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First definition of the Robin boundary condition

Goal: study “harmonic measure” for the following Robin problem: −∆u = 0 in Ω

Roba(u) :=
1

a

∂u

∂n
+ u = f on ∂Ω.

(1)

Here Ω ⊂ Rn is bounded and ∂u
∂n is the outwards normal derivative.

Locally, with u given on Ω \ B(x , r), often we just consider f = 0.

a > 0 is some constant (say);
a = 0 corresponds to Neumann boundary conditions;
a = +∞ corresponds to Dirichlet boundary conditions.

Comment: we chose the outwards normal, so that typically u > 0
on ∂Ω and u is larger on Ω than on ∂Ω.

Trivial examples, with f = 0: u(x , t) = t + 1
a on R2

+ ;

u(x) = 1
a − log(|x |) on Ω = B(0, 1) ⊂ R2.

Comment: L = divA∇, A bounded elliptic, is allowed too.



Harmonic measure

To simplify the definitions assume ∂Ω is sufficiently smooth of
co-dimension 1 so that everything is well defined.
Take a pole X ∈ Ω. Define the Robin harmonic measure ωX

Rob by
ωX
Rob(E ) = uE (X ), where for E ⊂ ∂Ω, uE solves (at least formally) −∆u = 0 in Ω

Roba(u) :=
1

a

∂u

∂n
+ u = 1E on ∂Ω.

(2)

Or ωX
Rob is the probability measure on ∂Ω such that the solution of{

−∆u = 0 in Ω

Roba(u) = f on ∂Ω.
(3)

is given, for f ∈ C (∂Ω), by

u(X ) =

∫
ξ∈∂Ω

f (ξ) dωX
Rob(ξ). (4)

[Same as for the usual Dirichlet harmonic measure ωX
Dir , where we

would require u = f on ∂Ω. But we need to construct all this.]



Brownian interpretation

In the Dirichlet case, we think of ωX
Dir (E ) as the probability that a

Brownian particle starting at X first exits Ω through a point of E .

For ωX
Rob(E ), think of a Brownian particle that starts from X , and

each time it hits ∂Ω, has a certain “probability” (small if a is
small) of being absorbed. And if not we start it again from where
it is, and continue playing until the particle is absorbed.

In fact, easier to define discretely, with random walks; otherwise
one would try to use local time in ∂Ω.

Many applications because full absorbsion is rare.
Example: the deep lung.
But also heat in a room (and the Robin boundary condition is also
called Fourier boundary condition).

Main question for today: Define the Robin problem and ωX
Rob(E ),

and try to find out where on ∂Ω is ωX
Rob(E ) supported and how

regular it is.



Lungs are fractal

Figure: Pictures of rat lungs by tomography performed at the Grenoble
Syncrotron. Credits: S. Bayat, H. Leclerc, S. Martin, B. Maury, B. Semin.



Dirichlet Harmonic measure and why we could be afraid

Rapid review of the situation of ωX
Dir (E ).

This is a long story starting, say, from Riesz and many authors
(La, Ca, Ma, Jo, Wo, ... conformal mappings) when n = 2, and
then more work from Dahlberg to HoLaMarMayMouToVo (n ≥ 3).

For ∂Ω ⊂ Rn of dimension n − 1, the (mutual) absolute continuity
of ωX

Dir with respect to the surface measure σ = Hn−1
|∂Ω is mostly a

matter of connectedness for Ω (typically, NTA) and rectifiability for
∂Ω (typically, UR).

Some results when ∂Ω is of dimension d 6= n − 1, mostly proofs
that ωDir ⊥ Hd

|Ω at least on fractals.

But there are amusing recent examples of ∂Ω Ahlfors regular of
dimension d , n − 2 < d < n − 1, with mutual absolute continuity.



Dirichlet Harmonic measure (2) and our question

Also, one may consider solutions of Lu = 0, for elliptic operators
L = −divA∇ other than −∆.
Then positive results exist when L is sufficiently close to ∆ (or a
constant coefficient operator). In terms of Carleson measure
estimates on the oscillation of A. And counterexample otherwise.

Return to L = −∆, and think of two main examples of
co-dimension 1:
• Lipschitz graphs
• Cantor sets like the “Garnett Ivanov set” on the next page.

Do we expect the same thing to happen for ωX
Rob?

Maybe more smooth, but is there a phase transition when a varies?

But, because of the lung, we’ll also be interested in Ahlfors regular
boundaries of dimensions d ∈ (n − 2, n), i.e., there is a measure µ
on ∂Ω such that, for x ∈ ∂Ω and 0 < r < diam(∂Ω)

C−1rd ≤ µ(∂Ω ∩ B(x , r)) ≤ Crd .



The Garnett-Ivanov 1-dimensional Cantor set

K =
⋂

k≥0 Kk , suggested by the picture.

Kk is composed of 4k squares of size 4−k

A natural measure µ on K gives the same mass 4−k to each square
of Kk . And then µ = cH1

|K .

K is totally unrectifiable: µ(E ∩ Γ) = 0 for every curve Γ with
finite length

This set one-dimensional Ahlfors regular, with a NTA complement.

Figure: The set K3 (three generations of the construction of K ;
then just keep the dust at the limit)



Pictures for Non-Tangentially-Accessible domains
(here the domain is outside)
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Figure: A corkscew ball (top) and a Harnack chain between two points
(right). The domain is outside.
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Figure: A situation with bad NTA constants



Typical best harmonic measure estimate for Dirichlet

THEOREM (Many Authors, and better variants exist)

For a domain Ω with NTA (non-tangential access) and an Ahlfors
regular and uniformly rectifiable boundary of dimension n − 1, we
have the following A∞ estimate for ωDir : For B = B(x , r) centered
on ∂Ω, r < diam(∂Ω), X ∈ B such that dist(X , ∂Ω) ≥ C−1r , and
E ⊂ B ∩ ∂Ω,

C−1
(σ(E )

σ(D)

)α
≤
ωX
Dir (E )

ωX
Dir (D)

≤ C
(σ(E )

σ(D)

)β
. (5)

for some α, β > 0 (that depend on Ω).

Thus ωX
Dir << σ << ωX

Dir , with uniform estimates.
True for the Laplacian, but also for good enough elliptic operators.
For Lipschitz graphs, if I recall correctly we can take α = 2 and
β = 1/2. But for general UR domains I don’t think we know α, β.



Comments about Neumann

We would expect the Robin situation to be somewhere “between”
Dirichlet and Neumann.

• Calculus of variation likes the (vanishing) Neumann condition:

if you minimize
∫

Ω∩B(0,R) |∇u|
2 under the constraint

u∂B(0,R)∩Ω = u0, then automatically ∂u
∂n = 0 on ∂Ω ∩ B(0,R).

In this case, ∂u
∂n = 0 amounts to no boundary constraint on u.

And, if we are lucky, regularity could be like interior regularity.

• We’ll see that for simple bounded domains, ωX
Neu(E ) = σ(E)

σ(∂Ω) .

(uniform presence of the Brownian particle). So ωX
Neu is tame!

Note: for the moment, think ∂Ω is (n − 1)-dimensional, but not
smooth, and σ = Hn−1

|∂Ω . But recall we want more interesting cases.



Different scale invariance. And what is ∂u
∂n?

Unpleasant, but we have to remember this: when u is a solution of
Roba(u) = 0 on ∂Ω, i.e., when 1

a
∂u
∂n + u = 0, then the function v

given by v(x) = u(λ−1x) solves Robλ−1a(v) = 0 on ∂(λΩ),

And/or: the constant a scales like 1
length .

Our results will have to acknowledge this. Said in other words,
at small scales we expect u to look more like a Neumann solution,
and at large scales like a Dirichlet solution.

Another issue: when ∂Ω is not smooth, and even more when its
dimension is 6= n − 1, what is ∂u

∂n?



For my fun: a variational definition of ωX
Rob

We do a last computation in co-dimension 1 with a smooth
boundary. Call σ the surface measure.

Let E ⊂ ∂Ω. Minimize (for the given Robin constant 0 < a < +∞)

J(u) =
1

a
E(u) +

∫
∂Ω

u2dσ − 2

∫
E
udσ, with E(u) =

∫
Ω
|∇u|2.

(6)
Not so hard to prove that a unique minimizer uE exists, by
convexity, Poincaré, and the existence of a nice trace.

Next, the minimizer u = uE is harmonic on Ω.

We can integrate by parts to compute that E(u) =

∫
∂Ω

u
∂u

∂n
dσ.

By Lagrange (i.e., expand J(u + tv) and differentiate at t = 0),
Rob(u) = 1E on ∂Ω. So

ωX
Rob(E ) = uE (X ).



A variational definition of ωX
Rob (2)

Recall
ωX
Rob(E ) = uE (X ), (7)

where uE minimizes

J(u) =
1

a

∫
Ω
|∇u|2 +

∫
∂Ω

u2dσ − 2

∫
E
udσ. (8)

For Dirichlet (a = +∞), we would minimize the same E(u) with
the constraint that u = 1E on ∂Ω. But this is harder to manage.

For Neumann (a = 0), u must be a constant c , and a direct

computation with (6) gives u ≡ σ(E )

σ(∂Ω)
.

Return to (7). Notice that all this makes sense whenever σ is a
measure on ∂Ω and the pair (Ω, σ) is regular enough for a trace
Tr(u) to exit on ∂Ω and lie in L2(σ). A good sign.
But in fact we proceed otherwise (weak definition of ∂u

∂n and
estimates on weak solutions).



Assumptions and results

Here is the basic statement.

• Ω is assumed to be bounded (for simplicity);

• A is elliptic (above we even wrote A = I );

• Quantitative Connectedness: Ω is a one-sided NTA domain: it
contains corkscrew balls and there are Harnack chains of balls in Ω.

• ∂Ω is Ahlfors regular of dimension d ∈ (n − 2, n). That is, there
exists C ≥ 1 and a measure σ on ∂Ω such that

C−1rd ≤ σ(∂Ω ∩ B(x , r)) ≤ Crd

for x ∈ ∂Ω and 0 < r ≤ diam(Ω).

In fact, still works when σ is a doubling measure on ∂Ω with a
mixed dimensions condition (something that says that d > n − 2).



Existence and regularity results

THEOREM (D.-Decio-Engelstein-Mayboroda-Michetti)

Let Ω be as above, and 0 < a < +∞. Then the Robin problem −∆u = 0 in Ω

Roba(u) :=
1

a

∂u

∂n
+ u = f on ∂Ω.

(9)

has a unique solution in Ω for every continuous f on ∂Ω.
This solution u is given by a collection of probability measure ωX

Rob.
If f is Hölder continuous on ∂Ω, then u is also Hölder continuous
on Ω.
Finally ωX

Rob << σ << ωX
Rob, with uniform estimates of A∞ type.

More precisions below.
Notice Cantor sets and “bad” elliptic A are allowed!
a does not need to be constant : a0 ≤ a(x) ≤ Ca0 is allowed too.



About the regularity of solutions and existence

Main difference with the Dirichlet case: we also need to run the
Moser argument for the Neumann problem.

At the center of the proof, show that for a (weak) solution u in
B(0,R), the oscillation of u in B(0, 10−2R) is at most (1− η)
times the oscillation in B(0,R).

For the rest: Lax-Milgram (weak solutions exist), Moser, the
maximum principle, and the Hölder regularity and comparison
principle (Hölder regularity at the boundary too).

Important new feature: a gives a scale, and the constants for
estimates in B(x , r) depend on ar2+d−n (in fact, aσ(B(x , r))r2−n).

Thus the mutual absolute continuity constants below will logically
diverge when ar2+d−n � 1, because we get close to Dirichlet.



Absolute continuity estimates for ωRob

Here is a precise version of the absolute continuity.

• ωRob is doubling: ωX
Rob(B(x , 2r)) ≤ CωX

Rob(B(x , r)) for x ∈ ∂Ω
and r > 0, with C that does not depend on a or r .

• Mutual absolute continuity estimates with optimal exponent 1:
Consider E ⊂ B = B(x , r) ∩ ∂Ω, and a pole X ∈ B(x , r) at
distance C−1r .
Set σ = Hd

|∂Ω. Then

C−1 σ(E )

σ(B)
≤
ωX
Rob(E )

ωX
Rob(B)

≤ C
σ(E )

σ(B)
(10)

in the normalized “close-to-Neumann” case when x ∈ ∂Ω,
diam(∂Ω) ≥ Cr , and ar2+d−n < 1.

Otherwise, C depends also (like a power) on ar2+d−n.

Comments: Optimal power 1, and no phase transition in a . Good
for (Dp)). Thank you Jill Pipher. More estimates, on the size of
the Green function GRob(X ,Y ), are coming.



About the proof (if time allows)

To amuse you, an argument for a.c. by the calculus of variation
(assuming symmetry of the coefficient matrix).
But the best proof (below) uses a Green function argument.

Recall that ωX
Rob(E ) = uE (X ) where u = uE minimizes

J(u) =
1

a
E(u) +

∫
∂Ω

u2dσ − 2

∫
E
udσ, with E(u) =

∫
Ω
|∇u|2.

We want to show that ωX (E ) = 0 if and only if σ(E ) = 0.

• If σ(E ) = 0, then J ≥ 0, the minimum is for u ≡ 0, and then
ωX
Rob(E ) = 0.

• If ωX
Rob(E ) = 0, then uE = 0 everywhere on Ω by nonnegativity

and Harnack, and so J(u) ≥ 0 for all u. But if σ(E ) > 0, taking
u = c , where c is a very small constant, gives J(u) < 0.

This was easy! A clumsy (and not completely checked) proof with
calculus of variation starts like this.



Use the Green function

But we can also use the Green function. This is a nonnegative
function GRob(X ,Y ), which satisfies the equation with

Roba(GRob(·,Y )) = 0 on ∂Ω (11)

and has a normalized singularity at Y .
Existence and some regularity for GRob a little bit as usual, once
solutions are known to be regular.
Here we will use the fact that morally ∂G

∂n = −aG at the boundary

while (traditionally) the density of ωY is ∂G
∂n , here equal to −aG .

In fact we have the nice formula

ωY
Rob(E ) = c

∫
E
GRob(x ,Y )dσ(x) (12)

for E ⊂ ∂Ω. And we can apply the comparison principle to the
positive solution x 7→ GRob(x ,Y ) (far from the pole Y ) to get that
all the values of GRob(x ,Y ), x ∈ B = B(x , r), are comparable,
whence the desired result (integrate on E or on B).



Comments. More on the Green function

After all, no “phase transition” when a varies.

We will need to check what happens for Ω unbounded.

We intend to do some optimization and “explain” the (dimension
of the) lung.

Almost done: estimates on GRob that relate it to GDir (and the
strange homogeneity above). Consider GX

Rob = GRob(X ,Y ) with
pole X , and the Dirichlet Green function GX

Rob = GRob(X ,Y ). In
the most standard situation where X is close to the center and Y
close to the boundary, we get that

C−1GX
Dir (Yy ) ≤ GX

Rob(Y ) ≤ CGX
Dir (Y r )

where Y r is a point of Ω chosen near Y , at distance comparable to
r > 0 from both Y and ∂, where r is chosen so that
ar2−nσ(B(Y , r)) ∼ 1 (the transition radius).



Saved by weak conditions (and the calculus of variations?)

An important progress (I claim) was the setup, which allows Ω
with a rough boundary of co-dimension 6= 1.

Maybe you noticed that on the Cantor set, ∂u
∂n is not well defined.

And this is worse for fractal boundaries (such as other Cantor sets
or snowflakes).

So we need to define ∂u
∂n and Roba(u) weakly (see the next page).

Comment designed to help me: the functional

aJ(u) = E(u) + a

∫
∂Ω

u2dσ − 2a

∫
E
udσ

is well defined, essentially for any measure σ on ∂Ω, as long as
functions u ∈W 1,2(Ω) (i.e., such that E(u) < +∞) have a nice
trace in L2(σ). Here we are : all our results use the existence of
nice traces!

Notice that the main actor is a dσ, so for instance different but
equivalent σ allow to account for slightly variable coefficients a.



Official definition of a weak solution

Finally what we mean by a (weak) solution to the Robin problem −∆u = 0 in Ω

1

a

∂u

∂n
+ u = f on ∂Ω.

(13)

It is a function u ∈W 1,2(Ω) such that

1

a

∫
Ω
∇u · ∇ϕ+

∫
∂Ω

Trace(u)ϕdσ =

∫
∂Ω

f ϕdσ (14)

for all test functions ϕ ∈ C 1
c (Rn).

[and to get that ∆u = 0 on Ω, just consider ϕ ∈ C 1
c (Ω).]



Thanks

Thanks for the invitation and listening!
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