
CHAPTER 6

Uniformization of surfaces of genus 0

The main goal of this chapter is to give a proof of the following result:

Theorem 6.1. Let (⌃2, g0) be a closed Riemannian surface with positive Euler characteristic. Then
the unique solution to the normalized Ricci flow starting from g0 converges exponentially in any Ck

norm to a smooth round metric g1 as t tends to +1.

We present below a proof that combines Hamilton’s original proof [Ham88] in the case of a initial
metric g0 with positive scalar curvature and Chow’s proof [Cho91] that extends Hamilton’s work
for an arbitrary metric g0. Notice that Hamilton’s proof does invoke the uniformization theorem
through the so called Kazdan-Warner identity. Chen-Lu-Tian [CLT06] managed to get rid of such
identity by classifying shrinking gradient Ricci solitons on a 2-sphere independently as explained in
Chapter 2.

1. Strategy of the proof

According to Chapter 5, there is a unique solution to the NRF coming out of a given smooth
Riemannian metric on ⌃ that exists for all time: see Corollary 5.9. The main issue in case ⌃ is a
sphere is the convergence of the flow to a metric with constant positive curvature. Indeed, observe
that the bounds obtained so far in Chapter 5 are blowing up as t tends to +1. One of Hamilton’s
ideas was to consider a tensor that measures the defect of the flow to be a shrinking gradient Ricci
soliton. Such a tensor called M(t) has been introduced in Proposition 5.8 and has not been used so
far. Let us compute its evolution equation along the NRF:

Proposition 6.2. Along the NRF,

@

@t
M(t) = �g(t)M(t) + (r � 2Rg(t))M(t), t > 0.

In particular,

@

@t
|M(t)|2

g(t) = �g(t)|M(t)|2
g(t) � 2|rg(t)M(t)|2

g(t) � 2Rg(t) |M(t)|2
g(t), t > 0.

Before we proceed to the proof of Proposition 6.2, we explain what it suggests to prove next:
if we knew that Rg(t) � c > 0 for all time t su�ciently large then the maximum principle would
imply that |M(t)|  Ce�ct for some positive constant C. As t tends to +1, it strongly suggests
that the flow should converge to a metric whose associated M -tensor vanishes identically, i.e. it
should converge to a shrinking gradient Ricci soliton! We will make these heuristics more precise
later. Before proving Proposition 6.2, we need a general lemma that computes the evolution of a Lie
derivative of a gradient vector field along an arbitrary flow of metrics:

Lemma 6.3. For a one-parameter family of Riemannian metrics g(t) and a one-parameter family of
smooth functions f(t):

rg(t),2
�
@tf ��g(t)f

�
=
�
@t ��L,g(t)

�
rg(t),2f + T (rg(t)f),
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where

T (rg(t)f)ij :=
1

2
g(t)kl

✓
rg(t)

i
(@tg + 2Ric(g(t))jk +rg(t)

j
(@tg + 2Ric(g(t))ik

�rg(t)
k

(@tg + 2Ric(g(t))ij

◆
rg(t)

l
f.

Proof. Using commutation formulae, for a Riemannian metric g and a smooth function f :

(rg,2(�gf))ij = rg

i
rg

j
rg

k
rg

k
f = rg

i
rg

k
rg

k
rg

j
f �rg

i
(Ric(g)ljr

g

l
f)

= rg

k
rg

i
rg

k
rg

j
f � Rm(g)l

ikk
rg

l
rg

j
f � Rm(g)l

ikj
rg

k
rg

l
f

� gklrg

i
Ric(g)jkrg

l
f � Ric(g)ljr

g

i
rg

l
f

= (�grg,2f)ij �rg

k

⇣
Rm(g)l

ikj
rg

l
f
⌘
� Ric(g)lirg,2flj � Rm(g)l

ikj
rg

k
rg

l
f

� gklrg

i
Ric(g)jkrg

l
f � gkl Ric(g)jkrg,2fil

= (�L,grg,2f)ij � gkl
⇣
rg

i
Ric(g)jk +rg

j
Ric(g)ik �rg

k
Ric(g)ij

⌘
rg

l
f,

where we have used the second Bianchi identity rg

k
Rm(g)l

ikj
= gkl(rg

j
Ric(g)ik �rg

k
Ric(g)ij) in the

last line.
On the other hand, thanks to Lemma 1.13 and the definition of the Hessian of a function,

@

@t
rg(t),2fij = rg(t),2

✓
@

@t
f

◆

ij

� @

@t
�(g(t))lijr

g(t)
l

f

= rg(t),2

✓
@

@t
f

◆

ij

� 1

2
g(t)kl

⇣
rg(t)

i
(@tg)jk +rg(t)

j
(@tg)ik �rg(t)

k
(@tg)ij

⌘
rg(t)

l
f.

This ends the proof of the lemma. ⇤
We are now in a position to prove Proposition 6.2:

Proof of Proposition 6.2. Lemma 6.3 applied to the NRF gives:
�
@t ��L,g(t)

�
rg(t),2f = rg(t),2

�
@tf ��g(t)f

�
,

since @tg + 2Ric(g(t)) = (r � Rg(t))g(t) + Rg(t) g(t) = rg(t) is parallel with respect to rg(t).
Now, in dimension 2,

Rm(g(t))ijkl =
Rg(t)

2
(g(t)ilg(t)jk � g(t)ikg(t)jl) .

Therefore,
�L,g(t)rg(t),2f = �g(t)rg(t),2f +Rg(t)(�g(t)f)g(t)� 2Rg(t)rg(t),2f.

In particular,
�
@t ��g(t)

�
rg(t),2f = rg(t),2

�
@tf ��g(t)f

�
+Rg(t)(�g(t)f)g(t)� 2Rg(t)rg(t),2f

= (r � 2Rg(t))rg(t),2f +Rg(t)(�g(t)f)g(t)

= (r � 2Rg(t))M(t) + r
�g(t)f

2
g(t).

Since,

�
@t ��g(t)

�✓�g(t)f

2
g(t)

◆
=
⇥�
@t ��g(t)

�
�g(t)f

⇤ g(t)
2

+
�g(t)f

2
@tg

=
Rg(t)

2
(�g(t)f)g(t) +

�g(t)f

2
(r � Rg(t))g(t)

= r
�g(t)f

2
g(t),

we finally obtain the desired evolution equation of the tensor M(t).
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Thanks to the previous computation, the definition of the norm of M(t) with respect to g(t), i.e.
|M(t)|2

g(t) := g(t)ikg(t)jlM(t)ijM(t)kl, implies:

@

@t
|M(t)|2

g(t) = 2(Rg(t)�r)|M(t)|2
g(t) + 2hM(t),�g(t)M(t) + (r � 2Rg(t))M(t)ig(t)

= �g(t)|M(t)|2
g(t) � 2|rg(t)M(t)|2

g(t) � 2Rg(t) |M(t)|2
g(t),

as expected. ⇤

We end this section by summarizing the main steps leading to the proof of the uniform lower
bound Rg(t) � c > 0 along the NRF in case the initial metric satisfies Rg0 > 0.

(i) Define an entropy for surfaces with positive curvature and show that it is strictly decreasing
along the NRF unless the flow is static, i.e. the flow is a time-independent family consisting
of an Einstein metric.

(ii) The aforementioned monotonicity will help us prove uniform bounds on the scalar curvature
and its gradient. A uniform bound on the diameter will also be derived.

(iii) A suitable di↵erential Harnack inequality for the scalar curvature will let us compare its values
at di↵erent space-time points.

(iv) We will then be in a good position to prove the desired uniform lower bound on the scalar
curvature along the NRF.

(v) We will show the convergence of the NRF to a shrinking gradient Ricci soliton up to suitable
di↵eomorphisms.

(vi) By invoking the classification of such solitons in Chapter 2, we will conclude the proof of
Theorem 6.1.

2. Hamilton’s entropy

Let us start with a formal definition:

Definition 6.4. Let (⌃2, g) be a Riemannian manifold with positive scalar curvature Rg > 0. The
entropy of g, denoted by N(g), is defined by:

N(g) :=

Z

⌃
Rg log Rg dµg.

Recall the following straightforward fact that we leave as an exercise:

Lemma 6.5. Along the NRF,

@

@t

�
Rg(t) dµg(t)

�
= �g(t)Rg(t) dµg(t).

We derive a first version of the first variation of the entropy:

Lemma 6.6. Along the NRF starting from a metric g0 with positive scalar curvature,

@

@t
N(g(t)) = �

Z

⌃

|rg(t)Rg(t) |2g(t)
Rg(t)

dµg(t) +

Z

⌃
(Rg(t)�r)2 dµg(t).

The previous lemma has a main drawback, it does seem obvious to show that the entropy is
monotonic along the NRF.
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Proof. It is a straightforward computation that uses the definition of the NRF and that of the
entropy only:

@

@t
N(g(t)) =

Z

⌃

✓
@

@t
log Rg(t)

◆
Rg(t) dµg(t) +

Z

⌃
log Rg(t)

@

@t

�
Rg(t) dµg(t)

�

=

Z

⌃
�g(t)Rg(t)+Rg(t)(Rg(t)�r) dµg(t) +

Z

⌃
log Rg(t)�g(t)Rg(t) dµg(t)

=

Z

⌃
Rg(t)(Rg(t)�r) dµg(t) �

Z

⌃
g(t)(rg(t) log Rg(t),rg(t)Rg(t)) dµg(t)

=

Z

⌃
(Rg(t)�r)2 dµg(t) �

Z

⌃
g(t)(rg(t) log Rg(t),rg(t)Rg(t)) dµg(t),

where we have used Lemma 6.5 in the second line. An integration by parts has been performed in
the antepenultimate line together with the definition of r in the last line. This computation leads to
the desired result. ⇤

The next result is based on the previous computation and it shows the desired monotonic property
of Hamilton’s entropy:

Lemma 6.7. Let (⌃, g(t))t2[0,T ) be a solution to NRF such that Rg(0) > 0. Then,

@

@t
N(g(t)) = �

Z

⌃

|rg(t)Rg(t)�Rg(t)rg(t)f(t)|2
g(t)

Rg(t)
dµg(t) � 2

Z

⌃
|M(t)|2

g(t) dµg(t)  0,

with equality if and only if (⌃, g(t))t2[0,T ) is a shrinking round sphere.

Proof. Let us start from the righthand side and let us expand it as follows:

�
Z

⌃

|rg(t)Rg(t)�Rg(t)rg(t)f(t)|2
g(t)

Rg(t)
dµg(t) =

�
Z

⌃

|rg(t)Rg(t) |2g(t) � 2Rg(t) g(t)(rg(t)Rg(t),rg(t)f(t)) + R2
g(t) |rg(t)f(t)|2

g(t)

Rg(t)
dµg(t) =

�
Z

⌃

|rg(t)Rg(t) |2g(t)
Rg(t)

dµg(t) � 2

Z

⌃
Rg(t)�g(t)f(t) dµg(t) �

Z

⌃
Rg(t) |rg(t)f(t)|2

g(t) dµg(t) =

�
Z

⌃

|rg(t)Rg(t) |2g(t)
Rg(t)

dµg(t) + 2

Z

⌃
Rg(t)(Rg(t)�r) dµg(t) �

Z

⌃
Rg(t) |rg(t)f(t)|2

g(t) dµg(t) =

�
Z

⌃

|rg(t)Rg(t) |2g(t)
Rg(t)

dµg(t) + 2

Z

⌃
(Rg(t)�r)2 dµg(t) �

Z

⌃
Rg(t) |rg(t)f(t)|2

g(t) dµg(t).

(2.1)

Here we have used integration by parts in the second line together with the equation satisfied by
f(t) in the third line. Finally, we have used the fact that Rg(t)�r has zero mean value in the last
line.

Now,

�2

Z

⌃
|M(t)|2

g(t) dµg(t) = �2

Z

⌃

����r
g(t),2f(t)� 1

2
�g(t)f(t)g(t)

����
2

g(t)

= �2

Z

⌃

���rg(t),2f(t)
���
2

g(t)
� hrg(t),2f(t),�g(t)f(t)g(t)ig(t) +

1

2
(�g(t)f(t))

2 dµg(t)

= �2

Z

⌃

���rg(t),2f(t)
���
2

g(t)
� 1

2
(�g(t)f(t))

2 dµg(t).

(2.2)
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The last step consists in linking the L2 norm of Rg(t)�r with that of the Hessian rg(t),2f(t)
through the Bochner formula for functions:
Z

⌃
(Rg(t)�r)2 dµg(t) =

Z

⌃
(�g(t)f(t))

2 dµg(t)

= �
Z

⌃
g(t)(rg(t)f(t),rg(t)(�g(t)f(t))) dµg(t)

= �
Z

⌃
g(t)(rg(t)f(t),�g(t)(rg(t)f(t)))� Ric(g(t))(rg(t)f(t),rg(t)f(t)) dµg(t)

=

Z

⌃
|rg(t),2f(t)|2

g(t) +
1

2
Rg(t) |rg(t)f(t)|2

g(t) dµg(t).

(2.3)

Finally, we add (2.1) and (2.2) to get the expected monotonicity once we invoke together with Lemma
6.6. ⇤

We conclude this section by stating the following straightforward but crucial consequence of
Lemma 6.7:

Corollary 6.8. Let (⌃, g(t))t�0 be a solution to NRF such that Rg(0) > 0. Then Hamilton’s entropy
is uniformly bounded from above for all time. More precisely,

N(g(t))  N(g(0)), t � 0.

3. Uniform curvature bounds and their consequences

Lemma 6.9. Let (⌃, g(t))t�0 be a solution to NRF such that Rg(0) > 0. Then for any t � 0,

max
⌃

Rg(s)  2max
⌃

Rg(t), t  s  t+
1

2max⌃Rg(t)
.

In particular,

e�1g(t)  g(s) 
p
eg(t), t  s  t+

1

2max⌃Rg(t)
.

Proof. The evolution equation for the scalar curvature gives in particular:

@

@t
Rg(t)  �g(t)Rg(t)+R2

g(t) .

The maximum principle implies that max⌃Rg(s)  y(s), where y solves y0(s) = y(s)2 for s � t and
y(t) := max⌃Rg(t) . Therefore,

max
⌃

Rg(s) 
1

1
max⌃ Rg(t)

+ t� s
 2max

⌃
Rg(t),

if s  t+ 1
2max⌃ Rg(t)

.

The bounds on the metric comes immediately from the integrated version of the normalized Ricci
flow equation together with the previously established bound on the curvature:

g(s) = exp

⇢Z
s

t

(r � Rg(s0)) ds
0
�
g(t), s � t.

In particular, if t  s  t+ 1
2max⌃ Rg(t)

,

g(s)  exp {r(s� t)} g(t) 
p
eg(t), s � t.

The lower bound can be proved similarly. ⇤

The next result uses the so called Bernstein-Shi technique that we already used in Chapter 3.
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Lemma 6.10 (Uniform gradient bounds). There exists a universal positive constant C such that for
any solution (⌃, g(t))t�0 to the normalized Ricci flow with Rg(t) � 0. Then,

sup
⌃

|rg(t)Rg(t) |g(t) 
Cp
t
sup
⌃

|Rg(0) |, t 2
✓
0, (8 sup

⌃
|Rg(0) |)�1

�
.

Notice that we derived such bounds for the Ricci flow, not for the normalized Ricci flow.

Proof. Let us consider the following quantity: R2
g(t)+t|rg(t)Rg(t) |2g(t). Let us derive its evolu-

tion equation:
✓
@

@t
��g(t)

◆⇣
R2

g(t)+t|rg(t)Rg(t) |2g(t)
⌘
= �2|rg(t)Rg(t) |2g(t) + 2R2

g(t)(Rg(t)�r)

� 2t|rg(t),2Rg(t) |2g(t) +
�
t(4Rg(t)�3r) + 1

�
|rg(t)Rg(t) |2g(t).

In particular, since r � 0,
✓
@

@t
��g(t)

◆⇣
R2

g(t)+t|rg(t)Rg(t) |2g(t)
⌘

�
4tRg(t)�1

�
|rg(t)Rg(t) |2g(t) + 2R3

g(t) .

Now, @tRg(t)  �g(t)Rg(t)+R2
g(t) on ⌃ which implies by the maximum principle Rg(t)  2max⌃Rg(0)

for 0  t  (2max⌃Rg(0))
�1. As an intermediate conclusion, 4tRg(t)  1 for 0  t  (8max⌃Rg(0))

�1.
Inserting this curvature bound back to the previous di↵erential inequality leads to:

✓
@

@t
��g(t)

◆⇣
R2

g(t)+t|rg(t)Rg(t) |2g(t)
⌘
 16(max

⌃
Rg(0))

3, 0  t  (8max
⌃

Rg(0))
�1.

Invoking the maximum principle once more gives us the expected result:

R2
g(t)+t|rg(t)Rg(t) |2g(t)  max

⌃
R2

g(0)+16(max
⌃

Rg(0))
3t  3max

⌃
R2

g(0),

as long as 0  t  (8max⌃Rg(0))
�1. ⇤

We now bound the curvature along the normalized Ricci flow uniformly in time on a 2-sphere
endowed with an initial metric with positive scalar curvature:

Proposition 6.11. Let (⌃, g(t))t�0 be a solution to the normalized Ricci flow with Rg(t) > 0. Then
the (scalar) curvature is uniformly bounded in time, i.e. there exists a uniform positive constant C
such that:

sup
⌃⇥R+

Rg(t)  C.

Before proving Proposition 6.11, we recall the following injectivity radius estimate:

Theorem 6.12 (Klingenberg’s theorem). Let (M2n, g) be an orientable manifold with positive sectional
curvature, i.e. Kg > 0. Then

inj(M, g) � ⇡p
maxM Kg

.

A proof is given in the list of exercises below.

Proof. Recall from Corollary 6.8 that Hamilton’s entropy N(g(t)) is uniformly bounded from
above for t � 0. In particular, if r  ⇡/

p
max⌃Kg(t) = ⇡

p
2/
p

max⌃Rg(t), Theorems 6.12 and A.4
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ensure that:

C � N(g(t)) =

Z

⌃
Rg(t) log Rg(t) dµg(t)

=

Z

Bg(t)(x,r)
Rg(t) log Rg(t) dµg(t) +

Z

⌃\Bg(t)(x,r)
Rg(t) log Rg(t) dµg(t)

� min
Bg(t)(x,r)

�
Rg(t) log Rg(t)

 
volg(t)Bg(t)(x, r)� 2e�1 volg(t)(⌃ \Bg(t)(x, r))

� min
Bg(t)(x,r)

�
Rg(t) log Rg(t)

 
volS2(max⌃ Rg(t) /2)BS2(max⌃ Rg(t) /2)(r)� e�1 volg(t)(⌃)

� min
Bg(t)(x,r)

�
Rg(t) log Rg(t)

 
(cr2)� e�1 volg(0)(⌃),

for some universal positive constant c. Here we have used the fact that minx>0 x log x = �e�1 in
the third line together with the constancy of the volume in the last line.

The goal is then to find a radius r comparable to (max⌃Rg(t))
�1/2 so that the minimum on a

ball of radius r centered at a point to be defined is bounded from below by max⌃Rg(t). Indeed, the
previous set of inequalities will show the uniform boundedness of max⌃Rg(t) thanks to the additional
log term.

To make this reasoning formal, for T � 0, define (T ) := max⌃⇥[0,T ]Rg(t). Assume that (T ) >

max
�
(1), 4�1

 
. Otherwise, there is nothing to prove. Notice in particular that T > 1. Pick a

space-time point (x1, t1) in (1, T ]⇥ ⌃ such that Rg(t1)(x1) = (T ). We want to show that on a ball

Bg(t1)(x1, "/
p
(T )) with " > 0 to be chosen later, Rg(t1) is comparable from below to (T ). Lemma

6.10 applied to an interval of the form (t1 � (4(T ))�1, t1] (once the solution translated by time
t1 � (4(T ))�1) shows that

|rg(t)Rg(t) |g(t)
����
t=t1

 Cp
t� ((t1 � (4(T ))�1)

(T )

����
t=t1

= 2C(T )
3
2 .

In particular, on a ball Bg(t1)(x1, "/
p
(T )),

Rg(t1)(y) � Rg(t1)(x1)� 2C(T )
3
2 · "p

(T )
= (T )(1� 2"C) � (T )

2
,

if " is chosen to be small enough (uniformly in time). This concludes the proof. ⇤

With such a uniform bound on curvature in hands provided by the previous proposition, we can
furthermore bound the diameter uniformly in time:

Proposition 6.13. Let (⌃, g(t))t�0 be a solution to the normalized Ricci flow with Rg(t) > 0. Then
the diameter is uniformly bounded in time, i.e. there exists a uniform positive constant C such that:

sup
t�0

diam(g(t))  C.

Remark 6.14. Perelman has generalized this fact for solutions to the Kähler-Ricci flow on a Fano
manifold starting from a Kähler metric in the first Chern class: see [ST08] for a proof. Hamilton’s
entropy is replaced by Perelman’s entropy.

Proof. The combination of Klingenberg’s theorem 6.12 together with the uniform upper bound
on curvature guaranteed by Proposition 6.11 leads to the existence of a positive constant C such
that for all t � 0, inj(⌃, g(t)) � ◆0 > 0.

Now, if x an y are two points in ⌃ such that diam(g(t)) = dg(t)(x, y) then let (pi)0iN denote
a sequence of points in ⌃ (along a minimizing geodesic connecting x and y for instance) such that
dg(t)(pi, pi+1) � ◆0 for i = 0, ..., N with p0 := x and pN := y and diam(g(t))/◆0  N < diam(g(t))/◆0+
1. Then the balls Bg(t)(pi, ◆0/2) are pairwise disjoint and embedded in ⌃. Moreover, Theorem A.4
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gives a uniform lower bound, say v0, on the volume of each such balls. Therefore, if V0 := volg(0)⌃,

diam(g(t))  N ◆0,

(N + 1)v0  volg(t)⌃ = V0,

since the volume is constant in time by the very definition of the normalized Ricci flow. This ends
the proof: diam(g(t))  ◆0V0/v0. ⇤

4. Di↵erential Harnack estimate

Theorem 6.15. Let (⌃, g(t))t2[0,T ) be a solution to the normalized Ricci flow with Rg(t) > 0 then there
exists a constant C(g0) > 1 such that for t � 0,

@

@t
log Rg(t)�|rg(t) log Rg(t) |2g(t) = �g(t) log Rg(t)+Rg(t)�r � � Crert

Cert � 1
.

We only prove the second version, i.e. in the setting a normalized Ricci flow. We start with a
lemma that computes the evolution equation of log Rg(t):

Lemma 6.16. Let (⌃, g(t))t2[0,T ) be a solution to the normalized Ricci flow with Rg(t) > 0 then

@

@t
log Rg(t) = �g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r.

Proof. It is a straightforward computation based on the evolution equation satisfied by Rg(t):

@

@t
log Rg(t) =

1

Rg(t)

@

@t
Rg(t)

=
1

Rg(t)

�
�g(t)Rg(t)+Rg(t)(Rg(t)�r)

�

= �g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r,

since for any su�ciently regular function u on ⌃, u ·�g(t) log u = �g(t)u� u|rg(t) log u|2
g(t). ⇤

From now on, we define the di↵erential Harnack quantity:

Q(t) :=
@

@t
log Rg(t)�|rg(t) log Rg(t) |2g(t), (4.1)

which equals �g(t) log Rg(t)+Rg(t)�r according to Lemma 6.16.
In order to prove Theorem 6.15, we derive the evolution equation of Q in the next lemma:

Lemma 6.17. Let (⌃, g(t))t2[0,T ) be a solution to the normalized Ricci flow with Rg(t) > 0 then,

@

@t
Q(t) = �g(t)Q(t) + 2g(t)(rg(t)Q(t),rg(t) log Rg(t))

+ 2

����r
g(t),2 log Rg(t)+

1

2
(Rg(t)�r)g(t)

����
2

g(t)

+ rQ(t).

Proof. It is a brutal force computation. Let us start by di↵erentiating in time the function Q
based on Lemma 6.16:

@

@t
Q(t) =

@

@t

�
�g(t) log Rg(t)+Rg(t)�r

�

= �g(t)

✓
@

@t
log Rg(t)

◆
+ (Rg(t)�r)�g(t) log Rg(t)+

@

@t
Rg(t)

= �g(t)

⇣
�g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r

⌘
+ (Rg(t)�r)�g(t) log Rg(t)

+Rg(t)

⇣
�g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r

⌘

= �g(t)Q(t) +�g(t)|rg(t) log Rg(t) |2g(t) + (Rg(t)�r)�g(t) log Rg(t)

+Rg(t)

⇣
�g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r

⌘
.
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Now, thanks to the Bochner formula applied to the function logRg(t):

@

@t
Q(t) = �g(t)Q(t) + 2g(t)

⇣
rg(t)�g(t) log Rg(t),rg(t) log Rg(t)

⌘
+Rg(t) |rg(t) log Rg(t) |2g(t)

+ 2|rg(t),2 log Rg(t) |2g(t) + (Rg(t)�r)�g(t) log Rg(t)

+Rg(t)

⇣
�g(t) log Rg(t)+|rg(t) log Rg(t) |2g(t) +Rg(t)�r

⌘

= �g(t)Q(t) + 2g(t)
⇣
rg(t)Q(t),rg(t) log Rg(t)

⌘

+ 2|rg(t),2 log Rg(t) |2g(t) + (Rg(t)�r)
�
2�g(t) log Rg(t)+Rg(t)�r

�
+ rQ(t).

Finally, notice that:

2

����r
g(t),2 log Rg(t)+

1

2
(Rg(t)�r)g(t)

����
2

g(t)

=

2|rg(t),2 log Rg(t) |2g(t) + (Rg(t)�r)2 + 2(Rg(t)�r)�g(t) log Rg(t) =

2|rg(t),2 log Rg(t) |2g(t) + (Rg(t)�r)
�
2�g(t) log Rg(t)+Rg(t)�r

�
,

which leads to the expected result. ⇤

We are in a good position to prove Theorem 6.15:

Proof of Theorem 6.15. Lemma 6.17 ensures that Q satisfies:

@

@t
Q(t) � �g(t)Q(t) + 2g(t)(rg(t)Q(t),rg(t) log Rg(t))

+
���g(t) log Rg(t)+(Rg(t)�r)

��2 + rQ(t)

� �g(t)Q(t) + 2g(t)(rg(t)Q(t),rg(t) log Rg(t)) +Q(t)2 + rQ(t).

Here we have used the elementary inequality for symmetric 2-tensors T on a Riemannian manifold
(Mn, g):

n|T |2g � (trgT )
2.

The minimum principle for functions requires to solve the ODE: y0(t) = y2(t) + ry(t), y(0) := y0.
Here we have no idea of the exact value of min⌃Q(0). Therefore, we chose an initial condition q0 so
small that min{min⌃Q(0),�r} > q0. In particular,

min
⌃

Q(t) � q(t) = � rq0ert

q0ert � q0 � r
=: � Crert

Cert � 1
> � rert

ert � 1
, t � 0,

where C := q0
q0+r

. This ends the proof of this theorem. ⇤

As promised, we can compare values of the (scalar) curvature at di↵erent space-time points along
any solution to the normalized Ricci flow with positive scalar curvature.

Corollary 6.18. Let (⌃, g(t))t2[0,T ) be a solution to the Ricci flow with Rg(t) > 0. Then there exists a
constant C > 0 depending on g0 only such that for all x1, x2 and 0  t1 < t2,

Rg(t2)(x2)

Rg(t1)(x1)
� exp

⇢
�1

4
inf
�

Z
t2

t1

|�̇(t)|2
g(t) dt

�
Cert1 � 1

Cert2 � 1
,

where the infimum is taken over all regular paths � : [t1, t2] ! M such that �(ti) = xi, i = 1, 2.

This estimate is called a parabolic Harnack inequality: it is the integrated version of the di↵er-
ential inequality obtained in Theorem 6.15.
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Proof. Let � : [t1, t2] ! M be a C1 path connecting x1 to x2. Then:

log

✓
Rg(t2)(x2)

Rg(t1)(x1)

◆
=

Z
t2

t1

d

dt
log Rg(t)(�(t)) dt

=

Z
t2

t1

✓
@

@t
Rg(t)(�(t)) + g(t)

⇣
rg(t)Rg(t)(�(t)), �̇(t)

⌘◆
dt

�
Z

t2

t1

✓
|rg(t)Rg(t) |2g(t)(�(t))�

Crert

Cert � 1
� |rg(t)Rg(t) |g(t)(�(t))|�̇(t)|g(t)(�(t))

◆
dt

� �
Z

t2

t1

Crert

Cert � 1
+

1

4
|�̇(t)|2

g(t)(�(t)) dt

= �1

4

Z
t2

t1

|�̇(t)|2
g(t)(�(t)) dt� log

✓
Cert2 � 1

Cert1 � 1

◆
,

where we have used Theorem 6.15 together with Young’s inequality ab  a2+ 1
4b

2 in the penultimate
line. The result follows by minimizing over the set of such curves, the expected Harnack inequality
follows. ⇤

5. End of the proof of the main theorem

As explained in the introduction of this chapter, one crucial ingredient for the proof of Theorem
6.1 is a uniform positive lower bound on the scalar curvature. This is achieved in the next result:

Proposition 6.19. Let (⌃, g(t))t2[0,+1) be a solution to the Ricci flow with Rg(0) > 0. Then there
exists a uniform positive constant c such that for all t � 0:

Rg(t) � c > 0.

In particular, sup⌃ |M(t)|g(t)  Ce�ct, t � 0 for some uniform positive constant C.

Proof. By the minimum principle, Chapter ensures that min⌃Rg(t) > 0 for all t � 0. In
particular, it is enough to prove the desired estimate for large time, say t � 1. For that purpose,
take x1 such that r  Rg(t�1)(x1). From Corollary 6.18, the Harnack inequality implies that for all
(x, t) 2 ⌃⇥ {t},

Rg(t)(x) � r exp

⇢
�1

4
inf
�

Z
t

t�1
|�̇(t)|2

g(t) dt

�
Cer(t�1) � 1

Cert � 1

� r
C � 1

Cer � 1
exp

⇢
�1

4
inf
�

Z
t

t�1
|�̇(s)|2

g(s) ds

�
.

Here we have used the fact that the function Ce
r(t�1)�1
Cert�1 is non-decreasing.

Therefore, we only need to bound the quantity inf�
R
t

t�1 |�̇(t)|
2
g(t) from above uniformly in time.

On the segment [t� 1, t], the integrated version of the normalized Ricci flow equation gives:

g(x, s) = exp

⇢Z
s

t�1
r � Rg(s0)(x) ds

0
�
g(x, t�1)  exp

⇢Z
t

t�1
r � Rg(s0)(x) ds

0
�
g(x, t�1)  erg(x, t�1),

since the scalar curvature is nonnegative for all time. In particular,

inf
�

Z
t

t�1
|�̇(s)|2

g(s) ds  er inf
�

Z
t

t�1
|�̇(s)|2

g(t�1) ds  er+R inf
�

Z
t

t�1
|�̇(s)|2

g(t) ds,
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where R := sup⌃⇥R+
Rg(t) < +1 thanks to Proposition 6.11. To sum it up,

Rg(t)(x) � r
C � 1

Cer � 1
e�

dg(t)(x,x1)
2

4

� r
C � 1

Cer � 1
e�

(diamg(t) ⌃)2

4

� r
C � 1

Cer � 1
e�

D2

4 , t � 1,

where we have used the uniform upper bound on the diameter proved in Proposition 6.13.
The exponential decay on M(t) follows from Proposition 6.2 and the discussion that follows. ⇤

Before we end the proof of Theorem 6.1, we need a priori decay in time estimates on the covariant
derivatives of the tensor M(t):

Lemma 6.20. Let (⌃, g(t))t2[0,+1) be a solution to the Ricci flow with Rg(0) > 0. Then for each
k � 0, there exists positive constants Ck and ck such that:

sup
⌃

|rg(t),kM(t)|g(t)  Cke
�ckt, t � 0.

Proof. The proof of this result is left as an exercise.

(i) Use the evolution equation for M(t) from Proposition 6.2 to derive an evolution equation for
rg(t),kM(t) by invoking commutation formulae for each k � 0.

(ii) Use the same technique we used to derive Shi type estimates in Proposition 3.8 to derive the
expected exponential decay estimate in time. Here we also need to invoke the boundedness of
all the covariant derivatives of the scalar curvature obtained thanks to the previously mentioned
proposition.

⇤

We are now in a good position to give a proof of the main Theorem 6.1:

Proof of Theorem 6.1. Let ( t) be the flow generated by the gradient �rg(t)f(t) starting
from the identity at t = 0: @t t = �rg(t)f(t) �  t,  t|t=0 = Id⌃. Then the metrics g̃(t) :=  ⇤

t g(t)
satisfy:

@tg̃(t) =  ⇤
t

⇣
�Lrg(t)f(t)(g(t)) + @tg(t)

⌘

=  ⇤
t

⇣
�Lrg(t)f(t)(g(t)) +�g(t)f(t)g(t)

⌘

= �2 ⇤
tM(t)

=: �2M̃(t), t � 0.

In particular, since the maximum of a function is invariant by di↵eomorphisms, Lemma 6.20 en-
sures that the covariant derivatives of the tensor M̃(t) with respect to the metric g̃(t) all decay
exponentially fast as t tends to +1:

sup
⌃

|rg̃(t),kM̃(t)|g̃(t)  Cke
�ckt, t � 0.

Proposition 3.10 ensures the existence of a metric g1 on ⌃ such that g̃(t) converges exponentially
fast to g1 in the smooth topology. In particular, if one could show the convergence of the potentials
f̃(t) to a smooth function f1 then we could ensure that the limit metric satisfies:

rg1,2f1 =
�g1f1

2
g1, �g1f1 = r � Rg1 ,

i.e. (⌃, g1,rg1f1) is a shrinking gradient Ricci soliton. Theorem 2.15 states that f1 is constant,
i.e. g1 is a constant positive curvature metric: its value must be r by Gauss-Bonnet formula.
Therefore, unravelling the definition of g̃(t) with respect to g(t) implies that: max⌃ |r � Rg(t) | =
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max⌃ |r � Rg̃(t) | = max⌃ |Rg1 �Rg̃(t) |  Ce�ct for all t � 0 for some positive constant c since the
convergence of the flow g̃(t) towards its limit metric g1 is exponential. The same argument shows
that the covariant derivatives of Rg(t) with respect to g(t) must converge to 0 at an exponential rate
too. This ends the proof of the theorem. ⇤



6. EXERCISES 61

6. Exercises

Exercise 6.21. If @

@t
g(t) = �"Rg(t) g(t) on ⌃2 with Rg(t) > 0 and " � 0, show that if

@

@t
u = �g(t)u+ "Rg(t) u,

then
@

@t
log u� |rg(t)u|2

g(t) +
1

t
= �g(t) log u+ "Rg(t)+

1

t
� 0.

Exercise 6.22. Prove that if (⌃2, g(t))t2[0,T ) is a solution to the Ricci flow with Rg(t) > 0 then

@

@t
log Rg(t)�|rg(t)Rg(t) |2g(t) +

1

t
= �g(t) log Rg(t)+Rg(t)+

1

t
� 0.

Exercise 6.23. Let (⌃2, g(t))t2[0,T ) be a solution to the Ricci flow with Rg(t) > 0. Prove that

t2Rg(t2)(x2)

t1Rg(t1)(x1)
� exp

⇢
�1

4
inf
�

Z
t2

t1

|�̇(t)|2
g(t) dt

�
,

where the infimum is taken over all regular paths � : [t1, t2] ! M such that �(ti) = xi, i = 1, 2. In
particular, show that

t2Rg(t2)(x2)

t1Rg(t1)(x1)
� exp

(
�1

4

d2
g(t1)

(x1, x2)

t2 � t1

)
.

Exercise 6.24. For every sequence of times (ti)i diverging to +1, prove that the family of potentials
(f̃(ti))i�0 normalized so that their mean values with respect to the metrics g̃(ti) are 0, defined in the
proof of Theorem 6.1, admits a subsequence that converges smoothly to a function f1 on ⌃. To do
so:

(i) Check that the normalization
R
M

f̃(ti) dµg̃(ti) = 0 does not cause any trouble with the proof of
Theorem 6.1 unlike that of Theorem 5.1.

(ii) Prove that (f̃(ti))i�0 is a bounded sequence in W 2,1(M) by invoking the Bochner formula and
the Poincaré inequality krg̃(ti)f̃(ti)kL2 � �kf̃(ti)kL2 for some uniform positive �.

(iii) Prove that for each k � 0, (f̃(ti))i�0 is a bounded sequence in W k,2(M) and invoke Sobolev
embeddings to ensure that (f̃(ti))i�0 is a bounded sequence in C l(M) for every l � 0.

(iv) Conclude.




