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Typical Dataset in Crowd-Sourcing

Frog (??)

▶ Identification a worker: annotator_id

▶ Evaluation on a given image: correct_guess
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This Talk

We consider a ranking problem:
▶ Given the observation of the correctness of answers of n

experts on d questions,
▶ We want to rank the experts according to their ability.

Question: how well can we recover their ranking in a
minimax sense?
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10 questions
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0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 1
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0: Wrong answer 1: Correct answer
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Example of Possible Data

10 questions

4 experts


1 0 1 0 0 0 1 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 1


0: Wrong answer 1: Correct answer

This talk: Ranking of Experts

Under Known Difficulty of the questions
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Experts/Questions Setting
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questions k ∈ {1, . . . , d}. We
observe for all i, k:

Yik ∼ Bern (Mik) .
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Experts/Questions Setting

Experts i ∈ {1, . . . , n} and
questions k ∈ {1, . . . , d}. We
observe for all i, k:

Yik ∼ Bern (Mik) .

expert i correct at question k

⇔ Yik = 1 .

1: Correct 0: Wrong
1 0 1 0 0 0 1 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 1


▶ Mik = 1/2: random choice

of expert i at question k
▶ Mik = 1: Expert i knows

perfectly the answer of
question k
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Non Parametric Model

Observation Model
Y = M + ε ∈ Rn×d

▶ (εik) i.i.d. subGaussian
▶ Mik ∈ [0, 1] for all i, k

Shape Constraints
(Bi-isotonicity):

▶ Increasing Rows Mi,k ≤ Mi,k+1

▶ Increasing Columns for an
unknown permutation π∗

Aim
Estimation of π∗.

White = 0 ; Black = 1

Matrix Y (M in noise).
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Example with n, d = 150, M ∈ [0.4, 0.6]
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For an estimator π̂ of π∗

Perm-Loss := ∥Mπ̂ −Mπ∗∥2F

=
n∑

i=1

d∑
k=1

(Mπ(i),k −Mπ∗(i),k)
2
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Observation Model
Y =M + ε ∈ Rn×d

▶ (εik) i.i.d. subGaussian

▶ Mik ∈ [0, 1] for all i, k

Shape Constraints
(Bi-isotonicity):

▶ Increasing Rows Mi,k ≤Mi,k+1

▶ Increasing Columns for an
unknown permutation π∗

Error Measures

Permutation loss
For an estimator π̂ of π∗

Perm-Loss := ∥Mπ̂ −Mπ∗∥2F

If the two lines are misclassified:
Perm-Loss = 2rh2
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Max-Risk and MiniMax-Risk
If π̂ is an estimator of π∗, we define

Max-Perm(π̂)

= sup
M,π∗

E[∥Mπ̂ −Mπ∗∥2F ],

MiniMax-Perm = inf
π̂
(Max-Perm(π̂))

Define similarly Max-Estim and
MiniMax-Estim for estimation of
M with M̂ .
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Other Ranking and Permutation Problems

Related rectangular problems:
▶ Two permutations [Mao et al., 2018, Shah et al., 2019]

M is bi-isotonic up to permutations π∗ and σ∗ of rows and columns.
Objective: ranking the experts and the questions.
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Other Ranking and Permutation Problems

Related rectangular problems:
▶ Two permutations [Mao et al., 2018, Shah et al., 2019]

M is bi-isotonic up to permutations π∗ and σ∗ of rows and columns.
Objective: ranking the experts and the questions.

▶ Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a n× n matrix with
symmetries.

▶ Non-parametric Models SST [Shah et al., 2016]
▶ Parametric Models:

Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Short story:
▶ No computational gap for parametric models (BLT, noisy sorting)
▶ Mostly unknown for non-parametric models: computational gaps were

conjectured
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Main questions

1. Is Estimating π∗ much easier than estimating M?
2. Is there a computational-statistical gap?

Our Contributions
▶ Control of MiniMax-Perm(n, d)

▶ A polynomial-time procedure achieves MiniMax-Perm(n, d)
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Existing Methods

▶ Non-Polynomial Time Methods with Least Square
▶ Simple Global Average Comparison
▶ [Liu and Moitra, 2020] based on Hierarchical Clustering
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Least Square on Bi-isotinic Matrix
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Non-Polynomial Time Method
[Mao et al., 2018]

▶ Perm the set of all permutation
of {1, . . . , n}

▶ Mon be the set of all
bi-isotonic matrix in [0, 1]

Least-square estimator

(M̂LS, π̂LS) =

argmin
M̃∈Mon,π̃∈Perm

∥M̃π̃ − Y ∥2F
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Non-Polynomial Time Method
[Mao et al., 2018]

▶ Perm the set of all permutation
of {1, . . . , n}

▶ Mon be the set of all
bi-isotonic matrix in [0, 1]

Least-square estimator

(M̂LS, π̂LS) =

argmin
M̃∈Mon,π̃∈Perm

∥M̃π̃ − Y ∥2F

No know polynomial-time
method to compute Yπ̂LS,.
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Non-Polynomial Time Method
[Mao et al., 2018]

▶ Perm the set of all permutation
of {1, . . . , n}

▶ Mon be the set of all
bi-isotonic matrix in [0, 1]

Least-square estimator

(M̂LS, π̂LS) =

argmin
M̃∈Mon,π̃∈Perm

∥M̃π̃ − Y ∥2F
Matrix M̂LS

π∗,..
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Non-Polynomial Time Method [Mao et al., 2018]

Least-square guarantees
(π̂LS, M̂LS) satisfy -up to polylogs:

Max-Estim(M̂LS) ≲ n ∨ (
√
nd ∧ nd1/3)

Max-Perm(π̂LS) ≲ n ∨ (
√
nd ∧ nd1/3)

Entropy Arguments:

▶ n! permutations: n ≍ log(n!)

▶ Covering of bi-isotonic matrices: log-size ≍
√
nd ∧ nd1/3

Remarks:

▶ MiniMax-Estim Optimal [Mao et al., 2018]

▶ not proven to be MiniMax-Perm Optimal
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Summary

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm ?? ?? n

MiniMax-Estim nd1/3
√
nd n

But algo. not polynomial time.
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Global Average Comparison
[Pananjady and Samworth, 2020,
Shah et al., 2019]

Method:
▶ Compute expert i average

performances on all questions:
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▶ Rank experts according to
their average: π̂av

Guarantees on π̂av

Max-Perm(π̂av) ≍ n
√
d.

Idea of Proof

Perfect expert on
√
d

questions VS random:

Y1,. = (01101 . . . 10 1111111111︸ ︷︷ ︸)
Y2,. = (01000 . . . 01 1010010100︸ ︷︷ ︸

∼
√
d

)

(Example of Observations)



Introduction Overview of Existing Methods Minimax and Poly. Time Algo.

Global Average Comparison
[Pananjady and Samworth, 2020,
Shah et al., 2019]

Method:
▶ Compute expert i average

performances on all questions:

Y i =
1

d

d∑
k=1

Yik

▶ Rank experts according to
their average: π̂av

Guarantees on π̂av

Max-Perm(π̂av) ≍ n
√
d.

Idea of Proof

Perfect expert on
√
d

questions VS random:

Y1,. = (01101 . . . 10 1111111111︸ ︷︷ ︸)
Y2,. = (01000 . . . 01 1010010100︸ ︷︷ ︸

∼
√
d

)

1 and 2 cannot be distinguished
with their average: Max-Perm(π̂av)
≍

√
d



Introduction Overview of Existing Methods Minimax and Poly. Time Algo.

Global Average Comparison
[Pananjady and Samworth, 2020,
Shah et al., 2019]

Method:
▶ Compute expert i average

performances on all questions:

Y i =
1

d

d∑
k=1

Yik

▶ Rank experts according to
their average: π̂av

Guarantees on π̂av

Max-Perm(π̂av) ≍ n
√
d.

Idea of Proof

Perfect expert on
√
d

questions VS random:

Y1,. = (01101 . . . 10 1111111111︸ ︷︷ ︸)
Y2,. = (01000 . . . 01 1010010100︸ ︷︷ ︸

∼
√
d

)

1 and 2 cannot be distinguished
with their average: Max-Perm(π̂av)
≍

√
d

▶ Lower Bound for π̂av: There
exists M s.t. Max-Perm(π̂av)
≳ n

√
d



Introduction Overview of Existing Methods Minimax and Poly. Time Algo.

Global Average Comparison
[Pananjady and Samworth, 2020,
Shah et al., 2019]

Method:
▶ Compute expert i average

performances on all questions:

Y i =
1

d

d∑
k=1

Yik

▶ Rank experts according to
their average: π̂av

Guarantees on π̂av

Max-Perm(π̂av) ≍ n
√
d.

Idea of Proof

Perfect expert on
√
d

questions VS random:

Y1,. = (01101 . . . 10 1111111111︸ ︷︷ ︸)
Y2,. = (01000 . . . 01 1010010100︸ ︷︷ ︸

∼
√
d

)

1 and 2 cannot be distinguished
with their average: Max-Perm(π̂av)
≍

√
d

▶ Upper Bound: For any
M,π∗, Max-Perm(π̂av)
≲ n

√
d
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Summary

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm ?? ?? n

MiniMax-Estim nd1/3
√
nd n

Global average (UB) n
√
d n

√
d n

√
d

Remarks:
▶ Algo. for rates in MiniMax-Estim and MiniMax-Perm not

in polynomial time.
▶ One to one comparisons give UB but sub-optimal whenever
d ≳ 1.
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CP and Hierarchical Clustering
Based Algo.
[Liu and Moitra, 2020]

[Liu and Moitra, 2020] consider
only the case d = n, and provide a
poly. time algo. returning
π̂(LM) such that

Max-Perm(π̂(LM)) ≲ n.

One can push further their analysis
for d ̸= n and get n∨ d through this.
Optimal for d = n in which case

MiniMax-Perm ≍ n.

Localisation through CP detection.

Hierarchical clustering.
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Summary

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm ?? ?? n

MiniMax-Estim nd1/3
√
nd n

Global average (UB) n
√
d n

√
d n

√
d

Ext. of LM (UB) d d n

Remarks:
▶ Poly. time algo of LM achieves MiniMax-Perm and

MiniMax-Estim for d = n

▶ This algorithm can be analysed in a more refined way for
d ̸= n - but not done in [Liu and Moitra, 2020].
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Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022]

Assume we have polylog samples.
There exists a estimator π̂ of π∗ which is poly. time and
minimax optimal

E[∥Mπ̂ −Mπ∗∥2F ] ≲ n ∨ (n3/4d1/4 ∧ nd1/6) ≍ MiniMax-Perm .

Can be combined with bi-isotonic regression to have a
poly. time MiniMax-Estim algo!
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Summary

Poly. time algo achieving the minimax rates:

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm nd1/6 n3/4d1/4 n

MiniMax-Estim nd1/3
√
nd n
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Uniform distance between two experts

Global average comparison is optimal:
Constant Perm-Risk - Confusion only if h ≲ 1/

√
d.
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Localised distance between two experts

ψ([d]) = 1
d

∑d
i=1 Yi achieves

Perm-Risk ≍
√
d≫ d1/6
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From Global to Local Averages

Global average good.

Global average bad → need to
localise.

Idea:
▶ Estimate by a change

point (CP) method
windows where any of the
two experts changes by
more than h.

▶ Compute local average
on these windows.

[Liu and Moitra, 2020]
introduced this idea of
localisation with CP - in a
different context and regime.
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Introduction Overview of Existing Methods Minimax and Poly. Time Algo.

Worst Case for a Group G(0)

(n≫ d1/3)

In G(0), an expert is either in L
or in U .

After Aggregation

√
rh

2


0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0
0 −1 −1 0 0 −1 0 0
0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0


1: above the mean (U)
−1: below the mean (L)

Rank one matrix ; (PCA):
1st left singular vector: better
clustering than local averages in
some regimes
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Beyond [Liu and Moitra, 2020] for d ̸= n

The corresponding Max-Perm is upper bounded by

n ∨ (n2/3d1/3) .

▶ Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) -
Improvement when d < n:

n ∨ d≫ n ∨ (n2/3d1/3) .

▶ But not Optimal !

n ∨ (n2/3d1/3) ≫ n ∨ (n3/4d1/4) .
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Summary

Poly. time algo achieving the minimax rates:

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm nd1/6 n3/4d1/4 n

MiniMax-Estim nd1/3
√
nd n

Global average (UB) n
√
d n

√
d n

√
d

Ext. of LM (UB) d d n

Super ext. of LM nd1/6 n2/3d1/3 n

Remark: Super ext. of LM requires a lot of additional work
w.r.t. [Liu and Moitra, 2020]



Introduction Overview of Existing Methods Minimax and Poly. Time Algo.

Ideas to achieve n3/4d1/4

From an oblivious Hierarchical
Clustering
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Two Types of Information

G(0) is sandwiched between V−
and V+

First Type

Removing regions where G(0) is
sandwiched
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Two Types of Information

G(0) is sandwiched between V−
and V+

Second Type

Better Change-Point Detection
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Conclusion of the Method with Memory

Poly. time algo achieving the minimax rates:

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

MiniMax-Perm nd1/6 n3/4d1/4 n
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Conclusion
For all n, d:

▶ The rate MiniMax-Perm which is of order n ∨ (n3/4d1/4 ∧ nd1/6) (UB
and LB).

▶ An associated poly.-time ranking method.
▶ Together with bi-isotonic regression, this provides a poly.-time method

for Minimax-Estim.
▶ Related to [Liu and Moitra, 2020] but new concepts necessary for

minimax rate (memory of the tree).
▶ Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092], accepted in AOS (2022)
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Conclusion
For all n, d:

▶ The rate MiniMax-Perm which is of order n ∨ (n3/4d1/4 ∧ nd1/6) (UB
and LB).

▶ An associated poly.-time ranking method.
▶ Together with bi-isotonic regression, this provides a poly.-time method

for Minimax-Estim.
▶ Related to [Liu and Moitra, 2020] but new concepts necessary for

minimax rate (memory of the tree).
▶ Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092], accepted in AOS (2022)

Research Directions:
▶ Unknown order on questions.
▶ Removing the isotonicity constraint on questions.
▶ Unknown answers: -observing labels instead of correctness.
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(Isotonic)-π∗

▶ Isotonicity in
experts for an
unknown
permutation
π∗

(Bi-isotonic)-(π∗, σ∗)
▶ Isotonicity in

experts for an
unknown
permutation
π∗

▶ Isotonicity in
questions for
an unknown
permutation
σ∗

(Bi-isotonic)-π∗

▶ Isotonicity in
experts for an
unknown
permutation
π∗

▶ Isotonicity in
questions:
M·k ≤M·(k+1)

(known
permutation
σ∗)

Statistical difficulty:

(Isotonic)-π∗ ≻ (Bi-isotonic)-(π∗, σ∗) ≻ (Bi-isotonic)-π∗
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