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Abstrat

We study some sets of probabilities assoiated to a random walk on R. These

sets are also alled averages indued by di�usion in J. Ealle's resummation theory.

They are strongly related to ladder epohs for a random walk on the real axis : an

average is a set of \weights" indexed by words of plus or minus signs and, for a given

word ("

1

; : : : ; "

n

) ("

i

= �), the weight of the average is simply the probability to be

on R

"

1

at time 1, on R

"

2

at time 2, : : : , on R

"

n

at time n.

Suh a oeÆient an be deomposed in a sum of elementary oeÆients whih

are indexed by ordered trees and forests.

The proof for the tree-deomposition is based on ombinatorial methods, as well as

a result of E. Sparre Andersen on a formal series assoiated to �rst ladder epoh prob-

abilities. This result an also be reovered with the help of the tree-deomposition.

We also prove that this deomposition, whih is valid for any random walk on

R, gives bak, for the simple random walk, the well-known bijetion between Dyk

paths and Catalan trees.

1 Introdution.

There exists a vast literature about random walks on R (see, for example, [6℄) and, among

numerous results, we ould ite one, by E. Sparre Andersen, whih is based on ombinatorial

methods.

�

UMR 8628, Laboratoire d'analyse harmonique, D�epartement de Math�ematiques, Batiment 425, Uni-

versit�e Paris-Sud, Centre d'Orsay, 91405 Orsay Cedex. E-mail : Frederi.Menous�math.u-psud.fr

1



Let (X

n

)

n�1

be a sequene of independent, identially distributed, real random vari-

ables, with a ommon probability density f 2 L

1

(R). We an de�ne the assoiated random

walk, that is the olletion of random variables (S

n

)

n�1

:

8n � 1 ; S

n

= X

1

+ � � �+X

n

Considering the probabilities assoiated to the �rst ladder epoh :

8n � 1 ; �

n

= P (S

1

� 0; : : : ; S

n�1

� 0; S

n

> 0)

E. Sparre Andersen found that :

log

1

1� �(s)

=

+1

X

n=1

s

n

n

P (S

n

> 0) with �(s) =

+1

X

n=1

�

n

s

n

(1.1)

The reader ould refer to [6℄ for a proof. On the one hand, the theorem remains valid

if the variables X

n

share the same arbitrary distribution, but on the other hand, in the

present onditions (f 2 L

1

(R)), the result holds whether the inequalities are strit or not.

As a orollary, if f is even,

�(s) = 1�

p

1� s =

+1

X

n=1

2

4

n

a

n�1

s

n

�

8n � 0 ; a

n

=

(2n)!

n! (n+ 1)!

�

(1.2)

These results illustrate how ombinatorial methods lead to an \expliit" omputation

of probabilities.

Let us onsider generalizations of the \�rst ladder epoh". We de�ne the olletionm

f

of probabilities (or weights) :

8n � 1 ; 8("

1

; : : : ; "

n

) 2 f+;�g ; m

"

1

;:::;"

n

f

= P("

1

S

1

> 0; : : : ; "

n

S

n

> 0) (1.3)

thus

8n � 1 ; �

n

=m

(n�1) times

z }| {

�; : : : ;�;+

f

and m

f

is the average indued by the di�usion f . A short explanation on this terminology

is given in appendix A. The exponential law, that is, the \di�usion" x 7!

1

2

e

�jxj

, yields an

indued average man than an be expliitly omputed :

man

"

1

;:::;"

n

� 4

�n

a

n

1

a

n

2

: : : a

n

s

(1 + n

s

) (1.4)

where the integers n

1

; n

2

; : : : ; n

s

denote the numbers of idential onseutive signs within

the sequene ("

1

; : : : ; "

n

) :

("

1

; : : : ; "

n

) = (�)

n

1

(�)

n

2

: : : ("

n

)

n

s

(of ourse n

1

+ � � �+ n

s

= n) (1.5)
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This average is the Catalan average, as the lassial Catalan numbers a

n

appear. This

result is of ourse ompatible with Andersen's theorem and points out that the ombi-

natorial properties of the Catalan number ould be helpful in the study of suh random

walks.

The Catalan numbers enumerate the ordered trees and we prove, in the �rst setions

of this paper, that :

1. we an assoiate to eah tree, ombined with a given sign " = �, a spei� probability

linked to the random walk.

PSfrag replaements
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m
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= P (+X

1

> 0;+X

2

> 0;�(X

4

+X

2

+X

1

) > 0;+(X

3

+X

4

+X

2

+X

1

) > 0)

2. For a given sequene ("

1

; : : : ; "

n

), we an assoiate a set of ordered trees F suh that

m

"

1

;:::;"

n

=

P

T2F

m

T;"

n

. For example,

m

+++�

=

X

T2Ca

4

m

T;�

where Ca

4

is the set of rooted-ordered trees with four verties.

The set Ca

4

(Card(Ca

4

) = a

3

).

The de�nitions, as well as the proofs, are enlosed in setions 2 to 7.

This tree deomposition extends the one developed in [12℄. It had been disovered by

onsidering di�usionss belonging to the vetor spae Vet

C

fx 7! e

��jxj

; � > 0g. Note that

suh vetors, alled linear exponential di�usions, are not neessarily probability densities.

Nonetheless, every weight of an average m

"

1

;:::;"

n

f

is an integral on a given measurable

domain of R

n

: their de�nition an be extended to the ase f 2 L

1

(R) (see setion 2).

One of the most interesting properties of suh di�usions is that the tree oeÆients m

T;"

an be expliitly omputed.

Setions 8 and 9 are devoted to appliations in probability theory. We �rst prove

Andersen's result with the help of tree deomposition. We also prove that this tree de-

omposition, when applied to the simple random walk, yields bak the bijetion between
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Dyk paths and ordered trees, whih underlies the well-known isomorphism between the

positive exursions of the simple random walk and the geometri Galton-Watson proess

(see [1, 8, 13℄). Further results shall be given in a forthoming paper.

Contents
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2 Averages indued by a di�usion.

We remind here some de�nitions for mathematial objets assoiated to a di�usion. Start-

ing with an integrable funtion, we build a family of oeÆients that are indexed by

sequenes of + or � signs. A omplete expository on the need for suh objets an be

found in [3, 10, 11℄.

2.1 De�nition.

Let us onsider an integrable funtion f on R, then,

De�nition 2.1 The generalized average m indued by f is the olletion of weights :

m = fm

"

1

;:::;"

n

; n � 1 ; "

i

= �g (2.6)
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With :

8n � 1 ; 8("

1

; : : : ; "

n

) 2 f�;+g

n

m

"

1

;:::;"

n

=

Z

R

n

n

Y

i=1

f(x

i

)�

"

i

(�x

i

) dx

i

(2.7)

and

81 � i � n ; �x

i

= x

1

+ � � �+ x

i

; �

"

i

= 1

R

"

i

Remarks

� If f is non-negative and its integral is 1, then we reover the probability sets intro-

dued above.

� If f is even and its integral is 1 then we obtain a well-behaved average, see [3, 10, 11℄,

whih is useful in real resummation theory.

� When the integral of f is non zero, the average is very lose (and trivially related)

to the average indued by f normalized by its integral.

� If the integral of f is zero, then m de�nes an alien operator, see [3, 10℄.

� We will use the identities �

+

+ �

�

= Id

R

and �

+

�

�

= 0. This is \almost sure" and

the oming identities should be understood this way. That's why we onsider random

walks with a probability density in L

1

(R). For an arbitrary random walk (and for

the simple random walk), our results remain valid with one of the \non-symmetri"

de�nitions :

�

+

= 1

R

+

and �

�

= 1

R

��

or

�

+

= 1

R

+�

and �

�

= 1

R

�

� We an, in every ase, note m

;

=

Z

R

f(x) dx and then,

8("

1

; : : : ; "

n�1

) 2 f�;+g

n�1

X

"

n

=�

m

"

1

;:::;"

n

=m

"

1

;:::;"

n�1

:m

;

There is also a family of \weighted funtions" indued by f :

De�nition 2.2 For n � 1, and any sequene ("

1

; : : : ; "

n

) of plus or minus signs, one an

de�ne the weighted funtion f

"

1

;:::;"

n

by the following indution :

8

<

:

f

"

1

= f : �

"

1

f

"

1

;:::;"

n

= (f � f

"

1

;:::;"

n�1

) : �

"

n

if n � 2

(2.8)

and � is the usual onvolution in L

1

(R).

5



Note that for any sequene ("

1

; : : : ; "

n

) :

m

"

1

;:::;"

n

=

Z

R

f

"

1

;:::;"

n

(x) dx

In order to study the general averages and their weighted funtions, we give some

ompat notations and introdue a new family of oeÆients that plays a entral role in

the oming results.

2.2 The family M .

Let us onsider �rst pairs in f+;�g �R, that is

�

"

x

�

(" = �, x 2 R). For n � 1 and for

a given sequene

�

"

x

�

=

�

"

1

;:::;"

n

x

1

;:::;x

n

�

in (f+;�g �R)

n

, the previous setion suggests to de�ne

the oeÆient :

M

(

"

x

)

= M

(

"

1

;:::;"

n

x

1

;:::;x

n

)

= �

"

1

(x

1

)�

"

2

(x

1

+ x

2

) : : : �

"

n

(x

1

+ � � �+ x

n

) (2.9)

On the same way, if x = (x

1

; : : : ; x

n

) is a sequene in R

n

, then :

8

<

:

F

x

= f(x

1

) : : : f(x

n

) kxk = x

1

+ � � �+ x

n

dx = dx

1

: : : dx

n

l(x) = n

(2.10)

We an thus write that, for a given �nite sequene " of plus or minus signs,

m

"

=

Z

x2R

l(")

F

x

M

(

"

x

)

dx (2.11)

and, introduing the Dira distribution Æ, see de�nition 2.2, for a sequene " = ("

1

; : : : ; "

n

)

(n � 1) :

8x 2 R ; f

"

(x) =

Z

y2R

l(")

F

y

M

(

"

y

)

Æ(x� kyk)dy (2.12)

These representations for generalized averages and weighted funtions suggest that

many of their generi properties will stem from the study of the familyM . This is the ase

for their Tree-deomposition formulas.

3 Ordered trees and forests.

We follow the terminology given in [15℄.
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3.1 Ordered trees.

Ordered trees may be de�ned reursively as follows : An ordered (or plane) tree is a �nite

set of verties suh that :

(a) One speially designated vertex is alled the root and

(b) the remaining verties (exluding the root) are put in an ordered partition (T

1

; : : : ; T

m

)

of m � 0 disjoint non-empty sets T

1

; : : : ; T

m

, eah of whih is an ordered tree. The trees

T

1

; : : : ; T

m

are alled subtrees.

Of ourse, a tree is also a graph, onsidering that, in the reursive de�nition, we an

put edges between the root and the roots of the subtrees. The size of a tree is the number

of its verties. Note that a tree of size n has exatly n � 1 edges. For n � 1, Ca

n

is the

set of ordered trees of size n, and we note a

n�1

its ardinal. This notation is natural as

the numbers a

n

are the Catalan numbers :

a

n

=

1

n + 1

�

2n

n

�

=

(2n)!

(n+ 1)!n!

(3.13)

PSfrag replaements
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n = 4

Figure 1: First sets Ca

n

of ordered trees

We assume that the de�nitions of the son (or suessor) of a vertex, the father (or pre-

deessor) of a vertex, as well as the notion of leafs (or endpoints), are obviously illustrated

by the following �gure.
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u

v

w

u is the father of v

v is the son of u

w is a leaf.

3.2 Forests.

A forest F is a sequene T

1

; : : : ; T

m

(m � 1) of ordered trees. Its size is the sum of the

sizes of its ordered trees. For n � 1, Fa

n

is the set of forests of size n and its ardinal is

a

n

. In fat, there is an obvious bijetion between Fa

n

and Ca

n+1

. One an transform a

forest into an ordered tree by adding a ommon root to the sequene of trees omposing

the forest. Reiproally, utting the root of an ordered tree gives rise to a forest. Let us

give the �rst sets of forests and suggest by dotted lines the orresponding ordered trees :

PSfrag replaements

n = 1

n = 2

n = 3

Figure 2: First sets Fa

n

of forests

Let us make some �nal remarks on the terminology for a forest F (= (T

1

; : : : ; T

m

)) :

� For any vertex v in F , we note �(v) the root of the ordered tree ontaining this

vertex. Thus, �(F ) is the root set of the forest F .

� The height h(v) of a vertex v is the number of edges between v and its root �(v).

� The forest F naturally de�nes a partial order �

F

on the set of its verties.For two

verties u and v, u �

F

v means that v belongs to the subtree having u as root. For
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example, the set of verties has a maximal element i� F ontains only one tree. In

this ase, the maximal element is the unique root of F .

4 The tree-indexed family.

We de�ne a family of oeÆients similar to the family M (see setion 2.2) but indexed by

a tree struture. To do so, we �rst give a way to label a tree or a forest by a sequene of

variables.

4.1 Labeled trees and forests.

For n � 1, onsider F a forest of size n and (x

1

; : : : ; x

n

) a sequene of variables. A

labeling of F by the sequene (x

1

; : : : ; x

n

) is a bijetion � between the set of verties of

F and fx

1

; : : : ; x

n

g. For a given labeling �, one de�nes the \beginning sums" of variables

assoiated to F and � :

8 1 � j � n ;

g

x

j

=

X

�

�1

(x

j

)�

F

u

�(u) (4.14)

For example :
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Figure 3: Some beginning sums for a given labeling.

4.2 Tree oeÆients.

De�nition 4.3 Let F be a forest of size n, � a labeling of F by the sequene of variables

(x

1

; : : : ; x

n

) = x, for a given plus or minus sign ", we de�ne the oeÆient

M

";x

F;�

=

Y

u2F

�

"(�1)

h(u)

�

g

�(u)

�

(4.15)
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Let us give an illustration of this de�nition :
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�
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+
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+
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+
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�
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�
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A notieable fat is that, if the forest F is omposed of several trees (T

1

; : : : ; T

m

)

(m � 2), then a labeling � of F by the sequene x = (x

1

; : : : ; x

n

) indues for eah tree T

i

a unique labeling �

i

by a subsequene x

i

of x. Thus,

M

";x

F;�

=

Y

u2F

�

"(�1)

h(u)

�

g

�(u)

�

=

Y

�2�(F )

Y

��

F

u

�

"(�1)

h(u)

�

g

�(u)

�

=

m

Y

i=1

M

";x

i

T

i

;�

i

(4.16)

This results is illustrated by the previous �gure and there is no ambiguity on the

ordering and the beginning sums : The restrition of �

F

to the set of verties of a tree T

i

is

preisely �

T

i

.

We shall be able now to relate these oeÆients to the initial family M (see setion

2.2).

5 Tree deomposition for the family M .

5.1 Some spei� labeled forests F .

For a bisequene

�

"

x

�

=

�

"

1

;:::;"

n

x

1

;:::;x

n

�

in (f+;�g �R)

n

(n � 1), we give the indutive de�nition

of a set F

(

"

x

)

that orresponds to a set of forests of size n, eah of them having a given

10



labeling �

F

by the sequene (x

1

; : : : ; x

n

).

If n = 1, F

(

"

1

x

1

)

is the unique forest of size 1, with its trivial labeling by x

1

(There is only

one vertex to be labeled by x

1

).

If n � 2, Consider �rst the set F

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

.

� If "

n

6= "

n�1

, the elements (F; �

F

) of F

(

"

1

;:::;"

n

x

1

;:::;x

n

)

are obtained by the following trans-

formation. Pik an element (F

0

; �

F

0

) of F

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

and onsider F

0

as the sequene

of subtrees of a rooted tree with its root labeled by x

n

. This gives birth to a forest of

size n (with only one tree), and its labeling by the sequene (x

1

; : : : ; x

n

) is naturally

indued.

� If "

n

= "

n�1

then, one again, onsider �rst an element (F

0

; �

F

0

) of F

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

.

We shall now give several ways to add a new vertex labeled by x

n

. We remind

that F

0

is omposed of trees (T

1

; : : : ; T

m

) (m � 1). We do either of the following

transformations to get an element of F

(

"

1

;:::;"

n

x

1

;:::;x

n

)

.

1. Add the unique tree of size 1, labeled by x

n

, to the sequene (T

1

; : : : ; T

m

), on

its right.

2. For 1 � i � m, add the vertex labeled by x

n

as the rightest son of the root of

T

i

and onsider then (T

i+1

; : : : ; T

m

) as subtrees of the vertex labeled by x

n

.

These operations are illustrated on �gure 4.

In every ase, for n � 2, starting with an element (F; �) of F

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

the above

onstrution yields a set of forests labeled by (x

1

; : : : ; x

n

) : S

x

n

"

n�1

;"

n

(F; �) and

F

(

"

1

;:::;"

n

x

1

;:::;x

n

)

=

[

(F;�)2F

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

S

x

n

"

n�1

;"

n

(F; �) (5.17)

Moreover, one easily hek that there is no repetition of the same tree (independently of

the labeling) in suh sets.

This rather obsure onstrution beomes natural in the results on tree deomposition

for the family M .

5.2 Main theorem.

Theorem 5.1 For a bisequene

�

"

x

�

=

�

"

1

;:::;"

n

x

1

;:::;x

n

�

in (f+;�g�R)

n

(n � 1),

M

(

"

1

;:::;"

n

x

1

;:::;x

n

)

=

X

(F;�

F

)2F

(

"

1

;:::;"

n

x

1

;:::;x

n

)

M

"

n

;x

F;�

F

(5.18)
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Figure 4: First labeled forests.

Sketh of the proof : It an be proved by indution that the sets F are the right ones.

For n � 2, thanks to the de�nition of the family M (eq. 2.9) :

M

(

"

x

)

=M

(

"

1

;:::;"

n

x

1

;:::;x

n

)

=M

(

"

1

;:::;"

n�1

x

1

;:::;x

n�1

)

�

"

n

(x

1

+ � � �+ x

n

) (5.19)

This identity an then be ombined with the following result :

For " = � and (y

1

; : : : ; y

m

; z) some real variables (m � 1) :
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�

"

(y

1

)�

"

(y

2

) : : : �

"

(y

m

)�

"

(y

1

+ � � �+ y

m

+ z) =

�

"

(y

1

)�

"

(y

2

) : : : �

"

(y

m

)�

"

(z) +

r

X

i=1

0

�

�

"

(y

1

) : : : �

"

(y

i�1

)�

"

(y

i

+ � � �+ y

m

+ z)

� �

�"

(y

i+1

+ � � �+ y

m

+ z)�

"

(y

i+1

) : : : �

"

(y

m

)

1

A

(5.20)

Using this property and eq. (5.19) : For n � 1, let F be a forest of size n and � a given

labeling by x

n

= (x

1

; : : : ; x

n

), then, for " = �, � = � and x

n+1

= (x

1

; : : : ; x

n+1

), we get

(see also eq. (4.16)) :

M

";x

n

F;�

�

�

(x

1

+ � � �+ x

n+1

) =

X

(G;)2S

x

n+1

";�

(F;�)

M

�;x

n+1

G;

(5.21)

It beomes obvious that the sets F were build on purpose. We leave to the reader the

omplete proof for equations (5.20) and (5.21), but the following illustrations should be

onvining.

PSfrag replaements

y

1

y

2

y

3

0

z

z

z

z

�

+

(y

1

+ y

2

+ y

3

+ z)�

�

(y

2

+ y

3

+ z)�

+

(y

2

)�

+

(y

3

)

�

+

(y

1

)�

+

(y

2

+ y

3

+ z)�

�

(y

3

+ z)�

+

(y

3

)

�

+

(y

1

)�

+

(y

2

)�

+

(y

3

+ z)�

�

(z)

�

+

(y

1

)�

+

(y

2

)�

+

(y

3

)�

+

(z)

�

+;+;�

x

1

;x

2

;x

3

�

�

+;�;�

x

1

;x

2

;x

3

�

�

+;�;+

x

1

;x

2

;x

3

�

Figure 5: Eq. (5.20) for �
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1
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+

(y

2

)�

+

(y

3

)�

+

(y

1

+ y

2

+ y

3

+ z) .

Equation (5.21) is illustrated by the �gure 6. We start from the oeÆient :

M

+;x

1

;x

2

;x

3

F;�

= �

�

(x

1

)�

+

(x

3

+ x

1

)�

+

(x

2

)

The arrow (1) is the multipliation by �

�

(x

1

+ x

2

+ x

3

+ x

4

) and the underlying tree

onstrution is obvious. The seond arrow (2) is the multipliation by �

+

(x

1

+x

2

+x

3

+x

4

)

and, thanks to equation (5.20) (y

1

= x

3

+ x

1

; y

2

= x

2

; z = x

4

) :

�

+

(x

3

+ x

1

)�

+

(x

2

)�

+

(x

3

+ x

1

+ x

2

+ x

4

) =

�

+

(x

3

+ x

1

)�

+

(x

2

)�

+

(x

4

)

+�

+

(x

3

+ x

1

)�

+

(x

2

+ x

4

)�

�

(x

4

)

+�

+

(x

3

+ x

1

+ x

2

+ x

4

)�

�

(x

2

+ x

4

)�

+

(x

2

)

and the tree onstrution is now obvious.
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Figure 6: Illustration for Eq. (5.21)

In the following setion we give some ombinatorial properties of the family of forests.

We will then examine the onsequenes of theorem 5.1 for generalized averages and

weighted funtions (see setion 2).

6 Some ombinatorial properties of sets of forests F .

Let us onsider, as in setion 5.1, a set F

(

"

x

)

, with

�

"

x

�

=

�

"

1

;:::;"

n

x

1

;:::;x

n

�

in (f+;�g �R)

n

(n � 1).

This is a set of labeled forests, and, one the labeling is omitted, it remains a set of forests

of size n. This set depends only on the onseutive staks of idential signs. We note these

sets F

n

1

;:::;n

s

if " = (�)

n

1

(�)

n

2

: : : ("

n

)

n

s

. Let us give some ombinatorial results on these

sets of forests.

6.1 Enumeration.

For a sequene n

1

; : : : ; n

s

(s � 1, n

i

� 1) :

Card (F

n

1

;:::;n

s

) = a

n

1

: : : a

n

s

(6.22)

Moreover, a forest in F

n

1

;:::;n

s

has at most n

s

trees and if, for 1 � k � n

s

, F

k

n

1

;:::;n

s

is the

subset of forests of F

n

1

;:::;n

s

having k trees, then :

Card

�

F

k

n

1

;:::;n

s

�

= a

n

1

: : : a

n

s�1

k

2n

s

� k

�

2n

s

� k

n

s

�

(6.23)
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This also means that, for n � 1 :

n

X

k=1

k

2n� k

�

2n� k

n

�

= a

n

(6.24)

The reader shall onvine himself on �gure 4.

6.2 Constrution.

All these sets were de�ned in setion 5.1. Nonetheless, we give an equivalent onstrution

of the sets F

n

1

;:::;n

s

by indution on s (n

1

� 1; : : : ; n

s

� 1).

� If s = 1 then F

n

1

is the omplete set of forests of size n

1

(see setion 3.2) :

F

n

1

= Fa

n

1

� If s � 2 then onsider the sets F

n

1

;:::;n

s�1

and Fa

n

s

. The elements of F

n

1

;:::;n

s

are the

forests obtained by onsidering now an element of F

n

1

;:::;n

s�1

as supplementary (and

to its left) subtrees of the leftest root of an element of Fa

n

s

.

Note that this onstrution yields a part of the proof for the enumeration results.

7 Appliation to generalized averages.

Let us �rst remind, see setion 2, that, one an integrable funtion f is given, the family

M plays a entral role in the de�nition of :

� Generalized average (see eq. (2.11)) :

m

"

=

Z

x2R

l(")

f(x

1

) : : : f(x

n

)M

(

"

x

)

dx

� Weighted funtions (see eq. (2.12)) :

8y 2 R ; f

"

(y) =

Z

x2R

l(")

f(x

1

) : : : f(x

n

)M

(

"

x

)

Æ(y � kxk)dx

Assuming that, as in equation (2.10), " = ("

1

; : : : ; "

n

) 2 f+;�g

n

, l(") = n and, in

addition, x = (x

1

; : : : ; x

n

) 2 R

n

and kxk = x

1

+ � � �+ x

n

.
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7.1 More Tree oeÆients and Tree funtions.

De�nition 7.4 For a forest F of size n, a labeling � of F by x = (x

1

; : : : ; x

n

), and a

given sign " = �, let us de�ne :

m

F;"

�

=

Z

x2R

n

f(x

1

) : : : f(x

n

)M

";x

F;�

dx (7.25)

and

8y 2 R ; f

F;"

�

(y) =

Z

x2R

n

f(x

1

) : : : f(x

n

)M

";x

F;�

Æ(y � kxk)dx (7.26)

Here are two notieable fats on these oeÆients :

1. Exept for the tree oeÆient M

";x

F;�

, the integrated funtion is symmetri : the previous

oeÆients do not depend on the labeling :

m

F;"

�

= m

F;"

f

F;"

�

= f

F;"

2. If F is a forest omposed of k trees F = (T

1

; : : : ; T

k

), then :

m

F;"

= m

T

1

;"

:m

T

2

;"

: : :m

T

k

;"

f

F;"

= f

T

1

;"

� f

T

2

;"

� � � � � f

T

k

;"

These results point out that the oeÆients orresponding to single trees should be the

most important. Let us give now the onlusion of the previous work.

7.2 Tree deomposition for generalized averages and weighted

funtions.

Let us remind that, for a sequene " 2 f+;�g

n

also written " = (�)

n

1

(�)

n

2

: : : ("

n

)

n

s

,

we de�ned in the previous setions a set of of forests F

"

that orresponds either to the

forests involved in F

(

"

x

)

(setion 5) or to F

n

1

;:::;n

s

(setion 6). Combining now the previous

results :

Theorem 7.2 For n � 1 and " = ("

1

; : : : ; "

n

) 2 f+;�g

n

, the set of forests F

"

(� Fa

n

)

is suh that :

m

"

=

X

F2F

"

m

F;"

n

(7.27)

and

8y 2 R ; f

"

(y) =

X

F2F

"

f

F;"

n

(y) (7.28)

Here omes a �rst appliation of the tree deomposition : a proof for Andersen's for-

mula.
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8 Bak to Andersen's formula.

8.1 The free assoiative algebra ZhT i.

The set of ordered trees T = fT 2 Ca

n

; n � 1g an be onsidered as a set of nonommut-

ing variables, the multipliation being the onatenation. It generates the free assoiative

Z-algebra ZhT i (see [9, 14℄) with a natural graduation given by the number of verties in

a tree. As any forest of F = fF 2 Fa

n

; n � 1g is easily identi�ed to a onatenation of

trees, ZhT i = ZhFi. We an also identify some sets to the sum of their elements :

For n � 1,

Ca

n

=

X

T2Ca

n

T (8.29)

Fa

n

=

X

F2Fa

n

F =

X

n

1

+���+n

s

=n

s�1 ; n

i

�1

X

T

i

2Ca

n

i

1�i�s

T

1

: : : T

s

=

X

n

1

+���+n

s

=n

s�1 ; n

i

�1

Ca

n

1

:Ca

n

2

: : : Ca

n

s

(8.30)

8.2 An operator on ZhT i.

Setion 6 suggests to introdue the operator LA that is alled the \Left Attahment". It

is a bilinear morphism from ZhT i � ZhT i to ZhT i and it an be de�ned on a pair of

forests : Let F

1

; F

2

be two forests, we an \add" F

1

to the forest F

2

by onsidering F

1

as

supplementary (and to its left) subtrees of the leftest root of F

2

. The resulting forest is

the Left Attahment of F

1

to F

2

: LA(F

1

; F

2

).

We have the following identities, if F

1

= T

1

1

: : : T

1

t

and F

2

= T

2

1

; : : : T

2

s

then :

LA(F

1

; T

2

1

: : : T

2

s

) = LA(F

1

; T

2

1

)T

2

2

: : : T

2

s

(8.31)

LA(T

1

1

: : : T

1

t

; F

2

) = LA(T

1

1

; LA(T

1

2

; LA(: : : ; LA(T

1

t�1

; LA(T

1

t

; F

2

)) : : : ))) (8.32)

Let us end this setion with a ombinatorial result :

Lemma 8.1 For n � 2,

X

n

1

+���+n

s

=n

s�2

n

s�1

LA(Ca

n

1

: : : Ca

n

s�1

; Ca

n

s

) = (n� 1)Ca

n

(8.33)

The proof is straightforward. Consider a tree T in Ca

n

, it an be deomposed : on one

side there is the root, on the other side, there is the forest of subtrees T

0

= F whih belongs

to Fa

n�1

. There exists a unique omposition (m

1

; : : : ; m

t

) of n� 1 (m

1

+ � � �+m

t

= n� 1)

suh that F 2 Ca

m

1

: : : Ca

m

t

, thus F = T

1

: : : T

t

. Note that we just remind here that there

is a natural bijetion between Ca

n

and Fa

n�1

. For 1 � i � t, onsider T

i

the tree of

Ca

n�(m

1

+���+m

i

)

obtained by omitting T

1

: : : T

i

in T :

T = LA(T

1

: : : T

i

; T

i

)
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and

(n� 1)T = (m

1

+ � � �+m

t

)T =

t

X

i=1

m

i

LA(T

1

: : : T

i

; T

i

)

But if we note r(F ) the tree suh that r(F )

0

= F (r(;) = �), then :

(n� 1)Ca

n

=

X

T2Ca

n

(n� 1)T

=

X

n

1

+���+n

s

=n�1

X

F2Ca

n

1

:::Ca

n

s

(n� 1)r(F )

=

X

n

1

+���+n

s

=n�1

X

T

k

2Ca

n

k

1�k�s

(n

1

+ � � �+ n

s

)r(T

1

: : : T

s

)

=

X

n

1

+���+n

s

=n�1

X

T

k

2Ca

n

k

1�k�s

s

X

i=1

n

i

LA(T

1

: : : T

i

; r(T

i+1

: : : T

s

))

=

n�1

X

i=1

X

n

1

+���+n

i

+m=n

n

i

LA(Ca

n

1

: : : Ca

n

i

; Ca

m

)

This is the attempted result.

Thanks to setion 6, Andersen's formula is a orollary of this lemma.

8.3 A proof of Andersen's formula.

We remind that, to any sequene (n

1

; : : : ; n

s

) of positive integers, a set of forest is assoiated

by :

F

n

1

;:::;n

s

=

8

<

:

Fa

n

1

if s = 1

LA(F

n

1

;:::;n

s�1

; Fa

n

s

) if s � 2

We also de�ne a similar family by

e

F

n

1

;:::;n

s

=

8

<

:

Fa

n

1

if s = 1

LA(�(

e

F

n

1

;:::;n

s�1

); Fa

n

s

) if s � 2

where �(F ) = �(T

1

: : : T

k

) = T

k

: : : T

1

. The �rst family is useful as, for a given sequene

(n

1

; : : : ; n

s

) :

m

(�)

n

1

(�)

n

2

:::(")

n

s

f

=

X

F2F

n

1

;:::;n

s

m

F;"

f

Beause of the de�nition of the tree oeÆients, one also gets :

m

(�)

n

1

(�)

n

2

:::(")

n

s

f

=

X

F2

e

F

n

1

;:::;n

s

m

F;"

f
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and these sets inherit some ombinatorial properties from the previous lemma :

For n � 1

X

n

1

+���+n

s

=n

e

F

n

1

;:::;n

s

=

X

l

1

+���+l

t

=n

l

1

Ca

l

1

: : : Ca

l

t

(8.34)

Let us give the proof by indution. This result is obviously true for n = 1. Let n � 2

and suppose that the equation holds for 1 � k < n.

X

n

1

+���+n

s

=n

e

F

n

1

;:::;n

s

=

e

F

n

+

X

n

1

+���+n

s

=n

s�2

e

F

n

1

;:::;n

s

= Fa

n

+

X

n

1

+���+n

s

=n

s�2

LA(�(

e

F

n

1

;:::;n

s�1

); Fa

n

s

)

= Fa

n

+

n�1

X

k=1

LA

0

B

�

�

0

B

�

X

m

1

+���+m

s

0

=n�k

s

0

�1

e

F

n

1

;:::;n

s

0

1

C

A

; Fa

k

1

C

A

= Fa

n

+

n�1

X

k=1

X

l

1

+���+l

t

=n�k

k

1

+���+k

u

=k

LA(l

t

Ca

l

1

: : : Ca

l

t

; Ca

k

1

: : : Ca

k

u

)

= Fa

n

+

n�1

X

k=1

X

l

1

+���+l

t

=n�k

k

1

+���+k

u

=k

LA(l

t

Ca

l

1

: : : Ca

l

t

; Ca

k

1

)Ca

k

2

: : : Ca

k

u

= Fa

n

+

n�1

X

k

0

=0

X

k

0

1

+���+k

0

u

=k

0

(n� k

0

� 1)Ca

n�k

0

Ca

k

0

1

: : : Ca

k

0

u

=

X

l

1

+���+l

t

=n

Ca

l

1

: : : Ca

l

t

+

X

l

1

+���+l

t

=n

(l

1

� 1)Ca

l

1

: : : Ca

l

t

=

X

l

1

+���+l

t

=n

l

1

Ca

l

1

: : : Ca

l

t

and this ends the proof.

Let us remember that

8n � 1 ; �

n

=m

(n�1) times

z }| {

�; : : : ;�;+

f

=

X

T2Ca

n

m

T;+

f

As F 7!m

F;+

f

de�nes a morphism from ZhT i to R, the equation (8.34) reads :

X

l

1

+���+l

t

=n

l

1

�

l

1

: : : �

l

t

=

X

n

1

+���+n

s

=n

X

F2

e

F

n

1

;:::;n

s

m

F;+

f

=

X

"

i

=� ; 1�i�n�1

m

"

1

:::"

n�1

+

f
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If f is a probability density, then the last term is P (S

n

> 0) for the assoiated random

walk and from this relation, we get, if �(s) =

P

+1

n=1

�

n

s

n

,

�

0

(s)

1� �(s)

=

+1

X

n=1

s

n�1

P (S

n

> 0)

We have proved Andersen's formula :

log

1

1� �(s)

=

+1

X

n=1

s

n

n

P (S

n

> 0) (8.35)

Note that, if we don't are about probability, we have a similar equation for generalized

averages, as soon as f is an integrable funtion.

9 Trees and exursion for the simple random walk.

9.1 Introdution

\Trees" and \random walk" are words that are already assoiated in the probability lit-

erature. We an ite the bijetion between the Galton-Watson proess and the exursions

of the simple random walk, see [1, 8, 13℄. This result is based on a ombinatorial bijetion

between Dyk paths and ordered trees.

We shall here fous on this ombinatorial approah and prove that our tree-deomposi-

tion gives bak this results. The main point is that our deomposition is a generalization

of this result : it establishes a bijetion between labeled trees and \sets of paths". Note

that this relation seems to di�er from the one that an be found in [1℄.

Let us �rst remind the bijetion between Dyk paths and ordered trees.

9.2 Paths and trees.

De�nition 9.5 A Dyk path of length 2n (n 2 N

�

) is a positive path with jumps +1 or

�1 starting at 0 and �nishing at 0 for the 2n

th

jump. We note D

n

the set of Dyk paths

of length 2n.

Proposition 9.1 For n � 1, the set of ordered trees of size n and the set of Dyk paths

of length 2n have the same ardinal.

This is a very lassial result and from a given bijetion between these two kind of sets,

one an dedue the usual isomorphism between exursions of the simple random walk and

the geometri Galton-Watson proess.

For n � 1, the natural bijetion 	

n

between D

n

and Ca

n

an be de�ned by indution.

For n = 1, the unique Dyk path of size 2 is assoiated to the unique tree of size 1. For

n � 2, the bijetion is de�ned as follows :
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Figure 7: Indutive de�nition of the bijetion.

Consider a Dyk path P of size 2n, omit the �rst and the last jump and onsider that

this new path starts at the origin. This new path P

0

is of length 2n�2, is �nishing at 0 and

is non negative : it is a onatenation of s � 1 Dyk paths P

1

; : : : ; P

s

of size 2n

1

; : : : ; 2n

s

(n

1

+ � � �+ n

s

= n� 1). Using the indution, eah of the paths P

i

orresponds to a unique

tree T

i

of Ca

n

i

. The tree of Ca

n

that is assoiated to P is the tree obtained by adding

a ommon root to the ordered forest (T

1

; : : : ; T

s

). The onstrution of the inverse map is

obvious. The �gure 7 illustrates this onstrution.

We prove in the following setion that this bijetion an be seen as a partiular ase of

our tree-deomposition. To do so, we �rst de�ne a generalization of Dyk paths.

9.3 Generalized Dyk paths.

A path of length n is simply a sequene of oordinates ((0; 0); (1; y

1

); : : : ; (n; y

n

)) or, equiv-

alently, a sequene of \jumps" (x

1

; x

2

; : : : ; x

n

) (with y

i

= �x

i

= x

1

+ � � �+x

i

, for 1 � i � n).

For example, Dyk paths are paths with only +1 or �1 jumps.

De�nition 9.6 A generalized Dyk path (GDP) of length n (n � 1) is a path, with real

jumps, suh that :

y

n

= �x

n

= x

1

+ � � �+ x

n

� 0

and, if n � 2,
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8 1 � i � n� 1 ; y

i

= �x

i

= x

1

+ � � �+ x

i

> 0

Dyk paths of length 2n are GDP of length 2n, and, if GD

n

stands for GDP of length

n, then onsidering paths as sequenes of jumps, the set GD

n

an easily be expressed in

term of the family M (see setion 2.2) :

GD

n

=

n

(x

1

; : : : ; x

n

) 2 R

n

; M

(

n�1

z }| {

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

= 1

o

(9.36)

with

M

(

"

1

;:::;"

n

x

1

;:::;x

n

)

= �

"

1

(x

1

)�

"

2

(x

1

+ x

2

) : : : �

"

n

(x

1

+ � � �+ x

n

)

and

�

+

= 1

R

+�

and �

�

= 1

R

�

Note that

8n � 1 ; GD

n

\ f+1;�1g

n

=

8

<

:

D

n=2

if n is even

; if n is odd

We desribed in the �rst setion the well-known bijetion between Dyk paths and

trees. Let us now investigate how the de�nition of generalized Dyk paths interat with

the tree deomposition of the family M .

9.4 GDP and tree-deomposition : bak to the labeling.

For n � 1 the sets are GD

n

are strongly linked to some elements of the family M (see

above), espeially, the oeÆients M

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

. Beause of theorem 5.1,

M

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

=

X

(F;�

F

)2F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

M

�;x

F;�

F

(9.37)

The forests in the set F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

are exatly the trees of Ca

n

(see setion 6). It

means that the tree deomposition indues a partition of the set GD

n

into a

n�1

subsets :

GD

n

=

[

T 2Ca

n

GD

T

where GD

T

def

= f(x

1

; : : : ; x

n

) 2 R

n

; M

�;(x

1

;:::;x

n

)

T;�

T

= 1g (9.38)

The labeling were not expliit in setion 5 but, for a better understanding of the above

partition, we need to give a preise statement on the labeling of these trees.

22



Theorem 9.3 For n � 1, the forests of F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

are the trees of Ca

n

. Moreover, if

T be a tree of Ca

n

, the labeling of this tree, as an element of F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

, is given by

one of the following proedures :

Proedure 1 :

� The root of T is labeled by x

n

.

� One this root is omitted, we get a forest of Fa

n�1

having s trees T

1

; : : : ; T

s

of size

�

1

; : : : ; �

s

(s � 1). Note that eah �

i

is positive and �

1

+ � � �+ �

s

= n � 1. We split the

sequene (x

1

; : : : ; x

n�1

) into s suessive subsequenes X

1

: : :X

s

. The labels of the tree T

i

are in the sequene X

i

, and as the roots of these trees are at odd distane of the original

root, we label them by the �rst element of their respetive sequene X

i

.

� We apply then the same proedure to eah tree but, if the new root to label is at even

distane of the original root, its label is not the �rst of the assoiated subsequene, but the

last.

Proedure 2 :

� The root of T is labeled by x

n

.

� One this root is omitted, we get a forest of Fa

n�1

having s trees T

1

; : : : ; T

s

of size

�

1

; : : : ; �

s

(s � 1). We split the sequene (x

1

; : : : ; x

n�1

) into s suessive subsequenes

X

1

: : :X

s

. The labels of the tree T

i

are those of X

i

= (x

��

i�1

+1

; : : : ; x

��

i

) and the labeling

of T

i

is the same as the one enountered for this tree in the set F

�

+

x

��

i

;:::;

;:::;

+

x

��

i�1

�

x

��

i�1

+1

�

(the

sequene is reversed).

The two proedures are obviously equivalent.This result is illustrated in �gure 8, for a

tree of F

�

+

x

1

;:::;

;:::;

+

x

7

�

x

8

�

Proof : From setion 5, we dedue the following results :

Fat 1 : Beause of the onstrution in setion 5, the set of labeled forests F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

is easily dedued from the set F

(

+; ::: ;+

x

1

;:::;x

n�1

)

by adding a root labeled by x

n

to the forest

belonging to this set. It means that the sets to study are

F

(

+;:::;+

x

1

;:::;x

n

)

def

= F

x

1

;:::;x

n

Note also that, omitting the labeling, the forests in the set F

(

+;:::;+

x

1

;:::;x

n

)

are exatly those of

Fa

n

and the forests in F

(

+; ::: ;+ ; �

x

1

;:::;x

n�1

;x

n

)

are exatly the trees of Ca

n

Fat 2 : If

A

x

1

;:::;x

n

def

= fF 2 F

x

1

;:::;x

n

suh that F is a treeg

then A

x

1

= F

x

1

has one element, the unique tree of size 1 labeled by x

1

, and for n � 2, we

have the following properties :

� A labeled tree T of size n belongs to A

x

1

;:::;x

n

i� : \the rightest son of its root is

labeled by x

n

, and there exists a unique k suh that 1 � k � n� 1, the forest under
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Figure 8: Labeling a tree.
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x

n

belongs to F

x

k+1

;:::;x

n�1

and the tree T amputated of the subtree starting at x

n

belongs to A

x

1

;:::;x

k

".

� A labeled forest F belongs to F

x

1

;:::;x

n

i� there exist a deomposition of (x

1

; : : : ; x

n

)

in suessive subsequenes X

1

; : : : ; X

t

(t � 1) suh that F is a sequene of trees

T

1

; : : : ; T

t

with

81 � i � t ; T

i

2 A

X

i

Theorem 9.3 is learly a onsequene of these fats.

9.5 From GD

2n

to D

n

.

The set D

n

is equipotent to the set Ca

n

, and is a �nite subset of GD

2n

. The tree-

deomposition of the family M indues a partition of the set GD

2n

into a

2n�1

subsets

that are indexed by the trees of Ca

2n

. We will prove that this partition indues a bijetion

between D

n

and a subset of Ca

2n

that an be naturally identi�ed to Ca

n

and that, after

identi�ation, the bijetion is the one desribed in setion 9.2.

For n � 1, we remind that

GD

2n

\ f�1;+1g

2n

= D

n

	

n

�! Ca

n

and

GD

2n

=

[

T2Ca

2n

GD

T

thus, it seems natural to study, for T 2 Ca

2n

, the set

g

GD

T

= GD

T

\ f�1;+1g

2n

=

n

(x

1

; : : : ; x

2n

) 2 f�1;+1g

2n

; M

�;(x

1

;:::;x

2n

)

T;�

T

= 1

o

(9.39)

Let us �rst de�ne the levels of a tree : the root is at level 1, its sons are at level 2 and

so on ... .

Theorem 9.4 Let T 2 Ca

2n

(n � 1), the set

g

GD

T

is non-empty i� eah vertex of T of

odd level has exatly one son. In this ase the set

g

GD

T

ontains one element (a Dyk path

of length 2n).

Proof : Let us onsider a tree T of Ca

2n

and suppose that (x

1

; : : : ; x

2n

) 2

g

GD

T

. Eah x

i

is attahed to a vertex and we an onsider the partial sum s

i

, with respet to the order

indued by the tree : s

i

is x

i

plus its primogeniture. We an also assoiate a sign "

i

to

eah x

i

, as in the tree-oeÆient : "

i

is + if x

i

is the label of a vertex at even level and is

� otherwise.

In these onditions (see setion 4),

M

�;(x

1

;:::;x

2n

)

T;�

T

=

2n

Y

i=1

�

"

i

(s

i

) = 1
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thus,

81 � i � 2n ; �

"

i

(s

i

) = 1

Suppose that x

i

is the label of a leaf at an odd level, then s

i

= x

i

= �1. When we go

\up", its father is labeled by x

i

�

. s

i

�

is the sum of x

i

�

, s

i

= �1, and other non positive

partial sums assoiated to the other sons of x

i

�

. The sum s

i

�

is obtained by adding at

most x

i

�

= +1 and s

i

�

� x

i

�

� �1 thus s

i

�

annot be positive. It means that the leafs of

T must be at even levels.

Let us now onsider a vertex of T that is not a leaf, suppose that it is labeled by

x

i

and has k sons (k � 1) labeled by x

i

1

; : : : ; x

i

k

. If this is vertex is at an even level

s

i

= x

i

+ s

i

1

+ � � �+ s

i

k

> 0 whereas, for 1 � j � k, s

i

j

� 0 : it implies that x

i

= +1 and

for 1 � j � k, s

i

j

= 0. If this vertex is at an odd level s

i

= x

i

+ s

i

1

+ � � �+ s

i

k

� 0 whereas,

for 1 � j � k, s

i

j

> 0 : it implies that x

i

= �1 and k = 1 and s

i

1

= 1.

This proves that if

g

GD

T

is non-empty then it satis�es the ondition of the theorem.

Conversely, starting with the leafs and going \up", the above onsiderations shows that

for, suh a tree, the label x

i

at odd (resp. even) level are equal to +1 (resp. �1) with

partial sums s

i

= +1 (resp. 0) : there is a unique Dyk path in the set

g

GD

T

.

Let us de�ne for n � 1 :

C

n

def

= fT 2 Ca

2n

;

g

GD

T

6= ;g (9.40)

It is now obvious that this subset of Ca

2n

is equipotent to D

n

and to Ca

n

. For n � 1,

there was a �rst \natural" bijetion 	

n

between D

n

and Ca

n

; the above theorem yields a

seond bijetion �

n

between C

n

and D

n

that assoiate to a tree T of C

n

the unique Dyk

path in

g

GD

T

. We an onsider the bijetion 	

n

Æ �

n

that happens to be very simple :

Theorem 9.5 For n � 1, the bijetion �

n

= 	

n

Æ�

n

between C

n

and Ca

n

an be desribed

as follows :

Consider a tree T 2 C

n

, it is a tree of Ca

2n

suh that eah vertex of T of odd level has

exatly one son. If these verties of odd level are glued with their respetive unique son,

suh that the in between edges disappear, then a tree T

0

of Ca

n

is obtained and T

0

= �

n

(T ).

Proof : First onsider that, starting from C

n

, �

n

is de�ned by the gluing proedure, then

it remains to prove by indution that �

n

= 	

n

Æ �

n

. The reader who wants to skip the

proof an have a look to �gure 9.

The result is obvious for n = 1. For a tree T in C

n

(n � 2), onsider its labeling, as

an element of F

(

+; ::: ;+ ; �

x

1

;:::;x

2n�1

;x

2n

)

(it is desribed by theorem 9.3). As an element of C

n

, its

root is labeled by x

2n

and its unique son is labeled by x

1

. Now, it beomes obvious, that

omitting this edge (x

2n

� x

1

) in the tree T orresponds, for the path �

n

(T ) to omit the

�rst (resp. last) step x

1

= +1 (resp. x

2n

= �1) and beause of the indutive de�nition

of 	

n

, it orresponds to omit the root in 	

n

Æ �

n

(T ), as in �

n

(T ). One this omission is

done, we get k subtrees of T :

(T

1

; : : : ; T

k

) 2 Ca

n

1

� � � � � Ca

n

k

(n

1

+ � � �+ n

k

= 2n� 2)
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As T is in C

n

, the integers n

1

; : : : ; n

k

are even and :

81 � i � k ; T

i

2 C

m

i

(m

i

= n

i

=2)

Looking at the indued labeling of these trees, the paths �

m

1

(T

1

); : : : ;�

m

k

(T

k

) are exatly

those obtained one x

1

and x

2n

are omitted and the trees 	

m

1

Æ�

m

1

(T

1

); : : : ;	

m

k

Æ�

m

k

(T

k

)

are those obtained from 	

n

Æ �

n

(T ) one its root is omitted. By indution,

81 � i � k ; 	

m

i

Æ �

m

i

(T

i

) = �

m

i

(T

i

)

and then 	

n

Æ �

n

(T ) = �

n

(T ). It ends the proof of this theorem.
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Figure 9: Illustration of the proof.

10 Conlusion.

The proof of the Andersen's formula , as well as the results for the simple random walk,

are the �rst appliations of our tree deomposition. There is now doubt that this tool will

provide other known, and hopefully unknown, formulas or properties for random walks.

Another appliation will be given in a oming paper. A omplete answer will be given

to the following question : when do two densities in Vet

R

fx 7! e

��jxj

; � > 0g indue the

same average ?
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A A note on the terminology.

We end this paper by a short explanation for the terminology of \averages indued by

di�usion". This denomination was given in the mathematial theory that originally moti-

vated the author's interest in random walk : the resummation theory. We briey desribe

here the links between this theory and the random walks.

A spei� set of probabilities assoiated to a random walk on R has been alled an av-

erage beause this terminology was �rst adopted in resummation theory. The well-behaved

uniformizing averages (WBA) were introdued by J. Ealle in the framework real resum-

mation, whih aims at assigning a real sum to a real divergent series of \natural origin",

for example a formal solution of a di�erential equation. The need for \uniformizing" some

analyti rami�ed funtions appears naturally in this kind of problem. For example, let '

be an analyti funtion with singularities overN

�

, analytially ontinuable on the universal

overing of C=N

�

. For a given non-negative integer n we an label the 2

n

determinations

of ' over the interval ℄n; n + 1[ that are obtained by analyti ontinuation of ' along the

2

n

paths dodging the singularities f1; : : : ; ng to the left or to the right. If the sign + (resp.

�) is assigned when dodging to the right (resp. to the left), these 2

n

determinations of

' over ℄n; n + 1[ are labeled by the addresses ("

1

; : : : ; "

n

) ("

i

= � and 1 � i � n). Suh

funtions appear naturally in the real-resummation theory and it is almost as natural to

try to assoiate a uniform funtion to ', that is to \uniformize" it. The simplest way is

to do, over the interval ℄n; n + 1[, an \average" of the 2

n

determinations of ', pondering

them by 2

n

\weights" m

"

1

;:::;"

n

, of sum (for a given n) equal to 1.

Thus, a uniformizing average m is simply a olletion of weights :

m = fm

"

1

;:::;"

n

; n � 0 ; "

i

= � ; 1 � i � ng (A.41)

Some additionnal onditions, both analyti and algebrai, are imposed to suh averages,

so that they beome a very powerful tool in real resummation. In these onditions, the

average m is alled a well-behaved average (WBA). For details see [3, 4, 10, 11℄. The study

of partiular averages, whih appeared to be WBA, proved the existene of suh objets,

and, for example, J. Ealle found a great lass of WBA : the averages indued by di�usion.
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