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Introduction

Let T = {α,β,γ} with edge lengths {α̃, β̃, γ̃} be a (non flat and usually non oriented1) triangle in the Eu-

clidean (oriented affine) plane2 C.

Our approach is to focus on algebraic relations after reducing the circumcircle to the unit complex circle

U = {z ∈ C||z| = 1}. Indeed, up to similarity3 (see below) the circumcircle can be assumed to be the unit

circle U ⊂ C. The first advantage of working on the unit circle is that conjugation becomes the algebraic map

z 7→ 1/z. The second one is that most of the relevant lines for triangle geometry have very nice equations.

Lemma 0.1 For z1, z2 ∈ U we will denote by ⟨z1, z2⟩ the line passing through z1, z2 if z1 ̸= z2 and the tangent line

⟨z1, z1 + iz1⟩ to U at z1 = z2 otherwise. If z1, z2 ∈ U, the equation t + z1z2t = z1 + z2 in the complex variable t

defines the line4 ⟨z1, z2⟩.

1It will be time to time convenient to look at the “oriented triangle T” thanks to the alphabetical order for instance.
2 The scalar product is given by (z1,z2) = Re(z1z2) and det(z1,z2) = −Im(z1z2), that is twice the algebraic area of the

oriented triangle 0,z1,z2. In particular, the (real) barycentric coordinates xα,xβ,xγ of z ∈ C are characterized by

2xαS = det(z−γ,γ−β), 2xβS = det(z−α,α−γ), 2xγ = det(z−β,β−α)

where S = 1
2 det(β − α,γ − α) is the algebraic area of the oriented triangle (α,β,γ). This observation allows to understand the

position of z inside our outside of T as we will see.
3Translate the circumcenter to 0 and then use the homothety of ratio 1/R where R is the radius of circumcircle.
4Observe that z1,z2 are always solutions and that z1+ iz1 is solution if z1 = z2. Conversely, The relation t ∈ ⟨α, t⟩ characterizes

the line ⟨α, t⟩ for any complex t ̸= α and gives the formula zα = t−α
1−at

.
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Therefore, we have two very tractable ways to describe lines

made up from T, both of which keep the cyclic symmetry:

barycentric equations and the previous method.

In Part I, we will illustrate how these elementary facts, which will be used repeatedly, lead to simple, natu-

ral, and very short algebraic proofs5 (and correct!) of classical results in classical triangular geometry, even

those often considered difficult6. The complement part II is devoted to the counting of Morley triangles

(without any genericity assumption ofT).

There is a (mild) price to pay: neither an half plane nor the interior of a triangle is algebraically definable.

In particular, as we will see, there is no algebraic or simply continuous way (with respect of the vertices)

to distinguish internal bisector or trisector from the other one without to make non algebraic choices (see

below. This will force to extract roots of the vertices to study such notions (the algebraic notion of base

change). This is the only place where angle considerations are somehow hidden.

This does not mean that “usual geometric intuition coming from pictures” is useless, in particular because

the existence of the classical results on triangle geometry come from this intuition. But algebra give pow-

erful tool to (re)prove these results in full generality in a quite systematic way. More important, modern

algebro-geometric methods are essential to go beyond the simple geometry of the triangle and consider

geometric situations of greater degree. Finally, as the reader will see, provided we do not break any sym-

metries, the computations are very simple and, in a sense, aesthetically pleasing.

We are astonished by the strange vitality of triangle geometry — a passion that we do not share. We believe

that mathematics should primarily contribute to the broader advancement of science, including its own

evolution, rather than offering puzzles that, clever or challenging as they may be, focus on subjects that

have been known for centuries, or even millennia.

However, paradoxically, we hope that the following facts could provide a path from these rather outdated

results to modern, powerful algebro-geometric methods (including the use of formal computation software

to verify algebraic identities) in this elementary setup. This approach combines geometric, analytic and

algebraic intuitions and could lead to profound and novel results. It is certainly non unique neither optimal

on some place, whatever it means. May this note encourage us to move away from this triangular scientific

impasse.

5Hence which can be generalized to more or less arbitrary fields.
6Such as Feuerbach or Morley theorems
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Part I

An express line towards classical results

All the items of this part are independent. They give comprehensive and easy proofs of classical theorems

due to Euclide, Euler, Feuerbach, Morley7.

1 Explicit reduction of the circumcircle to the unit circle

The basic well known fact is that T has a unique non trivial circumcircle whose center is by construction

the intersection point ω of the mediatrices of T. It is is the unique solution of |t − γ|2 = |t − α|2 = |t − β|2,

hence of the system  (γ− α)t+ (γ− α)t = |γ|2 − |α|2

(α− β)t+ (α− β)t = |α|2 − |β|2

we get

ω =
(|γ|2 − |β|2)α+ (|α|2 − |γ|2)β+ (|β|2 − |α|2)γ

4iS
(i)

where S = −1
4i ((β−α)(γ−α)− (β−α)(γ−α)) = − 1

2 Im(β−α)(γ−α) = 1
2 det(

#  »

βα, #  »γα) is the algebraic area

of the oriented triangle (α,β,γ) (see note 2). This gives existence and uniqueness of the circumcircle.

To give a closed formula for S (hence of ω and accordingly of the circumradius R), we can proceed as

follows. Up to the affine (positive) isometry ι : t 7→ |β−α|

β−α
(t − α), one can assume T = {0, γ̃ = |β − α|, z}

with y = Im(z = x+ iy) ̸= 0. We have (ι isometry)

β̃2 = |z|2 = x2 + y2, α̃2 = |z− γ̃|2 = (x− γ̃)2 + y2 hence x =
−α̃2 + β̃2 + γ̃2

2γ̃

and

y2 =
4β̃2γ̃2 − (−α̃2 + β̃2 + γ̃2)

4γ̃2

=
(α̃2 − (β̃− γ̃)2)(−α̃2 + (β̃+ γ̃)2)

4γ̃2

=
(α̃+ β̃+ γ̃)(−α̃+ β̃+ γ̃)(α̃− β̃+ γ̃)(α̃+ β̃− γ̃)

4γ̃2

from which we get the Heron formula for the (geometric) area |S| = 1
2 |det(

#  »

βα, #  »γα)| = 1
2 |− γ̃y| of T

|S| =

√
(α̃+ β̃+ γ̃)(−α̃+ β̃+ γ̃)(α̃− β̃+ γ̃)(α̃+ β̃− γ̃)

4
(ii)

7Who owes the most recent result, discovered in. . . 1899 (Taylor FG, Marr WL. The six trisectors of each of the angles of a triangle.

Proceedings of the Edinburgh Mathematical Society. 1913;32:119-131)
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Using (i), we get

R2 = |ω|2 =
|0− β̃2γ̃+ γ̃2z|2

16|S|2
=

(xγ̃2 − β̃2γ̃)2 + y2γ̃2

16|S|2
=

α̃2β̃2γ̃2

16|S|2

hence

R =
α̃β̃γ̃

4|S|

Heron
=

α̃β̃γ̃√
(α̃+ β̃+ γ̃)(−α̃+ β̃+ γ̃)(α̃− β̃+ γ̃)(α̃+ β̃− γ̃)

(iii)

Remark The usual pictures-based proofs using the Pythagorean Theorem can be made to work correctly

by starting with an acute vertex angle, which guarantees that its orthogonal projection onto the basis lies

inside the edge. However, our goal is to demonstrate that simple computations can also achieve the desired

result.

All properties we are interested in are (quasi)-invariants, meaning invariant by translation and rotations

and suitably homogeneous by similarities.

From now, we do assume that U is the circumcircle of T.

Our goal is to show that most of the classical properties become easy (and nice) calculations in this case.

2 Special triangles

Lemma 2.1

1. T is isosceles8 in α if and only if α2 = βγ.

2. T is rectangle in α if and only if β+ γ = 0.

3. T is equilateral if and only if either α+ jβ+ j2γ = 0 or α+ j2β+ jγ = 0 or equivalently

α2 + β2 + γ2 − αβ− βγ− γα = 0.

Proof.

1. Just compute |(α−β)|2 = (α−β)(1/α− 1/β) = −(α−β)2γ and therefore for |(α−γ)|2 = −(α−γ)2β.

The difference between these terms is therefore −(α− β)2γ+ (α− γ)2β = (β− γ)(α2 − β).
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2. By definition of the scalar product, two vectors x,y ∈ C are orthogonal if and only if Im(xy) = 0.

We compute (β − α)(γ− α) = −(β − α)(γ − α)β and (γ − α)(β− α) = −(γ − α)(β − α)γ hence

2Im(γ− α)(β− α) = −(γ− α)(β− α)(β+ γ).

3. Assume for instance α+ jβ+ j2γ = 0 (with j = exp( 2iπ3 ). Because α(1+ j+ j2) = 0, we get j(β− α) =

j2(γ − α) hence T isosceles at α and by symmetry T is equilateral. Conversely, if T is equilateral, the

(oriented) angle (
̂̂
α, 0,β) is ±2π/3 hence β = j±1α. Analogously, we get γ = j±1β hence α + j±1β +

j±2γ = (1+ j±2 + j±4)α = 0. The last point is the formula

(α+ jβ+ j2γ)(α+ j2β+ jγ) = α2 + β2 + γ2 − αβ− βγ− γα.

Observe that (2) is nothing but the classical fact that a triangle is rectangle at some vertex if and only if the

opposite edge is a diameter of the circumcircle. Observe also that we cannot hope a formula with a,b, c but

without j even for the historical case of “adjacent trisectors” simply because the sum of oriented angles of

a triangle is π (exercise).

3 Circumcircle and tangent circles

Let us chose square roots a,b, c of α,β,γ. As a warm-up, let us start with the barycentric coordinates of the

circumcenter Ω = 0 ∈ C. We will use the length computation

γ̃2 = |α− β|2 = −
(α− β)2

αβ
(iv)

1. The formula |a2 −ab| = |a−b| = |b2−ab| shows that the line ⟨−ab,ab⟩ = ⟨−
√
αβ,

√
αβ⟩ of equation

t+ αβt = 0 is the mediatrix of T (passing through (α+ β)/2).

2. By direct calculation using (iv), we get

α̃2(−α̃2 + β̃2 + γ̃2)α+ β̃2(α̃2 − β̃2 + γ̃2)β+ γ̃2(α̃2 + β̃2 − γ̃2)γ = 0

proving that the barycentric coordinates of the circumcenter Ω are

(
α̃2(−α̃2 + β̃2 + γ̃2), β̃2(α̃2 − β̃2 + γ̃2)β, γ̃2(α̃2 + β̃2 − γ̃2)

)
unless T is equilateral (where the coordinates9 are (1, 1, 1)).

8With our normalization, this means that up to the diagonal action of µ3 on normalized triangles, the triangle T is {1,β, 1/β}

which is invariant by the complex conjugation.

9Of course, if we like (oriented) angles, we have also det(α − Ω,β − Ω) = R2 sin(
̂̂#     »

Ωα,
#     »
Ωβ) = R2 sin(2γ̂) by the inscribed

angle theorem giving the other classical system of barycentric coordinates
(
sin(2α̂), sin(2β̂), sin(2γ̂)

)
where α̂ ∈ R/πZ is the angle

(of lines) of the edges through α.
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Let us turn to the tangent circles to T (circles tangent to the three lines ⟨α,β⟩, ⟨β,γ⟩, ⟨γ,α⟩ defined by T).

1. Recall10 that a line ℓ through α is a bisector of T if there exists a rotation ρ such that

ρ(⟨α,β⟩) = ℓ and ρ(ℓ) = ⟨γ,α⟩.

Observe that the image o of the orthogonal projection of ω ∈ ℓ on ⟨α,β⟩ by ρ2 is the the orthogonal

projection o ′ of ω ∈ ℓ on ⟨γ,β⟩ (If u a unit vector of ℓ, o = α + (ρ−1(u),ω − α) = (ρ(u),ω − α)

because ρ is a rotation of center α.) hence |o −ω| = |o ′ −ω|. In particular, if ω is the intersection of

two bisectors, its orthogonal projections on the three edges are cocyclic.

2. The coloured lines of type ⟨c2,±ab⟩ are bisectors11 (inscribed angle theorem or direct calculation).

The bisector12 ℓab = ⟨c2,ab⟩ from γ = c2 has equation t + c2abt = c2 + ab. Changing a, c to their

opposite if necessary, one can assume that these bisectors are ℓab, ℓbc, ℓεac, ε = ±1. The intersection

point of ℓab ∩ ℓbc is therefore tb = ab+ bc− ca and the one ℓbc ∩ ℓεac is tc = −εab+ bc+ εca hence

ta − tc = (ε + 1)a(b − c). One deduces that the three bisectors meet if and only if ε = −1 and that

the corresponding incenter is ab + bc − ca with ab =
√
αβ,bc =

√
βγ,−ca =

√
γα. Letting {±1}3

act, we get (at most at this point) four tangent circles to T with centers
√
αβ +

√
βγ +

√
γα with the

normalization of the square roots
√
αβ

√
βγ

√
γα = −αβγ.

Conversely, such a normalized oriented13 choice
√
T

def
= (

√
αβ

√
βγ

√
γα) -a square root of T for short)

comes from an ordered triple (a,b, c) unique up to multiplication by ±1.

Let
√
T be a square root of T and ω√

T =
√
αβ+

√
βγ+

√
γα the corresponding center of the tangent

circle (with the normalization of the square roots
√
αβ

√
βγ

√
γα = −αβγ) and r√T the corresponding

radius. We define the triple14of “algebraic lengths” of
√
T by γ̌ = iα−β√

αβ
∈ R, . . . (as already observed

(iv), we have |γ̌| = γ̃). With the above notations, we have

α̌ = i
b2 − c2

bc
, β̌ = −i

c2 − a2

ca
, γ̌ = i

a2 − b2

ab
(v)

3. From (v), a direct computation shows

(α̌+ β̌+ γ̌)ω√
T = α̌α+ β̌β+ γ̌γ (vi)

10In terms of angles of lines, this means exactly 2( ̂⟨α,β⟩, ℓ) = ( ̂⟨α,β⟩, ⟨γ,α⟩).
11By (2.1), c2 = ±ab means T isosceles at γ and the (external) bisector of T at γ is tangent to U at γ which is coherent with our

definitions.
12At least when c2 ̸= ab. If we have equality, this line is the tangent line of U at α which is an (external) bisector either by a

continuity argument or using that T is isosceles at γ in this case (2.1).
13Alphabetical order on

√
Tγ =

√
αβ . . .

14Defined up to sign by we do not choose an orientation of
√
T.
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with

α̌+ β̌+ γ̌ =
i(a2b+ b2c+ ab2 − ac2 − b2c− bc2

abc

=
i(b+ c)(a− c)(a+ b)

abc
̸= 0

proving that i(α̌, β̌, γ̌) are barycentric coordinates of ω√
T. Taking modules, we get moreover

|α̌+β̌+γ̌|2 = (b+c)(a−c)(a+b)(1/b+1/c)(1/a−1/c)(1/a+1/b) = −
(b+ c)2(b+ a)2(c− a)2

αβγ
(vii)

Changing the signs of the triple of square roots does not change the circle hence we can assume

i(α̌+ β̌+ γ̌ > 0). Using triangle inequality, the possible values are therefore the four positive numbers

α̃+ β̃+ γ̃,−α̃+ β̃+ γ̃, α̃− β̃+ γ̃, α̃+ β̃− γ̃

from which we get four possible values for the triple i(α̌, β̌, γ̌) namely

(α̃, β̃, γ̃), (−α̃, β̃, γ̃), (α̃,−β̃, γ̃), (α̃, β̃,−γ̃)

Therefore there is one tangent circle (the “incircle”) inside T (positive normalized coordinates) and

three circles not inside T (the “excircles”) -with only one positive normalized coordinate- which is

inside to the pair of lines through the vertex with positive coordinate and outside the two others.

4. We have 2xαS = det(ω√
T − γ,γ − β) where xα = α̌

α̌+β̌+γ̌
is he normalized barycentric coordinate of

the incenter (see note 2). By construction, the height from ω√
T of the triangle {β,ω,γ} is a ray of the

incircle (because it is tangent to T) showing that the its area15 1
2 |det(ω

√
T − γ,γ− β)| is 1

2 α̃r
√
T hence

using |α̌| = α̃ ̸= 0, we get

r√T =
2|S|

|α̌+ β̌+ γ̌|

Heron
=

√
(α̃+ β̃+ γ̃)(−α̃+ β̃+ γ̃)(α̃− β̃+ γ̃)(α̃+ β̃− γ̃)

2|α̌+ β̌+ γ̌|
. (viii)

5. By the discussion of item 3, the four real numbers

i(α̌+ β̌+ γ̌), i(−α̌+ β̌+ γ̌), i(α̌− β̌+ γ̌), i(α̌+ β̌− γ̌)

have the same sign and their product is the positive real number

(α̃+ β̃+ γ̃)(−α̃+ β̃+ γ̃)(α̃− β̃+ γ̃)(α̃+ β̃− γ̃).

By direct computation, it is also equal to

(−1)(b− c)2(b+ c)2(a− b)2(a− c)2(a+ c)2(a+ b)2

a3b3c3
=

(β− γ)2(α− β)2(α− γ)2

αβγabc
15This is just a determinant computation and has nothing to do with advanced area-measure theory.
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6. By (vi), we have

(α̌+ β̌+ γ̌)2|ω√
T|

2 =(α̌α+ β̌β+ γ̌γ)(α̌
1

α
+ β̌

1

β
+ γ̌

1

γ
)

=α̌2 + β̌2 + γ̌2 + α̌β̌(
α

β
+

β

α
) + β̌γ̌(

β

γ
+

γ

β
) + γ̌α̌(

γ

α
+

α

γ
)

=(α̌+ β̌+ γ̌)2 + α̌β̌(
α

β
+

β

α
− 2) + β̌γ̌(

β

γ
+

γ

β
− 2) + γ̌α̌(

γ

α
+

α

γ
− 2)

But

α̌β̌(
α

β
+

β

α
− 2) =α̌β̌(

α√
αβ

−

√
αβ

α
)2

=α̌β̌(
α− β√

αβ
)2

=− α̌β̌γ̌2

(iii)
= − 4ε|S|γ̌

(vi)
= − 2εr√Tγ̌|α̌+ β̌+ γ̌|

where ε = sign(α̌β̌γ̌) = ±1. Summarizing, we have

(α̌+ β̌+ γ̌)2|ω√
T|

2 = (α̌+ β̌+ γ̌)2 − 2εr√T(α̌+ β̌+ γ̌)|α̌+ β̌+ γ̌|

hence

|ω√
T|

2 = 1− 2ε√Tr
√
T

homogeneity
= R2 − 2ε√Tr

√
TR (ix)

with ε√T = sign(α̌β̌γ̌(α̌+ β̌+ γ̌)) = sign(α̌β̌γ̌(α̌+ β̌+ γ̌)3). By (4), ε√T is the product of the signs of

the normalized barycentric coordinates of ω√
T and is equal to +1 for the incircle and −1 for the other

three excircles. With this relation, (ix) is called the Euler formula.

Remark 3.1 There is now way to choose continuously the roots to get the incenter because there is no continuous

square root defined on U. In other words, the choice depends of the values of the arguments of α,β,γ. One way to do

that is to define α = exp(i2A), . . . with 0 ⩽ A < B < C < π and to define a = exp(iA), . . . . Then, the incircle is

ab+bc−ca: indeed, ab,bc belong to the oriented arc
⌢

αβ,
⌢

βγ because 2A < A+B < 2B < B+C < 2C < 2π. But

ca does not belong to the arc
⌢
γα because 2π > C + A > 2A, hence the choice of −ca of argument A + C − π < A.

Its radius is denoted by r. Moreover, the formula (see iv) γ̃2 = − (a2−b2)2

a2b2 shows α − β = ±iγ̃ab. By note 2, if we

change the sign of ab =
√
αβ, the corresponding, the barycentric coordinates xγ is changed to its opposite. By the

normalization condition, two barycentric coordinates change in their opposite : the four incircles are either inside T

(radius r) or inside exactly one pair of edges from a given vertex τ ∈ T with radius rτ as in the picture above.
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a²b²

c²

ab

bc

-ac

a b + a c - b c

a b - a c + b c

-a b + a c + b c

-a b - a c - b c
K

4 Gergone points

Let ω = ω√
T = ab+bc− ca be the center of one of the tangent circle C = C√

T and let ℓc = ⟨z1, z2⟩ the line

passing through ω and the touchpoint zc of C ∩ [α,β].

a²
b²

c²

zc

zb

za

Gergone point

Lemma 4.1 We have zc = 1
2 (a

2 + b2 + sc) with sc = (−a2b+ ab2 − ac2 + bc2)/c .
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Proof. Let us compute the equation of ℓc which is t+pct = sc with pc = z1z2 and sc = z1+z2 of ℓc. But ℓc is

characterized by passing through ω and being orthogonal to (α,β). By (2) of (2.1), the normal line of ⟨α,β⟩

passing through α say is ⟨α,−β⟩ and therefore has equation t−αβt = α−β. Because it is parallel to ⟨z1, z2⟩,

we get pc = −αβ = −a2b2. Because ω belongs to this line, we get16 sc = (−a2b+ ab2 − ac2 + bc2)/c. But

zc is the solution of  t− a2b2t = sc

t+ a2b2t = a2 + b2

hence17 zc = 1
2 (a

2 + b2 + sc).

The equation of the “Ceva” line Lc through c2 and zc is

t+ c2Zct = c2 + Zc with Zc =
c2 − zc

c2zc − 1

remembering

za =(−a2b+ a2c+ ab2 + ac2 − b2c+ bc2)/(2ab2c2)

zb =(a2b+ a2c− ab2 + ac2 − b2c+ bc2)/(2a2bc2)

zc =(a2b+ a2c− ab2 + ac2 + b2c− bc2)/(2a2b2c)

are just obtained from za, zb, zc by inverting a,b, c. The intersection point of Lc ∩ Lb and Lc ∩ La are

ξ =
(Zcc

2)(Zb + b2) − (Zbb
2)(Zc + c2)

Zcc2 − Zbb2
, ξ ′ =

(Zcc
2)(Za + a2) − (Zaa

2)(Zc + c2)

Zcc2 − Zaa2

.

Proposition 4.2 (Gergone points) The three lines between the touchpoint of the tangent circle C√
T with an edge of

T and its opposite vertex meet in the Gergone point Γ√T.

Proof. Just check18 ξ = ξ ′ by a (very) tedious straightforward inspection or better using a computer. Or see

the discussion below.

16And analogously for the equations of ℓa, ℓb with

pa = −b2c2,pb = −c2a2 andsa = (a2b−a2c+ b2c− bc2)/a,sb = (−a2c+ab2 −ac2 + b2c)/b

17And analogously za = 1
2 (b

2 + c2 + sa) and zb = 1
2 (c

2 +a2 + sb)
18We could certainly simplify the computation but our goal was elsewhere. We would like to convince the reader that he method

itself is crystal clear and, at least if we accept to use XXIth century methods, there is no mystery to prove the result.
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Feuerbach

July 17, 2025

[1]: from sage.all import *
R.<a,b,c> = PolynomialRing(QQ, order='lex')
#center
m=a*b+b*c-c*a
#conjugate of the center
n=m(1/a,1/b,1/c)
#touchpoints
sc=m-a^2*b^2*n
sa=m-b^2*c^2*n
sb=m-c^2*a^2*n
zc=(sc+a^2+b^2)/2
zb=(sb+a^2+c^2)/2
za=(sa+b^2+c^2)/2
#equation of the lines beween contact point and opposite vertex
Zc=(c^2-zc)/((c^2)*zc(1/a,1/b,1/c)-1)
Za=(a^2-za)/((a^2)*za(1/a,1/b,1/c)-1)
Zb=(b^2-zb)/((b^2)*zb(1/a,1/b,1/c)-1)
#intersection between L_a an L_c
N=(Zc*c^2)*(Za+a^2)-(Za*a^2)*(Zc+c^2)
D=Zc*c^2-Za*a^2
#intersection between L_b an L_c
N1=(Zc*c^2)*(Zb+b^2)-(Zb*b^2)*(Zc+c^2)
D1=Zc*c^2-Zb*b^2
#comparison of the intersection points
N/D==N1/D1

[1]: True

1

It is easy to be more precise by cyclically defining the six real numbers

λa,c =
za − b2

ibc
, λa,b =

za − c2

ibc
, λb,a =

zb − c2

ica
, λb,c =

zb − a2

ica
, λc,b =

zc − a2

iab
, λc,a =

zc − b2

iab

One has

(λa,c − λa,b)za = λa,cc
2 − λa,bb

2 with λa,c − λa,b =
c2 − b2

−ibc
̸= 0

showing that19

(0,−λa,b, λa,c), (λb,a, 0,−λb,c), (−λc,a, λc,b, 0)

are barycentric coordinates of za, zb, zc respectively. The barycentric equation20 of the Ceva line La is

therefore λa,cB+ Cλa,bC = 0 and analogously for Lb, Lc by cyclic symmetry. A direct computation shows

det


0 λa,b λa,c

λb,a 0 λb,c

λc,a λc,b 0

 = λa,bλb,cλc,a + λa,cλb,aλc,b = 0

19Using cyclic symmetry
20(A,B,C) being the barycentric coordinates of a generic point.
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giving another proof21 of the existence of the Gergone point. Moreover the formula

R.i(
b+ c

b− c
,
c− a

c+ a
,
a+ b

a− b
) ⊂ R3

for the kernel of the above (real) matrix gives

(i
b+ c

b− c
, i
c− a

c+ a
, i
a+ b

a− b
)

for the barycentric coordinates22 of Γ√T hence the classical formula in terms of the values of the tangent

function at the half triangle angles.

5 Simpson line

The altitude ⟨α, zα⟩ is characterized by the vanishing of the scalar product23 zα − a and β − α. We get the

equation (zα−α)(1β−1/α)+(1/zα−1α)(β−α) = 0 hence24 zα = −βγ/α ∈ U. The equation of the altitude

is therefore

t− βγt = α− βγ/α

and the intersection h of two altidudes verifies

 h− βγh = α− βγ/α

h− γαh = β− γα/β

hence

h = α+ β+ γ

and by symmetry the three altitudes meet in the so called orthocenter h. We recover that circumcenter 0, the

orthocenter h and the centroid g = 1
3h are collinear points with the relation 3

# »
0g =

#    »

0,h. The corresponding

line is called the Simpson line.

6 Euler circle

The foot hα of the altitude is the intersection altitude ⟨α, zα⟩ and the base ⟨βγ⟩ hence satisfies hα + βγhα = β+ γ

hα − βγhα = α− βγ/α

hence hα = 1
2h− 1

2βγ/α/

21This is one form of the so called Ceva’s theorem in classical geometry.
22The sum of these coefficients is nonzero because α,β,γ is an affine frame
23(at least if zα ̸= α geometrically meaning that the tangent line Tα = ⟨α,α+ iα⟩ is not orthogonal to the base line ⟨βγ⟩.
24Proving also that the condition α = −βγ/α means Tα ⊥ ⟨βγ⟩.
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droite de Simpson

a

b

c

0

g=(a+b+c)/3

-bc/a

-ab/c

-ac/b

h=a+b+c

The foot of the median from α is (β+ γ)/2.

The midpoint of [h,α] is (h+ α)/2 = α+ β/2+ γ/2.

Proposition 6.1 (Euler nine points circle) The circle of center h/2 (half the orthocenter) and radius 1
2 passes

through the nine preceding points: the three median foots, the three altitudes foots, the three midpoints between the

orthocenter and the vertices of T.

Proof. Just write (β+ γ)/2− h/2 = α/2, hα − h/2 = −1
2βγ/α, (h+ α)/2− h/2 = α/2 and

|γ/2| = |− 1
2βγ/α |=| α/2| = 1

2 .

droite de Simpson

a

b

c

0

g=(a+b+c)/3

-bc/a

-ab/c

-ac/b

h=a+b+c

h

Euler circle
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7 Feuerbach theorem

We use notations and computations of §3 and §6.

Proposition 7.1 (Feuerbach) The Euler circle is tangent to the four tangent circles of T.

The algebraic tool is this high school elementary lemma (intersection of two circles).

Lemma 7.2 Let C1, C2 two circles of radius R1, R2 distance d between their centers. Then C1 and C2 are tangent if

and only if d is equal to R1 + R2 or to |R1 + R2| or equivalently25if

(d2 − (R1 + R1)
2)(d2 − (R1 − R2)

2) = R4
1 + R4

2 + d4 − 2R2
1R

2
2 − 2R2

1d
2d− 2R2

2d
2+ = 0

.

Proof. Our circles are tangent if and only if they meet in a unique point. In a suitable orthonormal frame,

the equations of the circles are x2 + y2 = R2
1 and (x− d)2 + y2 = R2

2. An intersection point (x,y) satisfies

x =
R2

1 − R2
2

2d
and y2 = −

(d2 − (R1 − R2)
2)(d2 − (R1 + R2)

2)

4d2

from which the lemma follow (and also the usual condition for a nonempty intersection of two circles:

|R1 − R2| ⩽ d ⩽ R1 + R2).

By (viii) and (iii), we have

r2√
T
=

α̃2β̃2γ̃2

4|α̌+ β̌+ γ̌|2

Using

|α̌+ β̌+ γ̌|2
(vii)
= −

(b+ c)2(c− a)2(a+ b)2

αβγ
and α̃2β̃2γ̃2 (iv)

= −
(β− γ)2

βγ

(γ− α)2

γα

(α− β)2

αβ

we get

r2√
T
=

(b− c)2(c+ a)2(a− b)2

4a2b2c2
(x)

Moreover, we have ω√
T − h = −1

2 (a− b+ c)2 hence

|ω√
T − h|2 =

1

4
(a− b+ c)2(1/a− 1/b+ 1/c)2 (xi)

Using the above lemma with R1 = r√T, R2 = 1
2 and d = |ω√

T − h|, the Feuerbach theorem follows from a

straightforward computation26 using (x) and (xi).
25In terms of the algebraically computable squares of radius or distance.
26Just expending the relevant polynomial expression in a,b,c or in a more modern way using a formal computation software like

SAGEMATH as in above picture.
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Feuerbach

July 11, 2025

[13]: from sage.all import *
R.<x,y,z> = PolynomialRing(QQ, order='lex')
d=(((x-y+z)^2)*((1/x-1/y+1/z)^2))/4
S=(((x-y)*(y-z)*(z+x))^2)/(4*(x^2)*(y^2)*(z^2))
r=1/4
#d,S,r are the square of the distances, radius
S^2 - 2*S*r - 2*S*d + r^2 - 2*r*d + d^2==0

[13]: True

1

8 Weak Morley theorem

Let ε ∈ {0, 1} and j = exp(± 2iπ
3 ) a primitive third root of 1. We choose third roots a,b, c of the vertices.

Morley theorem (as shown in the picture below) follows from the following simple observations

a³
b³

c³

b a²a b²

ja c²

j²c a²

b c²

c b²

Non tangent case a3 ̸= bc2

a³=bc²

b³ c³

b a²

a b²

ja c²

j²c a²

c b²

Tangent case a3 = bc2

1. The coloured lines are trisectors (inscribed angle theorem) where a,b, c are arbitrary third roots of

α,β,γ. In particular, the intersection point between the two trisectors ⟨b3,ac2⟩ and ⟨c3,ab2⟩ is

za = −bc(b+ c) + a(b2 + bc+ c2)

and an analogous formulas for the two others.

2. From (1), we get za + jzb + j2zc = 0 with the vertices as in the picture above by direct calculation

(12.2).

finishing the proof27. We now would like to take this approach a step further to shed light on the algebro-

geometric situation.

27Of course, this argument is very close to the one of Connes (A. Connes, A new proof of Morley’s theorem, in Les relations entre les

mathématiques et la physique théorique, 43–46, Inst. Hautes Études Sci.) but seems to me much more natural and in fact elementary
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Remark 8.1 In we want internal trisectors, we proceed in the same way as for bisectors (3.1) by choosing in this

case 0 ⩽ A < B < C < 2π/3 defining cubic roots a = exp(iA), . . . of α, . . . . The internal trisectors are

a2b,ab2,b2c,bc2, jc2a, j2ca2 for the same argument reasons. But as in the bisector case, there is no continuous

choice with respect to the vertices to do that.

Part II

Complement: counting Morley triangles

9 Admissible pair of lines (from vertices of T)

Rotating the triangle around 0 if necessary28

we now normalize29 T by assuming αβγ = 1.

A line ℓ of T is a line ℓ = ⟨ξ̂(ℓ), ξ(ℓ)⟩ where ξ̂(ℓ) ∈ T and ξ(ℓ) is the unique point of T ∩U− {ξ̂(ℓ)}.

Definition 9.1

• We say that a pair30 of two such lines λ = (ℓ1, ℓ2) is an admissible pair if ξ̂(ℓ1) ̸= ξ̂(ℓ2) and we define ξ̂(λ) as

the missing point: ξ̂(λ) is the unique point of T− {ξ̂(ℓ1), ξ̂(ℓ2)}.

• For any such admissible pair, we define [λ]ε =
ξ(ℓ1)ξ(ℓ2)

ξ̂(λ)ε
.

28By the inverse of a third root of αβγ.
29This is certainly not essential. But this avoid powers of αβγ in the coming formulas.
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10 Trisectors

We classically define the three trisector points of the oriented angle (
̂̂
(y, z, x)) as one of the 3 points ξ ∈ U−{z}

such that we have the equality of oriented angles 3(
̂̂
y, z, ξ) = (̂̂y, z, x) mod 2π which defines 3 points of U

well defined up to µ3. If we look at the opposite angle
̂̂
(x, z,y), we get 3 other points ξ ′: the trisector points

of ̂(x, z,y) or the 6 trisector points31 of z for short32.

x

yz

Three facts about trisectors:

Lemma 10.1 Let T = {x3,y3, z3}.

1. The trisectors ℓ of T are the lines ℓx,y = ⟨z3, xy2⟩ and ξ̂(ℓx,y) = z3, ξ(ℓx,y) = xy2.

2. ℓx,y = ℓX,Y if and only if X = ux, Y = uy for some u ∈ µ3.

3. They are 6 distinct trisectors ℓ passing through z3 = ξ(ℓ) characterized by

ξ̂(ℓ) ∈ {xy2, jxy2, j2xy2, x2y, jx2y, j2x2y}

and 3 ∗ 6 = 18 distinct trisectors in total.

Proof.

1. Observe that the cube of the rotation t 7→ x
y
t maps y3 to x3, we have 3(

̂̂
y3, 0, xy2) = (

̂̂
y3, 0, x3)

mod 2π.

If z3 ̸= xy2, the inscribed angle theorem (or a direct complex computation) shows that xy2 is one of the

three trisector points of the oriented angle
̂̂

(y3, z3, x3). Using the natural action of µ3, we conversely

30By pair we mean unordered pair, or equivalently a cardinal two set.
31Unless in case of a right angle in which case we have only 2 trisectors.
32Another way to define a trisector point is to say line ℓ is a trisector of is to say that the different angles have to be understood as

geometric angle of lines -which are defined up to sign and up to mod π.
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obtain that we get this way all the trisectors. If z3 ̸= xy2 a continuity argument shows that the tangent

line ⟨a3,bc2⟩ is still a trisector.

α

2α

y³

x³

z³

x y²

0

2. We have z3 = ξ̂(ℓx,y) = ξ̂(ℓX,Y) = Z3 hence {x3,y3} = {X3, Y3}. Moreover, we have xy2 = ξ(ℓx,y) =

ξ(ℓX,Y) = XY2 hence x3y6 = X3Y6.

• If x3 = Y3 we get y3 = X3 and x3y6 = X3Y6 = y3x6 hence y3 = x3, a contradiction.

• If x3 = X3, we have x = uX for some u ∈ µ3 and y3 = Y3. We get XY2 = xy2 = uXy2 hence

Y2 = uy2 and Y2/Y3 = uy2/y3 hence y = uY.

3. Immediate consequence of (1) and (2).

11 Admissible pairs (of trisectors) of type ε

Definition 11.1 Let λ = (ℓ1, ℓ2) be a pair of trisectors, ξ̂(λ) = ξ̂(ℓ1, ℓ2) the “missing vertex” and x,y, z ∈ U such

that {x3,y3, z3} = T.We say that

• We say that λ is an admissible pair of type ε (of trisectors)33if [λ]ε = [ℓ1, ℓ2]ε ∈ µ3.

• Assume ε = 0. We define λ = λεx,y,z = (ℓx,y, ℓx,z).

• Assume ε = 1. We define λ = λεx,y,z = (ℓx,y, ℓz,y).

19



r s

y3
x3

z3

xy2

xz2

tx

λ0x,y,z

Lemma 11.2 Let x,y, z ∈ U such that {x3,y3, z3} = T and λ = λεx,y,z.

1. We have [λx,y,z]ε = (xyz)2−ε hence λεx,y,z is an admissible pair. Moreover we have ξ̂(λεx,y,z) = x3 if ε = 0

and ξ̂(λεx,y,z) = y3 if ε = 1.

2. Let X,Y, Z such that {X3, Y3, Z3} = T and λεX,Y,Z = λεx,y,z. Then, there exists u ∈ µ3 such that (X,Y, Z) =

u(x,y, z).

3. The stabilizer of λ under (µ3)
2 is µ3 hence the orbit (µ3)

3/µ3 of λεx,y,z has 9 elements.

4. (Complement) Assume that T is neither isosceles nor rectangle and let λ be an admissible pair of type ε.

Then, there exists x,y, z ∈ U such that {x3,y3, z3} = T and λ = λεx,y,z.

Proof.

1. Direct computation.

2. We have

• {x3,y3, z3} = {X3, Y3, Z3}.

• z3 = ξ̂(λ) = Z3 hence Z = uz for some u ∈ µ3.

• {x3,y3} = {X3, Y3} hence x3y3 = X3Y3

• xy2 = [λ]ε = XY2 hence x3y6 = X3Y6.

From the last two equalities we get y3 = Y3 and finally x3 = Z3 or equivalently

X = ux, Y = vy, Z = wz with u, v,w ∈ µ3.

33For ε = 0, this is the algebraic notion coming from the adjacent trisectors of a given edge, see picture below.
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From xy2 = XY2, we get uv2 = 1 and λ being admissible, we get x2y2z2 = [λ]ε = X2Y2Z2 hence

u2v2w2 = 1. Because u, v,w are of exponent 3, we get hence u = v = w .

3. Direct consequence of (2).

4. We make the (tedious but straightforward) computation for ε = 0, the case ε = 1 being analogous. By

the above lemma 2.1, our hypothesis means that for any distinct vertices of T, one has α+ β ̸= 0 and

α2 ̸= βγ.

• Let λ = (ℓ1, ℓ2) be an admissible pair of type ε = 0 and choose thanks to the above lemma

x,y, z ∈ U such that z3 = ξ̂(ℓ1) and ℓ1 = ℓx,y. We have ξ(ℓ1) = xy2 and T = {x3,y3, z3} and

x3y3z3 = 1.

• If ξ̂(ℓ2) = z3, we have ξ(ℓ2) = uxy2 or ξ(ℓ2) = ux2y for some u ∈ µ3. This implies [λ]ε = ux2y4

or [λ]ε = ux3y3 whose cube are x6y12 or x9y9 respectively. If x9y9 = x6y6z6, we get x3y3 = z6 , a

contradiction. If x6y12 = x6y6z6, we get y6 = z6 hence y3 = −z3, a contradiction.

• If ξ̂(ℓ2) = x3, we have analogously ξ(ℓ2) = uyz2 or ξ(ℓ2) = uy2z for some u ∈ µ3. This would

imply [λ]ε = uxy3z2 or [λ]ε = uxy4z whose cube are x3y9z6 and x3y12z3. If x3y9z6 = x6y6z6, we

get y3 = x3 a contradiction. If x3y12z3 = x6y6z6, we get y6 = x3z3, a contradiction.

• We have therefore ξ̂(ℓ2) = y3 and ξ(ℓ2) = uxz2 or ξ(ℓ2) = ux2z for some u ∈ µ3. In the second

case, [λ]ε = ux3y2z whose cube is x9y6z3 which cannot be equal to x6y6z6 because x3 ̸= z3 .

Therefore, ξ(ℓ2) = uxz2 and changing z to uz finishes the proof.

Corollary 11.3 Let x,y, z such that {x3,y3, z3} = T and λ = λεx,y,z = (ℓ1, ℓ2) be an admissible pair of type ε.

1. If ε = 0, the intersection point of ℓ1 ∩ ℓ2 is

tε(λ) = −yz(y+ z) + x(y2 + yz+ z2) = xy2 + xyz+ xz2 − y2z− xz2.

2. If ε = 1 and T not rectangle at y3, the unique intersection point of ℓ1 ∩ ℓ2 is

tε(λ) =
−x2z2 + y2(x2 + xz+ z2)

x+ z
.

3. If ε = 1 and T rectangle at y3, for every u ∈ µ3, the two lines of λεx,y,ωux are parallel and distinct and the 6

other pairs missing y3 meets.

Proof.
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1. Just solve

 t+ xy2z3t = xy2 + z3

t+ xz2y3t = xz2 + y3

2. Just solve

 t+ xy2z3t = xy2 + z3

t+ xz2y3t = xz2 + y3
using x+ z ̸= 0 by 2.1.

3. We have x3 + z3 = 0 by (2.1) hence z = ux,u ∈ µ3. We get

−x2z2 + y2(x2 + xz+ z2) = −u2x4 + 3u2y2z2 ̸= 0

because both the modules of u2x4 and u2y2z2 are equal to 1.

12 Morley triangles of type ε

Definition 12.1 Let x,y, z such that {x3,y3, z3} = T.

• If ε = 0, we define

λεx,y,z = (λεx,y,z, λ
ε
j2z,j2x,y, λ

ε
jy,jx,z) and tεx,y,z = (tεx,y,z, t

ε
j2z,j2x,y, t

ε
jy,jx,z).

• If ε = 1 and moreover x+ z ̸= 0 if T rectangle at y3, we define

λεx,y,z = (λεx,y,z, λ
ε
j2x,y,j2z, λ

ε
jx,y,jz) and tεx,y,z = (tεx,y,z, t

ε
j2x,y,j2z, t

ε
jx,y,jz).

We say that tεx,y,z is a Morley triangle of type34(ε, j).

The main property of the triples (λ0, λ1, λ2) associated to a Morley triple is the equality

{[λ0]ε, [λ1]ε, [λ2]ε} = µ3.

By construction, the 6 trisectors of a type one triple miss the vertex y3 and none point for a type zero triple,

hence the notation.
34Of course, all the preceding constructions depend on the choice of j as one of the two primitive third root of 1.
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a³
b³

c³

b a²a b²

ja c²

j²c a²

b c²

c b²

Morley triangle of type ε = 0

a³

b³

c³

a²b

j² b a²

j a² b

j² a² c

a² c

j a² c

Morley triangle of type ε = 1

Proposition 12.2 (The 27 Morley triangles) Let X,Y, Z such that {X,Y, Z} = T and

Morleyε,j = {tεx,y,z, x
3 = X,y3 = Y, z3 = Z and x+ z ̸= 0}

be the associated set of Morley triangles.

1. Any Morley triangle is non degenerate and equilateral.

2. The cardinality of Morleyε,j.

(a) 3 or 2 whether T is rectangle at y3 or not and ε = 1.

(b) 9 if ε = 0.

3. Dependence on j.

(a) If ε = 0, we have Morley0,j ∩Morley0,j2 = ∅ (9 new triangles).

(b) If ε = 1 we have Morley1,j = Morleyε,j2 (no new triangles).

4. There is no triangle of both type 0 and 1.

5. There is in total 2*9+9=27 Morley triangles if T is not rectangle and 2*9+6=24 triangle otherwise.

Proof.

1. We use the formulas 11.3.
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(a) Assume first ε = 0.

tεx,y,z + jtεj2z,j2x,y + j2tεjy,jx,z = xy2 + xyz+ xz2−y2z−yz2

−j2x2y+ jx2z−xy2 + j2xyz+y2z

+j2x2y−jx2z+ jxyz−xz2+yz2

= (1+ j+ j2)xyz

= 0

hence is equilateral. If this triangle is reduced to a single point τ, we have

τ ∈ ℓx,z ⊂ λεx,y,z and τ ∈ ℓj2z,j2x ⊂ λεj2z,j2x,y,

both lines being distinct (10.1) trisectors passing through y3. This implies τ = y3 and by symme-

try T = {τ}, a contradiction.

(b) Assume now ε = 1 and x+ z ̸= 0 if T rectangle at y3.

(x+ z)tεx,y,z = x2y2−x2z2+xy2z+ y2z2

(x+ z)tεj2x,y,j2z = jx2y2−x2z2+jxy2z+ jy2z2

(x+ z)jtεjx,y,jz = j2x2y2−x2z2+j2xy2z+ j2y2z2

gives again

tεx,y,z + jtεjx,y,jz + j2tεj2x,jx,j2z = 0

More precisely tε(x,y, z) is the equilateral triangle

tε(x,y, z) = −
x2z2

x+ z
+ ρ{1, j, j2} with ρ =

x2y2 + xy2z+ y2z2

x+ z
= y2 x

3 − z3

x2 − z2
̸= 0 (xii)

hence is non degenerate.

2.

(a) Assume ε = 1 and let d = 3 (if T not rectangle at Y) and d = 2 (if T rectangle at y). The centroids

of Morley triangles are of the form −−x2z2
x+ z with x + z ̸= 0 and x3 = X, z3 = Z. Fixing such x,y,

under the action of (µ3)
2 on x,y, we get at most d values for the Morley triangles

−
x2z2

x+ z
,−

j2x2z2

x+ jz
,−

jx2z2

x+ j2z
.

But
x2z2

x+ z
̸= j2x2z2

x+ jz
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for x, z ∈ U because x+ jz = j2(x+ z) if and only if (1− j)(1+ j)x = j(j− 1)z which is impossible

(|1+ j| ̸= 1). This argument says also that (ux, vy,wz),w ∈ (µ3)
3 define the same centroid if and

only if u = w. The associated ρ is therefore well defined up to µ3 when the centroid is fixed and

therefore the Morley triangle is well defined by its centroid.

(b) Assume ε = 0 and let τ = τε(x,y, z) be one of the vertices of tεx,y,z = tεX,Y,Z. By construction, we

have

λεx,y,z = ⟨τ,y3⟩ ∪ ⟨τ, z3⟩. (xiii)

But τ ∈ {tεX,Y,Z, t
ε
j2Z,j2X,Z, t

ε
jY,jX,Z}.

• If τ = tεj2Z,j2X,Y, we get

λεj2Z,j2X,Y = ⟨τ, X3⟩ ∪ ⟨τ, Y3⟩ (xiv)

hence ℓx,y = ℓj2Z,Y which would imply x3 = Z3 by (10.1 ), a contradiction.

• If τ = tεjY,jX,Z, changing j to j2 and Z to Y, we get from the preceding point x3 = y3, a

contradiction.

• We have therefore τ = tεX,Y,Z hence

λεX,Y,Z = ⟨τ, Y3⟩ ∪ ⟨τ, Z3⟩ = ⟨τ,y3⟩ ∪ ⟨τ, z3⟩ = λεx,y,z

and we conclude by (11.2) X = ux, Y = uy, Z = vz for some u ∈ µ3.

3.

(a) Assume ε = 0 and tε,j(x,y, z) = tε,j
2
(X,Y, Z). Using exactly the same argument before, we get

X = ux, Y = uy, Z = vz and λε,j(x,y, z) = λε,j
2
(X,Y, Z). Using (xiv), we obtain more gener-

ally λε,j(j2z, j2x,y) = λε,j
2
(j2Z, j2X,Y) the equality of ordered pairs λε,j(x,y, z) = λε,j

2

(X,Y, Z).

Applying the invariant λ 7→ [λε], we get the equality of ordered pairs (1, j, j2) = (1, j2, j), a con-

tradiction.

(b) Use for instance (xii).

4. Because triangle of type (1, j) are also of type (1, j2), one has to look at the equation

t0,j(x,y, z) = t1,j(a,b, c) = {t1, t2, t3}

(with {x3,y3, z3} = {a3,b3, c3}).

Because the trisectors of λ1,j(a,b, c) miss b3, we have

λ1(a,b, c) = {⟨a3, t1⟩ ∪ ⟨c3, t1⟩, ⟨a3, t2⟩ ∪ ⟨c3, t2⟩, ⟨a3, t3⟩ ∪ ⟨c3, t3⟩}
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Using (xiii) again, there exists i such that λ0(x,y, z) = ⟨a3, ti⟩ ∪ ⟨c3, ti⟩ = ℓ1 ∪ ℓ2 hence there exists

u ∈ µ3 such that ℓ1 ∪ ℓ2 = λ1(ua,b,uc). Looking at at [λ]ε, we get b3 = ξ(ℓ1, ℓ2) ∈ µ3 hence T is

isosceles at b3 = y3 and {a3, c3} = {x3, z3}.

We are reduced to the isosceles situation and, changing j to j2 if necessary, we can assume t1 =

t1(x, 1, 1/x) (centroid equal to x
x2+1 ) and t0 = t0(a, j, 1/a) (centroid equal to

ξ =
(2j+ 1)a4 + (−j+ 1)a3 + (j+ 2)a− (2j+ 1)

3a2

The first centroid is real but ξ− ξ = (j−1)(x+1)(x−1)(x2+x+1)
x2 which is nonzero because T is not flat.

5. The remaining point is to prove that when ε = 1 the vertex y3 of tεx,y,z is determined by the triangle

itself. By direct computation, the centroid of tεx,y,z is −x2z2

x+z
and the centroid of its conjugate triangle

tε1/x,1/y,1/z is −1
x2z+xz2 . The quotient of these centroids is x3z3 = y3. In particular, the missed point y3

by the trisectors is determined by the triangle tεx,y,z independently showing that we get 9 or 6 distinct

equilateral triangles in total when ε = 1.

Remark 12.3 Using for instance a computer, if T is generic enough (precisely two vertices are algebraically inde-

pendent over Q[j]), then one can check that Morley triangles are the only equilateral triangles that can be obtained by

intersecting trisectors.
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