v∥2

)(
λ
µ

)
=
(

⟨a, u⟩
⟨a, v⟩.

)

On a :
⟨u, v⟩ = 3 , ∥u∥2 = 6 , ∥v∥2 = 2 , ⟨a, u⟩ = 5 , ⟨a, v⟩ = 3.

Ainsi, (
λ
µ

)
= 1

3

(
2 −3

−3 6

)(
5
3

)
=
(

1/3
1

)
.

On en déduit que
b = 1

3u + v =
(4

3 ,
1
3 ,

5
3

)
.

Soit maintenant g : (x, y) ∈ R2 7→ (x + y, x, 2x + y) ∈ R3. Alors g est clairement linéaire et injective.
((1, 0), (0, 1)) étant une base de R2,

Im(g) = Vect(g(1, 0), g(0, 1)) = Vect(u, v) = F.

Ainsi, d’un côté, b étant projeté orthogonal de a sur F , par le cours,

d(a, F )2 = ∥a − b∥2 =
(

2 − 4
3

)2
+
(

1 − 1
3

)2
+
(

1 − 5
3

)2
= 4

3
et de l’autre,

d(a, F )2 = inf
(x′,y′,z′)∈F

∥a − (x′, y′, z′)∥2 = inf
(x,y)∈R2

∥a − g(x, y)∥2 = inf
(x,y)∈R2

f(x, y).

On a bien inf
(x,y)∈R2

f(x, y) = 4
3 et cet infimum est atteint lorsque g(x, y) = b, donc pour (x, y) = (1/3, 1).
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Problème : autour du théorème de comparaison avec une intégrale

Partie I.

5. Comme f est positive, (Sn) et (Jn) sont croissantes. Ensuite, c’est classique. Soit k ∈ N∗. Pour tout
t ∈ [k − 1, k], f(k) ≤ f(t) ≤ f(k − 1) donc par croissance de l’intégrale,

f(k) ≤
∫ k

k−1
f(t)dt ≤ f(k − 1).

puisque l’intégrale d’une constante sur [k − 1, k] égale cette constante.
6. On somme pour k = 1 à n et on utilise la relation de Chasles : on a

n∑
k=1

f(k) ≤
∫ n

0
f(t)dt ≤

n∑
k=1

f(k − 1).

A droite, on fait un décalage d’indice. A gauche, on rajoute et on retire f(0), le premier terme. On a alors

Sn − f(0) ≤
∫ n

0
f(t)dt ≤ Sn−1.

7. Déjà, comme f est positive, f est intégrable sur R+ équivaut à lim
x→+∞

∫ x

0
f(t)dt converge.

(a) Si f est intégrable, alors la convergence de lim
x→+∞

∫ x

0
f(t)dt entraîne la convergence de lim

n→+∞

∫ n

0
f(t)dt

ce qui correspond à la convergence de la suite Jn. Par comparaison, la suite (Sn)n converge.

Si (Sn)n converge, alors (Jn)n converge, disons vers ℓ. Or, lim
x→+∞

∫ x

0
f(t)dt existe dans R+ ∪ {+∞},

ce qu’on note ℓ′, par le théorème de la limite monotone, x 7→
∫ x

0
f(t)dt étant croissante sur R+ (par

positivité de f). Ainsi, par unicité de la limite, ℓ = ℓ′ donc f est bien intégrable.
(b) Par télescopage, pour tout N ∈ N∗,

N∑
n=1

∫ n

n−1
f(t)dt − f(n)︸ ︷︷ ︸
≥0 par Q5

=
∫ N

0
f(t)dt −

N∑
n=1

f(n) = JN − SN + f(0).

Par la question précédente, on a

0 ≤ JN − SN + f(0) ≤ SN−1 − SN + f(0) = f(0) − f(N)(
N∑

n=1

∫ n

n−1
f(t)dt − f(n)

)
n

est une suite croissante majorée donc convergente : CQFD.

Attention. Il y a un décalage d’indice dans la technique de comparaison série-intégrale que l’on invoque ici
par rapport aux résultats précédents. On laisse volontairement ce détail de côté par souci de lisibilité.

8. (a) x 7→ x et x 7→ ln(x)a sont toutes deux croissantes positives sur [2, +∞[ donc le produit des deux l’est
aussi. Par inverse, f est décroissante sur [2, +∞[. f est aussi continue et positive donc on satisfait
les hypothèses de la comparaison série-intégrale.
Or, – on reconnait une primitive à vue mais c’est un peu plus long à écrire rapidement – ln étant
strictement croissante de [2, +∞[ dans [ln(2), +∞[ et C1, par le théorème de changement de variable,

∫ x

2
f(t)dt =

∫ ln(x)

ln(2)

1
ua

du =



1
1 − a

[
u1−a

]ln(x)
ln(2) si a < 1

[ln(u)]ln(x)
ln(2) si a = 1[

− 1
a − 1

1
ua−1

]ln(x)

ln(2)
si a > 1
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Ainsi, si a ≤ 1, quand x → +∞, l’intégrale à calculer tend vers +∞, et converge quand a > 1. Ainsi,
par la question précédente,

∑
n≥2

1
n lna(n) converge si, et seulement si, a > 1 (c’est un point du critère

de Bertrand).
(b) On a, par le raisonnement de la Q7b, que pour tout N ∈ N≥3,

0 ≤
∫ N

2

1
t ln2(t)

dt −
N∑

k=2

1
k ln2(k)

+ f(2) ≤ f(2) − f(N)

L’inégalité passe à la limite quand N → +∞ en

− 1
2 ln2(2)

≤
∫ +∞

2

1
t ln2(t)

dt −
∑
k≥2

1
k ln2(k)

≤ 0.

Or, ∫ +∞

2

1
t ln2(t)

dt = 1
ln(2)

(on trouve facilement une primitive) donc

1
ln(2) ≤

∑
k≥2

1
k ln2(k)

≤ 1
ln(2) + 1

2 ln2(2)
= 2 ln(2) + 1

2 ln2(2)
.

9. (a) La fonction x 7→ 1
x

est décroissante continue positive sur [1, +∞[. On applique donc la question 7b.
On a alors la convergence de ∑

n≥2

∫ n

n−1

1
t
dt − 1

n
.

Or, pour N ≥ 2,
N∑

n=2

∫ n

n−1

1
t
dt − 1

n
=
∫ N

1

1
t
dt︸ ︷︷ ︸

=ln(N)

−
N∑

n=2

1
n

.

On obtient alors la convergence de (Tn)n. La constante γ s’appelle constante d’Euler-Mascheroni.
(b) Vu que (Tn)n converge vers γ, on a

Tn − γ = on→+∞(1).

Un équivalent est alors ln(n).
10. (a) Déjà, pour tout x > 0,

∑
gn converge simplement puisque le terme général est un o(1/n2). Soit

n ≥ 1. Alors x 7→ gn(x) est C1 sur R+∗ et

∀x > 0, g′
n(x) = n2 + x2 − 2x2

(n2 + x2)2 = (n − x)(n + x)
(n2 + x2)2 .

Ainsi, gn est croissante sur ]0, n[, décroissante sur ]n, +∞[ donc comme elle est positive, elle atteint
son maximum en n. On a donc

∥gn∥∞ = gn(n) = n

n2 + n2 = 1
2n

.

Ainsi,
∑

∥gn∥∞ n’est pas une série convergente. Ainsi,
∑

gn ne converge pas normalement sur
]0, +∞[. Par contre, elle va converger normalement sur tout segment de ]0, +∞[. En effet, soit
a, b ∈]0, +∞[, a < b. Sur [a, b], pour n assez grand, gn est strictement croissante. On en déduit que

∥gn∥∞,[a,b] = gn(b).

On en déduit, puisque
∑

gn(b) converge, que
∑

gn converge normalement sur [a, b].
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Attention ! Dans les deux questions qui suivent, x doit être strictement positif !

(b) t 7→ t2 + x2 est strictement croissante sur [0, +∞[ donc f est strictement décroissante sur [0, +∞[.
Elle est de plus continue et positive. On est dans les hypothèses du théorème de comparaison série-
intégrale. On applique donc Q5 et on somme par Chasles pour obtenir

∀n ∈ N∗,

∫ n+1

1
f(t)dt ≤

n∑
k=1

f(k) ≤
∫ n

0
f(t)dt.

(c) Fixons x > 0. On a, pour tout t ∈ R,

f(t) = 1
x

1
(t/x)2 + 1

donc on reconnait la dérivée de t 7→ arctan(t/x). Ainsi,

∀n ∈ N∗, arctan
(

n + 1
x

)
− arctan(1/x) ≤

n∑
k=1

f(k) ≤ arctan(n/t).

L’inégalité passe à la limite quand n → +∞ en

π

2 − arctan(1/x) ≤
+∞∑
n=1

x

n2 + t2 ≤ π

2 .

(d) Comme arctan(1/x) tend vers 0 quand x → +∞, par théorème d’encadrement,

lim
x→+∞

+∞∑
n=1

gn(x) = π

2 .

Si la série
∑

gn converge uniformément sur ]0, +∞[, par le théorème d’interversion série-limite, on
a

lim
x→+∞

+∞∑
n=1

gn(x) =
+∞∑
n=1

lim
x→+∞

x

n2 + x2︸ ︷︷ ︸
=0

= 0.

Ainsi, par unicité de la limite, 0 = π

2 ce qui est absurde : ainsi, la série
∑

gn ne converge pas
uniformément sur ]0, +∞[.

Partie II.

11. (a) Soit n ∈ N∗. On a
∫ n+1

n
| sin(2πx)|dx =

∫ n+ 1
2

n
| sin(2πx)|dx +

∫ n+1

n+ 1
2

| sin(2πx)|dx.

Or, x 7→ sin(2πx) est positive sur [n, n + 1
2 ] et négative sur [n + 1

2 , n + 1]. On a donc

∫ n+1

n
| sin(2πx)|dx =

∫ n+ 1
2

n
sin(2πx)dx −

∫ n+1

n+ 1
2

sin(2πx)dx

= 1
2π

(
[− cos(2πx)]n+ 1

2
n + [cos(2πx)]n+1

n+ 1
2

)
= 1

2π
((1 + 1) + (1 + 1)) = 2

π
.
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(b) Soit x ≥ 1. Si x ∈ [1, 2[, ⌊x⌋ = 1 donc on demande à l’intégrale d’une fonction positive à être
positive, ce qui est vrai.

∫ x

1
f(t)dt =

∫ ⌊x⌋

1
f(t)dt +

∫ x

⌊x⌋
f(t)dt︸ ︷︷ ︸
≥0

≥
⌊x⌋−1∑
k=1

∫ k+1

k
f(t)dt = (⌊x⌋ − 1) 2

π
.

Ainsi, par comparaison,
∫ +∞

0
f diverge vers +∞ donc, f étant positive, f n’est pas intégrable sur

R+. Pourtant, f(n) = 0 pour tout n ∈ N donc la série
∑

f(n) converge.

12. Soit n ∈ N∗. On rappelle que l’aire d’un triangle est base × hauteur
2 . Ainsi, on demande à ce que

n + an − n + an = 1
n2 donc posons an = 1

n2 .
On considère donc f de sorte que pour tout n ∈ N∗,

• si x ∈ [n − an, n], alors f(x) = x − n + an

an
(on veut que ce soit affine de (n − an, 0) à (n, 1)).

• si x ∈ [n, n + an], alors f(x) = an + n − x

an
(on veut que ce soit affine de (n, 1) à (n + an, 0)).

• sinon, f(x) = 0.
f est bien définie puisque pour tout p, q ∈ N, [p − ap, p + ap] ∩ [q − aq, q + aq] = ∅. Alors∑

n≥1
f(n) =

∑
n≥1

1 = +∞

et ∫ +∞

1/2
f(t)dt =

∑
n≥1

∫ n+an

n−an

f(t)dt︸ ︷︷ ︸
=

1
n2 (⋆)

=
∑
n≥1

1
n2 < +∞

et on a (⋆) car f étant est positive, son aire sous la courbe sur un intervalle [n − an, n + an] est par
construction 1

n2 . Ainsi, on a bien construit un contre-exemple.

thomaschen(dot)maths[at]gmail(dot)com Page 6 Ne pas diffuser sans l’accord du concepteur


