
CHAPTER 1

Basics of the Ricci flow equation

1. Basic notions from Riemannian geometry

1.1. Di↵erent notions of curvature. The curvature tensor Rm(g) interpreted here as a (1, 3)-
tensor is defined in this set of notes as:

Rm(g)(X,Y )Z :=
⇥
rg

X
,rg

Y

⇤
Z �rg

[X,Y ]Z, X, Y, Z 2 TM.

The curvature tensor Rm(g) interpreted as a (0, 4)-tensor is then defined by:

Rm(g)(X,Y, Z,W ) := g(Rm(g)(X,Y )Z,W ), X, Y, Z,W 2 TM.

It satisfies the following symmetry properties:

Rm(g)(X,Y, Z,W ) = Rm(g)(Z,W,X, Y ) = �Rm(Y,X,Z,W ),

The Ricci curvature is then defined as the trace of the curvature tensor with respect to g:

Ric(g)(U, V ) := trg ((Y, Z) ! Rm(g)(U, Y, Z, V )) , U, V 2 TM.

If (ek)k denotes an orthonormal basis with respect to the metric g at a given point:

Ric(g)(U, V ) =
nX

k=1

Rm(g)(U, ek, ek, V ) =
nX

k=1

Rm(g)(ek, U, V, ek).

In coordinates, we get: Ric(g)ij = gkl Rm(g)kijl where gkl denotes the (k, l) components of g�1. The
Ricci curvature is a symmetric (0, 2) tensor.

Finally, we define the scalar curvature associated to a metric g as the following function:

Rg = trg((U, V ) ! Ric(g)(U, V )).

If (ek)k denotes an orthonormal basis with respect to the metric g at a given point:

Rg =
nX

k=1

Ric(g)(ek, ek).

Recall the first Bianchi identity that states that for all vector fields X, Y , Z and W ,

Rm(g)(X,Y, Z,W ) + Rm(g)(Y, Z,X,W ) + Rm(g)(Z,X, Y,W ) = 0.

In order to state the second Bianchi identity, we take the opportunity to define the covariant
derivative of a given (0, p) tensor T as follows:

rg

X
T (Y1, ..., Yp) = X · (T (Y1, ..., Yp))�

pX

k=1

T (Y1, ...,rg

X
Yk, ..., Yp), Yk 2 TM.

It is immediate that rgT defines a (0, p+ 1) tensor on M .
The second Bianchi identity states that for all vector fields X, Y , Z, U and W ,

rg

U
Rm(g)(X,Y, Z, V ) +rg

X
Rm(g)(Y, U, Z, V ) +rg

Y
Rm(g)(U,X,Z, V ) = 0. (1.1)
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8 1. BASICS OF THE RICCI FLOW EQUATION

In order to state the contracted Bianchi identity, we take the opportunity to define the divergence
of a tensor T say of type (0, p+ 1) as the following (0, p) tensor:

divg T (Y1, ..., Yp) := trg
�
(U, V ) ! rg

U
T (V, Y1, ..., Yp)

�
.

By contracting (1.1) twice, we end up with the contracted Bianchi identity:

2 divg Ric(g) = g(rg Rg, ·). (1.2)

Identity (1.2) shows in particular that if n � 3, a Riemannian metric satisfying Ric(g) = ⇢g where
⇢ is a function on M must be Einstein, i.e. ⇢ must be constant on M (if connected). This is known
as Schur’s lemma.

1.2. Laplacian on tensors. If T denotes a (0, p) tensor, we define its second covariant derivative
as:

rg,2
U,V

T := rg

U

�
rg

V
T
�
�rg

rg
UV

T.

This defines a (0, p+ 2) tensor. It equals the rg composed twice to the tensor T . We can speak of
the kth iterate of rg applied to T and we write rg,kT .

The rough Laplacian of a (0, p) tensor T is then defined by considering the trace of its second
covariant derivatives:

�gT := trg
⇣
(U, V ) ! rg,2

U,V
T
⌘
.

The following lemma recalls commutation formulae for any tensor:

Lemma 1.1. If T denotes a (0, p) tensor then:

rg,2
U,V

T (Y1, ..., Yp)�rg,2
V,U

T (Y1, ..., Yp) = �
pX

k=1

T (Y1, ...,Rm(g)(U, V )Yk, ..., Yp) .

Equivalently, in coordinates,

rg,2
ij

Tk1...kp = rg,2
ji

Tk1...kp �
pX

l=1

Rm(g)l
ijkl

Tk1,...,kl�1,l,kl+1,...,kp
.

We have then the crucial fact that will enable us to integrate by parts. Recall the scalar product
on (0, p) tensors induced by a Riemannian metric: if S and T are (0, p) tensors then,

hS, T ig := gi1j1 ...gipjpSi1,...,ipTj1,...,jp , |T |g :=
q

hT, T ig.

Lemma 1.2. If T is a tensor,

�g|T |2g = 2|rgT |2g + 2 h�gT, T ig .

2. First definitions and remarks

Definition 1.3. A smooth one-parameter family of Riemannian metrics (g(t))t2(a,b) on a manifold M
is a solution to the Ricci flow if it satisfies:

@

@t
g(t) = �2Ric(g(t)), on M ⇥ (a, b). (2.1)

Equation (2.1) can be supplemented with an initial condition to turn this equation into a Cauchy
problem. Whether this Cauchy problem is well-posed or not is a subtle question that will be ad-
dressed in a later Chapter.

Basic examples are:

(i) (Shrinking spheres) If (Sn, gSn) denotes the standard metric on the unit sphere in Euclidean
space R

n+1 of curvature 1/(2(n� 1)) then the one-parameter family of metrics defined by

g(t) := (�t)gSn , t < 0,
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is a solution to the Ricci flow living in the past. Such solutions are said to be ancient. Indeed,
on the one hand, @tg(t) = �gSn for all t < 0. On the other hand, scaling properties of the
Ricci tensor gives �2Ric(g(t)) = �2Ric(gSn) = �gSn by assumption on the curvature of gSn .

(ii) (Steady flat metrics) If (Rn, gRn) denotes the standard metric on Euclidean space R
n of cur-

vature 0 then the one-parameter family of metrics defined by

g(t) := gRn , t 2 R,

is a solution to the Ricci flow living eternally. Such solutions are said to be eternal.
(iii) (Expanding hyperbolic space) If (Hn, gHn) denotes the standard hyperbolic metric on H

n of
curvature �1/(2(n� 1)) then the one-parameter family of metrics defined by

g(t) := t gHn , t > 0,

is a solution to the Ricci flow living in the future. Such solutions are said to be immortal.
Indeed, on the one hand, @tg(t) = gHn for all t > 0. On the other hand, �2Ric(g(t)) =
�2Ric(gHn) = gHn by assumption.

(iv) (Einstein metrics) More generally, if (Mn, g0) is an Einstein metric with constant 1/2, i.e. if
2Ric(g0) = g0 then g(t) := (�t)g0 defines a Ricci flow living on (�1, 0) that shrinks the
Einstein metric as t goes to 0�. Similarly, if Ric(g0) = 0 (including flat manifolds) then the
static g(t) := g0 defines a Ricci flow living on R. Finally, if 2Ric(g0) = �g0 then g(t) := t g0
defines a Ricci flow living on (0,+1) that expands the Einstein metric as t goes to +1.

(v) (Product Ricci flows) If (Mni
i
, gi(t))t2(a,b) denotes two solutions to the Ricci flow defined on

a common interval of time (a, b) then the product metric g(t) := g1(t) + g2(t) defined on the
product manifold Mn1

1 ⇥Mn2
2 defines a solution to the Ricci flow.

(vi) (Round shrinking cylinders) This is a special case from the previous example which is of
considerable importance. These are the Ricci flow products (Sn�k ⇥ R

k, (�t)gSn�k + gRk),
living on (�1, 0). As t goes to 0�, observe that the solution collapses to a lower dimensional
Euclidean space R

k.

Next, we describe special features in low dimensions together with the basic symmetries of the
Ricci flow.

• Invariance under the action of di↵eomorphisms

Recall first that for a C2
loc

function on a Riemannian manifold, the Hessian of f with respect
to the metric g is:

rg,2f(X,Y ) := g(rg

X
rgf, Y ), X, Y 2 TM.

It is a basic result that the Hessian of a function defines a symmetric (0, 2) tensor. Then the
Laplacian of f is the trace of its hessian:

�gf := trg(rg,2f).

In coordinates,

�gf = gij
✓

@2

@xi@xj
f � �(g)kij

@

@xk

◆
.

Recall the fundamental properties of the Levi-Civita connection and the di↵erent notions of
curvature under the action of di↵eomorphisms on the space of metrics:

Proposition 1.4. Let (M, g) be a Riemannian manifold and let ' be a di↵eomorphism of M .

(i) '⇤ �rg

X
Y
�
= r'

⇤
g

'⇤X'⇤Y, for any vector fields X and Y on M .

(ii) If f : M ! R is a C2 function, '⇤(rgf) = r'
⇤
g('⇤f), and �'⇤g('⇤f) = '⇤ (�gf) .

(iii) (Scalar curvature) '⇤Rg = R'⇤g .
(iv) (Ricci curvature) Ric('⇤g) = '⇤Ric(g) as symmetric 2-tensors.
(v) (Curvature operator as a (1, 3) tensor) '⇤Rm(g) = Rm('⇤g) as (1, 3) tensors.



10 1. BASICS OF THE RICCI FLOW EQUATION

Corollary 1.5. Let (M, g(t))t2(t1,t2), t1 < t2, be a solution to the Ricci flow and let ' be a di↵eo-
morphism of M . Then the family of metrics ('⇤g(t))t2(0,T ) is a solution to the Ricci flow.

• Invariance by scalings

Recall the following scaling properties of the Levi-Civita connection and the di↵erent notions
of curvature:

Proposition 1.6. If � > 0 and g is a Riemannian metric on a manifold M ,
(i) r�g

X
Y = rg

X
Y, for any vector fields X and Y .

(ii) If f : M ! R is a C1 function, r�gf = ��1rgf, and ��gf = ��1�gf.
(iii) (Scalar curvature) R�g = ��1Rg .
(iv) (Ricci curvature) Ric(�g) = Ric(g) as symmetric 2-tensors.
(v) (Curvature operator as a (1, 3) tensor) Rm(�g) = Rm(g) as (1, 3) tensors.
(vi) (Sectional curvature) if P denotes a plane of TM then: K�g(P ) = ��1Kg(P ).

Corollary 1.7. If � > 0 and if (Mn, g(t))(t1,t2) is a solution to the Ricci flow with �1  t1 < t2 
+1 then the family of metrics g�(t) := �g(t/�) defined on (�t1,�t2) is a solution to the Ricci
flow.

• Special expression in dimension 2

In real dimension 2, if (M2, g) is a Riemannian surface then the Ricci curvature of g is related
to the scalar curvature of g as follows:

Ric(g) =
Rg

2
g.

In particular, this makes the Ricci flow conformal, i.e. it preserves the conformal class of a given
metric, say the initial metric the flow starts from.

• Terminology for solutions to the Ricci flow:

A solution to the Ricci flow is said to be ancient (respectively immortal) if it is defined on
(�1, T ), T  +1 (respectively on (T,+1), T � �1). Finally, a solution to the Ricci flow is
eternal if it is both ancient and immortal, i.e. if it is defined on (�1,+1).

• Di↵erent singularities types of solutions to the Ricci flow:

A solution (M, g(t))t2[0,T ), T < +1, to the Ricci flow forms a
(i) Type I singularity if lim supt!T�(T � t) supM |Rm(g(t))|g(t) < +1,

(ii) Type IIa singularity if it is not Type I, i.e., lim supt!T�(T � t) supM |Rm(g(t))|g(t) = +1.

If a solution (M, g(t))t2[�1,T ) to the Ricci flow is ancient, we also define Type I ancient
solutions at t = �1, if lim supt!�1 |t| supM |Rm(g(t))|g(t) < +1. Similarly, one can define
ancient Type II solutions at t = �1 to be ancient solutions which are not Type I at t = �1.

By analogy, one defines singularity types of immortal solutions (M, g(t))t2(T,+1) to the Ricci
flow:

(i) Type III singularity if lim supt!+1 t supM |Rm(g(t))|g(t) < +1,

(ii) Type IIb singularity if it is not Type III, i.e., lim supt!+1 t supM |Rm(g(t))|g(t) = +1.
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Solutions (M, g(t))t2(0,T ) to the Ricci flow satisfying lim supt!0+ t supM |Rm(g(t))|g(t) < +1
can also be considered but do not have a specific terminology to avoid any confusion with the
previous definitions. Depending on the context, Type IIa or Type IIb singularities are simply
called Type II singularities.

Let us explain the choice of the linear scaling in time to understand singularities of the Ricci
flow. Let us stick for instance to a Type III solution, i.e. a solution (M, g(t))t2(0,+1) (the general
case (T,+1) can be easily deduced by translating the solution in time) that satisfies

|Rm(g(t))|g(t) 
C

t
, t > 0,

for some time-independent positive constant C.
Thanks to Corollary 1.7, the rescaled solution g�(t) := �g(t/�), for t > 0 and � > 0 still

satisfies

|Rm(g�(t))|g�(t) 
C

t
, t > 0,

for the same uniform positive constant C. This estimate follows from the definition of the norm
of a tensor together with Proposition 1.6. This fact alone suggests that one can perform parabolic
dilations by letting � either go to +1 (a blow-up) or to 0+ (a blow-down). The limit in some
suitable topology (Gromov-Hausdor↵, Cheeger-Gromov are key words here), if it exists (up to a
subsequence) thanks to an adequate compactness result, is likely to carry additional structure (e.g.
a fixed point of the Ricci flow). Classifying fixed points of the Ricci flow is then a crucial task to
understand the formation of singularities.

3. Evolutions of zeroth order geometric quantities

3.1. Evolution of distances. The easiest way to compare distances between two points at two
di↵erent times is through estimating metrics first.

Proposition 1.8. Let (M, g(t))t2(t1,t2) be a complete solution to the Ricci flow. Assume

r�(t)g(t)  Ric(g(t))  r+(t)g(t),

where r±(t) is bounded on subintervals of (t1, t2). Then,

e�2
R t
s r+(⌧) d⌧g(s)  g(t)  e�2

R t
s r�(⌧) d⌧g(s), t1 < s < t < t2,

in the sense of quadratic forms. In particular,

e�
R t
s r+(⌧) d⌧dg(s)(x, y)  dg(t)(x, y)  e�

R t
s r�(⌧) d⌧dg(s)(x, y), t1 < s < t < t2, x, y 2 M.

The drawback of this proposition is when the curvature is allowed to blow up at a linear rate,
for instance, if r+(t) behaves like t�1 close to t = 0.

Hamilton has circumvented this issue as we now explain in a series of lemmata:

Lemma 1.9. If � : [0, L] ! M is a minimizing unit speed geodesic in a Riemannian manifold with
Ric(g)  r2g for some constant r � 0 then,

Z

�

Ric(g)(�̇, �̇)  4(n� 1)r.

Observe that the righthand side of the previous estimate does not depend on the geodesic �.

Proof. Recall the following second variation along the minimizing geodesic �:

0 
Z

L

0

�
(n� 1)'̇2(s)� '2(s)Ric(g)(�̇(s), �̇(s))

�
ds,

for any Lipschitz function with compact support in [0, L].
If L  2r�1, there is nothing to prove. If L > 2r�1 then let ' be a piecewise linear function

such that '(s) = 1 on [r�1, L � r�1] and such that |'̇(s)| = r for s 2 (0, r�1) [ (L � r�1, L) with
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'(0) = '(L) = 0. Then,
Z

L

0
Ric(g)(�̇(s), �̇(s)) ds  2(n� 1)r1 +

Z

[0,r�1][ [L�r�1,L]
(1� '2(s))Ric(g)(�̇(s), �̇(s)) ds

 2(n� 1)r + r2
Z

[0,r�1][ [L�r�1,L]
(1� '2(s)) ds

 2(n� 1)r +
4

3
r  4(n� 1)r.

⇤

Remark 1.10. The proof of Lemma 1.9 only requires that the upper bound on the Ricci curvature
holds on Bg(�(0), 1/

p
r) [ Bg(�(L), 1/

p
r). Do we need the geodesic � to be minimizing ?

The following lemma is just stating the fact that dg(t)(x, y) = lg(t)(�) and dg(t�s)(x, y)  lg(t�s)(�)
for all minimizing geodesics � joining x to y, i.e. t ! lg(t)(�) is a barrier for dg(t)(x, y):

Lemma 1.11.

lim inf
s!0+

dg(t)(x, y)� dg(t�s)(x, y)

s
� � sup

�

Z

�

Ric(g)(�̇, �̇),

where � runs all minimizing geodesics joining x to y.

We are finally in a position to prove the main estimate due to Hamilton:

Proposition 1.12. Let (Mn, g(t))t2(0,T ) be a complete solution to the Ricci flow such that

Ric(g(t))  C

t
, t 2 (0, T ),

for some uniform positive constant C. Then,

dg(t2)(x, y) � dg(t1)(x, y)�K(n,C)(
p
t2 �

p
t1), 0 < t1 < t2 < T,

where K(n,C) is a positive constant depending on n and C only. Moreover, if Ric(g(t)) � 0 then
the following distortion estimates on the distance hold:

dg(t1)(x, y)�K(n,C)(
p
t2 �

p
t1)  dg(t2)(x, y)  dg(t1)(x, y), 0 < t1 < t2 < T.

Proof. The combination of Lemma 1.9 applied to r2 := Ct�1 and Lemma 1.11 shows that:

lim inf
s!0+

dg(t)(x, y)� dg(t�s)(x, y)

s
� �4(n� 1)

p
Ct�1/2, t 2 (0, T ).

By integrating this di↵erential inequality (invoking Lebesgue’s integral theorem), one gets the desired
estimate:

dg(t2)(x, y) � dg(t1)(x, y)� 8(n� 1)
p
C(

p
t2 �

p
t1), 0 < t1 < t2 < T.

⇤

3.2. Evolution of the volume form. Since in local coordinates, the volume form associated to a
Riemannian metric g denoted by dµg is expressed by

p
det gij dx1^dx2^ ...^dxn, one easily obtains

that:
@

@t
dµg(t) =

1

2
trg(t) (@tg(t)) dµg(t) = �Rg(t) dµg(t).

In particular, if (M, g(t))t2(0,T ) is solution to the Ricci flow on a closed manifold, then:

d

dt
volg(t)M = �

Z

M

Rg(t) dµg(t).

It might be more convenient to keep the volume fixed along the Ricci flow. This is the normalized
Ricci flow and it is defined as follows:

@tg̃(t) = �2Ric(g̃(t)) +
2

n
r̃(t)g̃(t), r̃(t) := (volg̃(t)M)�1

Z

M

Rg̃(t) dµg̃(t).
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Going back and forth from the Ricci flow to the normalized Ricci flow is done as follows: if (M, g(t))t
is a solution to the Ricci flow on a closed manifold M then

g̃(t̃) := c(t)g(t), where c(t) := exp

✓
2

n

Z
t

0
r(⌧) d⌧

◆
and t̃(t) :=

Z
t

0
c(⌧) d⌧ ,

is a solution to the normalized Ricci flow (exercise).

4. Evolutions of first order geometric quantities

We start with a general formula that computes the variation of the Levi-Civita connection in an
arbitrary direction:

Lemma 1.13. If (g(t))�"<t<" is a smooth one-parameter family of Riemannian metrics with g(0) =: g
and @tg(t)

��
t=0

=: h a symmetric 2-tensor then:

g

✓✓
@

@t

����
t=0

rg(t)

◆

X

Y, Z

◆
=

1

2

�
(rg

X
h)(Y, Z) + (rg

Y
h)(X,Z)� (rg

Z
h)(X,Y )

�
.

In coordinates, this gives:

@

@t

����
t=0

�(g)kij =
1

2
gkl

⇣
rg

i
hjl +rg

j
hil �rg

l
hij

⌘
.

Proof. Recall the fundamental formula relating the Levi-Civita connection of a Riemannian
metric g to the Lie bracket and the metric g:

2g(rg

X
Y, Z) = X · g(Y, Z) + Y · g(X,Z)� Z · g(X,Y ) + g([X,Y ], Z)� g([X,Z], Y )� g([Y, Z], X).

for any vector field X, Y and Z on M .
Di↵erentiating this formula applied to each metric g(t) and time-independent vector fields X,

Y and Z, gives the expected result if one recalls the fact that rg is torsion free (i.e. [X,Y ] =
rg

X
Y �rg

Y
X) together with the definition of the covariant derivative of a tensor h:

(rg

X
h)(Y, Z) := X · (h(Y, Z))� h(rg

X
Y, Z)� h(Y,rg

X
Z).

⇤

As a corollary, one easily obtains the variation of the Levi-Civita connection along the Ricci flow:

Proposition 1.14. If (M, g(t))t is a solution to the Ricci flow then:

g(t)

✓✓
@

@t
rg(t)

◆

X

Y, Z

◆
= (rg

Z
Ric(g(t)))(X,Y )� (rg

X
Ric(g(t))(Y, Z)� (rg

Y
Ric(g(t)))(X,Z).

In coordinates, this gives:

@

@t
�(g(t))kij = gkl

⇣
rg(t)

l
Ric(g)ij �rg(t)

i
Ric(g)jl �rg(t)

j
Ric(g)il

⌘
.

We also take the opportunity to derive the variation of the Laplacian acting on functions along
the Ricci flow:

Proposition 1.15. If (M, g(t))t is a solution to the Ricci flow and if f(t) : M ! R is a smooth
one-parameter family of smooth functions then:

@

@t

�
�g(t)f(t)

�
= �g(t)

✓
@

@t
f(t)

◆
+ 2

D
Ric(g(t)),rg(t),2f(t)

E

g(t)
.

In particular, if n = 2,

@

@t

�
�g(t)f(t)

�
= �g(t)

✓
@

@t
f(t)

◆
+Rg(t)�g(t)f(t).
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Proof. Recall that the Laplacian associated to a metric g acting on a function f is defined in
coordinates as follows:

�gf = gij
✓

@2f

@xi@xj
� �(g)kij

@f

@xk

◆
.

Then Lemma 1.13 ensures that:

@

@t

�
�g(t)f(t)

�
= �g(t)

✓
@

@t
f(t)

◆
+ 2

D
Ric(g(t)),rg(t),2f(t)

E

g(t)
� g(t)ij

@

@t
�(g(t))kij

@f(t)

@xk

= �g(t)

✓
@

@t
f(t)

◆
+ 2

D
Ric(g(t)),rg(t),2f(t)

E

g(t)

� g(t)ij
⇣
rg(t)

i
Ric(g(t))jk +rg(t)

j
Ric(g(t))ik �rg(t)

k
Ric(g(t))ij

⌘ @f(t)

@xk

= �g(t)

✓
@

@t
f(t)

◆
+ 2

D
Ric(g(t)),rg(t),2f(t)

E

g(t)

+ 2divg(t)Ric(g(t))(rg(t)f(t))� g(t)(rg(t)Rg(t),rg(t)f(t)),

which implies the desired result thanks to the contracted Bianchi identity. ⇤

Remark 1.16. Recall that for a vector field X, divg(X) :=
P

n

p=1 g(r
g
epX, ep) where (ep)p is an

orthonormal basis with respect to g. Check that �gf = divg(rgf).

5. Evolutions of second order geometric quantities

• First variation of the Riemann tensor
In local coordinates, recall that:

Rm(g)l
ijk

= @i�(g)
l

jk
� @j�(g)

l

ik
+ �(g)p

jk
�(g)lip � �(g)p

ik
�(g)ljp.

This formula is simply obtained by the definition of the Christo↵el symbols and that of the Riemann
tensor. In particular, in the perspective of computing the first variation of the Riemann tensor,
we consider geodesic coordinates centered at a point, then �(g) ⌘ 0 at that point. If (g(t))�"<t<"

is a smooth one-parameter family of Riemannian metrics with g(0) =: g and @tg(t)
��
t=0

=: h a
symmetric 2-tensor then we are left with:

@

@t

����
t=0

Rm(g)l
ijk

= rg

i

✓
@

@t

����
t=0

�(g)l
jk

◆
�rg

j

✓
@

@t

����
t=0

�(g)l
ik

◆

= rg

i

✓
1

2
gpl

⇣
rg

j
hkp +rg

k
hjp �rg

phjk
⌘◆

�rg

j

✓
1

2
gpl

�
rg

i
hkp +rg

k
hip �rg

phik
�◆

Therefore, by rearranging terms together, we have proved the:

Proposition 1.17. If (g(t))�"<t<" is a smooth one-parameter family of Riemannian metrics with
g(0) =: g and @tg(t)

��
t=0

=: h a symmetric 2-tensor then:

@

@t

����
t=0

Rm(g)l
ijk

=
1

2
glp

⇣
rg

i
rg

j
hkp �rg

j
rg

i
hkp +rg

i
rg

k
hjp �rg

j
rg

k
hip �rg

i
rg

phjk +rg

j
rg

phik
⌘
.

• Linearized equation

Definition 1.18. Let (M, g) be a Riemannian manifold. Let h be symmetric 2-tensor. Then we
define:
– the Lichnerowicz Laplacian as the following second order operator:

�L,ghij := �ghij + 2gpkgql Rm(g)ipqjhkl � gpq Ric(g)iphjq � gpqhipRic(g)jq.
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Equivalently, if

�
Rm(g)(h)(X,Y ) := �

nX

p=1

h(Rm(g)(X, ep)Y, ep),

(h � k)(X,Y ) :=
nX

p=1

h(X, ep)k(Y, ep),

for (ep)p an orthonormal basis with respect to g,

�L,gh := �gh+ 2
�

Rm(g)(h)� Ric(g) � h� h � Ric(g).

– the Bianchi one-form denoted by Bg(h) as follows:

Bg(h) := divg h� 1

2
d(trgh),

Remark 1.19. Check that the operator
�

Rm(g) : S2T ⇤M ! S2T ⇤M is well-defined and that

trg(
�

Rm(g)(h)) = hRic(g), hig. Deduce from this that trg(�L,gh) = �g(trgh).

Lemma 1.20. The di↵erential of the tensor �2Ric at a Riemannian metric g along a variation h
is:

Dg(�2Ric)(h) = �L,gh� LBg(h)(g),

LBg(h)(g)ij := rg

i
Bg(h)j +rg

j
Bg(h)i.

In particular, the di↵erential of the scalar curvature at a Riemannian metric g along a variation
h is:

Dg R(h) = ��g(trgh) + divg(divg h)� hh,Ric(g)ig.

Remark 1.21. The definition of LBg(h)(g) is consistent with the more general definition of the Lie
derivative of a tensor T with respect to a vector field X:

LXT (Y1, ..., Yp) := X · (T (Y1, ..., Yp))� T (LXY1, ..., Yp)� ...� T (Y1, ...,LXYp).

Proof. Tracing Proposition 1.17 gives:

@

@t

����
t=0

Ric(g)jk =
1

2
gpq

⇣
rg

qr
g

j
hkp �rg

j
rg

qhkp +rg

qr
g

k
hjp �rg

j
rg

k
hqp �rg

qrg

phjk +rg

j
rg

phqk
⌘

=
1

2

⇣
��ghjk �rg

j
rg

k
trgh+ gpqrg

qr
g

j
hkp � gpqrg

j
rg

qhkp
⌘

+
1

2

⇣
rg

k
(divg h)j +rg

j
(divg h)k + gpq

�
rg

qr
g

k
hjp �rg

k
rg

qhjp
�⌘

=
1

2

�
��ghjk + LBg(h)(g)jk

�

+
1

2
gpq

⇣
rg

qr
g

j
hkp �rg

j
rg

qhkp
⌘
+

1

2
gpq

�
rg

qr
g

k
hjp �rg

k
rg

qhjp
�
.

It is now a matter of commuting covariant derivatives:

gpq
⇣
rg

qr
g

j
hkp �rg

j
rg

qhkp
⌘
= �gpq Rm(g)l

qjk
hlp � gpq Rm(g)lqjphkl

= �
�

Rm(g)(h)jk + (Ric(g) � h)jk
gpq

�
rg

qr
g

k
hjp �rg

k
rg

qhjp
�
= �gpq Rm(g)l

qkj
hlp � gpq Rm(g)l

qkp
hjl

= �
�

Rm(g)(h)jk + (h � Ric(g))jk,

as expected. ⇤
• Evolution equation of the Ricci tensor
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Proposition 1.22. Let (M, g(t))t be a solution to the Ricci flow. Then,

@

@t
Ric(g(t)) = �L,g(t)Ric(g(t)).

Proof. According to Lemma 1.20 applied to h := �2Ric(g(t)),

�2
@

@t
Ric(g(t)) = �L,g(t)(�2Ric(g(t)))� LBg(t)(�2Ric(g(t)))(g(t)). (5.1)

By the contracted Bianchi identity, d(trg(Ric(g))) = 2 divg(Ric(g)) for any Riemannian metric g,
therefore, Bg(t)(�2Ric(g(t))) = 0. This fact together with (1.22) implies the expected result.

⇤
• Evolution equation of scalar curvature

The scalar curvature satisfies a reaction-di↵usion equation, more precisely:

Proposition 1.23. Let (M, g(t))t be a solution to the Ricci flow. Then,

@

@t
Rg(t) = �g(t)Rg(t)+2|Ric(g(t))|2

g(t).

In particular, if n = 2,
@

@t
Rg(t) = �g(t)Rg(t)+R2

g(t) .

Proof. According to Lemma 1.20 applied to h := �2Ric(g(t)),

@

@t
Rg(t) = 2�g(t)(trg(t)Ric(g(t))) + divg(t)(divg(t)(�2Ric(g(t)))� h�2Ric(g(t)),Ric(g(t))ig(t)

= 2�g(t)Rg(t)� divg(t)(rg(t)Rg(t)) + 2|Ric(g(t))|2
g(t)

= �g(t)Rg(t)+2|Ric(g(t))|2
g(t),

where we have used the contracted Bianchi identity in the penultimate line.
⇤

• Evolution equation of the curvature tensor

Proposition 1.24. Let (Mn, g(t))t2(0,T ) be a solution to the Ricci flow. Then,

@

@t
Rm(g(t)) = �g(t)Rm(g(t)) +Q(Rm(g(t))), t 2 (0, T ],

where Q(Rm(g(t)) = Rm(g(t))) ⇤Rm(g(t)). Here the symbol S1 ⇤S2 means linear combinations of
contractions of the tensorial product of two tensors Si, i = 1, 2.

See the exercices section.
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6. Exercises

Exercise 1.25. In dimension 3, show that

Rm(g)ijkl = Ric(g)ilgjk +Ric(g)jkgil � Ric(g)ikgjl � Ric(g)jlgik �
Rg

2
(gilgjk � gikgjl) .

Deduce from this that along a solution to the Ricci flow,

@

@t
Ric(g)jk = �g Ric(g)jk + 3Rg Ric(g)jk � 6Ric(g) � Ric(g)jk + (2|Ric(g)|2g � R2

g)gjk.

Exercise 1.26. Under the assumptions of Proposition 1.12, show that the pointwise limit (M,dg(t))
as t goes to 0 exists, there is a unique distance d0 on M such that d0 induces the same topology as
that induced by the distances dg(t) on M .

Exercise 1.27. The aim of this exercise is to derive the evolution equation of the full Riemann tensor
along the Ricci flow.

(i) Show that on M ,

@

@t
Rm(g(t))ijkl = g(t)lp

@

@t
Rm(g(t))l

ijk
� 2Ric(g(t))lpRm(g(t))l

ijk

= �rg(t)
i

rg(t)
j

Ric(g(t))kl +rg(t)
j

rg(t)
i

Ric(g(t))kl �rg(t)
i

rg(t)
k

Ric(g(t))jl

+rg(t)
j

rg(t)
k

Ric(g(t))il +rg(t)
i

rg(t)
l

Ric(g(t))jk �rg(t)
j

rg(t)
l

Ric(g(t))ik.

(ii) Show that for a static Riemannian manifold (Mn, g):

�g Rm(g)ijkl = �rg

j
rg

p Rm(g)pikl �rg

i
rg

p Rm(g)jpkl

+Rm(g)q
pij

Rm(g)qpkl +Ric(g)iq Rm(g)qjkl +Rm(g)q
pik

Rm(g)jpql +Rm(g)q
pil

Rm(g)jpkq

+Ric(g)jq Rm(g)iqkl � Rm(g)q
jpi

Rm(g)pqkl � Rm(g)q
jpk

Rm(g)piql � Rm(g)q
jpl

Rm(g)pikq,

(Hint: use the second Bianchi identity)
(iii) Show that:

rg

i
rg

j
Ric(g)kl �rg

j
rg

i
Ric(g)kl = �Rm(g)p

ijk
Ric(g)pl � Rm(g)p

ijl
Ric(g)kp.

(iv) Show that:

�g Rm(g)ijkl = rg

j
rg

k
Ric(g)li �rg

j
rg

l
Ric(g)ik �rg

i
rg

k
Ric(g)lj +rg

i
rg

l
Ric(g)jk

+Rm(g)q
pij

Rm(g)qpkl +Ric(g)iq Rm(g)qjkl +Rm(g)q
pil

Rm(g)jpkq

+Ric(g)jq Rm(g)iqkl � Rm(g)q
jpi

Rm(g)pqkl � Rm(g)q
jpk

Rm(g)piql � Rm(g)q
jpl

Rm(g)pikq.

(v) Conclude that:

@

@t
Rm(g(t)) = �g(t)Rm(g(t)) +Q(Rm(g(t)))� Ric(g(t)) ⇤ Rm(g(t)),

where:

Q(Rm(g(t)))ijkl := �Rm(g(t))ijpq Rm(g(t))pqkl � 2Rm(g(t))ipkq Rm(g(t))jpql

+ 2Rm(g(t))iplq Rm(g(t))jpkq

Ric(g(t)) ⇤ Rm(g(t))ijkl := Ric(g(t))iq Rm(g(t))qjkl +Ric(g(t))jq Rm(g(t))iqkl

+Ric(g(t))kq Rm(g(t))ijql +Ric(g(t))lq Rm(g(t))ijkq.




