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Outline

▶ Conformal prediction combines some advantages of machine learning
and statistics.

▶ It can output prediction sets or predictive distributions.

▶ Efficiency of conformal prediction is an interesting research
programme.
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Theory and practice of machine learning

▶ Machine learning algorithms have demonstrated substantial
effectiveness in practical applications.

▶ A comprehensive theoretical foundation for machine learning is in
place, primarily based on principles such as VC Dimension or
Rademacher Complexity.

▶ However, there exists a significant gap between theory and practice.

⋄ While theoretical results provide performance guarantees, these often
lose their potency when applied to practical, finite datasets, resulting
in their limited use in real-world scenarios.
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Assessing predictive uncertainty

In statistics, it is common practice to

▶ compute confidence intervals for parameters.

⋄ However, in machine learning, this is not straightforward since we
typically do not have meaningful parameters to estimate..

⋄ Machine Learning is increasingly model-free and non-parametric !

▶ calculate prediction sets for future observations

⋄ Feasible assuming the independence of the training and test set and
comes with validity guarantees;

▶ perform tests of hypothesis. Interestingly, even under sensible
assumptions, testing proves feasible for complex observations.
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Introduction to Conformal Prediction

▶ Conformal prediction extends rank tests, common in nonparametric
statistics, to test the IID assumption.

▶ The linkage of testing with estimation, specifically with confidence
intervals, traces back to the work of J. Neyman in 1934.

▶ In essence, prediction can be seen as the estimation of future data
points.
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Conformal predictors

▶ In the basic setting, successive values z1, z2, · · · ∈ X × Y,
zi = (xi , yi ) ∈ X × Y are observed.

▶ Before the (n + 1) th value zn+1 is observed, the training set consists
of (z1, . . . , zn) and our goal is to predict the new response yn+1 given
the features xn+1.

▶ Objective (informal): Prediction algorithm that outputs a set of
elements of Y, implicitly meant to contain yn+1.

▶ Objective (formal): A prediction set is a (measurable) function γn that
maps a sequence (z1, . . . , zn) ∈ (X ×Y)n to a set γn (z1, . . . , zn) ⊆ Y.

▶ A trade-off between reliability and informativeness has to be faced by
the algorithm while giving as output the prediction sets.

⋄ Giving as a prediction set Y is not useful !
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Family of confidence predictors

▶ we often to deal with nested families of set predictors depending on a
parameter α ∈ [0, 1], the significance level or miscoverage level,
reflecting the required reliability of the prediction. The smaller α is,
the bigger the reliability in our guess.

▶ The quantity 1− α is usually called the confidence level.

▶ As a consequence, we define a confidence predictor to be a nested
family of set predictors (γα

n ), such that, given α1, α2 and
0 ≤ α1 ≤ α1 ≤ 1

γα1
n (z1, . . . , zn) ⊇ γα2

n (z1, . . . , zn)
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An illustration

Figure: From Angelopoulos and Bates (2022)
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Non-conformity measures

▶ Objective: estimates how unusual an example looks with respect to
the previous ones. The order in which old examples (z1, . . . , zn)
appear should not make any difference.

▶ To underline this point, we will use the term bag (in short, B ) and
the notation z1:n = [z1, . . . , zn].

⋄ A bag is a multiset; z1:n is the bag we get from (z1, . . . , zn) when we
ignore the order.

▶ A nonconformity measure V (B, z) : Zn × Z → R is a way of scoring
how different an example z is from a bag B.

⋄ There is not just one nonconformity measure !

▶ Informally !

⋄ A low value of V (B, z) indicates that the point z conforms to bag B,
⋄ A high value indicates that z is atypical relative to B.
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Nonconformity for regression

▶ Assume that Y = R and x ∈ X = Rd .

▶ Let f̂ : X 7→ Y a regression function fitted by running an algorithm A
on z and B = z1:n.

▶ A possible choice of nonconformity score:

V (B, (x , y)) = |y − f̂ (x)|.

▶ But of course many variants can be considered !
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Nonconformity for classification

▶ Assume that y ∈ Y = {1, . . . ,K} and denote SY the probability
simplex.

▶ Let f̂ : X 7→ SY be a soft classifier fitted by running an algorithm an
algorithm A on z and B = z1:n:

f̂ (B, x) = (f̂1(B, x), . . . , f̂K (B, x)) .

▶ A simple choice
V (B, (x , y)) = 1− f̂y (B, x)

▶ A more sophisticated choice (used to define Adaptive Prediction Set)

V (B, (x , y)) =
∑
y ′∈Y

f̂y ′(B, x)1{f̂y′ (B,x)>f̂y (B,x)}.
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Full conformal prediction construction

At each x ∈ X , define the conformal prediction interval γα
n (Z1:n, x) by

repeating the following procedure

For each y ∈ Y.

1. Calculate the nonconformity scores

V
(x,y)
i = V (Z−i ∪ {(x, y)},Zi ) and V

(x,y)
n+1 = V (Z1:n, (x, y))

2. Include y in the prediction interval γα
n (Z1:n, x) if

V
(x,y)
n+1 ≤ Q1−α(µ̄

(x,y)
n )

µ̄x,y
n = (n + 1)−1

{∑n

i=1
δ
V

(x,y)
i

+ δ∞

}
.

where Qβ(ν) the level β quantile of a distribution ν on the real line
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Quantile Lemma

Lemma
Let V1, . . . ,Vn+1 be exchangeable random variables, and denote

µn = (n + 1)−1

{
n∑

i=1

δV i + δ∞

}
.

Then for any β ∈ (0, 1), we have

P (Vn+1 ≤ Qβ(µn)) ≥ β

Furthermore, if ties between V1, . . . ,Vn+1 occur with probability zero,
then the above probability is upper bound by β + 1/(n + 1).

In words, consider n exchangeable observations of a scalar random
variable, let’s say V1, . . . ,Vn. The rank of another observation Vn+1

among V1, . . . ,Vn+1 is uniformly distributed over the set {1, . . . , n + 1},
due to exchangeability.
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Validity and efficiency
A set predictor γα

n is conservatively valid at a significance level α ∈ [0, 1],
if the probability of making an error namely the event
Yn+1 /∈ γα

n (Z1:n,Xn+1)− does not exceed α.

Theorem (After (Vovk et al., 2005))

Assume that (Xi ,Yi ) ∈ Rd × Y, i = 1, . . . , n + 1 are exchangeable. For
any nonconformity score function, and any α ∈ (0, 1), define the
conformal prediction (based on the first n samples) at x ∈ X by

γα
n (Z1:n, x) =

{
y ∈ Y : V

(x,y)
n+1 ≤ Q1−α(µ̄

(x,y))
}

µ̄x,y
n = (n + 1)−1

{∑n

i=1
δ
V

(x,y)
i

+ δ∞

}
.

Then,
P (Yn+1 ∈ γα

n (Z1:n,Xn+1)) ≥ 1− α

Furthermore, if ties between V
(Xn+1,Yn+1)
1 , . . . ,V

(Xn+1,Yn+1)
n+1 occur with

probability zero, then this probability is upper bounded by
1− α+ 1/(n + 1).

14 / 42



Take-home message

The conformal prediction framework allows the construction of
prediction sets with finite sample validity without assumptions

on the generative model beyond exchangeability.

Formally, for Zi = {Yi ,Xi}i=1:n ,Zi
iid∼ P and miscoverage level α,

conformal inference allows us to construct a confidence set Cα (Xn+1)
from Z1:n and Xn+1 such that

P (Yn+1 ∈ Cα (Xn+1)) ≥ 1− α
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Split conformal prediction

▶ Full conformal prediction is computationally intractable...

▶ In the split conformal prediction, the data sequence is split into two
parts:

⋄ the training set
(
Z 0
1 , . . . ,Z

0
m

)
used for fitting the regression function f̃

⋄ the calibration set (Z1, . . . ,Zn) independent of the training set(
Z 0
1 , . . . ,Z

0
m

)
.

▶ We use the training set to feed the underlying algorithm, and, using
the derived decision rule, we compute the non-conformity scores for
each example in the calibration set.

▶ For every potential label y of the new unlabelled object Xn+1, its
score Vn+1(Xn+1, ·) is calculated and is compared to the ones of the
calibration set.
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Split conformal prediction construction
At each x ∈ X , define the conformal prediction interval γ̃α

n (Z1:n, x) by
repeating the following procedure

For each y ∈ Y.
1. Calculate the nonconformity scores, i = 1, . . . , n,

Vi = V
(
Z 0
1:m,Zi

)
and V

(x,y)
n+1 = V

(
Z 0
1:m, (x, y)

)
2. Key point: Contrary to full conformal prediction, Vi , i = 1, . . . , n does

not depend upon on (x, y) and need to be computed once for all on
the calibration set.

3. Include y in the prediction interval γα
n (Z1:n, x) if

V
(x,y)
n+1 ≤ Q1−α(µ̃n)

where

µ̃n = (n + 1)−1

{
n∑

i=1

δVi + δ∞

}
.

All is working as before... the validity is now conditional to the training
set - but is also valid unconditionally ! With this reduced computation
cost, it is possible to combine easily conformal algorithms with
computationally demanding estimators.
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Split conformal prediction illustration

Figure: From (Angelopoulos and Bates, 2022)
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Too good to be true (after Angelopoulos and Bates, 2022)

How is it possible to construct a statistically valid prediction set even if
the heuristic notion of uncertainty of the underlying model is arbitrarily

bad?

▶ if the scores Vi correctly rank the inputs from lowest to highest
magnitude of model error, then the resulting sets will be smaller for
easy inputs and bigger for hard ones.

▶ If the scores are inappropriate, in the sense that they do not
approximate this ranking, then the sets will be useless.

⋄ For example, if the scores are random noise, then the sets will contain
a random sample of the label space, where that random sample is
large enough to provide valid marginal coverage.

Although the guarantee always holds, the usefulness of the prediction sets
is primarily determined by the score function. This should be no surprise-

the score function incorporates almost all

19 / 42



Too good to be true (after Angelopoulos and Bates, 2022)

How is it possible to construct a statistically valid prediction set even if
the heuristic notion of uncertainty of the underlying model is arbitrarily

bad?

▶ if the scores Vi correctly rank the inputs from lowest to highest
magnitude of model error, then the resulting sets will be smaller for
easy inputs and bigger for hard ones.

▶ If the scores are inappropriate, in the sense that they do not
approximate this ranking, then the sets will be useless.

⋄ For example, if the scores are random noise, then the sets will contain
a random sample of the label space, where that random sample is
large enough to provide valid marginal coverage.

Although the guarantee always holds, the usefulness of the prediction sets
is primarily determined by the score function. This should be no surprise-

the score function incorporates almost all

19 / 42



Weighted exchangeability

Definition
Random variables V1, . . . ,Vn are said to be weighted exchangeable, with
weight functions w1, . . . ,wn, if the density f over a reference measure µn

of their joint distribution can be factorized as

f (v1, . . . , vn) =
n∏

i=1

wi (vi ) · g (v1, . . . , vn) ,

where g is any function that does not depend on the ordering of its
inputs, i.e., g

(
vσ(1), . . . , vσ(n)

)
= g (v1, . . . , vn) for any permutation σ of

1, . . . , n.

Clearly, weighted exchangeability with weight functions wi ≡ 1 for
i = 1, . . . , n reduces to ordinary exchangeability.
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Independent case

Lemma
Assume that Zi ∼ Pi , i = 1, . . . , n are independent, where each Pi is
absolutely continuous with respect to Pref , for i ≥ 2. Then Z1, . . . ,Zn are
weighted exchangeable, with weight functions wi = dPi/dPref ,
i ∈ {1, . . . , n}.

Of course, weighted exchangeability encompasses more than independent
sampling, and allows for a nontrivial dependency structure between the
variables, just as exchangeability is broader than the i.i.d. case.
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Weighted quantile lemma

Lemma (After Tibshirani et al. (2020))

Let Zi , i = 1, . . . , n + 1 be weighted exchangeable random variables, with
weight functions w1, . . . ,wn+1. Let Vi = S (Zi ,Z−i ), where
Z−i = Z1:(n+1)\ {Zi}, for i = 1, . . . , n + 1, and S is an arbitrary score
function. Define

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj

(
zσ(j)

)∑
σ

∏n+1
j=1 wj

(
zσ(j)

) , i = 1, . . . , n + 1,

where the summations are taken over permutations σ of the numbers
1, . . . , n + 1. Then for any β ∈ (0, 1),

P

(
Vn+1 ≤ Qβ

(
n∑

i=1

pwi (Z1, . . . ,Zn+1) δVi + pwn+1(Z1, . . . ,Zn+1)δ∞

))
≥ β
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Weighted conformal prediction

Theorem

Assume that Zi = (Xi ,Yi ) ∈ Rd × R, i = 1, . . . , n + 1 are weighted
exchangeable with weight functions w1, . . . ,wn+1. For any score function
S, and any α ∈ (0, 1), define the weighted conformal band (based on the
first n samples) at a point x ∈ X by

γα
n (Z1:n, x) =

{
y ∈ R : V

(x,y)
n+1

≤ Q1−α

(∑n

i=1
pwi (Z1:n, (x, y))δV (x,y)

i

+ pwn+1(Z1:n, (x, y))δ∞
)}

.

Then
P (Yn+1 ∈ γα

n (Z1:n,Xn+1)) ≥ 1− α .
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The independent case

▶ The weights

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj

(
zσ(j)

)∑
σ

∏n+1
j=1 wj

(
zσ(j)

) , i = 1, . . . , n + 1,

are in general intractable, unless much stronger structure allows major
simplification

▶ This is in particular the case when

1. the calibration data are i.i.d.
2. the distribution of the query point (x , y) differs from the calibration

set.

▶ Used in Tibshirani et al (2020) to address covariate shift [but it can
also be used for label shift.
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Independent case with a distribution shift

▶ Denote by w(x , y) = dPquery/dPcal(x , y) the pdf of the query w.r.t.
the calibration distribution.

▶ Define the weights

pwi (Z1:n, (x , y)) =
w (Zi )∑n

j=1 w (Zj) + w(x , y)
, i = 1, . . . , n,

pwn+1(Z1:n, (x , y)) =
w(x , y)∑n

j=1 w (Zj) + w(x , y)

▶ Define the weighted empirical measure

µ(x,y)
n =

n∑
i=1

pwi (Z1:n, (x , y))δV (x,y)
i

+ pwn+1(Z1:n, (x , y))δ∞ .

▶ Special cases:

⋄ (Tibshirani et al., 2020) Covariate shift: w(x , y) = w(x)
⋄ (Podkopaev et al, 2021) Label shift: w(x , y) = w(y).
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Independent case with a distribution shift

▶ For any x ∈ X , and α ∈ (0, 1) define the prediction set

γα
n (Z1:n, x) =

{
y ∈ Y,V

(x,y)
n+1 ≤ Q1−α(µ

(x,y)
n )

}
, .

▶ The weighted conformal prediction Theorem, shows that

P (Yn+1 ∈ γα
n (Z1:n,Xn+1)) ≥ 1− α .

▶ In the special case of split conformal prediction, then

µ(x,y)
n =

n∑
i=1

pwi (Z1:n, (x , y))δVi + pwn+1(Z1:n, (x , y))δ∞

the nonconformity scores can be computed once for all, it is only
required to update the weights.
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An illustration

▶ Consider the following toy classification task with 3 classes
Y = {1, 2, 3} where class proportions are given as p = (0.1, 0.6, 0.3)
and q = (0.3, 0.2, 0.5), and for each data point the covariates are
sampled according to X | Y = y ∼ N (my ,Σ) where m1 = (−2; 0)⊤,
m2 = (2; 0)⊤, m3 = (0; 2

√
3)⊤,Σ = diag(4, 4).

▶ Perform split-conformal prediction sets for a single draw of data from
the source and target distributions using the Bayes-optimal rule (not
even learned) as an underlying predictor.
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An illustration

Figure: After (Podkopaev, Ramdas, 2021)
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Bayesian predictions

Bayesian statistics provides optimal predictions for future observations
provided the model is well-specified. Informally,

⋄ The conditional distribution of the observations (likelihood) is known,
p(Z1, . . . ,Zn|θ)

⋄ The prior distribution of the parameter π(θ) is known

⋄ In such case, assuming Zn+1 ⊥⊥ (Z1, . . . ,Zn) | θ, the posterior
predictive distribution for the response at a new Xn+1 = xn+1 takes on
the form

p (y | xn+1,Z1:n) =

∫
fθ (y | xn+1) p (θ | Z1:n) dθ

⋄ Asymptotically exact samples from the posterior can be obtained
through Markov chain Monte Carlo (MCMC) and the above density
can be computed through Monte Carlo (MC), or by direct sampling
from an approximate model.

29 / 42



Bayesian predictive distributions

▶ Given a Bayesian predictive distribution, one can then construct the
highest density 100× (1− α)% posterior predictive credible intervals,
which are the shortest intervals to contain (1− α) of the predictive
probability.

▶ Alternatively, the central 100× (1− α)% credible interval can be
computed using the α/2 and 1− α/2 quantiles. Posterior predictive
distributions condition on the observed Z1:n and represent subjective
and coherent beliefs.

▶ However, it is well known that model misspecification can lead
Bayesian intervals to be poorly calibrated in the frequentist sense
(Dawid, 1982; Fraser et al., 2011):

⋄ the long run proportion of the observed data lying in the (1− α)
Bayes predictive interval is not necessarily equal to (1− α).

⋄ This has consequences for the robustness of such approaches and trust
in using Bayesian models to aid decisions.

▶ Conformal prediction: validity is guaranteed (under a nonparametric
assumption), and we try to achieve efficiency.
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Breaking the Bayesian assumption

▶ Now let’s see what happens when the Bayesian assumption is violated
(but the IID assumption still holds).

▶ Suppose yi ∼ N(θ, 1), where θ ∼ N(0, 1).

▶ Next slide: a version of Larry Wasserman’s picture; ϵ := 20%; four
observations are generated from N(θ, 1) for different θ.

▶ The blue lines are the CP prediction intervals and the red lines are the
Bayes prediction intervals.
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Bayes prediction intervals can be misleading

Figure: From (Vovk,2021) lecture
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Bayes prediction intervals can mislead

▶ The observations are generated from N(θ, 1).

▶ When θ = 1 (and so the Bayesian assumption can be regarded as
satisfied), the Bayes prediction intervals are on average only slightly
shorter than RRCM’s (3.08 vs 3.36; Bayes intervals are shorter in 54%
of cases).

▶ But as θ grows, RRCM’s intervals also grow (in order to cover the
observations), whereas the width of the Bayes prediction intervals is
constant. (For θ = 100 : 3.08vs 31.2.)
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Parametric vs nonparametric statistics

▶ No matter how carefully you choose your prior, you may be wrong.

▶ In parametric statistics, it is widely believed that, at least
asymptotically, the choice of the prior does not matter much: the
data will swamp the prior.

▶ However, even in parametric statistics the model (such as N(θ, 1))
itself may be wrong.

▶ In nonparametric statistics, the situation is much worse:

⋄ the prior can swamp the data, no matter how much data you have
(Diaconis and Freedman, 1986).

⋄ in this case, using Bayes prediction intervals becomes problematic.
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Federated learning

▶ Federated learning is an increasingly important framework for
large-scale learning.

⋄ FL allows many agents to train a model together under the
coordination of a central server without ever transmitting the agents’
data over the network, in an attempt to preserve privacy. There has
been a considerable amount of FL work over the past 5 years.

▶ Compared to classical machine learning techniques, FL has two
unique features.

⋄ the networked agents are massively distributed, communication
bandwidth is limited, and agents are not always available (system
heterogeneity).

⋄ the data distribution at different agents can vary greatly (statistical
heterogeneity)

Federated inference procedures that allow to build prediction sets for
each agent with a confidence level that can be guaranteed.
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Setup

▶ Consider a federated learning system with n agents.

⋄ Each agent i ∈ [n] owns a local calibration set Di = {(X i
k ,Y

i
k)

N i

k=1},
where N i is the number of calibration samples for the agent i .

⋄ The calibration data are i.i.d. and that the statistical heterogeneity is
due to label shifts:

(X i
k ,Y

i
k) ∼ P i = PX |Y × P i

Y ,

where PX |Y , the conditional distribution of the feature given the label,
is assumed identical among agents but P i

Y , the prior label distribution,
may differ across agents.

▶ A predictive model f̂ has been learned by federated learning. The
results are agnostic to the learning procedure.
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Objective

▶ For an agent ⋆ ∈ [n], and each α ∈ (0, 1), we are willing to compute a
set-valued predictor, Cα with confidence level 1− α, which depends
on the calibration data of all the agents.

⋄ The goal is to construct informative conformal prediction sets for each
agent, even when its calibration set is limited in size, by using the
calibration data of all the agents participating in the FL.

⋄ The calibration data must always remain local to the networked
agents.

▶ Objective: Attain both conformal and theoretical privacy guarantees –
matched to the privacy guarantees that can be obtained in the FL
training procedure.
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Naive split conformal prediction

▶ Consider the calibration dataset {(X i
k ,Y

i
k) : k ∈ [N i ]}i∈[n] with data

distributed according to {P i}i∈[n].

▶ For {πi}i∈[n] ∈ ∆n we define the mixture distribution of labels given
for y ∈ Y by

Pcal
Y (y) =

∑n
i=1 πiP

i
Y (y).

▶ Our goal is to determine a set of likely outputs for a new data point
(X ⋆

N⋆+1,Y
⋆
N⋆+1) drawn on agent ⋆ ∈ [n] from the distribution P⋆.

▶ The conformal approach relies on non-conformity scores
V i
k = V (X i

k ,Y
i
k), i ∈ [n], k ∈ [N i ] to determine the prediction set.

▶ These non-conformity scores are uniformly weighted to generate the
conventional prediction set

Cα,µ̄(x) = {y ∈ Y : V (x, y) ≤ Q1−α (µ̄)} ,

µ̄ = (N + 1)−1(
∑n

i=1

∑N i

k=1 δV i
k
+ δ1).

▶ Naive approach leads to significant under-coverage in the presence of
label shift.
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A first solution
▶ Assumptions: for all i ∈ [n] and y ∈ Y, we have access to the

likelihood ratios:
w i
y = P i

Y (y)/P
cal
Y (y).

▶ Define

p⋆y ,y =
Wy ,y

Wy,y +
∑

ỹ∈Y NỹWỹ ,y
,

µ⋆
y = p⋆y,yδ1 +

n∑
i=1

N i∑
k=1

p⋆Y i
k ,y
δV i

k
.

where the weights {Wy ,y}(y ,y)∈Y2 - derived from (Tibshirani et al,
2020) are provided in (Plassier et al., 2022) too complex to be
displayed and computed!

▶ For any covariate x ∈ X , define the (1− α)-prediction set with oracle
weights

Cα,µ⋆(x) =
{
y ∈ Y : V (x, y) ≤ Q1−α

(
µ⋆
y

)}
.

▶ In contrast to the exchangeable setting, the quantile is calculated
based on a weighted empirical distribution depending on y.
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Conformal guarantees

Theorem

For any α ∈ [0, 1), we have

1− α ≤ P
(
Y ⋆
N⋆+1 ∈ Cα,µ⋆(X ⋆

N⋆+1)
)
≤ 1− α+ E

[
max

(i,k)∈I
{p⋆Y i

k ,Y
⋆
N⋆+1

}
]
,

▶ It is important to note that the lower bound holds even in the
presence of ties between non-conformity scores.

▶ The prediction set requires the challenging computation of the
weights p⋆y ,y. Indeed, the calculation of Wy ,y requires the summation
over N! elements.
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Practical split conformal prediction

▶ Let N̄ ≤ N, be randomly sampled accoring to a multinomial
distribution with parameter (N̄, {πi}i∈[n]).

⋄ We denote by N̄ i the multinomial count associated with agent i .
⋄ We sample N̄ i ∧ N i calibration data from agent i and denote

V i
k = V (X i

k ,Y
i
k).

For any label y ∈ Y, the weight p̄⋆y ,y is given by:

p̄⋆y ,y =
w⋆
y

w⋆
y +

∑n
i=1

∑N i∧N̄ i

k=1 w⋆
Y i
k

.

▶ We consider the prediction set

µ̄⋆
y = p̄⋆y,yδ1 +

∑n
i=1

∑N i∧N̄ i

k=1 p̄⋆
Y i
k ,y
δV i

k
,

Cα,µ̄⋆(x) =
{
y ∈ Y : V (x, y) ≤ Q1−α(µ̄

⋆
y)
}
.
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Theorem

Set N̄ = ⌊N/2⌋ and πi = N i/N, for any i ∈ [n]. Then,

∣∣P (Y ⋆
N⋆+1 ∈ Cα,µ̄⋆(X ⋆

N⋆+1)
)
− 1 + α

∣∣ ≤ 6

N

+
36 + 6 logN

N
∥w⋆∥2∞ +

14 logN

N

∑
i : Ni

12 <logN

√
N i .

▶ If n = 1 and N ≥ 46, the set {i ∈ [n] : N i < 12 logN} is empty. In
this case, the convergence rate reduces to N−1 logN.

▶ If each agent has the same number of calibration data, the
convergence rate N−1 logN is ensured when N ≥ 12n logN.
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