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Abstract

We revisit certain decompositions of continuous-state branching processes (CSBPs),
commonly referred to as skeletal decompositions, through the lens of intertwining of semi-
groups. Precisely, we associate to a CSBP X with branching mechanism ψ a family of
R` ˆ Z`-valued branching processes pXλ, Lλq, indexed by a parameter λ P p0,8q, that
satisfies an intertwining relationship with X through the Poisson kernel with parameter
λx. The continuous component Xλ has the same law as X, while the discrete component
Lλ, conditionally on Xλ

t , has a Poisson distribution with parameter λXλ
t . The law of

pXλ, Lλq depends on the position of λ within r0,8q “ r0, ρq Y rρ,8q, where ρ is the
largest positive root of ψ. When λ ě ρ, various well-known results concerning skeleton
decompositions are recovered. In the supercritical case (ρ ą 0), when λ ă ρ, a novel
phenomenon arises: a birth term appears in the skeleton, corresponding to a one-unit
proportional immigration from the continuous to the discrete component. Along the way,
the class of continuous-time branching processes taking values in R` ˆZ` is constructed.

Keywords. Continuous-state branching process, Intertwining, Esscher transform, Two-type branch-
ing process, Explosion

1 Introduction

This paper investigates how Continuous-State Branching Processes (CSBPs) can be decomposed into
R` ˆ Z`-valued branching processes using intertwining relationships between Markovian semigroups.
An intertwining relationship is a property of commutation of semigroups, or generators, through some
kernel. Formally, two semigroups Pt and Qt are said to be intertwined with respect to a kernel Λ if
they satisfy the following relationship

ΛPt “ QtΛ, @t ě 0. (1)

Intertwining is intimately connected to the problem of determining whether a function of a Markov
process remains Markovian, as explored by Pitman and Rogers [PR81]. It also arises in Markovian
filtering, see e.g. Kurtz and Ocone [KO88], Kurtz [Kur98], and Kurtz and Nappo [KN11], where
Markov mapping theorems are established in the setting of martingale problems. Numerous examples
of intertwined Markov semigroups have been discovered, including those presented by Carmona et al.
[CPY98] and Pal and Shkolnikov [PS13].

The intertwining theory has been further developed in various directions, becoming a fundamental
tool in stochastic processes. They play for instance an important role in the study of strong stationary
times, see for instance Diaconis and Fill [DF90], Miclo [Mic20] and Arnaudon et al. [ACPM24].
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†LMO, Université Paris-Saclay. Email: olivier.henard@universite-paris-saclay.fr

1



Intertwining likewise appears in analyzing certain interacting particle systems, see e.g. Floreani et al.
[FJRW24]. It also plays a key role in the so-called lookdown construction of the genealogy of branching
populations, see for instance Kurtz [Kur18] and Etheridge and Kurtz [EK19] for recent works in this
direction.

The concept of decomposition of branching processes into “skeletons” dates back to Harris [Har48],
who showed that any supercritical Bienaymé-Galton-Watson process with positive probability of ex-
tinction can be embedded in a two-type branching process, see also Athreya-Ney’s book [AN04, Chap-
ter I-Section 12]. In this framework, one type represents individuals with infinite line of descent (called
prolific or immortal individuals), while the other corresponds to mortal individuals. This decomposi-
tion has become a key tool in branching process theory. In the context of Continuous State Branching
Processes (CSBPs), the prolific individuals form a discrete branching process, while the non-prolific
ones form a continuum, as explored by Bertoin et al. [BFM08], see also Lambert and Uribe Bravo,
[LUB24], for a recent work in this direction in the context of splitting trees. The framework with spa-
tial motion has also garnered considerable attention, we refer for instance to Eckhoff et al. [EKW15],
Fekete et al. [FFK20] and the references therein.

In a seminal paper, Duquesne and Winkel [DW07] introduced a nested family of discrete trees
with edge lengths that is consistent under Poissonian sampling of the leaves; they proved that any
such family embeds a Lévy real tree encoding the genealogy of a CSBP. In a similar spirit, Abraham
and Delmas [AD12] have constructed a tree-valued Markov process, where evolving skeletons serve
as the hprimary objects. See also Abraham and Delmas [AD09] and Abraham et al. [ADV10] for
closely related studies. More recently, these decompositions have been revisited using Poissonization
techniques applied to the stochastic differential equation with jumps solved by a CSBP, as discussed
by Fekete et al. [FFK19]. In all these works, Esscher transforms of the branching mechanism play a
central role. To summarize, given an eventually positive branching mechanism ψ, and denoting by ρ
its largest positive root, a skeleton decomposition consists in “grafting” subcritical continuous masses
— evolving with a branching mechanism given by an Esscher transform of ψ at the right of ρ — onto
a discrete branching process, so that the total continuous mass is a CSBP governed by ψ.

Although not always highlighted in the works previously cited – see however [BFM08, Page 722]
and [LUB24, Page 1283] – a common feature in such skeletal decompositions lies on the fact that the
joint process encoding both the discrete component and the continuous mass satisfies the branching
property. Two-type branching processes taking values in R` ˆ Z` come therefore naturally into play.
To our knowledge, no general treatment of this class of processes has been presented before. We
summarize their fundamental properties in Section 2, see Theorem 2.1 and Proposition 2.3, and recall
well-known facts about one-dimensional branching processes. The R` ˆZ`-valued branching processes
are constructed in Section 4 by using classical results from the theory of Markov processes.

Our main results are presented in Section 3. We start by establishing an intertwining relationship,
through the Poisson kernel with parameter λx ą 0, between the generator of a CSBP (which may
be immortal, namely its branching mechanism ψ can be negative) and that of a specific R` ˆ Z`-
valued branching process pXλ, Lλq, see Theorem 3.1. We show then that a relationship of the form (1)
holds between Pt the semigroup of pXλ, Lλq and Qt the semigroup of the CSBPpψq, see Theorem 3.4.
The process pLλt , t ě 0q is the so-called skeleton. The decomposition of the CSBP follows from an
application of Pitman-Rogers theorem, see Theorem A, and states the following: if Xλ starts from
x ą 0 and the initial distribution of the skeleton Lλ has a Poisson law with parameter λx, the first
coordinate projection Xλ is a CSBPpψq started from x and for any t ě 0, the law of Lλt , conditionally
on Xλ

t , is Poisson with parameter λXλ
t .

The dynamics of pXλ, Lλq depends on whether λ ą ρ, λ “ ρ or λ ă ρ. When λ “ ρ, we recover the
two-type process studied in [BFM08] for which the skeleton is the prolific discrete tree. When λ ą ρ, a
death term arises along the skeleton and various results from [DW07] are reobtained. The intertwining
approach also enables us to investigate the setting λ ă ρ, the decomposition here involves the Esscher
transform at the left of ρ, a scenario that, to our knowledge, has not been previously studied. As we
shall see, there is a significant change in the dynamics: the skeleton is no longer autonomous, and the
continuous mass now generates discrete-type individuals through a proportional birth term.
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Next, we observe that if the CSBP explodes without being killed, it does so simultaneously with
any of its skeletons, see Proposition 3.7. Last, we establish that, for any branching mechanism (in-
cluding the explosive and immortal ones), the skeletons, once rescaled by λ, converge weakly in the
Skorokhod topology toward the CSBP, as λ goes to 8, see Theorem 3.12.

Notation. We set R` :“ r0,8q and let N and Z` be respectively the sets of positive integers and
non-negative integers. Denote by C0pR`q and C0pR` ˆZ`q the spaces of continuous functions on R`

and R` ˆ Z`, respectively, that are vanishing at infinity. Denote by C2
0 pR`q, the functions that are

twice-differentiable with first two derivatives in C0pR`q. For any function f on R` ˆ Z`, such that
x ÞÑ fpx, ℓq P C2

0 pR`q, the first two derivatives with respect to x are denoted by f 1px, ℓq and f2px, ℓq.

2 Preliminaries

2.1 R` ˆ Z`-valued continuous-time branching processes

CSBPs have been introduced by Jirina [Jir58], Lamperti [Lam67a, Lam67b] and Silverstein [Sil68].
They are the scaling limits of Bienaymé-Galton-Watson processes and represent the random evolution
of a continuous population. Two-dimensional branching processes with continuous-state space R`ˆR`

have been defined by Watanabe [Wat69].
They are specific affine processes, see Duffie et al. [DFS03] and Caballero et al. [CGB17] and are

also known to be strong solutions to certain stochastic differentials equations with jumps, see Barczy
et al. [BLP15].

Two-type branching processes taking values in R` ˆ Z` do not form a subclass of the branching
processes with values in R2

` studied in [Wat69], for the same reason that branching processes taking
values in Z` do not form a subclass of the branching processes taking values in R` (the CSBPs): the
former may have jumps of size ´1, and not the latter.

The case where one component evolves in Z` is thus structurally distinct and, to our knowledge,
not reducible to any case studied in the literature.

While their general form will certainly not come as a surprise to the reader, they are central to
this article and might prove useful in other contexts. We therefore begin by presenting them in detail.

Let γ P R and b, σ, d, κ, k P R`. Let πpdy,dkq and ρpdy,dkq be two measures on R` ˆ Z`

such that
ż 8

0

p1 ^ y2qπpdy, t0uq `
ÿ

kě1

ż 8

0

πpdy,dkq ă 8,

ż 8

0

p1 ^ yq ρpdy, t0uq `
ÿ

kě1

ż 8

0

ρpdy,dkq ă 8. (2)

We call admissible such parameters. Define the operator

L fpx, ℓq :“ γxf 1px, ℓq ` bℓf 1px, ℓq `
σ2

2
xf2px, ℓq ´ κxfpx, ℓq ´ kℓfpx, ℓq (3)

` x
ÿ

kě0

ż

R`

`

fpx` y, ℓ` kq ´ fpx, ℓq ´ y1p0,1qpyqf 1px, ℓq
˘

πpdy,dkq

` ℓ
ÿ

kě0

ż

R`

pfpx` y, ℓ` kq ´ fpx, ℓqq ρpdy,dkq ` dℓ
`

fpx, ℓ´ 1q ´ fpx, ℓq
˘

,

with px, ℓq P R` ˆ Z` and f : px, ℓq ÞÑ fpx, ℓq a function in the space D:

D :“
!

f :px, ℓq P R` ˆ Z` ÞÑ fpx, ℓq P R, such that:

@ℓ P Z`, x ÞÑ fpx, ℓq P C2
0 pR`q, lim

xÑ8
x

`

|fpx, ℓq| ` |f 1px, ℓq| ` |f2px, ℓq|
˘

“ 0,

and @x P R`, lim
ℓÑ8

ℓ
`

|fpx, ℓq| ` |f 1px, ℓq| ` |f2px, ℓq|
˘

“ 0
)

. (4)
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Consider the one-point compactification of E :“ R` ˆ Z`,

E∆ :“
`

R` ˆ Z`

˘

Y t∆u, with ∆ :“ tpx, ℓq : x` ℓ “ 8u and set L fp∆q :“ 0.

Theorem 2.1. For any admissible parameters pγ, b, σ, κ, k, π, ρq, there exists a unique E∆-valued
càdlàg strong Markov process X “ pX,Lq, with cemetery state ∆, solution to the martingale problem

MPXpL ,Dq : @f P D,
ˆ

fpXtq ´

ż t

0

L fpXsqds, t ě 0

˙

is a martingale. (5)

Moreover, the semigroup of X satisfies for any px, nq, t ě 0 and pq, rq P p0,8q ˆ p0, 1q

Epx,nqre´qXtrLts “ e´xutpq,rqftpq, rqn, (6)

with t ÞÑ Ftpq, rq :“ putpq, rq, ftpq, rqq, the unique solution to the two-dimensional o.d.e

d

dt
Ftpq, rq “ ´Ψ

`

Ftpq, rq
˘

, (7)

F0pq, rq “ pu0pq, rq, f0pq, rqq “ pq, rq , (8)

where Ψ “
`

Ψc,´Ψd
˘

, with for any q P p0,8q and r P r0, 1q,

Ψcpq, rq :“
ÿ

kě0

ż

R`

`

e´qyrk ´ 1 ` qy1p0,1qpyq
˘

πpdy,dkq ´ γq `
σ2

2
q2 ´ κ, (9)

Ψdpq, rq :“
ÿ

kě0

ż

R`

`

e´qyrk`1 ´ r
˘

ρpdy,dkq ´ bqr ` dp1 ´ rq ´ kr. (10)

Remark 2.2. The killing terms in (3) with parameters κ and k can be interpreted as single jumps to
the boundary 8. Indeed for any f P D,

´κxfpx, ℓq “ κx
`

fp8, ℓq ´ fpx, ℓq
˘

and ´ kℓfpx, ℓq “ kℓ
`

fpx,8q ´ fpx, ℓq
˘

.

Proposition 2.3. The semigroup pPtq of the process X satisfying (6) is Feller with absorbing state
∆. For all pq, rq P p0,8q ˆ p0, 1q, set fq,r : px, ℓq ÞÑ e´qxrℓ. The space

D :“ Vect tfq,r, q P p0,8q, r P p0, 1qu , (11)

satisfies PtD Ă D and is a core for the generator L of X. Moreover, X possesses the branching
property. Specifically, its transition kernel Pt

`

px, ℓq, ¨
˘

satisfies:

@x, y P r0,8q, @n,m P Z`, Pt
`

px` y, n`mq, ¨
˘

“ Pt
`

px, nq, ¨
˘

‹ Pt
`

py,mq, ¨
˘

, (12)

where ‹ stands for the convolution of measures.

Theorem 2.1 and Proposition 2.3 are established in Section 4. We call Ψ the joint branching
mechanism of X.

Remark 2.4. Any R` ˆ Z`-valued Markov process satisfying the branching property (12) and the
following condition on its semigroup

t ÞÑ Epx,nqre´qXtrLts is differentiable at 0,

will fall into the class studied here. We do not enter into this study here and refer for instance to
Gihman and Skorokhod’s book [GS83, Chapter V].

Theorem 2.1 covers the two classical settings, namely the discrete-state branching processes and
those in continuous-state space, as we now show. We recall some well-known facts about them. More
background can be found in the books by Harris [Har02], Kyprianou [Kyp14] and Li [Li22].
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2.1.1 One-dimensional discrete-state branching processes.

Let Ψd as in (10), with b ” 0 and a measure ρ shrinking to ρpdy,dkq “ δ0pdyqρdpdkq, for some finite
measure ρdpdkq on N. In this case there is no dependence on the variable q in Ψd and the function

φ : r0, 1q Q r Ñ Ψdp0, rq “ Ψdpq, rq “
ÿ

kě1

prk`1 ´ rqµpkq ` dp1 ´ rq ´ kr,

is the mechanism of a continuous-time Markov branching process with reproduction measure µ :“
dδ´1`ρd`kδ8. Furthermore in the case Ψc ” 0, the componentX in the process pX,Lq is degenerated
to the constant process and L is a classical discrete branching process with reproduction measure µ.
Notice that when k “ 0,

φ1p1´q “
ÿ

kPZ`Yt´1u

kµpkq “
ÿ

kPN
kµpkq ´ d P p´8,8s,

and L is supercritical if and only if φ1p1´q ą 0. We say that L is immortal if there is no death in its
dynamics, i.e. d ” 0. A necessary and sufficient condition for the process L to be non-explosive is
ş1 dx

|φpxq|
“ 8, see [Har48].

2.1.2 One-dimensional continuous-state branching processes

Let Ψc as in (9) with πpdy,dkq “ δ0pdkqνpdyq, for a certain Lévy measure ν on p0,8q, such that
ş8

0
p1 ^ y2qνpdyq ă 8. In this case there is no dependence on the variable r in Ψc, and the function

ψ : p0,8q Q q ÞÑ Ψcpq, 1q “ Ψcpq, rq “
σ2

2
q2 ´ γq `

ż 8

0

`

e´qy ´ 1 ` qy1p0,1qpyq
˘

νpdyq ´ κ, (13)

is the branching mechanism of a CSBP with parameters pσ
2

2 , γ, ν, κq. In this case the process L is
autonomous as its dynamics does not depend on the component X.

Furthermore in the case Ψd ” 0, the component L degenerates to a constant process and X is a
classical CSBPpψq. When κ “ 0, we recall that X is said to be supercritical if ψ1p0`q P r´8, 0q,
critical if ψ1p0`q “ 0 and subcritical when ψ1p0`q ą 0. The CSBP X is immortal, i.e. Xt ÝÑ

tÑ8
8 a.s.

if and only if ψ ď 0, see e.g. [Kyp14, Chapter 12].

Theorem 2.1 and Proposition 2.3 applied in this special setting ensure the following facts: the
CSBPpψq, X, is a r0,8s-valued càdlàg Feller process, with 8 as absorbing state and its generator is

Gfpxq :“
σ2

2
xf2pxq ` γxf 1pxq ` x

ż 8

0

`

fpx` yq ´ fpxq ´ yf 1pxq1p0,1qpyq
˘

νpdyq ´ κxfpxq, (14)

acting on

Dc :“
!

f P C2
0 : lim

xÑ8
x

`

|fpxq| ` |f 1pxq| ` |f2pxq|
˘

“ 0
)

. (15)

Denote by Qt the semigroup associated with X. Setting eqpxq :“ e´qx for all q ą 0 and x P r0,8q,
one has Geqpxq “ xψpqqeqpxq and

Qteqpxq “ e´xutpqq with
d

dt
utpqq “ ´ψputpqqq, u0pqq “ q.

Moreover, the space
Dc :“ Vectteqp¨q, q P p0,8qu (16)

is a core and the semigroup pQtq uniquely satisfies the backward Kolmogorov equation

@f P Dc,
d

dt
Qtf “ GQtf.
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When κ “ 0, we recall that X is said to be supercritical if ψ1p0`q ă 0, critical if ψ1p0`q “ 0 and
subcritical when ψ1p0`q ą 0. The CSBP X is immortal, i.e. Xt ÝÑ

tÑ8
8 a.s. if and only if ψ ď 0, see

e.g. [Kyp14, Chapter 12]. A necessary and sufficient condition for the continuous-state process X to
be non-explosive is

ş

0
dx

|ψpxq|
“ 8, see Grey [Gre74].

We now give natural conditions under which the first and second coordinates are autonomous
(discrete or continuous) branching processes.

Proposition 2.5 (Explosion and autonomous coordinates).

1. In case πpdy,dkq “ νpdyqδ0pdkq for a measure νpdyq on p0,8q such that
ş8

0
p1 ^ y2qνpdyq ă 8,

and under the condition
ş

0
dq

|Ψcpq,1q|
“ 8, the coordinate pLtq is a discrete branching process with

branching mechanism

Ψdp0, rq “
ÿ

kě1

prk`1 ´ rqρpR`, tkuq ` dp1 ´ rq ´ kr.

2. In case ρpdy,dkq “ δ0pdyqρdpdkq for a finite measure ρdpdkq on Z`, b “ 0, and under the

condition
ş1 dr

|Ψdp0,rq|
“ 8, the coordinate pXtq is a CBSP with branching mechanism

Ψcpq, 1q “
σ2

2
q2 ´ γq `

ż 8

0

`

e´qy ´ 1 ` qy1p0,1qpyq
˘

πpdy,Z`q ´ κ.

The integral conditions in Proposition 2.5 ensure that the autonomous coordinate does not explode,
hence preventing the situation where the other coordinate stops evolving by being in the cemetery
point. The proposition is proved at the end of Section 4.

3 Main results

Let ψ be a branching mechanism with quadruplet by pσ, γ, ν, κq, see (13). The largest root of ψ is
denoted by

ρ “ ψ´1p0q :“ suptx ą 0 : ψpxq ă 0u P r0,8s.

As explained in the Introduction, we shall see hereafter that the CSBPpψq hides a family of
R` ˆ Z`-valued branching processes.

For any λ P p0,8q, the Esscher transform of ψ at λ, is given by ψλp¨q :“ ψpλ ` ¨q ´ ψpλq, see
Figure 1. This defines a new branching mechanism with no killing term, i.e. ψλp0`q “ 0. Specifically
ψλ takes the explicit form

ψλpqq “
σ2

2
q2 ` ψ1pλqq `

ż 8

0

ye´λyνpdyq
`

e´qy ´ 1 ` qy
˘

. (17)

We denote by Gψλ the infinitesimal generator of the CSBPpψλq.

Define the Poisson kernel K:

Kpx, ℓq :“ e´λx pλxqℓ

ℓ!
,@x P r0,8q,@ℓ P Z`. (18)

For any function f : px, ℓq ÞÑ fpx, ℓq, belonging to D, we set

Kfpxq :“
8
ÿ

ℓ“0

e´λx pλxqℓ

ℓ!
fpx, ℓq, and Gψλfpx, lq :“ Gψλfℓpxq with fℓ : x ÞÑ fpx, lq.
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µ ρ
0

ψψλ(·) = ψ(λ+ ·)− ψ(λ)

λ1 λ2 λ3

−κ

Figure 1: A supercritical mechanism and its Esscher transforms

We will introduce an operator H, acting on D, that will satisfy an algebraic intertwining relation-
ship with the one-dimensional generator G via the kernel K.

To begin, we define an operator J that plays a central role. For any f P D and px, ℓq P R` ˆ Z`,
set

J fpx, ℓq :“ ℓ
ÿ

kě0

ż

p0,8q

`

fpx` y, ℓ` kq ´ fpx, ℓq
˘

spdy,dkq

`
σ2

2
λℓrfpx, ℓ` 1q ´ fpx, ℓqs ` σ2ℓf 1px, ℓq, (19)

with

spdy,dkq :“ ye´λy pλyqk

pk ` 1q!
νpdyq1Z`

pkq. (20)

Theorem 3.1 (Algebraic intertwining). Let H be the operator defined on D as follows:

i) When λ ě ρ, set

Hfpx, ℓq :“ ´κxfpx, ℓq ` Gψλfpx, ℓq ` J fpx, ℓq ` ℓ
ψpλq

λ
rfpx, ℓ´ 1q ´ fpx, ℓqs. (21)

ii) When λ ď ρ, set

Hfpx, ℓq :“ ´κxfpx, ℓq ` Gψλfpx, ℓq ` J fpx, ℓq ´ xψpλqrfpx, ℓ` 1q ´ fpx, ℓqs. (22)

In both cases, one has
KHfpxq “ GKfpxq, @x ě 0. (23)

The proof of Theorem 3.1 is provided in Section 5. Notice that in case i), ψpλq ě 0 while in case
ii) ψpλq ď 0. This ensures that the multiplicative factor preceding the last term in (21) and (22) is
non-negative.

The operator H given by (21)-(22) is the generator of a R` ˆ Z`-valued branching process X :“
pXλ, Lλq. We represent and explain further its dynamics in Figure 2. The jump measures ρ and π, as
they appear in the general form of the generator (3), are given as follows

ρpdy,dkq :“ spdy,dkq `
σ2

2
λδ0pdyqδ1pdkq (24)

and

πpdy,dkq :“

#

ye´λyνpdyqδ0pdkq if λ ě ρ,

ye´λyνpdyqδ0pdkq ´ ψpλqδ0pdyqδ1pdkq if λ ă ρ.
(25)

The following corollary gives an analytic expression for the joint branching mechanism Ψ “ pΨc,´Ψdq

of pXλ, Lλq, thereby elucidating its connection to ψ.
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Corollary 3.2 (Joint branching mechanism). For any λ ą 0,

ψ
`

q ` λp1 ´ rq
˘

“ Ψcpq, rq ` λΨdpq, rq, @pq, rq P p0,8q ˆ p0, 1q. (26)

Moreover,

iq When λ ě ρ : Ψcpq, rq “ ψλpqq ´ κ, (27)

Ψdpq, rq “
ÿ

kPZ`

ż

p0,8q

`

e´qyrk`1 ´ r
˘

ρpdy,dkq `
ψpλq

λ
p1 ´ rq ´ σ2qr (28)

“
ψ pq ` λp1 ´ rqq ´ ψpq ` λq ` ψpλq ` κ

λ
. (29)

iiq When λ ď ρ : Ψcpq, rq “ ψλpqq ´ κ´ ψpλqpr ´ 1q, (30)

Ψdpq, rq “
ÿ

kPZ`

ż

p0,8q

`

e´qyrk`1 ´ r
˘

ρpdy,dkq ´ σ2qr (31)

“
ψ pq ` λp1 ´ rqq ´ ψpq ` λq ` rψpλq ` κ

λ
. (32)

The proof of Corollary 3.2 is in Section 6.1.

Remark 3.3. Notice that when ρ P p0,8q, the map λ ÞÑ pΨc,Ψdq is continuous (for the uniform norm)
at λ “ ρ, since ψ is continuous and ψpρq “ 0.

For any λ ą 0 and x P r0,8q, denote by Poipλxq the Poisson law with parameter λx and notice
that Kpx, ℓq “ PpPoipλxq “ ℓq for all ℓ P Z`. Let pPtq be the semigroup of the branching process

pXλ, Lλq with mechanism pΨc,´Ψdq, and pQtq be the semigroup of a CSBPpψq. Call pFXλ

t q the usual
augmentation of the natural filtration of Xλ, see e.g. Revuz-Yor’s book [RY05, pages 45 and 93].

Theorem 3.4 (Intertwined semigroups and skeleton decomposition). For any function f P C0pR` ˆ

Z`q, one has

ΛPtfpxq “ QtΛfpxq, @t, x ě 0, (33)

where for all x P R̄` and ℓ P Z̄`,

Λ
`

x, px, ℓq
˘

:“ Kpx, ℓq1txă8u ` δ∆
`

x, ℓq1tx“8u. (34)

Moreover, if pXλ, Lλq has for initial law Xλ
0 “ x and Lλ0

law
“ Poipλxq, then the following holds:

1. The process Xλ is a CSBPpψq started from x.

2. For all ℓ P Z` and any pFXλ

t q-stopping time τ ,

PpLλτ “ ℓ|FXλ

τ q “ KpXλ
τ , ℓq a.s. on the set tXτ ă 8u.

Theorem 3.4 is established in Section 6.2 and relies on Pitman-Rogers theorem, see Theorem A.

Let us provide a more detailed explanation of the statement of Theorem 3.4. Consider first the case of
a supercritical branching mechanism ψ, i.e. ψ1p0`q ă 0, with no killing (κ “ 0) and with ρ P p0,8q.
Regarding the event of asymptotic extension, one has:

PxpXt ÝÑ
tÑ8

0q “ e´xρ “ PpLρ0 “ 0q P p0, 1q,

see e.g. [Kyp14, Theorem 12.7] for the first equality. In the case λ “ ρ, the process pXλ, Lλq coincides
with the process studied in [BFM08, pages 722-723]. It is a branching process with two types: the
prolific individuals, which are represented along the discrete component pLρt , t ě 0q and the non-prolific
ones, evolving in R`. Since ψpρq “ 0, the discrete branching process pLρt , t ě 0q has no death term,
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see (28), and is thus immortal. The event of having no prolific individuals in the CSBP, tLρ0 “ 0u, also
matches with the event of asymptotic extinction. Furthermore, the continuous dynamics is governed
by ψρ, which is the mechanism of a CSBPpψq conditioned on its extinction, see [Kyp14, Exercice 12.4].
Finally, Theorem 3.4 asserts that the projection onto the continuous component results in a CSBPpψq.

More generally, for any branching mechanism ψ such that ρ P r0,8q, when λ ě ρ, case i), the
branching mechanism ψλ is subcritical, see Figure 1. The CSBPspψλq, with generator Gψλ , are thus
converging towards 0 almost surely. Notice that Ψc, see (27) does not depend on the variable r. Thus,
the discrete component Lλ is autonomous. In particular, conditionally on tLλ0 “ 0u, Lλt “ 0 for all
t ě 0 a.s. and Xλ is a CSBP(ψλ) started from x.

We now explain the dynamics of the process X “ pXλ, Lλq for both scenarios: λ ą ρ and λ ă ρ,
see Figure 2. We call skeleton, the discrete component Lλ, and refer to the process X as a skeleton
decomposition.

λ < ρλ > ρ Lλ
0 = 2

Xλ
t Xλ

t

x

Figure 2: Schematic representation of the intertwined two-type branching process

The skeleton is depicted by lines, while the blue parts represent the continuous mass. The bubbles
encircled in black represent CSBPs(ψλ) that are grafted along each line. The CSBP starting from a
black square starts from a macroscopic mass governed by the Lévy measure1 spdy, t0uq “ ye´λyνpdyq.
The bubbles that stick to the skeleton only exist if σ ą 0. They arrive on each line at rate σ2 and
represent CSBPs started from an infinitesimal mass 2.

At any splitting time of the skeleton, say into k ě 1 new lines, a continuous mass, governed by
spdy, tkuq, is spread and starts evolving as a CSBP(ψλ). This is depicted by the blue shadow behind
the lines. In the case ψp0`q “ ´κ ă 0, the continuous mass is furthermore killed at rate κx. In other
words, we graft CSBPs with mechanism ψλ ´ κ. In any case, the skeleton and the grafted CSBPs
accomodate in a way so that the first coordinate process Xλ keeps the law of a CSBPpψq.

i) When λ ą ρ, a death term, with rate ψpλq

λ , in the skeleton Lλ emerges, see (28). The latter
has therefore leaves as represented in Figure 2. Heuristically, since ψ1

λp0`q “ ψ1pλq and ψpλq{λ
increase on rρ,8q, the greater λ is, the more subcritical are the CSBPpψλq and the more leaves
has the skeleton.

ii) When λ ă ρ, case ii), the dynamics changes as the continuous mass Xλ also begets discrete
individuals. It is acting on the skeleton through an additional linear birth term with positive

1One has
ş1

0
y spdy, t0uq ă 8

2A rigorous formalisation requires to work with the canonical measure, see e.g. [AD09]. We shall not need
it in our construction here
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rate ´ψpλq. In this setting, the skeleton is immortal (it has no leaf) and is not autonomous, as
Ψc depends on the variable r, see (30).

Let µ :“ argminψ P r0,8s be the location of the minimum of ψ, see Figure 1. The branching
mechanism ψλ is subcritical, critical or supercritical when respectively λ ą µ, λ “ µ and λ ă µ.
When λ ă µ, not only does the continuous mass generate new lines, but the grafted CSBPs
must also be supercritical to ensure that the total continuous mass process Xλ retains the law
of the CSBPpψq.

Notice that when the CSBPpψq is immortal, i.e. it tends to 8 a.s., one has ρ “ µ “ 8 and only
the decomposition (ii), with supercritical grafted CSBPs, makes sense. A classical example in this
framework is the stable mechanism ψpλq “ ´cλα with α P p0, 1q, c ą 0.

Remark 3.5 (Conditional law of Xλ given Lλ). Let n ě 0 and let A be a Borel set. Since conditionally

on Xλ
t , L

λ
t

law
“ PoipλXλ

t q, we see that:

PpXλ
t P A|Lλt “ nq “

P
`

Xλ
t P A,Lλt “ n

˘

PpLλt “ nq
“

E
“

e´λXλt pXλ
t qn1ApXλ

t q
‰

E
“

e´λXλt pXλ
t qn

‰ .

Remark 3.6 (A one-dimensional intertwining). The identities (23) and (33) encapsulate an intertwin-
ing relationship between the CSBP and its skeleton alone. Let Gλ and Qλt denote the infinitesi-
mal generator and the semigroup of the process Lλ. For any bounded function f : Z` ÞÑ R`, set

Kfpxq “
ř

ℓě0 fpℓq pλxq
ℓ

ℓ! e´λx, one has for all x ě 0 and t ě 0,

KGλfpxq “ GKfpxq and KQλt fpxq “ QtKfpxq.

We emphasize that these identities alone do not establish any direct coupling between the processes
governed by the semigroups Qλt and Qt. In general, finding such a coupling is challenging - see
the pioneering article [DF90] and for instance [Mic20]. Within the framework of Theorem 3.4, the
intertwining relationship is directly related to a function (the projection on the first coordinate) and
Pitman-Rogers theorem, see Theorem A, applies.

As an application of Theorem 3.1, we now study the phenomenon of explosion of a CSBP.
Notice that for all λ P p0,8q, ψ1

λp0`q “ ψ1pλq P p´8,8q, the grafted CSBPs have thus finite mean.
In particular, none is exploding. In the case κ “ 0, if the CSBPpψq can explode, i.e.

ş

0
dx

|ψpxq|
ă 8,

see e.g. [Kyp14, Theorem 12.3], its explosion occurs simultaneously with any of its skeleton Lλ.
Heuristically, the only way to reach infinity by accumulation of large jumps is to graft CSBPs on an
infinite number of lines. This is stated in the next proposition whose proof will appeal Theorem 3.4.

Proposition 3.7 (Simultaneous explosion). If pXλ, Lλq has for initial law Xλ
0 “ x and Lλ0

law
“ Poipλxq,

then the following identity of events holds a.s.

tLλt “ 8u “ tXλ
t “ 8u, for all t ě 0.

In particular, when
ş

0
dx

|Ψpxq|
ă 8, explosion has positive probability and occurs simultaneously in the

CSBP(ψ), Xλ, and the skeleton Lλ.

Remark 3.8. Notice that the event of simultaneous extinction of both types is not almost sure, indeed

for any λ ą 0, when Lλ0
law
“ Poipλxq and Xλ

0 “ x, we have by Theorem 3.4-(2):

PpLλt “ 0q “ Ere´λXλt s ą PpXλ
t “ 0q, @t ě 0.

The proof of Proposition 3.7 is in Section 6.3.

We study now the family of skeletons, with λ ě ρ, and will establish that suitably renormalized,
they converge in the sense of Skorokhod, towards a CSBPpψq, see Theorem 3.12 below.

We start by providing explicitely the reproduction law of the autonomous skeletons. The following
formula can be found in [DW07, FFK19, LUB24] in the case κ “ 0. We will shed some light on the
calculations behind.
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Proposition 3.9 (Offspring distribution of skeletons). Assume λ ě ρ. In this case, the skeleton
pLλt , t ě 0q is autonomous and its branching mechanism is given by

φλprq :“ Ψdp0, rq “
1

λ

´

ψ
`

λp1 ´ rq
˘

` κ
¯

“ ψ1pλq

8
ÿ

k“´1

prk`1 ´ rqpλk , (35)

with ppλk , k ě ´1q the probability measure given by

pλ´1 “
1

λψ1pλq
ψpλq, pλ0 “ 0, pλk “

1

λψ1pλq

ˆ

σ2λ2

2
1tk“1u `

ż 8

0

e´λy pλyqk`1

pk ` 1q!
νpdyq

˙

,@k ě 1. (36)

The proof of Proposition 3.9 is in Section 7.1.

Remark 3.10. Notice that φ1
λp1´q “ ´ψ1p0`q. In particular, Lλ is (sub)critical if and only if the

CSBP(ψ) is (sub)critical. Observe also that when λ ă ρ, the formula (36) cannot define an offspring
distribution as at least one of the following holds ψ1pλq ă 0 or ψpλq ă 0, which violates the condition
pk ě 0 for all k. The formula (36) is reminiscent to the coalescence rates of ancestral lineages in CSBPs
backwards in time, see Foucart et al. [FMM19, Theorem 5.10] and Johnston and Lambert [JL23].

Remark 3.11 (Binomial intertwining). The family of continuous-time Galton-Watson processes pLλ, λ ě

ρq satisfies an intertwining relationship with one another through a binomial kernel. This can be seen
as a counterpart of the Bernoulli leaf coloring investigated in [DW07, Section 4.1]. Recall Gλ and Qλt ,
the generator and semigroup of Lλ. For all µ ą λ ą ρ and any bounded function f : Z` Ñ R, we have
for all n ě 0 and t ě 0,

GµBλ{µfpnq “ Bλ{µG
λfpnq and Qµt Bλ{µfpnq “ Bλ{µQ

λ
t fpnq

with Bλ{µfpnq :“
řn
k“0

`

n
k

˘

pλ{µqkp1 ´ λ{µqn´kfpkq.

The next theorem shows that for any branching mechanism ψ, the skeletons converge towards the
CSBPpψq in the Skorokhod sense.

Theorem 3.12. Let x P r0,8q. Denote by pXtpxq, t ě 0q a CSBPpψq starting from x, and let
pLλt pxq, t ě 0q be a discrete branching Markov process with mechanism φλ, see (35), starting from an
independent Poisson number of individuals with parameter λx. Then, as λ go to 8, we have,

ˆ

1

λ
Lλt pxq, t ě 0

˙

D

ùñ pXtpxq, t ě 0q. (37)

Theorem 3.12 has been established in [DW19] in the setting of non-immortal and non-explosive
CSBPs, i.e. ρ ă 8 and

ş

0
dx

|ψpxq|
“ 8 respectively. The main argument in [DW19] relies on a work of

Helland [Hel78] about random time-change transformations. We will follow here a different approach
allowing us to treat all CSBPs.

The proofs of Proposition 3.9 and Theorem 3.12 are given in Section 7.

Remark 3.13. The fact that we considered the continuous-time Galton-Watson processes Lλ with a
Poisson number of initial individuals simplifies many calculations. Note that by Theorem 3.4, Zλt has
a Poisson law with parameter λXt where X is a CSBPpψq. The convergence of the one-dimensional
law can therefore be seen as an application of the weak law of large numbers. The convergence in the
finite-dimensional sense stays true if one considers instead the processes pLλt {λ, t ě 0q with Lλ0 “ rλxs.
We refer the reader to [LG99, pages 20-21] for calculations in this direction.

4 Proofs of Theorem 2.1 and Proposition 2.3

In this section, we investigate the class of branching processes, potentially explosive, comprising one
continuous and one discrete component. The construction is made in three steps. First, we establish
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the existence of a càdlàg solution to the martingale problem MPXpL ,Dq (at this stage the process is
not yet known to be markovian). Second, we observe a duality relationship between the operator L
and a system of o.d.es through the functions indexed by pq, rq P p0,8q ˆ p0, 1q and defined by

fq,rpx, ℓq :“ e´qxrℓ, for all px, ℓq P E “ R` ˆ Z. (38)

We show existence and uniqueness of a global solution to this system. Last, standard results, see for
instance Ethier and Kurtz’s book [EK09, Chapter 4], will apply and ensure that the duality holds true
at the level of the one-dimensional laws, entailing uniqueness of the solution to the martingale problem
and consequently the strong Markov property. Recall ∆ “ tpx, ℓq : x` ℓ “ 8u the cemetery point.

Lemma 4.1. There exists a càdlàg solution pXtqtě0 “ pXt, Ltqtě0 to the martingale problem asso-
ciated to pL ,Dq, taking values in E Y t∆u and killed at the first explosion time, ζ :“ inftt ą 0 :
pXt´, Lt´q “ ∆ or pXt, Ltq “ ∆u.

Proof. We apply here [EK09, Theorem 5.4 page 199]. Recall the space of functions D defined in (4).
Notice that by definition C0pR` ˆ Zq “ tf continuous s.t. fpx, ℓq Ñ 0, as px, ℓq Ñ ∆u. We must first
check that L is a linear operator on C0pR` ˆ Zq, see [EK09, Page 8]. Plainly D Ă C0pR` ˆ Zq and
we only have to verify that the range of L , i.e. tL f : f P Du, is a subset of C0pR` ˆ Zq. Recall L
in (3). We focus on the term of small jumps, the others are treated along similar arguments:∣∣∣∣∣x ÿ

kě0

ż 1

0

`

fpx` y, ℓ` kq ´ fpx, ℓq ´ yf 1px, ℓq
˘

πpdy,dkq

∣∣∣∣∣
ď

ż 1

0

x
∣∣fpx` y, ℓq ´ fpx, ℓq ´ yf 1px, ℓq

∣∣πpdy, t0uq

`
ÿ

kě1

ż 1

0

x
∣∣fpx` y, ℓ` kq ´ fpx, ℓq ´ yf 1px, ℓq

∣∣πpdy,dkq.

Since f P D, the integrand in the first integral above is continuous in x and tends to zero as x` ℓ goes
to 8. It is moreover dominated by Cy2{2 with C :“ suppx,ℓqPE |f2px, ℓq|, which is integrable on p0, 1q

with respect to the measure πpdy, t0uq, see (2). Hence, by Lebesgue theorem, the first integral term is
continuous in x and vanishes. This is also true for the second integral term, since the measure πpdy,dkq,
restricted to R` ˆ N, is finite, see (2), and the integrand is continuous vanishing as px, ℓq Ñ ∆. We
conclude that L f P C0pR` ˆ Z`q.

We argue now that D is dense in C0pR` ˆ Z`q for the uniform norm. The linear span of the
functions fq,r, D “ Vect tfq,r, q ą 0, r ă 1u is a subset of D and forms a subalgebra of C0pR` ˆ Z`q,
that is separating R` ˆ Z`. Therefore by Stone-Weierstrass theorem, see e.g. [Rud76, Theorem 7.32
page 162], the latter is dense in C0pR` ˆ Z`q. Next, we show the positive maximum principle, see
[EK09, page 165], namely we check that for any f P D, if px0, ℓ0q P E “ R` ˆ Z` is such that
sup fpx, ℓq “ fpx0, ℓ0q ě 0, then

L fpx0, ℓ0q ď 0.

First, plainly since κ ě 0 and k ě 0, one has ´κx0fpx0, ℓ0q ď 0 and ´kℓ0fpx0, ℓ0q ď 0. Next, if
ℓ0 P Z` and x0 P p0,8q then fpℓ0 ` k, x0q ď fpℓ0, x0q, similarly fpℓ0 ` k, x0 ` yq ď fpℓ0, x0q and
necessarily f 1px0, ℓ0q “ 0, so that the compensation term and the drift term vanish. Last, if x0 “ 0,
then necessarily f 1p0, ℓ0q ď 0 and since b ě 0, the drift term is also non-positive. In both cases x0 ą 0
and x0 “ 0, the second derivative term in x0, coming from the diffusive part, is nonpositive since x0
is a maximum and σ ě 0.

The next lemma states an algebraic duality relationship for the operator L .

Lemma 4.2. For all px, ℓq P R` ˆ Z`, define on p0,8q ˆ p0, 1q, the map

gx,ℓ : pq, rq ÞÑ e´qxrℓ.
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One has

L fq,rpx, ℓq “ xe´qxrℓΨcpq, rq ` e´qxℓrℓ´1Ψdpq, rq (39)

“ ´Ψcpq, rq
B

Bq
gx,ℓpq, rq ` Ψdpq, rq

B

Br
gx,ℓpq, rq (40)

“ ´Ψ ¨ ∇gx,ℓpq, rq (41)

where Ψ “
`

Ψc,´Ψd
˘

.

Proof. Recall L in (3), one has

L fq,rpx, ℓq “ ´ γxqe´qxrℓ ´ bℓqe´qxrℓ `
σ2

2
xq2e´qxrℓ ´ κxe´qxrℓ ´ kℓe´qxrℓ

` x
ÿ

kě0

ż

R`

´

e´qpx`yqrℓ`k ´ e´qxrℓ ` y1p0,1qpyqqe´qxrℓ
¯

πpdy,dkq

` ℓ
ÿ

kě0

ż

R`

´

e´qpx`yqrℓ`k ´ e´qxrℓ
¯

ρpdy,dkq ` dℓ
`

e´qxrℓ´1 ´ e´qxrℓ
˘

looooooooooooomooooooooooooon

“dℓrℓ´1e´qxp1´rq

.

By rearranging everything in order to make appear Ψc and Ψd, as defined in (9) and (10), we get

L fq,rpx, ℓq “ xe´qxrℓΨcpq, rq ` e´qxℓrℓ´1Ψdpq, rq.

Using the facts that

xe´qxrℓ “ ´ B
Bq gx,ℓpq, rq and ℓe´qxrℓ´1 “ B

Brgx,ℓpq, rq,

we have finally

L fq,rpx, ℓq “ ´Ψcpq, rq
B

Bq
gx,ℓpq, rq ` Ψdpq, rq

B

Br
gx,ℓpq, rq.

Lemma 4.3. There exists a unique solution t ÞÑ Ftpq, rq :“
`

utpq, rq, ftpq, rq
˘

to

d

dt
utpq, rq “ ´Ψc

`

utpq, rq, ftpq, rq
˘

,
d

dt
ftpq, rq “ Ψd

`

utpq, rq, ftpq, rq
˘

(42)

u0pq, rq “ q, f0pq, rq “ r. (43)

Furthermore, for all t P r0,8q, r P p0, 1q and q P p0,8q,

0 ă utpq, rq ă 8 and 0 ă ftpq, rq ă 1.

Proof. All first partial derivatives of the function Ψpq, rq “ pΨcpq, rq,´Ψdpq, rqq are continuous and
bounded on domains of the form pa, bq ˆ pl, rq Ă p0,8q ˆ p0, 1q. This entails that Ψ is locally Lipschitz
on p0,8qˆp0, 1q, see e.g. [BR78, Chapter 6, page 174]. Cauchy-Lipschitz theorem ensures the existence
of a local solution. We now show that it is bounded below and above by positive and finite quantities.

We first find an upper bound for Ψc. Rewrite the integrand of (9) with the help of the identity

e´qyrk ´ 1 ` qy1p0,1qpyq “ e´qyrk ´ e´qy ` e´qy ´ 1 ` qy1p0,1qpyq, @y P p0,8q, k ě 0. (44)

Since e´qyrk´e´qy ď 0, e´qy´1 ď 0 and there is C ą 0 such that for all y P p0, 1q, 0 ď e´qy´1`qy ď

C pqyq
2

2 , we get

Ψcpq, rq ď
ÿ

kPN

ż

p0,8q

`

e´qy ´ 1 ` qy1p0,1qpyq
˘

πpdy,dkq ´ γq `
σ2

2
q2 ´ κ

ď
ÿ

kPN

ż

p0,1q

`

e´qy ´ 1 ` qy
˘

πpdy,dkq ´ γq `
σ2

2
q2

ď cσ,πq
2 ´ γq (45)
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with cσ,π :“ σ2

2 ` C
ş1

0
y2πpdy,Z`q. By comparison, we see from the o.d.e

d

dt
utpq, rq “ ´Ψc

`

utpq, rq, ftpq, rq
˘

that

utpq, rq ě
qγe´γt

γ `
qcσ,π

2

`

e´γt ´ 1
˘ ą 0.

We now show that ftpq, rq ă 1. Recall (10). Plainly e´qyrk`1´r “ r
`

e´qyrk´1
˘

ď 0 and b, d ě 0,
thus Ψdpq, rq ď dp1 ´ rq. Hence,

d

dt
ftpq, rq “ Ψdputpq, rq, ftpq, rqq ď d

`

1 ´ ftpq, rq
˘

.

By setting ktpq, rq “ 1´ftpq, rq, we get d
dtktpq, rq ě ´dktpq, rq, so ktpq, rq ě re´dt ą 0 and ftpq, rq ă 1

for all t ě 0.

It remains to establish that for all pq, rq P p0,8q ˆ p0, 1q,

utpq, rq ă 8 and ftpq, rq ą 0,@t ě 0.

Recall
d

dt
utpq, rq “ ´Ψc

`

utpq, rq, ftpq, rq
˘

with

´Ψc
`

q, r
˘

“ ´
ÿ

kě0

ż

R`

`

e´qyrk ´ 1 ` qy1p0,1qpyq
˘

πpdy,dkq ` γq ´
σ2

2
q2 ` κ

ď

ż

R`

`

1 ´ e´qy ´ qy1p0,1qpyq
˘

πpdy, t0uq `
ÿ

kě1

ż

R`

πpdy,dkq ` γq ` κ

ď

ż 8

1

πpdy, t0uq `
ÿ

kě1

ż

R`

πpdy,dkq ` γq ` κ “: cπ,κ ` γq

hence d
dtutpq, rq ď cπ,κ ` γutpq, rq, which in turn implies, recalling u0pq, rq “ q,

utpq, rq ď
pcπ,κ ` γqqeγt ´ cπ,κ

γ
. (46)

For any η P p0,8q, define udt pq, ηq such that

e´udt pq,ηq “ ftpq, e
´ηq. (47)

Set

Ψ̄dpq, ηq :“ eηΨdpq, e´ηq.

We see from the o.d.e (42) solved by ftpq, rq that

d

dt
udt pq, ηq “ ´Ψ̄d

`

utpq, e
´ηq, udt pq, ηq

˘

.
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By plugging r “ e´η in the expression (10) of Ψdpq, rq, we get

´Ψ̄d
`

q, η
˘

“

8
ÿ

k“0

ż

R`

`

1 ´ e´qye´ηk
˘

ρpdy,dkq ` bq ´ dpeη ´ 1q ´ k (48)

ď

ż

R`

`

1 ´ e´qy
˘

ρpdy, t0uq `

8
ÿ

k“1

ż

R`

ρpdy, tkuq ` bq

ď

ˆ
ż 1

0

yρpdy, t0uq ` b

˙

q `

ż 8

1

ρpdy, t0uq `

8
ÿ

k“1

ż

R`

ρpdy, tkuq “: cρ,1q ` cρ,2,

hence d
dtu

d
t pq, ηq “ cρ,1utpq, e

´ηq ` cρ,2, and given the bound (46) above on utpq, rq, we get

udt pq, ηq ď η ` cρ,1
pcπ,κ ` γqqeγt ´ γcπ,κt

γ2
` cρ,2t,

which ensures udt pq, ηq ă 8, and in turn, by (47), ftpq, rq ą 0.

Let pq, rq P p0,8q ˆ p0, 1q. We have just established that up to any time t ě 0, any solution
r0, ts Q s ÞÑ puspq, rq, fspq, rqq to (42) stays in a domain D Ă p0,8q ˆ p0, 1q. The function Ψ being
Lipschitz on such domain D, there is a unique solution to the equation up to time t. The latter being
arbitrary, the solution is global, namely it is defined on the whole half-line.

We now characterize the one-dimensional law of the solution pX,Lq with the help of t ÞÑ Ftpq, rq.

Lemma 4.4. For all pq, rq P p0,8q ˆ r0, 1q,

Epx,nqre´qXtrLts “ e´xutpq,rqftpq, rqn @px, nq P R` ˆ Z`,@t ě 0. (49)

Proof. The task here is to establish the duality relationship between the solution to MPpL ,Dq, pX,Lq

provided by Lemma 4.1, and the deterministic process t ÞÑ Ftpq, rq “ putpq, rq, ftpq, rqq. Having noticed
the algebraic relationship (41), it remains to apply [EK09, Theorem 4.11 page 192], and thus to verify
its condition (4.50). The latter shrinks here to the following. Let

g
`

px, ℓq, pu, fq
˘

:“ xΨcpu, fqe´uxf ℓ ` e´uxℓf ℓ´1Ψdpu, fq,

one has to check that for any T ą 0,

ST :“ sup
s,tďT

∣∣g`

pXs, Lsq, put, ftq
˘
∣∣ ,

is integrable, with put, ftq “ Ftpq, rq. Using the inequalities

xe´ux ď 1{u and ℓf ℓ “ ℓe´ℓ lnp1{fq ď 1{ lnp1{fq,

we get for all px, ℓq P R` ˆ Z`, all q P p0,8q, r P p0, 1q and all t ě 0

∣∣g`

px, ℓq, put, ftq
˘
∣∣ ď

∣∣∣∣Ψcput, ftqut

∣∣∣∣ `

ˇ

ˇ

ˇ

ˇ

Ψdput, ftq

ft lnp1{ftq

∣∣∣∣ .
According to Lemma 4.3, ut P p0,8q and ft P p0, 1q for all t. By continuity, their extrema on the
compact time interval r0, T s belongs to p0,8q and p0, 1q, therefore ST is bounded.

Proof of Theorem 2.1. It follows by applying [EK09, Theorem 4.2 page 184].

We establish now Proposition 2.3 and verify among other things the branching property of X.
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Proof of Proposition 2.3. We start by verifying the Feller property and exhibiting a core. Recall D
the space generated by the linear combinations of the functions fq,r. Since as t goes to 0, utpq, rq Ñ q
and ftpq, rq Ñ r, one has for any px, ℓq P R` ˆZ`, Ptfq,rpx, ℓq ÝÑ

tÑ0
fq,rpx, ℓq. Furthermore, D Ă D and

PtD Ă C0pR` ˆZ`q. Therefore, by density of D in C0pR` ˆZ`q, we see that for all f P C0pR` ˆZ`q,

Ptf P C0pR` ˆ Z`q and Ptfpx, ℓq ÝÑ
tÑ0

fpx, ℓq.

Last, since D is a subset of the domain of L , dense in C0pR` ˆ Z`q and PtD Ă D, this is a core, see
e.g. [Kal02, Proposition 19.9]. The branching property (12) readily follows from (6), indeed

Epx`y,n`mq

“

e´qXtrLt
‰

“ e´xutpq,rqftpq, rqne´yutpq,rqftpq, rqm

“ Epx,nq

“

e´qXtrLt
‰

Epy,mq

“

e´qXtrLt
‰

.

We now establish Proposition 2.5 where conditions are given for the coordinates of the bi-type
branching process pX,Lq to be autonomous.

Proof of Proposition 2.5. We only give the proof in case 1, since the two proofs are the same. We thus
assume that πpdy,dkq “ νpdyqδ0pdkq for a measure νpdyq on p0,8q such that

ş8

0
p1 ^ y2qνpdxq ă 8.

In this case, the map pq, rq ÞÑ Ψcpq, rq does not depend on the variable r and can therefore be simply
denoted by q ÞÑ Ψcpq, 1q. By (7), the map t ÞÑ utp0`, rq is solution of the o.d.e

d

dt
ut “ ´Ψcput, 1q, u0 “ 0.

The condition
ş

0
dx

|Ψcpx,1q|
“ 8 is necessary and sufficient for this o.d.e. to have no solution other than

the null function. Hence under this condition, utp0`, rq “ 0 for all t ě 0 and pLtq then satisfies for
any n P Z`,

EnrrLts “ ftp0`, rqn,

where ftp0`, rq is the unique solution to the o.d.e:

d

dt
ftp0`, rq “ ´Ψd

`

0`, ftp0`, rq
˘

, f0p0`, rq “ r,

meaning that pLtq is a discrete branching process with branching mechanism

φ : r0, 1q Q r Ñ Ψdp0`, rq “
ÿ

kě1

prk`1 ´ rqρpR`, tkuq ` dp1 ´ rq ´ kr.

5 Proof of Theorem 3.1

Let ψ be a branching mechanism, see (13). Recall the infinitesimal generator G of the CSBPpψq, see
(14). We will establish in this section the algebraic intertwining relationship (23) between G and H.
We start by identifying the triplet of the Esscher transform of ψ, ψλp¨q “ ψpλ ` ¨q ´ ψpλq, for any
λ ě 0, see (17).

Lemma 5.1. For any λ P r0,8q,

ψλpqq “
σ2

2
q2 `

ż

p0,8q

νpdyq e´λyre´qy ´1 ` qys ` ψ1pλqq,

with

ψ1pλq “ σ2λ´ γ `

ż

p0,1q

p1 ´ e´λyqyνpdyq ´

ż 8

1

νpdyqye´λy.
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Proof.

ψλpqq :“ ψpλ` qq ´ ψpλq (50)

“ σ2pλ` qq2{2 ´ γpλ` qq ´ pσ2λ2{2 ´ γλ
˘

`

ż

p0,8q

νpdyqre´pq`λqy ´1 ` pq ` λqy1p0,1qpyqs (51)

“
σ2

2
q2 `

ż

p0,8q

νpdyq e´λyre´qy ´1 ` qys ` pλσ2 ´ γqq (52)

`

˜

ż

p0,8q

νpdyqy1p0,1qpyq p1 ´ e´λyq ´

ż 8

1

ye´λyνpdyq

¸

q, (53)

“
σ2

2
q2 `

ż

p0,8q

νpdyq e´λyre´qy ´1 ` qys ` ψ1pλqq. (54)

Recall the Poisson kernel K with parameter λ in (18) and the space D, see (4). One can3 easily
check that for any f P D, Kf P Dc, see (15).

Recall the operator H in (21)-(22) and define

Rfpx, ℓq :“

#

ψpλq

λ ℓ rfpx, ℓ´ 1q ´ fpx, ℓqs , if λ ě ρ,

´ψpλqx rfpx, ℓ` 1q ´ fpx, ℓqs , if λ ď ρ.
(55)

Observe that the factor term in R lying in front of the incremental term, fpx, ℓ ´ 1q ´ fpx, ℓq or
fpx, ℓ` 1q ´ fpx, ℓq, is always non-negative. This will be important when interpreting those terms as
jump rates. At this stage of the study, at which an algebraic relation is targeted, this plays however
essentially no role. Indeed the following lemma shows that after Poissonization with parameter λx,
the form of the operator R does not depend on whether λ ď ρ or λ ą ρ. This will allow us to study
both cases simultaneously.

Lemma 5.2. For any λ P p0,8q,

KRfpxq “
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

`

´ ψpλqx
˘

rfpx, ℓ` 1q ´ fpx, ℓqs

“
ÿ

ℓě1

e´λx pλxqℓ

ℓ!

ψpλq

λ
ℓ rfpx, ℓ´ 1q ´ fpx, ℓqs .

Proof of Lemma 5.2.

ÿ

ℓě0

e´λx pλxqℓ

ℓ!
p´xψpλqq rfpx, ℓ` 1q ´ fpx, ℓqs

“ xψpλq
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
rfpx, ℓq ´ fpx, ℓ` 1qs

“ ψpλq
ÿ

ℓě0

1

λ
e´λx pλxqℓ`1

pℓ` 1q!
pℓ` 1q rfpx, ℓq ´ fpx, ℓ` 1qs

“
ψpλq

λ

ÿ

ℓě1

e´λx pλxqℓ

ℓ!
ℓ rfpx, ℓ´ 1q ´ fpx, ℓqs .

3see the forthcoming Equations (60)-(61) for the calculation of the two first derivatives.
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By linearity of the operator G, we can separate the study into its local and non-local parts. We
start therefore with the generator of the Feller diffusion.

5.1 The case of the Feller diffusion pΨpqq “ σ2

2
q2 ´ γqq

We focus here on the setting of a pure diffusive CSBP process. The integral term in G vanishes and

the branching mechanism shrinks to ψpqq “ σ2

2 q
2 ´ γq with γ P R. Notice that ψpλq

λ “ σ2

2 λ ´ γ,

ψ1pλq “ σ2λ´ γ and ρ “
2γ
σ2 _ 0. One has

Gψλfpx, ℓq “ Gψλfℓpxq “ x

„

σ2

2
f2px, ℓq ´ pσ2λ´ γqf 1px, ℓq

ȷ

.

Introduce the operator J L (the superscript L is for local):

J Lfpx, ℓq :“ σ2ℓf 1px, ℓq ` ℓ
σ2

2
λ rfpx, ℓ` 1q ´ fpx, ℓqs . (56)

One has
Hfpx, ℓq “ Gψλfpx, ℓq ` J Lfpx, ℓq ` Rfpx, ℓq.

We now establish that H intertwines G, namely we show that the following relationship holds:

GKfpxq “ KHfpxq.

To prove this, we shall expand the following expression

GKfpxq “ x

ˆ

σ2

2
pKfq2pxq ` γpKfq1pxq

˙

and compare it with

KHfpxq “
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

”

x
´σ2

2
f2px, ℓq ´ pσ2λ´ γqf 1px, ℓq

¯

loooooooooooooooooooooomoooooooooooooooooooooon

Gψλfpx,ℓq

ı

(57)

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

¨

˚

˚

˝

ℓσ2f 1px, ℓq ` ℓ
σ2

2
λ rfpx, ℓ` 1q ´ fpx, ℓqs

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

JLfpx,ℓq

˛

‹

‹

‚

(58)

`
ÿ

ℓě1

e´λx pλxqℓ

ℓ!

„

ℓ

ˆ

σ2

2
λ´ γ

˙ȷ

`

fpx, ℓ´ 1q ´ fpx, ℓq
˘

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

KRfpxq

. (59)

Expanding GKfpxq requires to compute the first two derivatives of the expression pKfqpxq:

pKfq1pxq “ λ
ÿ

ℓě0

e´λx

„

pλxqℓ´1

pℓ´ 1q!
´

pλxqℓ

ℓ!

ȷ

fpx, ℓq `
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
f 1px, ℓq. (60)

pKfq2pxq “ λ2
ÿ

ℓě0

e´λx

„

pλxqℓ´2

pℓ´ 2q!
´ 2

pλxqℓ´1

pℓ´ 1q!
`

pλxqℓ

ℓ!

ȷ

fpx, ℓq

` 2λ
ÿ

ℓě0

e´λx

„

pλxqℓ´1

pℓ´ 1q!
´

pλxqℓ

ℓ!

ȷ

f 1px, ℓq `
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
f2px, ℓq. (61)

Next, the expression for GKfpxq can be splitted into three terms, that we distinguish according to the
partial derivative of fpx, ℓq (zeroth, first or second) that is used:
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GKfpxq

“ x
σ2

2
λ2

ÿ

ℓě0

e´λx

„ˆ

pλxqℓ´2

pℓ´ 2q!
´ 2

pλxqℓ´1

pℓ´ 1q!
`

pλxqℓ

ℓ!

˙

` γλ

ˆ

pλxqℓ´1

pℓ´ 1q!
´

pλxqℓ

ℓ!

˙ȷ

fpx, ℓq (62)

` x
ÿ

ℓě0

e´λx

„

σ2λ

ˆ

pλxqℓ´1

pℓ´ 1q!
´

pλxqℓ

ℓ!

˙

` γ
pλxqℓ

ℓ!

ȷ

f 1px, ℓq (63)

` x

«

σ2

2

ÿ

ℓě0

e´λx pλxqℓ

ℓ!

ff

f2px, ℓq. (64)

In (64), the term in factor of f2px, ℓq identifies with the similar term in KHfpxq in (57) so there
is nothing to do here.

To transform (62), the idea is to separate it into three sums and reindex them in a convenient
manner. We rewrite (62) as

x
ÿ

ℓě0

e´λx

„

σ2

2
λ2

ˆ

pλxqℓ´2

pℓ´ 2q!
´

pλxqℓ´1

pℓ´ 1q!

˙

`
σ2

2
λ2

ˆ

pλxqℓ

ℓ!
´

pλxqℓ´1

pℓ´ 1q!

˙

` γλ

ˆ

pλxqℓ´1

pℓ´ 1q!
´

pλxqℓ

ℓ!

˙ȷ

fpx, ℓq.

Therefore

p62q

“ x
ÿ

ℓě0

e´λx

„

´
σ2

2
λ2

pλxqℓ

ℓ!
rfpx, ℓ` 1q ´ fpx, ℓqs `

σ2

2
λ2

pλxqℓ´1

pℓ´ 1q!
rfpx, ℓ` 1q ´ fpx, ℓqs

`γλ
pλxqℓ

ℓ!
rfpx, ℓ` 1q ´ fpx, ℓqs

ȷ

“ x
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

ˆ

γλ´
σ2

2
λ2

˙

rfpx, ℓ` 1q ´ fpx, ℓqs ` x
σ2

2
λ2

ÿ

ℓě0

e´λx pλxqℓ´1

pℓ´ 1q!
ℓ rfpx, ℓ` 1q ´ fpx, ℓqs .

“ x
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

ˆ

γλ´
σ2

2
λ2

˙

rfpx, ℓ` 1q ´ fpx, ℓqs

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

KRfpxq

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

σ2

2
λℓ rfpx, ℓ` 1q ´ fpx, ℓqs .

In the same way:

p63q “
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

„

σ2λx

ˆ

ℓ

λx
´ ℓ

˙

` γx

ȷ

f 1px, ℓq

“
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
σ2ℓf 1px, ℓq `

ÿ

ℓě0

e´λx pλxqℓ

ℓ!

`

γ ´ σ2λ
˘

xf 1px, ℓq.
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Recall J L and Gψλ . We get

GKfpxq “p62q ` p63q ` p64q

“KRfpxq `

KJLfpxq
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

ÿ

ℓě0

e´λx pλxqℓ

ℓ!

σ2

2
λℓ rfpx, ℓ` 1q ´ fpx, ℓqs `

ÿ

ℓě0

e´λx pλxqℓ

ℓ!
σ2ℓf 1px, ℓq

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

`

γ ´ σ2λ
˘

xf 1px, ℓq `
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

σ2

2
xf2px, ℓq

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

KGψλfpxq

“ K
`

R ` J L ` Gψλ
˘

fpxq

“ KHfpxq.

5.2 The case of pure jump CSBPs

We now deal with CSBP processes with no local part and assume σ “ γ “ 0. Define

JNLfpx, ℓq :“ ℓ
ÿ

kě0

ż

p0,8q

νpdyqy e´λy pλyqk

pk ` 1q!
rfpx` y, ℓ` kq ´ fpx, ℓqs. (65)

Notice that H “ c ` Gψλ ` JNL ` R, with cfpx, ℓq :“ ´κxfpx, ℓq. We are going to compute

GKfpxq “ x

ż

p0,8q

νpdyqrKfpx` yq ´Kfpxq ´ y1p0,1qpyqpKfq1pxqs ´ κxKfpxq. (66)

Plainly, ´κxKfpxq “ ´
ř8

ℓ“0
pλxq

ℓ

ℓ! κxfpx, ℓq “ Kpcfqpxq, so that the killing term in G matches with
a killing term along the continuous component of H. We now study the integrand in (66). Write the
Poisson kernel evaluated at x` y:

Kfpx` yq “
ÿ

ℓě0

e´λpx`yq pλpx` yqqℓ

ℓ!
fpx` y, ℓq

and its derivative evaluated at x:

pKfq1pxq “ ´
ÿ

ℓě0

λ e´λx pλxqℓ

ℓ!
fpx, ℓq `

ÿ

ℓě1

λ e´λx pλxqℓ´1

pℓ´ 1q!
fpx, ℓq `

ÿ

ℓě0

e´λx pλxqℓ

ℓ!
f 1px, ℓq.

The expression for xrKfpx ` yq ´ Kfpxq ´ y1p0,1qpyqpKfq1pxqs then splits in three basic blocks that
are:

xrKfpx` yq ´Kfpxq ´ y1p0,1qpyqpKfq1pxqs (67)

“
ÿ

ℓě0

e´λx x

„

e´λy pλpx` yqqℓ

ℓ!
fpx` y, ℓq ´

pλxqℓ

ℓ!
fpx, ℓq

ȷ

(68)

´ xy1p0,1qpyq

«

´
ÿ

ℓě0

λ e´λx pλxqℓ

ℓ!
fpx, ℓq `

ÿ

ℓě1

λ e´λx pλxqℓ´1

pℓ´ 1q!
fpx, ℓq

ff

(69)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xy1p0,1qpyqf 1px, ℓq. (70)
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We expand (68) using Newton binomial formula :

ÿ

ℓě0

e´λx x

«

e´λy
λℓ

ř

0ďkďℓ

`

ℓ
k

˘

xℓ´kyk

ℓ!
fpx` y, ℓq ´ pe´λy `1 ´ e´λyq

pλxqℓ

ℓ!
fpx, ℓq

ff

“
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
x e´λyrfpx` y, ℓq ´ fpx, ℓqs (71)

`
ÿ

ℓě1

ÿ

1ďkďℓ

e´λx pλxqℓ`1´k

pℓ` 1 ´ kq!
pℓ` 1 ´ kqy e´λy pλyqk´1

k!
fpx` y, ℓq (72)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xp1 ´ e´λyqfpx, ℓq. (73)

The second term (72) can be rewritten by a reindexation of the double sum as follows:

ÿ

ℓě1

ÿ

1ďkďℓ

e´λx pλxqℓ`1´k

pℓ` 1 ´ kq!
pℓ` 1 ´ kqy e´λy pλyqk´1

k!
fpx` y, ℓq

“
ÿ

ℓě0,kě0

e´λx pλxqℓ

ℓ!
ℓy e´λy pλyqk

pk ` 1q!
fpx` y, ℓ` kq. (74)

Recollecting our findings so far, one has

xrKfpx` yq ´Kfpxq ´ y1p0,1qpyqpKfq1pxqs

“
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
x e´λyrfpx` y, ℓq ´ fpx, ℓqs (75)

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

ÿ

kě0

y e´λy pλyqk

pk ` 1q!
fpx` y, ℓ` kq (76)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xp1 ´ e´λyqfpx, lq (77)

´ xy1r0,1spyq

˜

´
ÿ

ℓě0

λ e´λx pλxqℓ

ℓ!
fpx, ℓq `

ÿ

ℓě1

λ e´λx pλxqℓ´1

pℓ´ 1q!
fpx, ℓq

¸

(78)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xy1r0,1spyqf 1px, lq. (79)

Reordering the terms by gathering (75) and (79), (76) with the second part of (78) and (77) with the
first part, we get:
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xrKfpx` yq ´Kfpxq ´ y1p0,1qpyqpKfq1pxqs

“
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
x e´λyrfpx` y, ℓq ´ fpx, ℓqs (80)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xy1p0,1spyqf 1px, ℓq (81)

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

ÿ

kě0

y e´λy pλyqk

pk ` 1q!
fpx` y, ℓ` kq (82)

´
ÿ

ℓě1

λ e´λx xy1r0,1spyq
pλxqℓ´1

pℓ´ 1q!
fpx, ℓq (83)

´
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
xp1 ´ e´λy ´λy1r0,1spyqqfpx, ℓq. (84)

Equation (81) can be rewritten as

p81q “ ´x
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

`

e´λy `1 ´ e´λy
˘

y1p0,1spyqf 1px, ℓq

“ ´x
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

`

e´λy y1p0,1spyqf 1px, ℓq ` p1 ´ e´λyqy1p0,1spyqf 1px, ℓq
˘

.

Integrating (80)+(81) with respect to ν yields

x
ÿ

ℓě0

e´λx pλxqℓ

ℓ!

ż

p0,8

e´λy νpdyq
`

fpx` y, ℓq ´ fpx, ℓq ´ y1p0,1spyqf 1px, ℓq
˘

`ψ1pλqf 1px, ℓq “ KGψλfpxq.

Notice that

p83q “ ´
ÿ

ℓě0

e´λxy1p0,1qpyqℓ
pλxqℓ

ℓ!
fpx, ℓq.

Using the following identity

y e´λy
ÿ

kě0

pλyqk

pk ` 1q!
“ e´λy 1

λ

ÿ

kě1

pλyqk

k!
“

1

λ
p1 ´ e´λyq.

one can rewrite (82)+(83) as follows:

p82q ` p83q “
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

«

ÿ

kě0

y e´λy pλyqk

pk ` 1q!
fpx` y, ℓ` kq ´ y1p0,1spyqfpx, ℓq

ff

(85)

“
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

ÿ

kě0

y e´λy pλyqk

pk ` 1q!
pfpx` y, ℓ` kq ´ fpx, ℓqq (86)

`
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

ˆ

1 ´ e´λy

λ
´ y1p0,1spyq

˙

fpx, ℓq (87)

“ p86q ` x
ÿ

ℓ1ě0

e´λx pλxqℓ
1

ℓ1!

“

1 ´ e´λy ´λy1p0,1spyq
‰

fpx, ℓ1 ` 1q. (88)
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We sum (82)+(83)+(84) and obtain:

p82q ` p83q ` p84q “ p86q ´ x
`

e´λy ´1 ` λy1p0,1spyq
˘

ÿ

ℓě0

e´λx pλxqℓ

ℓ!
rfpx, ℓ` 1q ´ fpx, ℓqs. (89)

By integrating with respect to ν, the term (86), one has

ÿ

ℓě0

e´λx pλxqℓ

ℓ!
ℓ

ÿ

kě0

ż

p0,8q

νpdyqy e´λy pλyqk

pk ` 1q!
rfpx` y, ℓ` kq ´ fpx, ℓqs,

and we recognize the cross jump term JNLfpx, ℓq, see (65).

By integrating with respect to ν, the second part of the right-hand side in (89), we get

´xψpλq
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
rfpx, ℓ` 1q ´ fpx, ℓqs “ KRfpxq. (90)

Finally, we have established

GKfpxq “ K
`

c ` Gψλ ` JNL ` R
˘

fpxq “ KHfpxq.

Proof of Theorem 3.1. Only remains to gather the diffusive part and the jump part, this is a direct
consequence of linearity and the fact that J L ` JNL “ J . One has indeed

H “ c ` Gψλ ` J L ` JNL ` R,

thus
KHf “ K

`

c ` Gψλ ` J L ` JNL ` R
˘

f “ GKf.

6 Proofs of Corollary 3.2, Theorem 3.4 and Proposition 3.7

Let ψ be a branching mechanism. Let λ ą 0 and pXλ, Lλq be the two-type branching process with
generator H, see (21) and (22). We start by studying the joint branching mechanism Ψ “ pΨc,Ψdq

and then establish the skeleton decomposition, that is to say Theorem 3.4. Proposition 3.7 about the
explosion will be a consequence and is proved at the end of the section. We stress to the reader that
the proof of Theorem 3.4 does not appeal to Corollary 3.2 but only to Theorem 3.1 and Theorem 2.1.

6.1 Proof of Corollary 3.2: study of the joint branching mechanism

Notice that Ψ depends on λ. For any q P p0,8q, define on r0,8q, the map eqpxq :“ e´qx. The
identities (27) and (30):

Ψcpq, rq “ ψλpqq ´ κ if λ ě ρ and Ψcpq, rq “ ψλpqq ´ ψpλqpr ´ 1q ´ κ if λ ă ρ,

follows readily from the definition of the generator H, see (21)-(22) and the fact that Gψλeqpxq “

xψλpqqeqpxq “ ´ψλpqq d
dq eqpxq. The extra birth term when λ ă ρ comes from the last term in (22).

The expression for Ψd given by (28)-(31) according whether λ ě ρ or λ ă ρ follows by definition of the
measure ρpdy,dkq. The extra death term when λ ě ρ comes from the last term in (21). The identity

ψ
`

q ` λp1 ´ rq
˘

“ Ψcpq, rq ` λΨdpq, rq. (91)

is a consequence of the algebraic intertwining relationship (23) applied to the function fq,rpx, ℓq “

e´qxrℓ. Indeed, one has Kfq,rpxq “ e´pq`λp1´rqqx “ eq`λp1´rqpxq, hence on the one hand

GKfq,rpxq “ Geq`λp1´rqpxq “ xψ
`

q ` λp1 ´ rq
˘

eq`λp1´rqpxq.
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On the other hand, recall

Hfq,rpx, ℓq “ xΨcpq, rqe´qxrℓ ` e´qxℓrℓ´1Ψdpq, rq,

see (39), and thus

KHfq,rpxq “
ÿ

ℓě0

e´λx pλxqℓ

ℓ!
Hfq,rpx, ℓq

“ Ψcpq, rqxe´pλp1´rq`qqx ` e´qxΨdpq, rqe´λx d

dr
eλxr

“ xeq`λp1´rqpxq
`

Ψcpq, rq ` λΨdpq, rq
˘

.

Now the equality GKfq,r “ KHfq,r entails (91). The identities (29) and (32) follow readily by this
relationship and (27) and (30).

6.2 Proof of Theorem 3.4: intertwining of semigroups

Denote by pQtq the semigroup of a CSBPpψq. Call pPtq the semigroup of the process pXλ, Lλq.

Lemma 6.1 (Intertwining of semigroups). For all f P C0pR` ˆ Z`q,

KPtfpxq “ QtKfpxq, @t, x ě 0. (92)

Proof. Recall Proposition (2.3) and the definition of the cores D and Dc in (11) and (16) respectively.
Let f P D. Note that Kf P Dc and the map pt, xq ÞÑ QtpKfqpxq is the unique solution to the backward
Kolmogorov equation:

d

dt
QtKf “ GQtKf, Q0Kf “ Kf,

see Subsection 2.1.2. Similarly, the semigroup pPtq of X “ pXλ, Lλq satisfies the backward Kolmogorov
equation:

d

dt
Ptf “ LPtf, P0f “ f.

Proposition 2.3 ensures that Ptf P D Ă D. Then the algebraic relationship given by Theorem 3.1
ensures that for any t ě 0, KLPtf “ GKPtf . The derivative being in a uniform sense, one can
interchange it with the Poisson kernel K and we see that

d

dt
KPtf “ K

d

dt
Ptf “ KLPtf “ GKPtf.

Last, since KP0f “ Kf , by uniqueness of the solution of the backward equation solved by Qt, we
have for all t ě 0,

KPtf “ QtKf.

The fact that this holds for any f P C0pR` ˆ Z`q follows by density.

The intertwining of semigroups immediately extends to the kernel Λ defined in (34).

Lemma 6.2 (Intertwining of semigroups). For all f P C0pR` ˆ Z`q,

ΛPtfpxq “ QtΛfpxq, @t P R`, x P R` Y t8u. (93)

Proof. From the definition of Λ in term of K in (34), we get:

ΛPtfpxq “
ÿ

ℓPZ`

Λpx, px, ℓqqPtfpx, ℓq ` Λpx,∆qPtfp∆q “ 1r0,8qpxqKPtfpxq ` 1t8upxqfp∆q
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while

QtΛfpxq “ Qt
`

ÿ

ℓPZ`

Λpx, px, ℓqqfpx, ℓq ` Λpx,∆qfp∆q
˘

“ 1r0,8qpxqQtKfpxq ` 1t8upxqfp∆q

and (93) now follows from (92).

Proof of Theorem 3.4. The first statement is given by Lemma 6.1. The two other assertions follow
by applying Pitman-Rogers theorem, see Theorem A. Precisely, we set S “ pR` ˆ Z`q Y t∆u and
S1 “ R` Y t8u “ R̄`, then the map ϕ : S Ñ S1 and the kernel Λ from S1 to S are defined by:

ϕpx, ℓq :“ x, Λ
`

x, px, ℓq
˘

:“ Kpx, ℓq1r0,8qpxq ` δ∆
`

x, ℓq1t8upxq.

Last Pt and Qt are the Markov semigroups defined on S and S1 before Lemma 6.1, and Φ be defined
as the operator that acts on bounded measurable functions on S1 by right composition of ϕ, namely
Φpfq “ f ˝ ϕ. With these notations, ΛΦ is indeed the identity kernel on S1, since Λpx, ϕ´1pxqq “ 1.
Second, Lemma 6.1 together with Remark 7.3 ensure that ΛPt “ QtΛ is satisfied for each t ě 0, which
in turn, composing on the right by Φ ensures that Qt is indeed defined from Pt by Qt “ KPtΦ for each
t ě 0. The assumptions of Pitman-Rogers criterion, Theorem A, are thus met. The first statement of
Theorem 3.4 follows from Theorem A-(1). Its second statement follows by Theorem A-(2), see (100),
with A “ tℓu ˆ R̄`.

We now study the phenomenon of explosion.

6.3 Proof of Proposition 3.7: explosion along skeletons

Recall that our aim is to establish that when the CSBP Xλ explodes continuously (i.e. not by a
single jump to 8), it does simultaneously as any of its skeleton. We work under the assumption
ψp0q “ ´κ “ 0, so that no killing is allowed. Recall that the cemetery point of the process pXλ, Lλq

is ∆ “ tpx, ℓq : x` ℓ “ 8u. Since fq,rpx, ℓq “ e´qxrℓ ÝÑ
pq,rqÑp0,1q

1R`ˆZ`
px, ℓq and K1R`ˆZ`

“ 1R`
, we

see from (92) that
KpPt1R`ˆZ`

qpxq “ Qtp1R`
qpxq. (94)

At a probabilistic level, set P :“ Px,Poipλxq, define ζ :“ inftt ą 0 : pXλ
t´, L

λ
t´q “ ∆u and ζc :“ inftt ą

0 : Xλ
t´ “ 8u. By definition, one has ζ ď ζc a.s. and (94) entails the equality

Ppζ ą tq “ Ppζc ą tq, @t ą 0,

which in turn ensures that Ppζ “ ζcq “ 1. We now show that ζ “ ζd :“ inftt ą 0 : Lλt´ “ 8u.
Denote by ζ`

n :“ inftt ą 0 : Xλ
t ą nu, the first passage time above n. Notice that for all n ě 1,

ζ`
n ă ζc “ lim

nÑ8
Ò ζ`

n . By Theorem 3.4, conditionally on ζ`
n ă 8 and Xλ

ζ`
n
, Lλ

ζ`
n

has law PoipλXλ
ζ`
n

q.

Thus, for any ℓ ě 0,

P
`

Lλ
ζ`
n

ď ℓ|Xλ
ζ`
n

˘

“ e
´λXλ

ζ
`
n

ℓ
ÿ

k“0

pλXλ
ζ`
n

qk

k!
ď 2ℓe

´λ
2X

λ

ζ
`
n ď 2ℓe´nλ{2 a.s. on tζc ă 8u.

By taking expectation and then letting n go to 8, we see that for all ℓ P Z`

PpLλζc´ ď ℓ, ζc ă 8q “ 0.

We conclude that P-almost surely ζd ď ζc. Therefore, Ppζ “ ζdq “ 1 and the proof is achieved.

7 Proofs of Proposition 3.9 and Theorem 3.12

We study in this section the skeletons when λ ě ρ. Recall that in this case, they are autonomous.
We start by identifying their branching mechanisms. We establish next that once rescaled by λ they
converge in the Skorohod sense towards the CSBPpψq.
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7.1 Proof of Proposition 3.9: skeletons offspring distributions

First, by Corollary 3.2, we see, by letting q go to 0, in (29), that when λ ě ρ, Ψdp0, rq “
ψpλp1´rqq`κ

λ .
We now look for the offspring distribution. The form of Ψd in (28) entails

Ψdp0, rq “
ÿ

kě1

prk`1 ´ rq

ż 8

0

ye´λy pλyqk

pk ` 1q!
νpdyq `

σ2

2
λpr2 ´ rq `

ψpλq

λ
p1 ´ rq.

It remains to compute the total rate of branching. Namely

B :“
ÿ

kě1

ż 8

0

ye´λy pλyqk

pk ` 1q!
νpdyq `

σ2

2
λ`

ψpλq

λ
“: B1 `

σ2

2
λ`

ψpλq

λ
.

Plainly

B1 “
1

λ

ż 8

0

e´λy
8
ÿ

k“1

pλyqk`1

pk ` 1q!
νpdyq “

1

λ

ż 8

0

`

1 ´ e´λy ´ λye´λy
˘

νpdyq

“
1

λ

ˆ
ż 1

0

p1 ´ e´λy ´ λyqνpdyq `

ż 1

0

λyp1 ´ e´λyqνpdyq

`

ż 8

1

p1 ´ e´λyqνpdyq ´

ż 8

1

λye´λyνpdyq

˙

. (95)

One has
ψpλq

λ
“
σ2

2
λ´ γ `

1

λ

ˆ
ż 1

0

`

e´λy ´ 1 ` λy
˘

νpdyq `

ż 8

1

`

e´λy ´ 1
˘

νpdyq

˙

. (96)

Thus, adding (95) and (96) and canceling the common terms, we obtain

B “ B1 `
σ2

2
λ`

ψpλq

λ
“ σ2λ´ γ `

ż 1

0

yp1 ´ e´λyqνpdyq ´

ż 8

1

ye´λyνpdyq “ ψ1pλq.

We now establish Theorem 3.12.

7.2 Proof of Theorem 3.12: scaling limits of skeletons

Denote by r0,8s, the extended half-line endowed with the metric dpx, yq :“ |e´x´e´y|, with convention
e´8 “ 0. Call D the Skorohod space of r0,8s-valued càdlàg paths. Denote by Px the probability
law on D associated to the skeleton process pLλt , t ě 0q issued from a Poisson number of individuals:

Lλ0
law
“ Poipλxq.

Lemma 7.1. For all q P p0,8q,

Ex

”

e´qLλt {λ
ı

ÝÑ
λÑ8

e´xutpqq, uniformly in x P r0,8q.

Proof. Recall φλ in (35). Define fλt pqq :“ E
´

e´qLλt {λ|Lλ0 “ 1
¯

. One has

Ex

”

e´qLλt {λ
ı

“

8
ÿ

k“0

pλxqk

k!
e´λxE

”

e´qLλt {λ|Lλ0 “ k
ı

“

8
ÿ

k“0

`

λxfλt pe´q{λq
˘k

k!
e´λx

“ e´λx
`

1´fλt pe´q{λ
q

˘

. (97)
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The map t ÞÑ vλt pqq :“ λ
`

1 ´ fλt pe´q{λq
˘

satisfies the o.d.e

d

dt
vλt pqq “ ´λφλ

`

fλt pe´q{λq
˘

“ ´ψ
`

vλt pqq
˘

vλ0 pqq “ λ
`

1 ´ e´q{λ
˘

.

Therefore, by uniqueness,

vλt pqq “ ut
`

λp1 ´ e´q{λq
˘

, for all t ě 0.

By continuity of η ÞÑ utpηq, we see that vλt pqq ÝÑ
λÑ8

utpqq. Thus, for any x ě 0,

Ex

”

e´qLλt {λ
ı

ÝÑ
λÑ8

e´xutpqq.

It remains to establish the uniform convergence, and, as we shall see, its order can be determined as
well:

sup
xě0

∣∣∣Ex ”

e´qLλt {λ
ı

´ e´xutpqq
∣∣∣ “ sup

xě0

∣∣∣e´xutpλp1´e´q{λ
qq ´ e´xutpqq

∣∣∣
“ sup

xě0
e´xutpqq

∣∣∣∣e´x
`

utpλp1´e´q{λ
qq´utpqq

˘

´ 1

∣∣∣∣
ď sup

xě0
xe´xutpqq

∣∣∣ut ´

λp1 ´ e´q{λq

¯

´ utpqq

∣∣∣
“

1

utpqq

∣∣∣ut ´

λp1 ´ e´q{λq

¯

´ utpqq

∣∣∣
ď

1

utpqq

B

Bq
utpqq

´

q ´ λ
´

1 ´ e´q{λ
¯¯

“ op1{λq,

where op1{λq is a positive function g such that lim
λÑ8

λgpλq “ 0.

Denote by Q
1{λ
t the semigroup of pLλt {λ, t ě 0q under the probability laws pPx, x P r0,8qq. Recall

Qt the semigroup of the CSBPpψq. We denote below the supremum norm by } ¨ }8.

Lemma 7.2. For any f P C0pR̄`q,

}Q
1{λ
t f ´Qtf}8 ÝÑ

λÑ8
0.

Proof. Let f P C0pR̄`q and ϵ ą 0. By density, there exists g in Dc, the linear span of teqp¨q, q ą 0u,
such that }f ´ g}8 ď ϵ{4. Recall that Qteqpxq “ e´xutpqq. By Lemma 7.1, one can choose λ large

enough so that }Q
1{λ
t g ´Qtg}8 ď ϵ{2 and one has

}Q
1{λ
t f ´Qtf}8 “ }Q

1{λ
t f ´ Q

1{λ
t g ` Q

1{λ
t g `Qtg ´Qtf ´Qtg}8

ď 2}f ´ g}8 ` }Q
1{λ
t g ´Qtg}8 ď ϵ.

Proof of Theorem 3.12. This is obtained by combining Lemma 7.2 and [EK09, Theorem 2.5 p.167],
which states that uniform convergence of a family of Feller semigroups, together with the convergence
of the initial laws, entails the convergence in Skorohod’s sense of the associated processes.
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Appendix

Let pS,Sq, pS1,S 1q be two measurable spaces, with their respective set of bounded and measurable
functions denoted by bS and bS 1. Let pPtqtě0 be a Markov semigroup on pS,Sq, and ϕ : S Ñ S1 be
measurable. The action of ϕ by right-composition defines an operator Φ : bS 1 Ñ bS, f ÞÑ Φpfq :“
f ˝ ϕ. Denote by X the Markov process with semigroup pPtq and denote its image by the mapping ϕ,

ϕpXq :“ pϕpXtq, t ě 0q. Call FϕpXq,0
t “ σ

`

ϕpXsq, 0 ď s ď t
˘

the natural filtration generated by ϕpXq.

Let FϕpXq

t be its usual augmentation.

Theorem A (Pitman-Rogers criterion, Theorem 2 in [PR81]). Suppose there is a Markov kernel Λ
from pS1,S 1q to pS,Sq such that

• ΛΦ “ I, the identity kernel on S1.

• for each t ě 0, the Markov kernel Qt :“ ΛPtΦ from S1 to S1 satisfies the identity

ΛPt “ QtΛ. (98)

1. If X has initial distribution Λpy, ¨q, with y P S1, then for each t ě 0, A P S,

PpXt P A|FϕpXq,0
t q “ Λ

`

ϕpXtq, A
˘

a.s., (99)

holds, and ϕpXq is Markov with starting state y and transition semigroup pQtq. Additionally,

(99) again holds with FϕpXq,0
t replaced by FϕpXq

t .

2. If X has a.s. càdlàg sample paths, ϕpXq is Feller and x ÞÑ Λpx, ¨q is weakly continuous, then

for each FϕpXq

t stopping time T , it holds:

PpXT P A|FϕpXq

T q “ Λ
`

ϕpXT q, A
˘

a.s. on the event tT ă 8u. (100)

Only the second statement in point (1) and point (2) are formally new. We give a complete
proof of the theorem for the benefit of the reader. Regarding the second assumption, we stress that
any Markov kernel pQtq satisfying the intertwining relationship (98) necessarily satisfies, under the
assumption ΛΦ “ I, that Qt “ ΛPtΦ.

Proof. We first establish (1). Let y P S1. Given f P bS 1 and g P bS, and using that fpϕpxqq “ fpyq,
Λpy, .q-a.s., we get (6) as follows

ΛpΦfqgpyq “

ż

S

Λpy,dxqfpϕpxqqgpxq “

ż

S

Λpy,dxqfpyqgpxq “ pfΛgqpyq.

Now, for y P S1, the quantity ΛPtpΦfqg evaluated at y has to be interpreted as ΛPtpΦfqgpyq “
ş

S
Λpy,dxq

ş

S
Ptpx, dx

1qpfpϕpx1qqgpx1qq and, using that ΛPt “ QtΛ, we arrive at the following equality,
which corresponds to Eq (7) p. 574 in [PR81]:

pΛPtpΦfqgqpyq “ pΛPtqpfpϕqgqpyq

“ pQtΛqpfpϕqgqpyq

“ QtpΛpfpϕqgqqpyq

“ QtpΛppΦfqgqqpyq

“ QtpfΛgqpyq.

As for the induction step, Eq (8), setting hpxq “ Ptnpfn ˝ ϕ ¨ gqpxq, and assuming the property
holds at step n´ 1, we get:

ΛPt1pΦf1qPt2pΦf2q . . . PtnpΦfnqg “ ΛPt1pΦf1q . . . Ptn´1pΦfn´1qh

“ Qt1f1 . . . Qtn´1fn´1Λh

“ Qt1f1 . . . Qtn´1fn´1ΛPtnpfn ˝ ϕ ¨ gq

“ Qt1f1 . . . Qtn´1fn´1ΛPtnpΦpfnqgq

“ Qt1f1 . . . Qtn´1fn´1QtnpfnqΛg
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Now, writing EΛpy,.q for
ş

x
Λpy,dxqEx, we get:

EΛpy,.qrf1pϕpXt1qqf2pϕpXt1`t2qqfn`1pϕpXt1`...`tnqqgpXt1`...`tnqs “
`

ΛPt1pΦf1qPt2pΦf2qPtnpΦfnqg
˘

pyq

“
`

Qt1f1 . . . Qtn´1
fn´1QtnfnΛg

˘

pyq

implies, with g “ 1, that ϕ ˝ X starting from initial measure Λpy, .q is Markov with semi-group Qt,
while the identity:

EΛpy,.q

”

f1pϕpXt1qqf2pϕpXt1`t2qq . . . fnpϕpXt1`...`tnqqgpXt1`...`tnq

ı

“ EΛpy,.q

”

f1pϕpXt1qqf2pϕpXt1`t2qq . . . fnpϕpXt1`...`tnqq

ż

ΛpXt1`...`tn ,dxqgpxq

ı

and this in turn gives by a monotone class theorem that for each bounded or positive random variable

Z, measurable with respect to FϕpXq,0
t ,

EΛpy,.q

”

Z gpXtq

ı

“ EΛpy,.q

”

Z

ż

ΛpXt,dxqgpxq

ı

.

This entails that the conditional distribution of Xt given FϕpXq,0
t is ΛpXt,dxq. Let now Z be a positive

FϕpXq

t -measurable random variable. By definition of the augmented filtration, there are two FϕpXq,0
t -

measurable random variables Z 1, Z2 such that Z 1 ď Z ď Z2 and PΛpy,¨qpZ2 ´ Z 1 ą 0q “ 0. Hence,
EΛpy,¨qr1tZ2´Z1ą0ugpXtqs “ 0. With no loss of generality, assuming g non-negative, one has

EΛpy,¨qrZ 1gpXtqs ď EΛpy,¨qrZgpXtqs ď EΛpy,¨qrZ2gpXtqs.

The lower and upper bounds are PΛpy,¨q-a.s. equal to
ş

ΛpXt,dxqgpxq, which ends the proof of (1).
For statement (2). We start by considering a stopping time T taking values in a countable set D.

One has plainly,

1tTă8uEΛpy,¨qrgpXT q|FΦpXq

T s “ 1tTă8u

ÿ

dPD

1tT“duEΛpy,¨qrgpXdq|FΦpXq

d s

“ 1tTă8u

ÿ

dPD

1tT“du

ż

ΛpXd,dxqgpxq

“ 1tTă8u

ż

ΛpXT ,dxqgpxq.

Setting Tn :“ pr2nT s ` 1q{2n defines a sequence of stopping times taking their values in a countable
set and decreasing to T . By assumption, X has càdlàg sample paths, hence XTn ÝÑ

nÑ8
XT a.s. on

tT ă 8u. Assume g continuous bounded. Then by combining [RY05, Corollary (2.4), Chap. II] and
the weak continuity of the kernel y ÞÑ Λpy, ¨q, one gets:

1tTă8uEΛpy,¨q

“

gpXT q|
č

ně1

FΦpXq

Tn

‰

“ lim
nÑ8

1tTnă8u

ż

ΛpXTn ,dxqgpxq “ 1tTă8u

ż

ΛpXT ,dxqgpxq.

Since by assumption ϕpXq is Feller, the usual augmented filtration is right-continuous, see [RY05,
Proposition 2.10, p. 93], and

č

ně1

FΦpXq

Tn
“ FΦpXq

T` “ FΦpXq

T ,

see e.g. [RY05, Exercice 4.17, Chap.I] and finally (100) holds by a standard argument, see e.g. Billings-
ley’s book [Bil99, Theorem 1.2].
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Remark 7.3 (Restriction to compactly supported continuous functions). The identity (98) is an identity
between Markov kernels on S 1, or equivalently between operators on the class bS 1 of bounded mea-
surable functions on S1. Under the assumption that S1 is locally compact and separable, it is enough
to check that the two operators coincide on the class of compactly supported continuous functions by
the uniqueness part of Riesz theorem, see Rudin [Rud87, Theorem 2.14 p.40].

Remark 7.4 (Submarkovian intertwining). The setting where pPtq is a sub-Markovian semigroup only
can be recasted in the Markovian setting by the adjunction of cemetery points as follows. Precisely,
assume that all the assumptions of Theorem A hold except for the fact that pPtq and consequently
also pQtq are sub-Markovian. We extend ϕ by requiring ϕ̄ : S̄ :“ S Y tδu Ñ S̄1 :“ S1 Y tδu to satisfy
ϕ̄pδq “ δ1, and extend Λ to Λ̄ : S̄1 Ñ S̄ by requiring Λ̄pδ1, tδuq “ 1. The definitions of Pt and Qt are
accordingly modified to accommodate functions defined on δ and δ1 by setting P̄tfpδq “ fpδq for f P S̄
and Q̄tfpδ1q “ fpδ1q for f P S̄ 1. Then one easily checks that the three identities

Λ̄Φ̄ “ I, Q̄t “ Λ̄P̄tΦ̄, Λ̄P̄t “ Q̄tΛ̄

again hold (for the obvious definition of Φ̄ from ϕ̄, and as consequence, the identity (99) again holds
for A P S̄ with the extended kernel Λ̄. Last, ϕ̄ ˝ X̄ is Markov on S̄1 with semi-group Q̄t.
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