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Abstract

We revisit certain decompositions of continuous-state branching processes (CSBPs),
commonly referred to as skeletal decompositions, through the lens of intertwining of semi-
groups. Precisely, we associate to a CSBP X with branching mechanism ¢ a family of
R, x Z,-valued branching processes (X*, L), indexed by a parameter \ € (0,0), that
satisfies an intertwining relationship with X through the Poisson kernel with parameter
Az. The continuous component X* has the same law as X, while the discrete component
L*, conditionally on X}, has a Poisson distribution with parameter AX;'. The law of
(X*,L*) depends on the position of A\ within [0,00) = [0, p) U [p,©), where p is the
largest positive root of ©». When A > p, various well-known results concerning skeleton
decompositions are recovered. In the supercritical case (p > 0), when A\ < p, a novel
phenomenon arises: a birth term appears in the skeleton, corresponding to a one-unit
proportional immigration from the continuous to the discrete component. Along the way,
the class of continuous-time branching processes taking values in Ry x Z, is constructed.

Keywords. Continuous-state branching process, Intertwining, Esscher transform, Two-type branch-
ing process, Explosion

1 Introduction

This paper investigates how Continuous-State Branching Processes (CSBPs) can be decomposed into
R, x Z-valued branching processes using intertwining relationships between Markovian semigroups.
An intertwining relationship is a property of commutation of semigroups, or generators, through some
kernel. Formally, two semigroups P; and @Q; are said to be intertwined with respect to a kernel A if
they satisfy the following relationship

AP, = QiA, V= 0. (1)

Intertwining is intimately connected to the problem of determining whether a function of a Markov
process remains Markovian, as explored by Pitman and Rogers [PR81]. It also arises in Markovian
filtering, see e.g. Kurtz and Ocone [KO88], Kurtz [Kur98|, and Kurtz and Nappo [KNI11], where
Markov mapping theorems are established in the setting of martingale problems. Numerous examples
of intertwined Markov semigroups have been discovered, including those presented by Carmona et al.
[CPY98] and Pal and Shkolnikov [PS13].

The intertwining theory has been further developed in various directions, becoming a fundamental
tool in stochastic processes. They play for instance an important role in the study of strong stationary
times, see for instance Diaconis and Fill [DF90], Miclo [Mic20] and Arnaudon et al. [ACPM24].
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Intertwining likewise appears in analyzing certain interacting particle systems, see e.g. Floreani et al.
[ETRW24]. It also plays a key role in the so-called lookdown construction of the genealogy of branching
populations, see for instance Kurtz [Kurl8] and Etheridge and Kurtz [EK19] for recent works in this
direction.

The concept of decomposition of branching processes into “skeletons” dates back to Harris [Har4§],
who showed that any supercritical Bienaymé-Galton-Watson process with positive probability of ex-
tinction can be embedded in a two-type branching process, see also Athreya-Ney’s book [AN04, Chap-
ter I-Section 12]. In this framework, one type represents individuals with infinite line of descent (called
prolific or immortal individuals), while the other corresponds to mortal individuals. This decomposi-
tion has become a key tool in branching process theory. In the context of Continuous State Branching
Processes (CSBPs), the prolific individuals form a discrete branching process, while the non-prolific
ones form a continuum, as explored by Bertoin et al. [BEMOS], see also Lambert and Uribe Bravo,
[ILUB24], for a recent work in this direction in the context of splitting trees. The framework with spa-
tial motion has also garnered considerable attention, we refer for instance to Eckhoff et al. [EKW15],
Fekete et al. [FFK20] and the references therein.

In a seminal paper, Duquesne and Winkel [DW07] introduced a nested family of discrete trees
with edge lengths that is consistent under Poissonian sampling of the leaves; they proved that any
such family embeds a Lévy real tree encoding the genealogy of a CSBP. In a similar spirit, Abraham
and Delmas [ADI2] have constructed a tree-valued Markov process, where evolving skeletons serve
as the hprimary objects. See also Abraham and Delmas [AD09] and Abraham et al. [ADV10] for
closely related studies. More recently, these decompositions have been revisited using Poissonization
techniques applied to the stochastic differential equation with jumps solved by a CSBP, as discussed
by Fekete et al. [FFK19]. In all these works, Esscher transforms of the branching mechanism play a
central role. To summarize, given an eventually positive branching mechanism 1, and denoting by p
its largest positive root, a skeleton decomposition consists in “grafting” subcritical continuous masses
— evolving with a branching mechanism given by an Esscher transform of ¢ at the right of p — onto
a discrete branching process, so that the total continuous mass is a CSBP governed by 1.

Although not always highlighted in the works previously cited — see however [BEMOS|, Page 722]
and [LUB24, Page 1283] — a common feature in such skeletal decompositions lies on the fact that the
joint process encoding both the discrete component and the continuous mass satisfies the branching
property. Two-type branching processes taking values in R, x Z, come therefore naturally into play.
To our knowledge, no general treatment of this class of processes has been presented before. We
summarize their fundamental properties in Section [2] see Theorem and Proposition [2:3] and recall
well-known facts about one-dimensional branching processes. The R, x Z -valued branching processes
are constructed in Section [4] by using classical results from the theory of Markov processes.

Our main results are presented in Section[3] We start by establishing an intertwining relationship,
through the Poisson kernel with parameter Az > 0, between the generator of a CSBP (which may
be immortal, namely its branching mechanism ¢ can be negative) and that of a specific Ry x Z,-
valued branching process (X A L’\), see Theorem We show then that a relationship of the form (|1))
holds between P; the semigroup of (X*, L") and Q; the semigroup of the CSBP (7)), see Theorem [3.4
The process (L},t > 0) is the so-called skeleton. The decomposition of the CSBP follows from an
application of Pitman-Rogers theorem, see Theorem and states the following: if X* starts from
x > 0 and the initial distribution of the skeleton L* has a Poisson law with parameter Az, the first
coordinate projection X* is a CSBP(¢) started from x and for any ¢ > 0, the law of L}, conditionally
on X}, is Poisson with parameter AX}.

The dynamics of (X*, L*) depends on whether A > p, A = por A < p. When X\ = p, we recover the
two-type process studied in [BFMOS] for which the skeleton is the prolific discrete tree. When A > p, a
death term arises along the skeleton and various results from [DW07] are reobtained. The intertwining
approach also enables us to investigate the setting A < p, the decomposition here involves the Esscher
transform at the left of p, a scenario that, to our knowledge, has not been previously studied. As we
shall see, there is a significant change in the dynamics: the skeleton is no longer autonomous, and the
continuous mass now generates discrete-type individuals through a proportional birth term.



Next, we observe that if the CSBP explodes without being killed, it does so simultaneously with
any of its skeletons, see Proposition Last, we establish that, for any branching mechanism (in-
cluding the explosive and immortal ones), the skeletons, once rescaled by A, converge weakly in the
Skorokhod topology toward the CSBP, as A\ goes to o0, see Theorem [3.12

Notation. We set Ry := [0,00) and let N and Z; be respectively the sets of positive integers and
non-negative integers. Denote by Co(R,) and Co(Ry x Z, ) the spaces of continuous functions on R
and R, x Z,, respectively, that are vanishing at infinity. Denote by CZ(R, ), the functions that are
twice-differentiable with first two derivatives in Co(R4). For any function f on R, x Z., such that
x> f(z,0) € C3(R,), the first two derivatives with respect to = are denoted by f'(z,¢) and f”(z,?).

2 Preliminaries

2.1 R, x Z,-valued continuous-time branching processes

CSBPs have been introduced by Jirina [Jir58], Lamperti [Lam67al, [Lam67b] and Silverstein [SilG§].
They are the scaling limits of Bienaymé-Galton-Watson processes and represent the random evolution
of a continuous population. Two-dimensional branching processes with continuous-state space Ry xR
have been defined by Watanabe [Wat69].

They are specific affine processes, see Duffie et al. [DFS03] and Caballero et al. [CGBI7] and are
also known to be strong solutions to certain stochastic differentials equations with jumps, see Barczy
et al. [BLPI5].

Two-type branching processes taking values in R, x Z, do not form a subclass of the branching
processes with values in R? studied in [Wat69], for the same reason that branching processes taking
values in Z, do not form a subclass of the branching processes taking values in Ry (the CSBPs): the
former may have jumps of size —1, and not the latter.

The case where one component evolves in Z is thus structurally distinct and, to our knowledge,
not reducible to any case studied in the literature.

While their general form will certainly not come as a surprise to the reader, they are central to
this article and might prove useful in other contexts. We therefore begin by presenting them in detail.

Let v € R and b,0,d, k,k € Ry. Let w(dy,dk) and p(dy, dk) be two measures on R, x Z
such that

fo (1A y?) m(dy, {0}) + Y L r(dy, dk) < o0, fo (1A ) pdy, {0}) + Y fo pldy,dk) < o0, (2)

k=1 k=1
We call admissible such parameters. Define the operator
2
Lf(@,0) = vyaf'(z,0) +blf'(x,0) + %fvf"(ﬂf,é) —kxf(z, ) —kif(z, () (3)

te Jnh (f(@+y. 0+ k) = f@,0) =yl W) f' (2, 0)) 7(dy, dk)

k=0

ey JR (fz +y, 0+ k) = f(x,0)) p(dy, dk) + de(f (2, £ = 1) — f(z,0)),
k=0 Y5+

with (z,0) e Ry x Zy and f: (z,£) — f(x,£) a function in the space D:

D:= {f H(z,0) e Ry X Zy — f(z,0) € R, such that:
Vil e Z+7 Z = f(l‘,e) € 002(R+)7 zll_g}oxﬂf(xve)' + ‘f/(x7€)| + |f”($,€)|) = 07

and Va € Ry, lim 0(|f(z, 0)| + | (2, 0] + (2, 0]) =0} (4)



Consider the one-point compactification of F: =Ry x Z,
EA = (Ry x Zy) U {A}, with A := {(2,0) : x + £ = o0} and set Zf(A) := 0.

Theorem 2.1. For any admissible parameters (v,b,0,k,k, 7, p), there exists a unique E®-valued
cadlag strong Markov process X = (X, L), with cemetery state A, solution to the martingale problem

MPx(¥,D): VfeD, (f(Xt) - ft Zf(Xs)ds, t = 0) is a martingale. (5)
0

Moreover, the semigroup of X satisfies for any (z,n), t = 0 and (¢,7) € (0,0) x (0,1)
E(w,n) [eintTLt] = 67IUt(q’T)ft(Qa r)n’ (6)

with t — Fi(q,r) := (u(q, ), fr(q,7)), the unique solution to the two-dimensional o.d.e

S R(r) = ~(Flg,r), (7
FO(q,T') = (UO(an)’fO(an)) = (q,r) ) (8)

where W = (\Ilc7 —\I/d), with for any q € (0,00) and r € [0,1),

2
_ g
Vo(q,r) = ) f (e7™r* =1+ qylo1)(y)) m(dy, dk) = vg + 0" = 5, 9)
k>0 YR+
Ualg,r) = Z f (e*qyr’”l — 1) p(dy,dk) — bgr + d(1 —r) — kr. (10)
k=0 YR+

Remark 2.2. The Kkilling terms in with parameters x and k can be interpreted as single jumps to
the boundary co. Indeed for any f € D,

—/Wf(%f) = Iiil'(f(O(%f) - f($7£)) and — kgf($7£) = kf(f(:l%OO) - f(l',())
Proposition 2.3. The semigroup (P;) of the process X satisfying @ 1s Feller with absorbing state
A. For all (g,7) € (0,00) x (0,1), set for: (x,£) — e~ 9%r*. The space

D := Vect {fgr,q € (0,00),r € (0,1)}, (11)

satisfies PLD < D and is a core for the generator £ of X. Moreover, X possesses the branching
property. Specifically, its transition kernel Pt((ac,f), ) satisfies:

Vl‘,yE[0,00), vnvaZ-H Pt((x+y,n+m),~) :Pt((xvn)7’)*Pt((yam)a')a (12)
where * stands for the convolution of measures.

Theorem and Proposition [2.3] are established in Section @] We call ¥ the joint branching
mechanism of X.

Remark 2.4. Any R, x Z,-valued Markov process satisfying the branching property and the
following condition on its semigroup

t— E(I,n)[e_qxt rlt] is differentiable at 0,
will fall into the class studied here. We do not enter into this study here and refer for instance to
Gihman and Skorokhod’s book [GS83] Chapter V].

Theorem covers the two classical settings, namely the discrete-state branching processes and
those in continuous-state space, as we now show. We recall some well-known facts about them. More
background can be found in the books by Harris [Har02], Kyprianou [Kypl4] and Li [Li22].



2.1.1 One-dimensional discrete-state branching processes.

Let W4 as in (10), with b = 0 and a measure p shrinking to p(dy, dk) = do(dy)pa(dk), for some finite
measure pg(dk) on N. In this case there is no dependence on the variable ¢ in ¥, and the function

©:[0,1)3r > Uy(0,7r) = Uu(q,r) = Z (r* Y — ) (k) + d(1 —r) — kr,

k=1

is the mechanism of a continuous-time Markov branching process with reproduction measure pu :=
dd_1+pq+kds. Furthermore in the case ¥, = 0, the component X in the process (X, L) is degenerated
to the constant process and L is a classical discrete branching process with reproduction measure pu.
Notice that when k = 0,

Pa-) = D kuk) = Y ku(k) — de (~o0, 0],
keZi u{—1} keN

and L is supercritical if and only if ¢'(1—) > 0. We say that L is immortal if there is no death in its
dynamics, i.e. d = 0. A necessary and sufficient condition for the process L to be non-explosive is
{! Is;i(ii)l = 0, see [Har4g].

2.1.2 One-dimensional continuous-state branching processes

Let U, as in (9) with m(dy,dk) = do(dk)v(dy), for a certain Lévy measure v on (0,00), such that
Sgo(l A y?)v(dy) < co. In this case there is no dependence on the variable r in ¥.., and the function

2 0
¥ :(0,00)3q— U.(q,1) = Te(g,r) = %qQ —vq+ L (7% — 1+ qylo1)(y))v(dy) — K,  (13)

is the branching mechanism of a CSBP with parameters (%2,7, v,k). In this case the process L is

autonomous as its dynamics does not depend on the component X.

Furthermore in the case ¥; = 0, the component L degenerates to a constant process and X is a

classical CSBP(v)). When x = 0, we recall that X is said to be supercritical if ¢/(0+) € [—0,0),

critical if ¢/'(0+) = 0 and subcritical when ¢’(0+) > 0. The CSBP X is immortal, i.e. X} o 0 as.
—00

if and only if ¥ < 0, see e.g. [Kypl4, Chapter 12].

Theorem [2.1] and Proposition [2.3| applied in this special setting ensure the following facts: the
CSBP (), X, is a [0, o]-valued cadlag Feller process, with oo as absorbing state and its generator is

0'2 «©
Gf() = Faf'(x) +yaf (@) + j (Fx +y) = (@) = yf @)1 )r(dy) — szf(z),  (14)
acting on
Dei= {feC3: lma(|f(@)| + |1 (@) + [ (2)]) =0} (15)

Denote by Q; the semigroup associated with X. Setting eq(z) := e~9* for all ¢ > 0 and z € [0, ),
one has Ge, () = z9(q)eq(x) and

Queq(r) = e~ with Suy(g) = —(ue(a) wola) = ¢

Moreover, the space
D, := Vect{e,(+),q € (0,00)} (16)

is a core and the semigroup (@) uniquely satisfies the backward Kolmogorov equation
d
VfeD., EQtf =GO f
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When x = 0, we recall that X is said to be supercritical if ¢’(0+) < 0, critical if ¢'(0+) = 0 and
subcritical when ¢'(04) > 0. The CSBP X is immortal, i.e. X; o 0 as. if and only if ¥ < 0, see

e.g. |[Kypldl Chapter 12]. A necessary and sufficient condition for the continuous-state process X to
be non-explosive is § wd(—i)‘ = o0, see Grey [Gre74].

We now give natural conditions under which the first and second coordinates are autonomous
(discrete or continuous) branching processes.

Proposition 2.5 (Explosion and autonomous coordinates).

1. In case w(dy,dk) = v(dy)do(dk) for a measure v(dy) on (0,00) such that Sgo(l Ay v(dy) < oo,
and under the condition So % = 0, the coordinate (L) is a discrete branching process with
branching mechanism

Vq(0,7) = 2 (Tk+1 —r)p(Ry, {k}) +d(1 —r) —kr.
k=1

2. In case p(dy,dk) = do(dy)pa(dk) for a finite measure py(dk) on Zy, b = 0, and under the

condition Sl le;%igr)l = o0, the coordinate (X;) is a CBSP with branching mechanism

0'2 © _
Ue(q,1) = 3(12 —vq + f (7% — 1+ qylio)(y))m(dy, Zy) — k.
0

The integral conditions in Proposition|2.5|ensure that the autonomous coordinate does not explode,
hence preventing the situation where the other coordinate stops evolving by being in the cemetery
point. The proposition is proved at the end of Section [4]

3 Main results

Let ¢ be a branching mechanism with quadruplet by (o,v,v, k), see (13). The largest root of 1) is
denoted by

p=1"10) :=sup{z > 0:¢(z) < 0} € [0, 0].

As explained in the Introduction, we shall see hereafter that the CSBP(t) hides a family of
R, x Z,-valued branching processes.

For any A € (0,00), the Esscher transform of ¢ at A, is given by ¥a(:) := (A + ) — ¢¥(A), see
Figure [1l This defines a new branching mechanism with no killing term, i.e. 1, (0+) = 0. Specifically
1y takes the explicit form

o2

0rla) = G + 0 Wa+ [ v uld) (0 -1+ ). (17)

We denote by G¥* the infinitesimal generator of the CSBP (1), ).

Define the Poisson kernel K:

A y4
K(z,0) := ef)‘z( Z') Vo e [0,00),VleZ,. (18)

For any function f : (z,¢) — f(z,£), belonging to D, we set

0 T Y4
Kf(z):= Z e A (Aﬂ) f(z,0), and G¥* f(x,1) := G¥> fo(x) with fy : z — f(x,1).

£=0




IA() = (A +-) = (N (8

Figure 1: A supercritical mechanism and its Esscher transforms

We will introduce an operator H, acting on D, that will satisfy an algebraic intertwining relation-
ship with the one-dimensional generator G via the kernel K.

To begin, we define an operator J that plays a central role. For any f € D and (z,¢) e Ry x Z,
set

Jf(z,0) :zEZJ (fx+y,l+Ek)— f(z,0)s(dy, dk)
k>0 (0,0)

2

+ %Az[f(x,e +1) — fa, 0] + o20f (z, 0), (19)
with )
s(dy, dk) := ye ™ ( ,i f)l)!V(dy)lz+ (k). (20)

Theorem 3.1 (Algebraic intertwining). Let H be the operator defined on D as follows:
i) When A = p, set

Hf(z,l) = —kxf(x,0) + G f(x,0) + T f(x, 0) + £ @[f(x,e 1) — f(z,0]. (21)

ii) When X\ < p, set
Hf(x,0) := —kaf(e,0) + G f(w,0) + T f(2,6) —apN)[f (2, + 1) = fz, 0] (22)

In both cases, one has
KHf(x) =GKf(x), Yz = 0. (23)

The proof of Theorem is provided in Section 5} Notice that in case i), ¥(A) = 0 while in case
ii) ¥(A) < 0. This ensures that the multiplicative factor preceding the last term in and is
non-negative.

The operator H given by — is the generator of a R, x Z-valued branching process X :=
(X*,L*). We represent and explain further its dynamics in Figure 2l The jump measures p and T, as
they appear in the general form of the generator , are given as follows

ol k) £ s(ly, ) + A3 ()01 (dh) (24)
and _x .
_ Jye Mv(dy)do(dk) if A > p,
i) {ye-*wdy)éo(dk) — P(N)Goldy)6i (@) i A < p. #)

The following corollary gives an analytic expression for the joint branching mechanism ¥ = (¥, —U,)
of (X*, L), thereby elucidating its connection to ).



Corollary 3.2 (Joint branching mechanism). For any A > 0,

'l/)(q + /\(1 - T)) = \I/c<q, T) + )\\Ild(Qar)v V(QaT) € (Oa OO) X (07 1) (26)
Moreover,

7’) When A= p: \Ilc((L 7") = 1/}/\((1) sz (27)

_ V(A
Wy(q,r) = e~ Wrktl ) p(dy, dk) + ——2(1 —r) — o2qr 28
ila.7) ke%jw( ) pldy,dk) + S0 ot (29)
:w(q+A(1—r))—tﬁ(q+A)+w(A)+n' (29)
i) When A< p:  Welq,r) = ¢a(q) =k —p(A)(r — 1), (30)
Uy(q,r) = e~ Wkt ) p(dy, dk) — o2qr 31
a(q,7) k; J(Om)( ) pdy, dk) — o°q (31)
A g ) ) )

The proof of Corollary [3.2]is in Section

Remark 3.3. Notice that when p € (0,0), the map A — (¥., ¥,) is continuous (for the uniform norm)
at A = p, since v is continuous and ¥ (p) = 0.

For any A > 0 and « € [0,0), denote by Poi(Az) the Poisson law with parameter Az and notice
that K(z,¢) = P(Poi(Azx) = ¢) for all £ € Z,. Let (P,) be the semigroup of the branching process

(X, L*) with mechanism (¥,., —¥,), and (Q;) be the semigroup of a CSBP(¢). Call (}"tXA) the usual
augmentation of the natural filtration of X*, see e.g. Revuz-Yor’s book [RY05] pages 45 and 93].

Theorem 3.4 (Intertwined semigroups and skeleton decomposition). For any function f € Co(R4 x
Z.), one has
AP f(z) = QiAf(z), Vt,z =0, (33)

where for allz e Ry and (€ Z,
A(l‘, (z, f)) = K(x,ﬁ)l{x«n} +6a (x, 6)1{1:00}. (34)

Moreover, if (X*, L") has for initial law X = x and L} taw Poi(Az), then the following holds:
1. The process X* is a CSBP(1) started from x.

2. For all L€ Zy and any (]-'tXA)—stoppmg time T,
P(L} = €|]-'TX%) = K(X},0) a.s. on the set {X, < oo}.

Theorem [3.4] is established in Section [6.2] and relies on Pitman-Rogers theorem, see Theorem [A]

Let us provide a more detailed explanation of the statement of Theorem Consider first the case of
a supercritical branching mechanism 1, i.e. 9'(0+) < 0, with no killing (x = 0) and with p € (0, o).
Regarding the event of asymptotic extension, one has:
P, (X o 0) = e =P(L{ =0) € (0,1),
—00

see e.g. [Kypl4, Theorem 12.7] for the first equality. In the case A = p, the process (X*, L) coincides
with the process studied in [BFMOS| pages 722-723]. It is a branching process with two types: the
prolific individuals, which are represented along the discrete component (Lf, ¢ > 0) and the non-prolific
ones, evolving in Ry. Since 9(p) = 0, the discrete branching process (Lf,t > 0) has no death term,



see , and is thus immortal. The event of having no prolific individuals in the CSBP, {Lf = 0}, also
matches with the event of asymptotic extinction. Furthermore, the continuous dynamics is governed
by 1,, which is the mechanism of a CSBP (%)) conditioned on its extinction, see [Kyp14], Exercice 12.4].
Finally, Theorem asserts that the projection onto the continuous component results in a CSBP(¢).

More generally, for any branching mechanism 1 such that p € [0,00), when XA > p, case i), the
branching mechanism ) is subcritical, see Figure The CSBPs(vy), with generator G¥*, are thus
converging towards 0 almost surely. Notice that ¥, see does not depend on the variable r. Thus,
the discrete component L* is autonomous. In particular, conditionally on {L} = 0}, L} = 0 for all
t>0as. and X* is a CSBP(v) started from z.

We now explain the dynamics of the process X = (X*, L*) for both scenarios: A > p and A < p,
see Figure We call skeleton, the discrete component L*, and refer to the process X as a skeleton
decomposition.

x A>p L) =2 A<p
o= 2
7 Q /J L N
— VN

N

0
=/ Q =/
Q o - [

Figure 2: Schematic representation of the intertwined two-type branching process

The skeleton is depicted by lines, while the blue parts represent the continuous mass. The bubbles
encircled in black represent CSBPs(1)y) that are grafted along each line. The CSBP starting from a
black square starts from a macroscopic mass governed by the Lévy measur s(dy, {0}) = ye My (dy).
The bubbles that stick to the skeleton only exist if o > 0. They arrive on each line at rate o2 and
represent CSBPs started from an infinitesimal mass

At any splitting time of the skeleton, say into k£ > 1 new lines, a continuous mass, governed by
s(dy, {k}), is spread and starts evolving as a CSBP(¢,). This is depicted by the blue shadow behind
the lines. In the case ¥(0+) = —x < 0, the continuous mass is furthermore killed at rate xz. In other
words, we graft CSBPs with mechanism ) — x. In any case, the skeleton and the grafted CSBPs
accomodate in a way so that the first coordinate process X* keeps the law of a CSBP(v)).

i) When A > p, a death term, with rate @, in the skeleton L» emerges, see . The latter
has therefore leaves as represented in Figure 2| Heuristically, since ¢4 (0+) = ¢'(A) and ¥(\)/A
increase on [p, o), the greater \ is, the more subcritical are the CSBP (1)) and the more leaves
has the skeleton.

ii) When A < p, case ii), the dynamics changes as the continuous mass X* also begets discrete
individuals. It is acting on the skeleton through an additional linear birth term with positive

!One has Sé ys(dy, {0}) < o0
2 A rigorous formalisation requires to work with the canonical measure, see e.g. [ADQ9]. We shall not need
it in our construction here



rate —1(A). In this setting, the skeleton is immortal (it has no leaf) and is not autonomous, as
¥, depends on the variable r, see (30).

Let p := argminy € [0, 0] be the location of the minimum of v, see Figure [} The branching
mechanism v, is subcritical, critical or supercritical when respectively A > p, A = pand A < p.
When A < p, not only does the continuous mass generate new lines, but the grafted CSBPs
must also be supercritical to ensure that the total continuous mass process X* retains the law
of the CSBP(v).

Notice that when the CSBP(v) is immortal, i.e. it tends to oo a.s., one has p = p = o and only
the decomposition (ii), with supercritical grafted CSBPs, makes sense. A classical example in this
framework is the stable mechanism (\) = —eA* with « € (0,1),¢ > 0.

Remark 3.5 (Conditional law of X* given L*). Let n > 0 and let A be a Borel set. Since conditionally
on X7, L} e Poi(AX}), we see that:
P(X}e AL} =n)  E[e(X)"14(XD)]

P(X} e AL} =n) = —
e ALy =n) P(L} = n) E[e= X2 (X))

Remark 3.6 (A one-dimensional intertwining). The identities and encapsulate an intertwin-

ing relationship between the CSBP and its skeleton alone. Let G* and Q; denote the infinitesi-

mal generator and the semigroup of the process L*. For any bounded function f : Z, — R, set
£

Kf(z) = Ypao f(O)A2e=7 one has for all z > 0 and ¢ > 0,

KGf(x) = GK f(x) and KQ} f(x) = QK f(x).

We emphasize that these identities alone do not establish any direct coupling between the processes
governed by the semigroups Q7 and Q. In general, finding such a coupling is challenging - see
the pioneering article [DEF90] and for instance [Mic20]. Within the framework of Theorem the
intertwining relationship is directly related to a function (the projection on the first coordinate) and
Pitman-Rogers theorem, see Theorem [A] applies.

As an application of Theorem we now study the phenomenon of explosion of a CSBP.

Notice that for all A € (0, 00), ¥} (0+) = ¢'(\) € (—00, 0), the grafted CSBPs have thus finite mean.

In particular, none is exploding. In the case k = 0, if the CSBP(¢) can explode, i.e. So Wd(—fc)‘ < 0,

see e.g. [Kypl4, Theorem 12.3], its explosion occurs simultaneously with any of its skeleton L*.
Heuristically, the only way to reach infinity by accumulation of large jumps is to graft CSBPs on an
infinite number of lines. This is stated in the next proposition whose proof will appeal Theorem

Proposition 3.7 (Simultaneous explosion). If (X*, L*) has for initial law X} = x and L} aw Poi(Az),
then the following identity of events holds a.s.
(L} = o} = {X} = w0}, for allt > 0.

In particular, when So M}d(ifc)\ < o, explosion has positive probability and occurs simultaneously in the

CSBP(), X*, and the skeleton L*.
Remark 3.8. Notice that the event of simultaneous extinction of both types is not almost sure, indeed
for any A > 0, when L} faw Poi(Ar) and X§ = z, we have by Theorem (2):
P(L} = 0) = E[e X7 > P(X} = 0), V¢ > 0.
The proof of Proposition is in Section [6.3

We study now the family of skeletons, with A > p, and will establish that suitably renormalized,
they converge in the sense of Skorokhod, towards a CSBP (%)), see Theorem below.

We start by providing explicitely the reproduction law of the autonomous skeletons. The following
formula can be found in [DWOT7, [FEK19, [LUB24] in the case x = 0. We will shed some light on the
calculations behind.

10



Proposition 3.9 (Offspring distribution of skeletons). Assume X\ = p. In this case, the skeleton
(L}, t = 0) is autonomous and its branching mechanism is given by

oa(r) = Wa(0,7) = 1 (9O =) +5) =) D] (FF =k, (35)

k=—1
with (py,k = —1) the probability measure given by

1 1 o2 )2 o0 (/\y)kH
A= A =0 e — AT, J w22 p(d Vk>1. (36
yuan) )\w/()\)d}( )7 Po y  DPg >\’l/}/<)\) 2 {k=1} + 0 € (k + 1)|V( y) ) ( )
The proof of Proposition [3.9]is in Section [7-1}

Remark 3.10. Notice that ¢)(1—) = —¢/(0+). In particular, L* is (sub)critical if and only if the
CSBP(%)) is (sub)critical. Observe also that when A < p, the formula cannot define an offspring
distribution as at least one of the following holds 1'(A\) < 0 or ¥(\) < 0, which violates the condition
pi = 0 for all k. The formula is reminiscent to the coalescence rates of ancestral lineages in CSBPs
backwards in time, see Foucart et al. [FMMI19, Theorem 5.10] and Johnston and Lambert [JL23].

Remark 3.11 (Binomial intertwining). The family of continuous-time Galton-Watson processes (L}, \ >
p) satisfies an intertwining relationship with one another through a binomial kernel. This can be seen
as a counterpart of the Bernoulli leaf coloring investigated in [DW07, Section 4.1]. Recall G* and Q},
the generator and semigroup of L*. For all 1 > X\ > p and any bounded function f : Z, — R, we have
foralln >0 and t > 0,

G"By. f(n) = By,,G*f(n) and QY By, f(n) = By/.Q7 f(n)
with By, f(n) == 30 _o () Vw)* (A = M) f (k).

The next theorem shows that for any branching mechanism , the skeletons converge towards the
CSBP(%) in the Skorokhod sense.

Theorem 3.12. Let x € [0,00). Denote by (X¢(z),t = 0) a CSBP(v) starting from x, and let
(L} (x),t = 0) be a discrete branching Markov process with mechanism ¢y, see (3F), starting from an
independent Poisson number of individuals with parameter Ax. Then, as A go to o0, we have,

1
()\L?(:c),t > o> = (X(x),t > 0). (37)
Theorem has been established in [DW19] in the setting of non-immortal and non-explosive
CSBPs, i.e. p < o0 and So Wd(ifc)l = o0 respectively. The main argument in [DW19] relies on a work of
Helland [Hel78|] about random time-change transformations. We will follow here a different approach
allowing us to treat all CSBPs.
The proofs of Proposition [3.9] and Theorem [3.12] are given in Section [7}

Remark 3.13. The fact that we considered the continuous-time Galton-Watson processes L* with a
Poisson number of initial individuals simplifies many calculations. Note that by Theorem [3.4) Z} has
a Poisson law with parameter AX; where X is a CSBP(¢)). The convergence of the one-dimensional
law can therefore be seen as an application of the weak law of large numbers. The convergence in the
finite-dimensional sense stays true if one considers instead the processes (L;'/\,t > 0) with Ly = [Az].
We refer the reader to [LG99, pages 20-21] for calculations in this direction.

4 Proofs of Theorem [2.1] and Proposition

In this section, we investigate the class of branching processes, potentially explosive, comprising one
continuous and one discrete component. The construction is made in three steps. First, we establish
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the existence of a cadlag solution to the martingale problem MPx (.Z, D) (at this stage the process is
not yet known to be markovian). Second, we observe a duality relationship between the operator .#
and a system of o.d.es through the functions indexed by (g,r) € (0,0) x (0,1) and defined by

for(x,0) := e 7t for all (v,{) e E =R, x Z. (38)

We show existence and uniqueness of a global solution to this system. Last, standard results, see for
instance Ethier and Kurtz’s book [EK09, Chapter 4], will apply and ensure that the duality holds true
at the level of the one-dimensional laws, entailing uniqueness of the solution to the martingale problem
and consequently the strong Markov property. Recall A = {(z,¢) : © + ¢ = o0} the cemetery point.

Lemma 4.1. There exists a cadlag solution (Xi)i=0 = (X¢, Lt)i=0 to the martingale problem asso-
ciated to (£, D), taking values in E U {A} and killed at the first explosion time, ¢ := inf{t > 0 :
(Xt_,Lt_) =A or (Xt,Lt) = A}

Proof. We apply here [EK09, Theorem 5.4 page 199]. Recall the space of functions D defined in .
Notice that by definition Co(Ry x Z) = {f continuous s.t. f(z,¢) — 0, as (z,f) — A}. We must first
check that .Z is a linear operator on Co(Ry x Z), see [EK09, Page 8]. Plainly D < Cy(R; x Z) and
we only have to verify that the range of £, i.e. {Zf: f € D}, is a subset of Co(Ry x Z). Recall &
in . We focus on the term of small jumps, the others are treated along similar arguments:

k=0

z JO (F@+ 9,0+ k) — f(2,0) — yf'(z, 0) m(dy, dk)

< L 2| f(@ +y.0) — F(e.0) -y (x, 0)|r(dy, {0))

1
T ZLx|f(:r+y,€+k)*f(x,f)fyf’(w,€)|ﬂ(dy,dk)~

k=1

Since f € D, the integrand in the first integral above is continuous in = and tends to zero as = + ¢ goes
to co. It is moreover dominated by Cy?/2 with C := SUp(, ¢)ee |f” (2, £)], which is integrable on (0, 1)
with respect to the measure 7 (dy, {0}), see (2). Hence, by Lebesgue theorem, the first integral term is
continuous in  and vanishes. This is also true for the second integral term, since the measure = (dy, dk),
restricted to Ry x N, is finite, see (2), and the integrand is continuous vanishing as (z,¢) — A. We
conclude that .Zf € Co(Ry x Z4).

We argue now that D is dense in Co(Ry x Z;) for the uniform norm. The linear span of the
functions fq,, D = Vect {fqr,q > 0,7 < 1} is a subset of D and forms a subalgebra of Cy(Ry x Z ),
that is separating Ry x Z,. Therefore by Stone-Weierstrass theorem, see e.g. [Rud76, Theorem 7.32
page 162], the latter is dense in Co(R4 x Z,). Next, we show the positive maximum principle, see
[EKQ9, page 165], namely we check that for any f € D, if (zo,fy) € E = Ry x Zy is such that
sup f(xvg) = f($07£0) = 07 then

L f(zo,4o) < 0.

First, plainly since x > 0 and k > 0, one has —kxzof(x0,4p) < 0 and —klof(zo,lo) < 0. Next, if
by € Zy and xg € (0,00) then f(ly + k,x0) < f(lo,x0), similarly f(ly + k,zo +y) < f(o,20) and
necessarily f'(zg,%p) = 0, so that the compensation term and the drift term vanish. Last, if zo = 0,
then necessarily f/(0,4p) < 0 and since b > 0, the drift term is also non-positive. In both cases z¢ > 0
and zg = 0, the second derivative term in x(, coming from the diffusive part, is nonpositive since g
is a maximum and o > 0. O

The next lemma states an algebraic duality relationship for the operator .Z.
Lemma 4.2. For all (z,f) e Ry x Z4, define on (0,0) x (0,1), the map

Gopt (q,7) > e 0t
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One has

L for(x,l) = xe_q””relllc(q, r) + e_qmérz_l\lld(q,r) (39)
0 0

= _\Ilc(q7r)aiqu,f(q77a) + \Ild(qar)ggz,f(cbr) (40)

= —W-Vy,(q,r) (41)

where ¥ = (\IIC7 —\I/d).
Proof. Recall Z in (3), one has

2
L fyr(x,0) = — yrgert — blge 9t + %mq%“”ﬁ”é — rze 9t — ke 9yt

+x Z J (e_q(“'y)r”k —e 1t 4 yl(o,l)(y)qe_qzre) m(dy, dk)
k>0 R+

+/ 2 J (e_‘J(”J”y)r“k — e_q””ré) p(dy,dk) + df(e_q””ré_l — e_q“’ré) .
k=0 YR+
=dlrt—le—az(1—r)
By rearranging everything in order to make appear ¥, and ¥4, as defined in @ and , we get
L for(a,0) = xe”rt (g, r) + e 0T (g, 7).
Using the facts that
w41t = — £goe(q,r) and Le™rt T = £g,4(q,7),

we have finally

0 0
ffq,r(x7£) = _\Ilc(qa T)%Qm,l(‘]v T) + \de((b T)Egz,f(qv T).

O

Lemma 4.3. There exzists a unique solution t — Fy(q,r) := (u(q,7), fe(q,7)) to
%Ut(q, T) = _\IJC(ut(Qa T)y ft(Qa 7‘)), %ft(qa T) = \I/d (ut(qa T)) ft(qa T)) (42)
uO(Qa T) =q, fO((LT) =T (43)

Furthermore, for all t € [0,0), r € (0,1) and q € (0,0),
0 <wu(g,r) <00 and 0 < fi(q,r) < 1.

Proof. All first partial derivatives of the function ¥(q,r) = (V.(q,7),—¥4(g, 7)) are continuous and
bounded on domains of the form (a,b) x (I,r) < (0,0) x (0,1). This entails that ¥ is locally Lipschitz
on (0,00)x(0,1), see e.g. [BRT8, Chapter 6, page 174]. Cauchy-Lipschitz theorem ensures the existence
of a local solution. We now show that it is bounded below and above by positive and finite quantities.
We first find an upper bound for ¥.. Rewrite the integrand of @D with the help of the identity

e~ Wrk 1 4 vyl (y) = e Wpk — W Lo 1 4 qyL1)(y), Yy e (0,20),k = 0. (44)

Since e~ %r* —e~% < 0, e"% —1 < 0 and there is C' > 0 such that for all y € (0,1),0 < e™% —1+qy <
2
C(q%), we get

2
_ ag
Vo(q,r) < ), f (€™ =1+ qylon)(y) 7(dy,dk) = yg+ " = K
keN Y (0,00)

2
_ g
<) j (7% — 1+ qy) 7(dy,dk) —vq + 7(12
ken V(0,1)

< Cond® — g (45)
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with ¢ 1= "; +C S(l) y?m(dy,Z). By comparison, we see from the o.d.e

4 aur) = 0. ) o)

that
qye "t
T )

ut(qu) = > 0.

We now show that fi(q,r) < 1. Recall . Plainly e=®%pk+l — ¢ = r(e_qyr}~c — 1) < 0andb,d >0,
thus ¥4(q,7) < d(1 — ). Hence,

< fla,7) = Walun(a. ), fla, ) < A1~ fula, 7).

By setting ki(q,r) = 1— fi(q, ), we get %kzt(q,r) > —dki(q,7), 50 ki(q,7) = re” ¥ > 0 and fi(q,7) < 1
forallt >0

It remains to establish that for all (¢, r) € (0,00) x (0, 1),
ug(q,r) < oo and fi(g,r) >0,Vt =0
Recall

S (a.r) = ~0e(unlar). la.m)

with
0.2
- f et =1+ qylon (v) 7(dy, dk) + 79 = o-¢* + 5
k=0
< J (1—e™ — gyl (y)) w(dy, {0}) + ) f m(dy,dk) +vqg + &
Ry k>1

»
<J m(dy, {0}) + ZJ m(dy, dk) +vq + K =: ¢r o +7q
1

k=1

hence g; (g, 1) < ene + yur(g, ), which in turn implies, recalling ug(q, ) = g,

(C'n',n + ,yq)e’yt - CTK‘,H

us(q,r) < 46
t(q,7) S (46)

For any 71 € (0,0), define uf(q,n) such that
7@ — fy(g,e7M). (47)

Set
\Ild((L 77) = en\de((L ein)‘
We see from the o.d.e solved by f;(q,r) that

d _ _
aﬂ?(q,n) = —Uy(u(g, e), ui(q,m)).
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By plugging » = ¢~ in the expression of Uu(q,r), we get

[e¢]

=y f (1 — e e p(dy, dk) + bg — d(e” — 1) — k (48)
k=0

J (=) a0+ 3 [ (1) +

k=1
1
< (J yp(dy, {0}) + b) q +J p(dy, {0}) + Z f p(dy, {k}) =t co1q + Cp 2,
hence %uf(q, n) = cp1ui(g,e”7) + ¢, 2, and given the bound above on wu;(q, ), we get
(cr +79)€"" — yer il

U?(q, 77) < n + Cp,1 72 + Cp72t,

which ensures uf(q,n) < oo, and in turn, by 7 fi(q,r) > 0.

Let (g,r) € (0,00) x (0,1). We have just established that up to any time ¢ > 0, any solution
[0,t] 2 s — (us(q,7), fs(q,7)) to (42)) stays in a domain D < (0,00) x (0,1). The function ¥ being
Lipschitz on such domain D, there is a unique solution to the equation up to time ¢. The latter being

arbitrary, the solution is global, namely it is defined on the whole half-line.
O

We now characterize the one-dimensional law of the solution (X, L) with the help of t — Fi(q, 7).
Lemma 4.4. For all (q,r) € (0,00) x [0,1),
B mle k] = o @n f(q )7 () e Ry x Zy, ¥t > 0, (49)

Proof. The task here is to establish the duality relationship between the solution to MP(.Z, D), (X, L)
provided by Lemma and the deterministic process t — Fi(q,r) = (ut(q,7), ft(¢,7)). Having noticed
the algebraic relationship , it remains to apply [EKQ09, Theorem 4.11 page 192], and thus to verify
its condition (4.50). The latter shrinks here to the following. Let

9((2,0), (u, ) = aWe(u, e f* + e L f " Wy(u, f),

one has to check that for any 7' > 0,

St 1= sup |g((X57LS)7(ut7ft))|7

s,t<T
is integrable, with (u¢, ft) = Fi(g, 7). Using the inequalities
ze" < 1/u and £fF = Le=m/ ) < 1/1n(1/f),

we get for all (z,0) e Ry x Zy, all g€ (0,00),r € (0,1) and all t = 0

We(u, fi) Wa(ut, fr)
x,0), (uyg, < .
(2.0, (e 1)) = | P | Bl )
According to Lemma up € (0,00) and f; € (0,1) for all £. By continuity, their extrema on the
compact time interval [0, 7] belongs to (0,00) and (0,1), therefore St is bounded. O
Proof of Theorem [2-1]. 1t follows by applying [EK(09, Theorem 4.2 page 184]. O

We establish now Proposition 2.3 and verify among other things the branching property of X.
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Proof of Proposition[2.3. We start by verifying the Feller property and exhibiting a core. Recall D
the space generated by the linear combinations of the functions f, . Since as ¢ goes to 0, u;(q,7) — ¢
and f;(g,r) — r, one has for any (z,¢) € Ry xZy, P fq.r(x, ) P~y fqr(x,€). Furthermore, D < D and

P.D c Cy(Ry x Z ). Therefore, by density of D in Cyo(R4 x Z ), we see that for all f € Co(Ry xZ,),
PfeCo(Ry x Z,) and P, f(z,¥) P~y flz,0).

Last, since D is a subset of the domain of .#, dense in Cy(R; x Z) and P;D < D, this is a core, see
e.g. [Kal02 Proposition 19.9]. The branching property readily follows from @, indeed

E(z+y,n+m) I:e_th,rLt] _ e—wut(q,r)ft (q’ ,r)ne—yut(q,r)ft(q7 T,)m

= Eam[e7 "1 JE gy my [7 7]
0

We now establish Proposition [2.5] where conditions are given for the coordinates of the bi-type
branching process (X, L) to be autonomous.

Proof of Proposition[2.5. We only give the proof in case 1, since the two proofs are the same. We thus
assume that 7(dy, dk) = v(dy)do(dk) for a measure v(dy) on (0,00) such that Sgo(l A y?)v(dz) < .
In this case, the map (g,7) — ¥.(g,r) does not depend on the variable r and can therefore be simply
denoted by ¢ — W.(q,1). By (@, the map t — u:(0+, ) is solution of the o.d.e

d
= —W.(ug, 1), ug = 0.

The condition So W((iifm = o0 is necessary and sufficient for this o.d.e. to have no solution other than

the null function. Hence under this condition, u;(0+,7) = 0 for all ¢ > 0 and (L;) then satisfies for
any n e Z*,
E,[r*] = f:(04,7)",

where f;(0+,r) is the unique solution to the o.d.e:

%ft(O—i-,r) = —Wy(0+, f(0+,7)), fo(0+,7r) =T,

meaning that (L) is a discrete branching process with branching mechanism

©:[0,1)37r > ¥y(0+,7) = Z (Y — ) p(Ry, {k}) + d(1 —7) — kr-.
k=1

5 Proof of Theorem [3.1]

Let 9 be a branching mechanism, see . Recall the infinitesimal generator G of the CSBP(¢), see
. We will establish in this section the algebraic intertwining relationship between G and H.
We start by identifying the triplet of the Esscher transform of ¢, ¥, (-) = ¥ (A + ) — ¥(}), for any

A= 0, see (I7).
Lemma 5.1. For any A € [0,00),
2

Pa(q) = %qQ + f v(dy) e M[e ¥ -1+ qy] + ¢’ (N)g,
(0,%0)

with
W) = aQA—wj

[00]
(1= yldy) ~ [ vidpye™,
(0,1) 1

16



Proof.

Ualq) == (A +q) —(N) (50)

=’ (A +q)%/2—v(A +q) — (62X3/2 —4))
" f( I (g4 0 0) (51)

0.2
— TP [ v e e -1t gy) + (o - ) (52)
(0,00)

+ (ﬁo’w) v(dy)ylon(y) (1—e ) — fcyeAyV(dy)> q, (53)
S TR E G B R (54)
O

Recall the Poisson kernel K with parameter A in and the space D, see . One carﬂ easily
check that for any f € D, Kf € D,, see (15]).

Recall the operator H in — and define

Y[ f(a, b —1) = fz,0)] A
Nz [f(z, 0+ 1) — f(z,0)] ,if A<

Observe that the factor term in R lying in front of the incremental term, f(z,¢ —1) — f(z,£) or
f(z, £+1)— f(x,£), is always non-negative. This will be important when interpreting those terms as
jump rates. At this stage of the study, at which an algebraic relation is targeted, this plays however
essentially no role. Indeed the following lemma shows that after Poissonization with parameter Az,
the form of the operator R does not depend on whether A < p or A > p. This will allow us to study
both cases simultaneously.

Rf(x,0) == { Z (55)

Lemma 5.2. For any A € (0,00),

KRf(x) = 3 e 5 (= w(WNa) [, £ +1) = f(z,0)]
£=0 ’
T P4
= 3 e OV 00— 1) - (e, ).
=1
Proof of Lemma[5.3
T L
3 e QO g ) (a4 1) — fa, )
=0 ’
— -z (Al.)e _
wp(N) D5 €N S [ 0) = o 0+ 1)
£=0 :
T l+1
60 X 5 e G D) ~ o+ )
=0 :
T 14
= YO 5 e B0 001y~ a0
=1

3see the forthcoming Equations — for the calculation of the two first derivatives.
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By linearity of the operator G, we can separate the study into its local and non-local parts. We
start therefore with the generator of the Feller diffusion.

5.1 The case of the Feller diffusion (¥(q) = "'—22q2 —q)

We focus here on the setting of a pure diffusive CSBP process. The integral term in G vanishes and
2 2

the branching mechanism shrinks to ¢(¢q) = %¢* — vg with v € R. Notice that @ =S\ —7,

YP'(N) = 02X —vy and p = i% v 0. One has

0.2
G f(2.6) = G fli) = | T 7(0.6) = (022 =) (0.0)]

Introduce the operator J% (the superscript L is for local):

2

TEf(x,0) = 020 (z,0) + E%/\ [f(z, 0+ 1) — f(z,0)]. (56)

One has
Hf(z,0) = G f(x,0) + TEf(x,0) + Rf(x,0).

We now establish that H intertwines G, namely we show that the following relationship holds:
GK f(z) = KHf(x).
To prove this, we shall expand the following expression

GK(a) = (G ()" (@) 42 (K1) o))

and compare it with

—A\z ()‘33)8 o? " /
KHi@) = 3 [+(F 1" @0 -2 -nr@0) | (57)
GO f(a,0)
—Ax ()‘x)é 2 pl 02
+;)e S | P (O + A [+ 1) = fa, 0)] (58)
T f(,0)
3 e A0 [ (OQA - 'y)] (f(x,£=1) = f(x,0)). (59)

£>1

)

KRf(x)

Expanding GK f(z) requires to compute the first two derivatives of the expression (K f)(x):

Z 1 T 1:
(@) =2 e M[ T (A ] O+ >e - A Iz, 0). (60)
£=0 =0
x x)1 x
(KP)(@) = 32 e [((2 ) - H Q) ]f(x,e)

£=0

e—Aac ()\x)é—l ()\.23) e—/\xi ae
+2A€; {(5_1)! i ] +€Z6 I (2, 0). (61)

Next, the expression for GK f(x) can be splitted into three terms, that we distinguish according to the
partial derivative of f(x,¢) (zeroth, first or second) that is used:
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GK f()

- g (- - ) e (8- B e

£>0 (£—1)! l
v Az) (M) ()],
”;f i [ (( [ TR )” a ]fW) (63)
0 ae 0)° |
+xl2;)e A E'} F(x,0). (64)

In (64)), the term in factor of f”(x,¢) identifies with the similar term in KM f(x) in so there
is nothing to do here.

To transform (62)), the idea is to separate it into three sums and reindex them in a convenient
manner. We rewrite (62) as

[ (- B) 30 (B ) o ()

Therefore
(62)
- x;)ew [_C’;AZ (AZ)Z [f(z, 0+ 1) = f(z,0)] + %2/\2 ((29”_)2;, [f(z,0+1) — f(z,0)]
+7A<AZ)E [f(z,0+1) — f(x,é)]]
_ xg;)e—xz (AZ)Z (w\ - (;QAQ) [fla, 6 +1)— flz A2;Oe-xx 2:6_7‘11 e[F(o.e+1) - £(.0].
—a y e Qo) (7/\— ";v) b+ 1) - f(a.0)] +;0 SR SV

KRf ()

In the same way:

©3)->e xa z' z)’ [Hm <fw 6) +vx] f'(@,0)

£=0
=>e *MAL o f (@, 0) + Y e” — 2Nz f(x, ).
£=0 £=0
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Recall 7% and G¥>. We get

GK f(z) =(62) + [63) + (62

KT f(x)
_ -z ()\.’L') e —>\JE ()\.’IJ) 2
=KRf(x +;Je S )\E[f(x€+1) f(xz,0)] +§J o (@)
+ Z e*)“’” Nz f (z,0) + 2 e*’\"’” )Z J—mf"(:v 0)
! 72 ’
=0 £=0
KG¥x f(x)
= K(R+J"+G%") f(x)
= KHf(z).
5.2 The case of pure jump CSBPs
We now deal with CSBP processes with no local part and assume o = v = 0. Define
7= [ gy ey e n - sl (65)
b Jo.m) (k+1)! ’ ’

Notice that H = ¢ + G¥» + JNE + R, with cf(x, /) := —kzf(z,¢). We are going to compute
GKf(z) =2 J(O : v(dy)[K f(z +y) — Kf(2) =yl @)K f) (2)] — K f(). (66)

Plainly, —kzK f(z) = —Y,7, (’\“L) kxf(x,l) = K(cf)(z), so that the killing term in G matches with
a killing term along the contmuous component of H. We now study the integrand in . Write the
Poisson kernel evaluated at x + y:

T 14
Kf(ty) = 3 e e QXD gy g

£=0

and its derivative evaluated at x:

-1 z)t
~ Y xe —Mi Fla )+ Y xe™ f(x,e)+2e‘”%f’(w)-

>0 =1 ok >0

The expression for z[K f(x 4+ y) — K f(x) — y1(0,1)(y) (K f)'(x)] then splits in three basic blocks that

are:

2[Kf(z+y) = Kf(x) =yl W) Ef) ()] (67)
T ¢ z)*
=Y ey [e‘ky Qe ty) ;—y)) flx+y, ) — ()\gl) f(x,ﬁ)] (68)
£20 ) ’
—xylq)(y l Z )\e*’\"” flx,0) + 2 Ae e A )lf(x,ﬁ)l (69)
£=0 =1
Y e A ) .0 (70)

£=0
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We expand using Newton binomial formula :

¢ O, L~k k ‘
Z e My e A Losksr )2y flx+y,0) — (e 41 —e) (Az) f(z,0)

Z /) 14 ’

_ —\x (Ax)é -y —
Z e 7l Tre [f(x + Y, €) f(l‘,f)] (71)
£>0 '

i Z Z —Az W;(ﬂ +1-k)y e~ %f(m +y,0) (72)
0=11<k<t .

- )\L (1—e ) f(x,0). (73)
£=0

The second term can be rewritten by a reindexation of the double sum as follows:

Z Z oAz w(f-ﬁ- 1 —k;)ye_ky Mf(x“‘yv&

0>11<k<t (£+1—Fk) k!
e Q) y)F
= e ’\”(—Zye ’\yifx—&—y,é—i—k). 74
220121320 0 (k+1)! ( (74)

Recollecting our findings so far, one has

z[Kf(x+y) = Kf(x) =yl (y)(Kf) (2)]

= ;0 e I ol p (a4 y,0) - f(a,0) (75)
+;O *”— ¢ g]oye”y — k) Fl@+y, 0+k) (76)
7;0 e @ 21— ) f(a.1) -
—aylp(y ( ;))\ e f(z,0) +Z>Z]1)\e"\x ((2\);1!]“(95,6)> (78)
e (Aéi!)gxyl[o,l] W) f (2, 1). (79)

£20

Reordering the terms by gathering and , with the second part of and with the
first part, we get:
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e[Kf(z +y) = Kf(z) —ylo (y)(Kf) ()]

—;0 ‘“— e f(z +y,0) - f(x,0)] (80)
—;Oe—“ (ATJ?ewyl(o,u(y)f’(w,Z) 1)
+§J e | 2 Ay 1 k) fle+y,t+k) (82)
—glAe aylio )%f(x,ﬁ) )
- ;O(M Ai (1= e =Xyl (1) f (. 0). (84)

Equation can be rewritten as

a )\J; _ _
=z Z e (e 1 — e M)yl (y) f (2, 0)
>0

= Z e~ )‘L e -y yl(O,l] (y)f’(x,é) + (1 _ e—/\y)yl(o,l] (y)f/(x,f)) .

£=0
Integrating —|— with respect to v yields
— Az (/\x)Z 7)\y d 7)) — ) — / Vi / by / A 5N
Ty e T, v(dy) (f(z +y,0 = f(2,0) =yl f (@, 0)+¢ (N f (2, 6) = KG*™ f ().
£20 : 0,20
Notice that

)"
I Z e Myl (y EO\T)]”(JZ,E).

=0

Using the following identity

—(1—eM).

k>0

one can rewrite + as follows:

— >\ —
! € ! X
k‘?l

" y)*
®2) + (83 Ze_’\“:)\i lzye Ay 1 )f(x+y7£+k) ylo ) f(z,f) (85)

£=0 k=0
-y e O e e , A () = (,0) (36)
=0 ‘o k=0 '
by e ) (1 ‘jf 2 o) £, (57)
£=0
%) +x 2 Z” 1 —e M =Myl (y)] flz, 0 +1). (88)
=0
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We sum l 2)+(83] )l and obtain:

)¢
B BB = B e oo e B e o
=0 :

By integrating with respect to v, the term , one has

x ¢ i
3 2y J(O g (lg)‘f)l)|[f(:r+y,£+k)—f(x,f)],
=0 . k=0 o0 '

and we recognize the cross jump term JNE f(z, ), see .

By integrating with respect to v, the second part of the right-hand side in , we get

—1’1/} 2 efA:r

£=0

flx, 0+1)— f(z,0)] = KRf(x). (90)

Finally, we have established
GK f(z) = K(c+G"™ + TVF + R) f(x) = KHf(x).

Proof of Theorem[3.1 Only remains to gather the diffusive part and the jump part, this is a direct
consequence of linearity and the fact that 7% + JVF = 7. One has indeed

H=c+G"» + T+ TN+ R,

thus
KHf =K (c+G"» +J"+I"F +R) f = GKT.

6 Proofs of Corollary [3.2 Theorem and Proposition

Let ¢ be a branching mechanism. Let A > 0 and (X?*,L*) be the two-type branching process with
generator H, see and . We start by studying the joint branching mechanism ¥ = (¥., ¥,)
and then establish the skeleton decomposition, that is to say Theorem [3.4 Proposition [3.7] about the
explosion will be a consequence and is proved at the end of the section. We stress to the reader that
the proof of Theorem [3.4] does not appeal to Corollary [3:2] but only to Theorem [3.I] and Theorem [2:1]

6.1 Proof of Corollary study of the joint branching mechanism
Notice that ¥ depends on A. For any ¢ € (0,0), define on [0,0), the map e,(z) := e~ 9*. The

identities and :
Ue(q,r) = a(q) — Kk if A= pand We(g,r) = ¥a(g) =\ (r —1) =k if X < p,

follows readily from the definition of the generator H, see and the fact that G¥*e,(x ) =
za(g)eq(x) = —Ual(q ) eq(z). The extra birth term when )\ < p comes from the last term in (22).

The expression for ¥ glven by — according whether A = p or A < p follows by definition of the
measure p(dy, dk). The extra death term when A > p comes from the last term in (2I). The identity

Y(g+ A1 —71)) =Vo(q,7) + A\Wa(g, 7). (91)

is a consequence of the algebraic intertwining relationship applied to the function fy,(z,f) =
e~9%r!, Indeed, one has K f, .(z) = e~ (aFA1-m)z = €q+A(1—r)(2), hence on the one hand

GK fo.r(x) = Gegirna—r) (@) = 2 (q+ M1 = 7)) egir—n (2).
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On the other hand, recall
Hfor(2,0) = xWe(g,r)ert + ™" Wy(q, 7),

see 7 and thus

4
Kty = Y e 2y, )
=0 ’

— U (g,r)ze PO | e—qzmd(q7r)e—)\z%ekmr

= zegiaa-n(2)(Ye(q, 7) + AW4(q,7)).
Now the equality GK f, , = KHf,, entails . The identities and follow readily by this
relationship and and . O
6.2 Proof of Theorem intertwining of semigroups
Denote by (Q;) the semigroup of a CSBP(1). Call (P;) the semigroup of the process (X*, L*).

Lemma 6.1 (Intertwining of semigroups). For all f € Co(Ry x Z.),

KPf(z) = QK f(x), Ytz >0. (92)

Proof. Recall Proposition ([2.3)) and the definition of the cores D and D, in and respectively.
Let f € D. Note that K f € D, and the map (¢,z) — Q:(K f)(x) is the unique solution to the backward
Kolmogorov equation:

d
anKf:thKfa QOKf:Kfv

see Subsection Similarly, the semigroup (P;) of X = (X*, L) satisfies the backward Kolmogorov
equation:

d

SRS = LR Pof = f

Proposition [2.3] ensures that P,f € D < D. Then the algebraic relationship given by Theorem
ensures that for any ¢t > 0, KZP,f = GKP,f. The derivative being in a uniform sense, one can
interchange it with the Poisson kernel K and we see that

%KPtf - K%Ptf = K¥P,f = GKP,f.

Last, since KPyf = K f, by uniqueness of the solution of the backward equation solved by Q;, we
have for all ¢ = 0,

KPf=QKf.
The fact that this holds for any f € Co(Ry x Z;) follows by density. O

The intertwining of semigroups immediately extends to the kernel A defined in .
Lemma 6.2 (Intertwining of semigroups). For all f € Co(Ry x Z4),
AP f(z) = QiAf(2), VteRy,ze Ry U {0} (93)

Proof. From the definition of A in term of K in , we get:

AP f(x) = Y A, (2, 0)Pif(2,0) + Aw, A)Pf(A) = Lo o) (@) K P f () + Loy (2) f(A)
Lely
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while

QA f(x) = Qe( D] Alw, (@,0)f(2,0) + Az, A) F(A)) = 1[o,00) (@) Qe f () + Ly (2) (D)

el

and now follows from . O

Proof of Theorem[3.]] The first statement is given by Lemma [6.1] The two other assertions follow
by applying Pitman-Rogers theorem, see Theorem Precisely, we set S = (Ry x Z4) u {A} and
S’ =R, u {0} =R, then the map ¢ : S — S’ and the kernel A from S’ to S are defined by:

o(x,0) := x, A(a:, (33,6)) = K(:v,f)l[()w) () + A (sc,f)l{w}(x).

Last P; and Q; are the Markov semigroups defined on S and S’ before Lemma and ® be defined
as the operator that acts on bounded measurable functions on S’ by right composition of ¢, namely
®(f) = f o ¢. With these notations, A® is indeed the identity kernel on S’, since A(x, ¢ 1(x)) = 1.
Second, Lemma [6.1] together with Remark [7-3] ensure that AP, = Q:A is satisfied for each ¢ > 0, which
in turn, composing on the right by ® ensures that Q; is indeed defined from P; by Q; = K P;® for each
t > 0. The assumptions of Pitman-Rogers criterion, Theorem [A] are thus met. The first statement of
Theorem follows from Theorem [A}(1). Its second statement follows by Theorem [A}(2), see (100)),
with A = {¢} x R,. O

We now study the phenomenon of explosion.

6.3 Proof of Proposition [3.7; explosion along skeletons

Recall that our aim is to establish that when the CSBP X* explodes continuously (i.e. not by a
single jump to o0), it does simultaneously as any of its skeleton. We work under the assumption
¥(0) = —k = 0, so that no killing is allowed. Recall that the cemetery point of the process (X*, L)
is A = {(x,0) :  + £ = w0}. Since f, .(v,{) = e~ 97" ( )—(»0 N 1g, xz, (z,¢) and K1g, 7, = 1g,, we
a,7)—(0,

see from that

K(Pig, xz,)(x) = Qi(1r, )(z). (94)
At a probabilistic level, set P := P, poi(as), define ¢ := inf{t > 0: (X, L} ) = A} and (. := inf{t >
0: X} = oo}. By definition, one has ¢ < (. a.s. and entails the equality

P >t) =P((. >t), Vt >0,

which in turn ensures that P(( = (.) = 1. We now show that ¢ = (4 := inf{t > 0: L} = oo},
Denote by ¢;F := inf{t > 0 : X} > n}, the first passage time above n. Notice that for all n > 1,
¢ < ¢ = lim 1 ¢F. By Theorem conditionally on ¢ < o and XCAJH L2+ has law Poi(AXé;).
n—0o0 n n n
Thus, for any ¢ > 0,

X, ()‘X/\+)IC _AxA
IP’(LZ}:: < €|X€i\:) =e Tt Z TTG < otem TR < 2% as. on {C. < o).
k=0
By taking expectation and then letting n go to o, we see that for all £ € Z
P(L _ < 4,( <) =0.

We conclude that P-almost surely (g < (.. Therefore, P(¢ = (;) = 1 and the proof is achieved. O

7 Proofs of Proposition and Theorem [3.12

We study in this section the skeletons when A > p. Recall that in this case, they are autonomous.
We start by identifying their branching mechanisms. We establish next that once rescaled by A they
converge in the Skorohod sense towards the CSBP(¢)).
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7.1 Proof of Proposition 3.9} skeletons offspring distributions
First, by Corollary we see, by letting ¢ go to 0, in (29)), that when A > p, ¥4(0,r) = M
We now look for the offspring distribution. The form of ¥, in entails

1 o g (A k ot A
U,y(0,7) = gl(r’” - T)JO ye %u(dy) + 7)\(7‘ —r)+ M(1 —r).

It remains to compute the total rate of branching. Namely

o o Og)F oY) a® PN
B := kglj;) ye A (k+1)|1/(dy) + 7A+ T = B1 + 7)\-1- T
Plainly
0 0 k+1 0
B = %L e M ];1 Ezyl 1)!V(dy) = %L (1—e™ = Aye ) v(dy)
=3 ([ a=e = xmwtan + [ - e nvia)
+L (1—e M)u(dy) — L )\ye)‘yu(dy)> . (95)
One has \ ) . . .
? = %/\ LAY (L (e — 1+ M\y)v(dy) + L (e — l)y(dy)> . (96)

Thus, adding and and canceling the common terms, we obtain

2 A 1 0
B+ G B — oty [y ety - [ e ) = v

We now establish Theorem [3.12]

7.2 Proof of Theorem [3.12; scaling limits of skeletons

Denote by [0, 0], the extended half-line endowed with the metric d(z, y) := |e”*—e Y|, with convention
e~® = 0. Call D the Skorohod space of [0,0]-valued cadlag paths. Denote by P, the probability
law on D associated to the skeleton process (L},t > 0) issued from a Poisson number of individuals:

L) "2 Poi(Ax).
Lemma 7.1. For all g € (0,00),

E, [e‘qL?/A] e e ™D yniformly in x € [0, 0).
—00

Proof. Recall ¢y in (35)). Define f(q) :=E (e‘qL?/A|L6‘ = 1). One has

(Az)"*
!

Pasde™)" .,
k!

_ (1) (97)

[
18

E, [e*qL?//\] e ME [e*qL?/A\LS‘ = k]

b
Il
=)

I
18

b
I
o
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The map t — v (q) := A\(1 — f(e~%*)) satisfies the o.d.e

C0da) = Apa () = ()

v(’)\(q) = )\(1 - e*Q/A).
Therefore, by uniqueness,
v (q) = ur (A(1 — efq/)‘)), for all ¢ > 0.
By continuity of 7 — wu:(n), we see that v}(q) - u¢(q). Thus, for any x > 0,
—00
E [e*qL?/A] L, emmutla)
r A—00

It remains to establish the uniform convergence, and, as we shall see, its order can be determined as
well:

sup |E, [e—qLi‘/)\] _ e—xut(q)‘ = sup e—xut(A(l_e*Q/A)) _ e_xut(q))
=0 =0

= supe *%(@)
=0

e (Ut(k(l_ei(d)\))_ut(q)) _ 1‘

< sup ze~** (@)

Uy ()\(1 — e_q/’\)) — ut(q)‘

=0
1
— 1— e 9N —
i e (A=) —ta)
1 0
< — —A(1=e"9*)) =0(1
@ @ (=2 (1=e7)) = o1/,
where o(1/)) is a positive function g such that /\lim Ag(A) = 0. O
N

Denote by Qtl//\ the semigroup of (L}/\,t = 0) under the probability laws (P, z € [0,0)). Recall
Q¢ the semigroup of the CSBP(1)). We denote below the supremum norm by | - [|s.

Lemma 7.2. For any f € Co(R,),
1Qf = Qufle — 0.
A—00

Proof. Let f € Co(Ry) and € > 0. By density, there exists g in D,, the linear span of {e,(-),q > 0},
such that |f — gle < €/4. Recall that Qie,(z) = e~ *“(9). By Lemma one can choose A large

enough so that |Q}*g — Q1g] < €/2 and one has
A
1Qif = Qufle = 1QF = Qg + Qg + Qug = Quf — Qugler
A
<20/ = gloo + Q"9 ~ Quille <.

O

Proof of Theorem[3.13 This is obtained by combining Lemma and [EK09, Theorem 2.5 p.167],
which states that uniform convergence of a family of Feller semigroups, together with the convergence
of the initial laws, entails the convergence in Skorohod’s sense of the associated processes. O
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Appendix

Let (S,S), (5,S8") be two measurable spaces, with their respective set of bounded and measurable
functions denoted by bS and bS’. Let (P;)>o be a Markov semigroup on (5,S), and ¢ : S — S’ be
measurable. The action of ¢ by right-composition defines an operator ® : S’ — bS, f — D(f) :=
f o ¢. Denote by X the Markov process with semigroup (P;) and denote its image by the mapping ¢,

O(X) := (¢(Xy),t = 0). Call ]_-;p(X),o = 0(¢(X,),0 < s < t) the natural filtration generated by ¢(X).
Let ]-"f ) be its usual augmentation.

Theorem A (Pitman-Rogers criterion, Theorem 2 in [PR8I1]). Suppose there is a Markov kernel A
from (8',8') to (S,S) such that

o AD = I, the identity kernel on S'.
e for each t = 0, the Markov kernel Q; :== AP,® from S’ to S’ satisfies the identity

AP, = Q,A. (98)
1. If X has initial distribution A(y,-), with y € S’, then for each t = 0,A€ S,
P(X; € A|F/P0) = A(6(X,),4)  as., (99)

holds, and $(X) is Markov with starting state y and transition semigroup (Q). Additionally,
again holds with ff)(x)’o replaced by ff(x).

2. If X has a.s. cadlag sample paths, $(X) is Feller and x — A(z,-) is weakly continuous, then
for each }_;;s(x) stopping time T, it holds:

P(Xr e A|]—'$(X)) = A(¢(Xr), A) a.s. on the event {T < o0}. (100)

Only the second statement in point (1) and point (2) are formally new. We give a complete
proof of the theorem for the benefit of the reader. Regarding the second assumption, we stress that
any Markov kernel (Q;) satisfying the intertwining relationship necessarily satisfies, under the
assumption A® = I, that Q; = AP;®.

Proof. We first establish (1). Let y € S’. Given f € bS’ and g € bS, and using that f(¢(z)) = f(y),
Ay, .)-a.s., we get (6) as follows

A@f)g(y) = LA<y,dx>f<¢><x>>g<x> _ LA(y,dx)f(y)g(x) — (fA))(w).

Now, for y € §’, the quantity AP,(®f)g evaluated at y has to be interpreted as AP(®f)g(y) =
§s Ay, dz) §g Py(x,dz’)(f(4(z"))g(2")) and, using that AP, = Q;A, we arrive at the following equality,
which corresponds to Eq (7) p. 574 in [PR&I1]:

(AP(@f)g)(y) = (AP)(f(¢)9)(v)

As for the induction step, Eq (8), setting h(z) = P, (fn o ¢ - g)(x), and assuming the property
holds at step n — 1, we get:
APy (f1) P, (Rf2) - Pr, (Rfn)g = AP, (R f1) . Py, (R frm1)h
=Quf1...-Qt, fn—1Ah
=Qufi...Qt,  [n1APR, (fnod - g)
=Quf1.. Qu,y [n1AP, (2(fr)9)
=Qu S Qt,y fa1Qu, (fn)Ag
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Now, writing Ey, ) for § A(y,dz)E,, we get:

By, ) [F1(0(Xe)) F2(9(Kity 22)) i1 (0 Kty 42,))9( Xty 42,)] = (AP, (R S1) Pry (@ f2) P, (P f)g) ()
= (Qu f1 - Qe fr1Qr, fnlg) ()

implies, with g = 1, that ¢ o X starting from initial measure A(y,.) is Markov with semi-group Q,
while the identity:

En ) | A1) fo (6Kt 202)) - fo( 9Kt 0,))9 Koy v,
= a1 (00X ) 120Kt 102) o+ 0K 10,)) [ A, g

and this in turn gives by a monotone class theorem that for each bounded or positive random variable
Z, measurable with respect to ]_-:s(x),o,

B[ 290X0)] = Eag |2 [ 4K dr)g(a)]

This entails that the conditional distribution of X; given ]—'f)(x)’o is A(X¢,dx). Let now Z be a positive

]-"f) (X)_measurable random variable. By definition of the augmented filtration, there are two .7-"t¢ (X):0_
measurable random variables Z’, Z” such that Z’ < Z < Z" and Py, .)(Z" — Z' > 0) = 0. Hence,
Epy,[1iz7—z>039(X¢)] = 0. With no loss of generality, assuming g non-negative, one has

Eny)[Z2'9(Xe)] < Eay[Z29(Xe)] < Epyo[Z2"9(X0)]-

The lower and upper bounds are Py, j-a.s. equal to § A(X;,dx)g(x), which ends the proof of (1).
For statement (2). We start by considering a stopping time T taking values in a countable set D.
One has plainly,

X X
Lir <o Bacy [9XDIFE ™ = Lircoy D) Ly By lo(Xa) | Fy ]
deD

= Lirec} ) Lr—gy JA(dex)g(x)
deD

= 170} JA(XT,dx)g(x)-

Setting T,, := ([2"T] + 1)/2™ defines a sequence of stopping times taking their values in a countable
set and decreasing to T. By assumption, X has cadlag sample paths, hence X7, — Xgr a.s. on
n—

0
{T < 0}. Assume g continuous bounded. Then by combining [RY05 Corollary (2.4), Chap. II] and
the weak continuity of the kernel y — A(y, ), one gets:

Lir<o}Eay,) [9(X7)| ﬂ }?,fx)] = lim 1¢p, o) JA(XT"»dZC)g(l") = L{p<o) fA(XT,dI)g(l")-
n=1
Since by assumption ¢(X) is Feller, the usual augmented filtration is right-continuous, see [RY05]
Proposition 2.10, p. 93], and
B(X B(X B(X
men§ ):]_—TJ(r ) :]:T( )7

n=1

see e.g. [RY05, Exercice 4.17, Chap.I] and finally (100] holds by a standard argument, see e.g. Billings-
ley’s book [Bil99 Theorem 1.2].
[
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Remark 7.3 (Restriction to compactly supported continuous functions). The identity is an identity
between Markov kernels on &', or equivalently between operators on the class bS’ of bounded mea-
surable functions on S’. Under the assumption that S’ is locally compact and separable, it is enough
to check that the two operators coincide on the class of compactly supported continuous functions by
the uniqueness part of Riesz theorem, see Rudin [Rud87, Theorem 2.14 p.40].

Remark 7.4 (Submarkovian intertwining). The setting where (P;) is a sub-Markovian semigroup only
can be recasted in the Markovian setting by the adjunction of cemetery points as follows. Precisely,
assume that all the assumptions of Theorem |[A| hold except for the fact that (P;) and consequently
also (Q;) are sub-Markovian. We extend ¢ by requiring ¢ : S := S U {0} — S’ := S’ U {6} to satisfy
#(8) = &', and extend A to A : S’ — S by requiring A(§,{d}) = 1. The definitions of P; and Q; are
accordingly modified to accommodate functions defined on § and &' by setting P, f(§) = f(J) for fe S
and Q;f(0') = f(&') for f € S’. Then one easily checks that the three identities

AP =1, Q;=AP® AP =QA
again hold (for the obvious definition of o from q_zg, and as consequence, the identity again holds
for A € S with the extended kernel A. Last, ¢ o X is Markov on S’ with semi-group Q.
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