

Master 2 Analyse Modélisation Simulation (AMS)

Responsable pédagogique du Master AMS: Christophe CHALONS (christophe.chalons@uvsq.fr)

Secrétariat Master AMS: Philippe CANES (philippe.canes@uvsq.fr)

Responsable pédagogique option AM **Matthieu LEAUTAUD** matthieu.leautaud@math.u-psud.fr

Secrétariat option AM Séverine SIMON severine.simon@universite-paris-saclay.fr Responsable pédagogique option MS **Sonia FLISS** sonia.fliss@ensta-paristech.fr

Secrétariat option MS Anne RICHARD anne.richard@ensta-paris.fr

Etablissements impliqués dans le M2 AMS

- Université Paris-Sud (Université Paris-Saclay)
- UVSQ (établissement référent pour l'Université Paris-Saclay)
- CentraleSupelec (Université Paris-Saclay)
- CEA (Université Paris-Saclay)
- UEVE (Université Paris-Saclay)
- ENSTA (Institut Polytechnique de Paris)
- Ecole Polytechnique (Institut Polytechnique de Paris)

Pourquoi un parcours AMS?

- L'analyse mathématique appliquée a connu des progrès spectaculaires dans les dernières décennies.
- Simultanément les progrès des méthodes numériques et l'amélioration des performances des ordinateurs ont fait de la simulation numérique un outil essentiel dans l'industrie comme dans la recherche.
- L'objectif du parcours « Analyse, Modélisation, Simulation » (en abrégé: AMS) est de proposer une offre complète de formation dans ces domaines, allant des approches les plus théoriques jusqu'aux développements concrets (modélisation, implémentation et simulations numériques).

Les deux options du parcours AMS

- Deux options distinctes sont proposées au sein du parcours AMS:
 - L'option « Analyse, Modélisation » (AM) permettant d'acquérir une solide formation en mathématiques fondamentales et appliquées et une initiation à la recherche académique.
 - L'option « Modélisation, Simulation » (MS) permettant d'acquérir une forte compétence en mathématiques appliquées et en simulation numérique, en vue d'une insertion professionnelle dans le domaine de la recherche ou de la R&D, aussi bien académique qu'industrielle.
- Votre choix définitif devra être fait avant le vendredi 17 septembre (par l'intermédiaire d'une fiche à remplir ou via l'Outil Note)

Les sites internet du parcours AMS

- UVSQ : http://www.departement.math.uvsq.fr/master2MS
- UPSAY (option AM): https://www.imo.universite-paris-saclay.fr/fr/students/master/mathematiques-et-applications/m2/analyse-modelisation-simulation/
- IPP (option MS) : https://uma.ensta-paris.fr/modsim/

Inscription(s)

- Pour les étudiants admis via la plateforme UPSAY, l'inscription administrative se fait pour tous à l'UVSQ (voir site internet).
- Pour les étudiants inscrits via la plateforme IPP, il conviendra de vous rapprocher de Sonia Fliss et Anne Richard (ENSTA).
- Les étudiants inscrits à l'UVSQ recevront également un formulaire de l'ENSTA simplifié à compléter pour pouvoir suivre les cours dispensés à l'ENSTA
- La date limite d'inscription administrative est fixée au 30 septembre 2021

Organisation du premier semestre

- Différents modules au choix, tous à 5 ECTS (et 30h), sont proposés.
- Un total de 30 ECTS doit être obtenu au premier semestre. Les modalités d'évaluation (projet ou examen) vous seront communiquées au début de chaque cours par les enseignants.
- Certains modules, plutôt théoriques relèvent plutôt de l'option AM, d'autres, plutôt numériques relèvent plutôt de l'option MS. Certains modules, à la fois théoriques et numériques, sont compatibles avec les deux options.
- Un étudiant ayant opté pour l'option AM peut tout à fait choisir quelques cours MS et vice-versa.

Planning du premier semestre

- Une semaine de remise à niveau est organisée durant 5 jours à partir du lundi 30 août jusqu'au vendredi 5 septembre.
- Les cours démarrent le lundi 6 septembre.
- Le premier semestre se divise en 2 blocs de cours : du 06/09 au 19/11 puis du 22/11 au 11/02.
- Il est recommandé d'équilibrer son emploi du temps entre les deux blocs et de suivre un minimum de 4 cours par bloc (les 6 meilleures notes obtenues seront retenues).
- Une compensation des notes comprises entre 7/20 et 10/20 est possible.

Lieu des cours et modalités pratiques

- Les cours ont tous lieu sur le plateau de Saclay ou à Orsay. Les principaux sites de cours sont situés à l'ENSTA et à l'Université Paris-Sud.
- L'enseignement est pour le moment prévu 100% en présentiel. Cette configuration pourra cependant évoluer suivant les circonstances.
- Les modalités et les salles de cours vous seront communiquées par Mme Anne Richard (finalité MS) et Séverine Simon (finalité AM) puis par les enseignants directement.

Organisation du second semestre

- Tous les étudiants devront valider 3 cours spécialisés de 3 ECTS se déroulant du 14/02 au 01/04 (période appelée bloc 3).
- Les étudiants réaliseront ensuite un mémoire ou un stage au sein d'un laboratoire de recherche académique ou d'une entreprise, de 4 mois minimum.
- Une compensation des notes comprises entre 7/20 et 10/20 est possible à l'intérieur du bloc 3.
- Le stage/mémoire n'est ni compensable ni compensant
- Les semestres 1 et 2 ne sont pas compensables entre eux

Liste des cours des 3 blocs

(les pages font référence au livre descriptif, voir site internet)

Cours proposés par l'ENSTA

- AMS301 Calcul scientifique parallèle Page 3
- AMS303 Méthodes variationnelles pour l'analyse de problèmes non coercifs Page 4
- AMS304 Méthodes numériques modernes pour la résolution des équations intégrales Page 5
- AMS305 Problèmes inverses pour les systèmes gouvernés par des EDPs Page 6
- AMS306 Techniques de discrétisation avancées pour les problèmes d'évolution Page 7
- AMS307 Problèmes de diffraction en domaine non borné Page 8
- AMS308 Modèles mathématiques et leur discrétisation en électromagnétisme Page 9
- AMS309 Modélisation des plasmas et des systèmes astrophysiques Page 10
- AMS310 Equations intégrales de frontière Page 11
- AMS311 Homogénéisation stochastique Page 12
- AMS312 Méthodes hybrides pour la diffraction à hautes fréquences Page 13
- AMS313 Eléments finis et éléments de frontière : parallélisation, couplage Page 14
- AMS314 Génération et adaptation de maillage pour le calcul scientifique Page 15
- MSE302 Introduction à l'imagerie médicale (mutualisé Master MSV) Page 16
- MSE303 Modélisation math. et estimation en biomécanique cardiaque (mutualisé Master MSV) Page 17
- SOD311 Contrôle des EDO (mutualisé Master Optimisation) Page 18
- SOD332 Contrôle géométrique (mutualisé Master Optimisation) Page 19

Cours proposés par l'UVSQ

- V03 Analyse théorique et numérique des systèmes hyperboliques Page 20
- V04 Optimisation sans gradient (mutualisé Master Optimisation)- Page 21
- V05 Introduction à la quantification d'incertitudes Page 22
- V06 Analyse théorique et numérique des systèmes non-strictement hyperboliques Page 23
- V07 Inégalités de Carleman et applications Page 24

Liste des cours des 3 blocs

Cours proposés par l'Université Paris Sud

- O1 Introduction à la théorie spectrale (mutualisé Master AAG) Page 25
- O2 Introduction à l'analyse semiclassique (mutualisé Master AAG) Page 26
- O3 Equations elliptiques linéaires et non-linéaire (mutualisé Master AAG) Page 27
- O4 Equations dispersives Page 28
- O5 Eléments finis en mécanique des fluides et suivi d'interfaces Page 29
- O6 Calcul des variations (mutualisé Master Optimisation) Page 30
- O7 Introduction à l'étude des résonances quantiques (mutualisé Master AAG) Page 31
- O8 Transport Optimal (mutualisé Master Optimisation) Page 32
- O10 Cours de remise à niveau : Analyse numérique Page 33
- O11 Cours de remise à niveau : Analyse fonctionnelle Page 34

Cours proposés par l'Ecole Polytechnique

- X01 Homogénéisation périodique Page 35
- X02 Méthodes numériques avancées et calcul haute performance Page 36
- X03 Analyse des fluides parfaits incompressibles Page 37
- X04 Modèles cinétiques Page 38
- X05 Contrôle des EDP (mutualisé Master Optimisation) Page 39

Cours proposés par l'INSTN

- I01 Modélisation et simulation des écoulements de fluides en géosciences Page 40
- I03 Programmation hybride et multi-cœurs Page 41
- I05 Simulation numérique en physique des plasmas Page 42
- I06 Simulation numérique en astrophysique Page 43
- I07 Visualisation scientifique Page 44

Cours proposés par l'Université Evry

— E1 Analyse fonctionnelle pour les équations de Navier Stokes - Page 45

Cours proposés par Centrale-Supélec

— CS1 Méthodes de Moments dérivées d'une équation cinétique - Page 46

Liste des cours du bloc 1

- Equations elliptiques linéaires et non-linéaires (AM)
- Introduction à la théorie spectrale (AM)
- Introduction à l'analyse semiclassique (AM)
- Analyse des fluides parfaits incompressibles (AM)
- Eléments finis en mécanique des fluides et suivi d'interfaces (AMS)
- Contrôle des EDO (AMS)
- Méthodes variationnelles pour l'analyse et la résolution de problèmes non coercifs (AMS)
- Problèmes inverses pour les systèmes gouvernés par des EDPs (AMS)
- Homogénéisation périodique (AMS)
- Calcul scientifique parallèle (MS)
- Méthodes numériques et algorithmiques modernes pour la résolution des équations intégrales (MS)
- Modélisation des plasmas et des systèmes astrophysiques (MS)

Liste des cours du bloc 2

- Equations dispersives (AM)
- Calcul des variations (AM)
- Analyse fonctionnelle pour les équations de Navier Stokes (AM)
- Analyse théorique et numérique des systèmes hyperboliques (AMS)
- Techniques de discrétisations avancées pour les problèmes d'évolution (AMS)
- Analyse mathématique et résolution numérique des problèmes de diffraction en domaine non borné (AMS)
- Introduction à l'imagerie médicale (AMS)
- Modèles mathématiques et leur discrétisation en électromagnétisme (AMS)
- Équations intégrales de frontière (AMS)
- Optimisation sans gradient et applications en calcul scientifique (AMS)
- Méthodes de Moments dérivées d'une équation cinétique (AMS)
- Introduction à la quantification d'incertitudes (MS)
- Méthodes numériques avancées et calcul haute performance pour la simulation de phénomènes complexes (MS)
- Modélisation et simulation des écoulements de fluides en géosciences (MS)
- Programmation hybride et multi-coeurs (MS)

Liste des cours du bloc 3

- Inégalités de Carleman et applications (AM)
- Introduction à l'étude des résonances quantiques (AM)
- Transport optimal (AM)
- Modèles cinétiques (AM)
- Contrôle géométrique (AM)
- Contrôle optimal des EDP (AM)
- Homogénéisation stochastique (AMS)
- Analyse théorique et numérique des systèmes non-strictement hyperboliques (AMS)
- Modélisation mathématique et estimation en biomécanique cardiaque De la théorie aux applications médicales (AMS)
- Méthodes hybrides pour la diffraction à hautes fréquences (MS)
- Éléments Finis et Éléments de Frontière : Parallélisation, Couplage et Performance (MS)
- Génération et adaptation de maillage pour le calcul scientifique (MS)
- Simulation numérique en physique des plasmas (MS)
- Simulation numérique en astrophysique (MS)
- Visualisation Scientifique (MS)

Choix des cours

- Le choix définitif des cours devra être effectué avant le 24 septembre et validé par votre tuteur désigné (en fonction de votre établissement d'origine et/ou votre finalité) et avec lequel il conviendra de prendre contact préalablement pour organiser une rencontre :
 - ✓ Finalité AM: Matthieu Leautaud
 - ✓ Finalité MS: Sonia Fliss
 - ✓ Etudiants CentraleSupelec: P. Lafitte
- Pour cela, un formulaire unique vous sera distribué (incluant un contrat pédagogique à signer) ou disponible via l'Outil Note.

Correspondance

- Merci de nous communiquer une adresse électronique fiable qui sera utilisée tout au long de l'année
- Lisez bien vos messages et participez le cas échéant (demandes d'information, formulaires à remplir....)
- Ne pas hésitez à nous contacter si besoin