Optimal Permutation Estimation in Crowd-Sourcing Problems

Alexandra Carpentier

Universität Potsdam

Based on joint works with **Emmanuel Pilliat** (Uni Montpellier and INRAE) and **Nicolas Verzelen** (INRAE)

June, 1st 2023

Cifar10H dataset: 10000 images, 10 labels.

Cifar10H dataset: 10000 images, 10 labels.

▶ Identification a worker: annotator_id

Cifar10H dataset: 10000 images, 10 labels.

- ▶ Identification a worker: annotator id
- ► Evaluation on a given image: **correct guess**

Frog (??)

- ► Identification a worker: annotator_id
- ► Evaluation on a given image: **correct guess**

This Talk

We consider a **ranking** problem:

- ightharpoonup Given the observation of the correctness of answers of n experts on d questions,
- ▶ We want to rank the experts according to their ability.

Question: how well can we recover their ranking in a minimax sense?

Example of Possible Data

10 questions

0: Wrong answer 1: Correct answer

Example of Pos

$$4 \text{ experts} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

0: Wrong answer 1: Correct answer

Hard Questions Easy Questions

Example of Pos

0: Wrong answer 1: Correct answer

This talk: Ranking of Experts

Example of Pos

$$4 \text{ experts} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

0: Wrong answer 1: Correct answer

This talk: Ranking of Experts

Under Known Difficulty of the questions

Experts/Questions Setting

Introduction

Experts $i \in \{1, \ldots, n\}$ and questions $k \in \{1, \dots, d\}$. We observe for all i, k:

$$Y_{ik} \sim \operatorname{Bern}(M_{ik})$$
.

1: Correct 0: Wrong

Experts/Questions Setting

Introduction

000000000000000

Experts $i \in \{1, \ldots, n\}$ and questions $k \in \{1, \dots, d\}$. We observe for all i, k:

$$Y_{ik} \sim \operatorname{Bern}(M_{ik})$$
.

1: Correct 0: Wrong

expert i correct at question k

$$\Leftrightarrow Y_{ik} = 1$$
.

Experts/Questions Setting

Experts $i \in \{1, ..., n\}$ and **questions** $k \in \{1, ..., d\}$. We observe for all i, k:

$$Y_{ik} \sim \text{Bern}(M_{ik})$$
.

expert *i* correct at question k $\Leftrightarrow Y_{ik} = 1.$

1: Correct 0: Wrong

- ► $M_{ik} = 1/2$: random choice of expert i at question k
- ► $M_{ik} = 1$: Expert i knows perfectly the answer of question k

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

 \blacktriangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \blacktriangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Introduction

000000000000000

Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$

- \triangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)
- $M_{ik} \in [0,1]$ for all i,k

Parametric Models for M:

- Questions Equaly Difficult $\sim M_{ik} = a_i \approx [\text{Dawid and Skene, 1979}]$
- Ability/Difficulty $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$

- \triangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Parametric Models for M:

- ▶ Questions Equaly Difficult $\sim M_{ik} = a_i \approx [\text{Dawid and Skene, 1979}]$
- ▶ Ability/Difficulty $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

Non-Parametric Models for $M \approx [Mao et al., 2018]$

▶ Increasing Rows: $M_{i,k} \leq M_{i,k+1}$

Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$

- \triangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Parametric Models for M:

- ▶ Questions Equaly Difficult $\sim M_{ik} = a_i \approx [Dawid and Skene, 1979]$
- ▶ Ability/Difficulty $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

Non-Parametric Models for $M \approx [Mao et al., 2018]$

- ▶ Increasing Rows: $M_{i,k} \leq M_{i,k+1}$
- ▶ Increasing Columns up to permutation π^* of rows: $M_{\pi^*(i),k} \leq M_{\pi^*(i+1),k}$

Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$

- \triangleright (ε_{ik}) i.i.d. subGaussian (e.g. Bernoulli)
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Parametric Models for M:

- ▶ Questions Equaly Difficult $\sim M_{ik} = a_i \approx [\text{Dawid and Skene, 1979}]$
- ▶ Ability/Difficulty $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

Non-Parametric Models for $M \approx [Mao et al., 2018]$

- ▶ Increasing Rows: $M_{i,k} \leq M_{i,k+1}$
- ▶ Increasing Columns up to permutation π^* of rows: $M_{\pi^*(i),k} \leq M_{\pi^*(i+1),k}$

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \blacktriangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π*

White = 0; Black = 1

Matrix M_{π^*} . (isotonic).

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π*

White = 0; Black = 1

Matrix M_{π^*} . (isotonic).

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π*

White = 0; Black = 1

Matrix M (isotonic up to a permutation of experts).

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π*

White = 0; Black = 1

Matrix Y (M in noise).

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \blacktriangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π^*

Aim

Estimation of π^* .

White = 0; Black = 1

Matrix Y (M in noise).

Example with $n, d = 150, M \in [0, 1]$

Example with $n, d = 150, M \in [0.25, 0.75]$

Example with $n, d = 150, M \in [0.4, 0.6]$

Bi-isotonic M - Other representation

Each line M_{i} represents an expert i

Bi-isotonic M - Other representation

Each line $M_{i,\cdot}$ represents an expert i

Bi-isotonic M - Other representation

Each line $M_{i,\cdot}$ represents an expert i

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- ► Increasing Columns for an unknown permutation π^*

Error Measures

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \blacktriangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π^*

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{d} (M_{\pi(i),k} - M_{\pi^*(i),k})^2$$

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \blacktriangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π*

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

If the two lines are misclassified: Perm-Loss = $2rh^2$

Non Parametric Model

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $ightharpoonup M_{ik} \in [0,1] \text{ for all } i,k$

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- ► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Estimation loss

For an estimator \hat{M} of M

Estim-Loss :=
$$\|\hat{M} - M\|_F^2$$
.

Non Parametric Model

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $M_{ik} \in [0,1]$ for all i,k

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- ► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Estimation loss

For an estimator M of M

Estim-Loss :=
$$\|\hat{M} - M\|_F^2$$
.

Aim

Estimation of π^* .

Non Parametric Model

Observation Model

$$Y = M + \varepsilon \in \mathbb{R}^{n \times d}$$

Introduction

- \triangleright (ε_{ik}) i.i.d. subGaussian
- $M_{ik} \in [0,1]$ for all i,k

Shape Constraints (Bi-isotonicity):

- ▶ Increasing Rows $M_{i,k} \leq M_{i,k+1}$
- ► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Estimation loss

For an estimator M of M

Estim-Loss :=
$$\|\hat{M} - M\|_F^2$$
.

Aim

Estimation of π^* .

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$
.

Estimation loss

For an estimator \hat{M} of M

Estim-Loss :=
$$\|\hat{M} - M\|_F^2$$
.

Aim

Estimation of π^* .

MiniMax-Risk

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$
.

Estimation loss

For an estimator \hat{M} of M

$$\text{Estim-Loss} := \|\hat{M} - M\|_F^2.$$

Aim

Estimation of π^* .

MiniMax-Risk

Max-Risk and MiniMax-Risk

If $\hat{\pi}$ is an estimator of π^* , we define

Max-Perm
$$(\hat{\pi})$$

= $\sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2],$

$$MiniMax-Perm = \inf_{\hat{\pi}} (Max-Perm(\hat{\pi}))$$

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^*

Perm-Loss :=
$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$
.

Estimation loss

For an estimator \hat{M} of M

$$\text{Estim-Loss} := \|\hat{M} - M\|_F^2.$$

Aim

Estimation of π^* .

MiniMax-Risk

Max-Risk and MiniMax-Risk

If $\hat{\pi}$ is an estimator of π^* , we define

$$\operatorname{Max-Perm}(\hat{\pi}) = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2],$$

$$MiniMax-Perm = \inf_{\hat{\pi}} (Max-Perm(\hat{\pi}))$$

Define similarly Max-Estim and MiniMax-Estim for estimation of M with \hat{M} .

Related rectangular problems:

► Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations π^* and σ^* of rows and columns. Objective: ranking the experts and the questions.

Introduction

Other Ranking and Permutation Problems

Related rectangular problems:

- ► Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations π^* and σ^* of rows and columns. Objective: ranking the experts and the questions.
- ► Column isotony [Flammarion et al., 2019]

Related rectangular problems:

- ► Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations π^* and σ^* of rows and columns. Objective: ranking the experts and the questions.
- ► Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

▶ Non-parametric Models SST [Shah et al., 2016]

Related rectangular problems:

- ▶ Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations π^* and σ^* of rows and columns. Objective: ranking the experts and the questions.
- ► Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

- ▶ Non-parametric Models SST [Shah et al., 2016]
- ▶ Parametric Models: Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Related rectangular problems:

- ▶ Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations π^* and σ^* of rows and columns. Objective: ranking the experts and the questions.
- ► Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

- ▶ Non-parametric Models SST [Shah et al., 2016]
- ▶ Parametric Models: Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Short story:

- ▶ No computational gap for parametric models (BLT, noisy sorting)
- Mostly unknown for non-parametric models: computational gaps were conjectured

Main questions

Introduction

0000000000000

1. Is Estimating π^* much easier than estimating M?

Main questions

- 1. Is Estimating π^* much easier than estimating M?
- 2. Is there a computational-statistical gap?

Main questions

- 1. Is Estimating π^* much easier than estimating M?
- 2. Is there a computational-statistical gap?

Our Contributions

- \triangleright Control of MiniMax-Perm(n, d)
- \triangleright A polynomial-time procedure achieves MiniMax-Perm(n,d)

Existing Methods

- ▶ Non-Polynomial Time Methods with Least Square
- ► Simple Global Average Comparison
- ▶ [Liu and Moitra, 2020] based on Hierarchical Clustering

Least Square on Bi-isotinic Matrix

- ▶ Perm the set of all permutation of $\{1, ..., n\}$
- ► Mon be the set of all bi-isotonic matrix in [0, 1]

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

- ▶ Perm the set of all permutation of $\{1, ..., n\}$
- ► Mon be the set of all bi-isotonic matrix in [0,1]

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

Matrix M_{π^*} . (bi-isotonic).

- Perm the set of all permutation of $\{1, \ldots, n\}$
- ► Mon be the set of all bi-isotonic matrix in [0, 1]

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

Matrix M.

- ▶ Perm the set of all permutation of $\{1, ..., n\}$
- ► Mon be the set of all bi-isotonic matrix in [0, 1]

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

Matrix Y.

- ▶ Perm the set of all permutation of $\{1, ..., n\}$
- ► Mon be the set of all bi-isotonic matrix in [0, 1]

Least-square estimator

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

No know polynomial-time method to compute $Y_{\hat{\pi}^{LS},..}$

- ▶ Perm the set of all permutation of $\{1, ..., n\}$
- ► Mon be the set of all bi-isotonic matrix in [0,1]

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) &= \\ \underset{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}}{\arg\min} \ \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2 \end{split}$$

Matrix $\hat{M}_{\pi^*}^{\mathrm{LS}}$.

Least-square guarantees

 $(\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}})$ satisfy -up to polylogs:

Max-Estim
$$(\hat{M}^{LS}) \lesssim n \vee (\sqrt{nd} \wedge nd^{1/3})$$

Max-Perm $(\hat{\pi}^{LS}) \lesssim n \vee (\sqrt{nd} \wedge nd^{1/3})$

Least-square guarantees

 $(\hat{\pi}^{LS}, \hat{M}^{LS})$ satisfy -up to polylogs:

$$\begin{aligned} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \vee (\sqrt{nd} \wedge nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \vee (\sqrt{nd} \wedge nd^{1/3}) \end{aligned}$$

Entropy Arguments:

ightharpoonup n! permutations: $n \approx \log(n!)$

Least-square guarantees

 $(\hat{\pi}^{LS}, \hat{M}^{LS})$ satisfy -up to polylogs:

$$\begin{split} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \vee (\sqrt{nd} \wedge nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \vee (\sqrt{nd} \wedge nd^{1/3}) \end{split}$$

Entropy Arguments:

- ightharpoonup n! permutations: $n imes \log(n!)$
- Covering of bi-isotonic matrices: log-size $\approx \sqrt{nd} \wedge nd^{1/3}$

Least-square guarantees

 $(\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}})$ satisfy -up to polylogs:

$$\text{Max-Estim}(\hat{M}^{\text{LS}}) \lesssim n \vee (\sqrt{nd} \wedge nd^{1/3})$$
$$\text{Max-Perm}(\hat{\pi}^{\text{LS}}) \lesssim n \vee (\sqrt{nd} \wedge nd^{1/3})$$

Entropy Arguments:

- ▶ n! permutations: $n \approx \log(n!)$
- ► Covering of bi-isotonic matrices: log-size $\approx \sqrt{nd} \wedge nd^{1/3}$

Remarks:

- ▶ MiniMax-Estim Optimal [Mao et al., 2018]
- ▶ not proven to be MiniMax-Perm Optimal

Summary

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	??	??	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n

But algo. not polynomial time.

Matrix M.

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

Matrix Y (M in noise).

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

Rank experts according to their average: $\hat{\pi}^{av}$

Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

► Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \approx n\sqrt{d}$.

Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$

Max-Perm $(\hat{\pi}^{av}) \approx n\sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$M_{1,.} = (.5.5.5.5.5....5.5\underbrace{1111111111})$$

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

► Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$

Max-Perm
$$(\hat{\pi}^{av}) \approx n\sqrt{d}$$
.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim \sqrt{d}})$$

(Example of Observations)

Method:

► Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

► Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \approx n\sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$Y_{1,.} = (01101 \dots 10 \underbrace{111111111})$$

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim \sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm $(\hat{\pi}^{av})$ $\simeq \sqrt{d}$

Method:

Compute expert i average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \approx n\sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim \sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm($\hat{\pi}^{av}$) $\simeq \sqrt{d}$

Lower Bound for $\hat{\pi}^{av}$: There exists M s.t. Max-Perm($\hat{\pi}^{av}$) $\geq n\sqrt{d}$

Method:

Compute expert i average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

Rank experts according to their average: $\hat{\pi}^{av}$

Guarantees on $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \approx n\sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim \sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm($\hat{\pi}^{av}$) $\simeq \sqrt{d}$

▶ Upper Bound: For any $M, \pi^*, \text{Max-Perm}(\hat{\pi}^{av})$ $\leq n\sqrt{d}$

Summary

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	??	??	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n
Global average (UB)	$n\sqrt{d}$	$n\sqrt{d}$	$n\sqrt{d}$

Remarks:

- ► Algo. for rates in MiniMax-Estim and MiniMax-Perm not in polynomial time.
- ▶ One to one comparisons give UB but sub-optimal whenever $d \gtrsim 1$.

[Liu and Moitra, 2020] consider only the case d=n, and provide a poly. time algo. returning $\hat{\pi}^{(LM)}$ such that

 $\text{Max-Perm}(\hat{\pi}^{(LM)}) \lesssim n.$

[Liu and Moitra, 2020] consider only the case d=n, and provide a poly. time algo. returning $\hat{\pi}^{(LM)}$ such that

$$\text{Max-Perm}(\hat{\pi}^{(LM)}) \lesssim n.$$

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this. **Optimal** for d = n in which case

 $MiniMax-Perm \approx n$.

[Liu and Moitra, 2020] **consider only the case** d = n, and provide a **poly. time** algo. returning $\hat{\pi}^{(LM)}$ such that

Max-Perm
$$(\hat{\pi}^{(LM)}) \lesssim n$$
.

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this. **Optimal** for d = n in which case

 $MiniMax-Perm \approx n.$

Localisation through CP detection.

[Liu and Moitra, 2020] consider only the case d = n, and provide a poly. time algo. returning $\hat{\pi}^{(LM)}$ such that

Max-Perm
$$(\hat{\pi}^{(LM)}) \lesssim n$$
.

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this. **Optimal** for d = n in which case

 $MiniMax-Perm \approx n$.

Localisation through CP detection.

Hierarchical clustering.

Summary

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	??	??	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n
Global average (UB)	$n\sqrt{d}$	$n\sqrt{d}$	$n\sqrt{d}$
Ext. of LM (UB)	d	d	n

Remarks:

- ▶ Poly. time algo of LM achieves MiniMax-Perm and MiniMax-Estim for d = n
- This algorithm can be analysed in a more refined way for $d \neq n$ but not done in [Liu and Moitra, 2020].

Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022]

Assume we have polylog samples.

There exists a estimator $\hat{\pi}$ of π^* which is poly. time and minimax optimal

$$\mathbb{E}[\|M_{\hat{\pi}}-M_{\pi^*}\|_F^2]\lesssim n\vee (n^{3/4}d^{1/4}\wedge nd^{1/6})\asymp \text{MiniMax-Perm}\ .$$

Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022]

Assume we have polylog samples.

There exists a estimator $\hat{\pi}$ of π^* which is poly. time and minimax optimal

$$\mathbb{E}[\|M_{\hat{\pi}}-M_{\pi^*}\|_F^2]\lesssim n\vee (n^{3/4}d^{1/4}\wedge nd^{1/6})\asymp \text{MiniMax-Perm}\ .$$

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n

Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022]

Assume we have polylog samples.

There exists a estimator $\hat{\pi}$ of π^* which is poly. time and minimax optimal

$$\mathbb{E}[\|M_{\hat{\pi}}-M_{\pi^*}\|_F^2]\lesssim n\vee (n^{3/4}d^{1/4}\wedge nd^{1/6})\asymp \text{MiniMax-Perm}\ .$$

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n

Can be combined with bi-isotonic regression to have a poly. time MiniMax-Estim algo!

Summary

Introduction

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n

Uniform distance between two experts

Global average comparison is optimal: Constant Perm-Risk - Confusion only if $h \lesssim 1/\sqrt{d}$.

Localised distance between two experts

$$\psi([d]) = \frac{1}{d} \sum_{i=1}^{d} Y_i$$
 achieves
Perm-Risk $\approx \sqrt{d} \gg d^{1/6}$

Global average good.

Global average bad \rightarrow need to localise.

Global average good.

Global average bad \rightarrow need to localise.

Idea:

▶ Estimate by a **change point** (CP) method **windows** where any of the two experts changes by more than *h*.

Global average good.

Global average bad \rightarrow need to localise.

Idea:

- ▶ Estimate by a **change point** (CP) method **windows** where any of the two experts changes by more than h.
- ► Compute local average on these windows.

Global average good.

Global average bad \rightarrow need to localise.

Idea:

- Estimate by a **change** point (CP) method windows where any of the two experts changes by more than h.
- ► Compute local average on these windows.

[Liu and Moitra, 2020] introduced this idea of localisation with CP - in a different context and regime.

Idea:

► A CP of size h can be detected on a window of $1/h^2$ questions.

Idea:

- A CP of size h can be detected on a window of $1/h^2$ questions.
- At most 1/h of these CP, since $M \in [0, 1]$

Idea:

- ▶ A CP of size h can be detected on a window of $1/h^2$ questions.
- At most 1/h of these CP, since $M \in [0, 1]$
- ► If they are indistinguishable at scale *h*:

$$||M_1 - M_2||_2^2 \le h||M_1 - M_2||_1$$

 $\le h\sqrt{\frac{1}{h^2}\frac{1}{h}} \wedge d$
 $\le d^{1/6}$.

Idea:

- ▶ A CP of size h can be detected on a window of $1/h^2$ questions.
- At most 1/h of these CP, since $M \in [0, 1]$
- ► If they are indistinguishable at scale *h*:

$$||M_{1\cdot} - M_{2\cdot}||_{2}^{2} \le h||M_{1\cdot} - M_{2\cdot}||_{1}$$

$$\le h\sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d}$$

$$\le d^{1/6}.$$

▶ $d^{1/6}$ is optimal for two experts: MiniMax-Perm $\approx d^{1/6}$.

Idea:

- ► A CP of size h can be detected on a window of $1/h^2$ questions.
- At most 1/h of these CP, since $M \in [0, 1]$
- ► If they are indistinguishable at scale *h*:

$$||M_1 - M_2||_2^2 \le h||M_1 - M_2||_1$$

 $\le h\sqrt{\frac{1}{h^2}\frac{1}{h}} \wedge d$
 $\le d^{1/6}$.

- ▶ $d^{1/6}$ is optimal for two experts: MiniMax-Perm $\approx d^{1/6}$.
- For any n (UB): MiniMax-Perm $\leq nd^{1/6}$.

Summary

Introduction

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n
Global average (UB)	$n\sqrt{d}$	$n\sqrt{d}$	$n\sqrt{d}$
Ext. of LM (UB)	d	d	n

Ext. of LM (UB) extends [Liu and Moitra, 2020] to $d \neq n$

Summary

Introduction

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n
Global average (UB)	$n\sqrt{d}$	$n\sqrt{d}$	$n\sqrt{d}$
Ext. of LM (UB)	d	d	n

Ext. of LM (UB) extends [Liu and Moitra, 2020] to $d \neq n$

Beyond [Liu and Moitra, 2020] for $d \neq n$

Beyond [Liu and Moitra, 2020] for $d \neq n$

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Clustering Beyond [Liu and Moitra, 2020] for $d \neq n$

Beyond [Liu and Moitra, 2020] for $d \neq n$

$G^{(4)}$
$G^{(3)}$
$G^{(2)}$
 $G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-2)}$
 $G^{(-3)}$

Beyond [Liu and Moitra, 2020] for $d \neq n$

$G^{(4)}$
$G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-2)}$
$G^{(-3)}$

Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$

In $G^{(0)}$, an expert is either in L or in U.

$G^{(4)}$
$G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-2)}$
$G^{(-3)}$

Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$

In $G^{(0)}$, an expert is either in L 1: above the mean (U)or in U.

After Aggregation

$$\frac{\sqrt{r}h}{2} \begin{pmatrix} 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

-1: below the mean (L)

Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$

In $G^{(0)}$, an expert is either in L or in U.

After Aggregation

$$\frac{\sqrt{r}h}{2} \begin{pmatrix} 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1: above the mean (U)-1: below the mean (L)

Rank one matrix \sim (PCA):

 1^{st} left singular vector: better clustering than local averages in some regimes

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$n \vee (n^{2/3}d^{1/3})$$
.

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$n \vee (n^{2/3}d^{1/3})$$
.

▶ Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) - Improvement when d < n:

$$n \vee d \gg n \vee (n^{2/3}d^{1/3}) .$$

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$n \vee (n^{2/3}d^{1/3})$$
.

▶ Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) - Improvement when d < n:

$$n \vee d \gg n \vee (n^{2/3}d^{1/3}) .$$

▶ But not Optimal!

$$n \vee (n^{2/3}d^{1/3}) \gg n \vee (n^{3/4}d^{1/4})$$
.

Summary

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
MiniMax-Estim	$nd^{1/3}$	\sqrt{nd}	n
Global average (UB)	$n\sqrt{d}$	$n\sqrt{d}$	$n\sqrt{d}$
Ext. of LM (UB)	d	d	n
Super ext. of LM	$nd^{1/6}$	$n^{2/3}d^{1/3}$	n

Remark: Super ext. of LM requires a lot of additional work w.r.t. [Liu and Moitra, 2020]

Ideas to achieve $n^{3/4}d^{1/4}$

$G^{(4)}$
$G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-2)}$
$G^{(-3)}$

From an oblivious Hierarchical Clustering

Ideas to achieve $n^{3/4}d^{1/4}$

Hierarchical Tree Sorting

To using the Memory of the Tree

Ideas to achieve $n^{3/4}d^{1/4}$

To using the Memory of the Tree

	$G^{(4)}$	
	$G^{(3)}$	
\mathcal{V}_+	$G^{(2)}$	
	$G^{(1)}$	
	$G^{(0)}$	
\mathcal{V}_{-}	$G^{(-1)}$	
	$G^{(-2)}$	
	$G^{(-3)}$	-

 $G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

Two Types of Information

	$G^{(4)}$
	$G^{(3)}$
\mathcal{V}_+	$G^{(2)}$
	$G^{(1)}$
	$G^{(0)}$
\mathcal{V}_{-}	$G^{(-1)}$
	$G^{(-2)}$
	$G^{(-3)}$

 $G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

Two Types of Information

	$G^{(4)}$
	$G^{(3)}$
\mathcal{V}_{+}	$G^{(2)}$
	$G^{(1)}$
	$G^{(0)}$
\mathcal{V}_{-}	$G^{(-1)}$
	$G^{(-2)}$
	$G^{(-3)}$

is sandwiched between \mathcal{V}_{-} and \mathcal{V}_+

First Type

Removing regions where $G^{(0)}$ is sandwiched

Two Types of Information

	$G^{(4)}$
	$G^{(3)}$
\mathcal{V}_+	$G^{(2)}$
	$G^{(1)}$
	$G^{(0)}$
\mathcal{V}_{-}	$G^{(-1)}$
	$G^{(-2)}$
	$G^{(-3)}$

 $G^{(0)}$ is sandwiched between V_{-} and V_{+}

Second Type

Better Change-Point Detection

Conclusion of the Method with Memory

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n

Conclusion

For all n, d:

- ▶ The rate MiniMax-Perm which is of order $n \vee (n^{3/4}d^{1/4} \wedge nd^{1/6})$ (UB and LB).
- ► An associated poly.-time ranking method.
- Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- ▶ Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092], accepted in AOS (2022)

Conclusion

For all n, d:

- ▶ The rate MiniMax-Perm which is of order $n \lor (n^{3/4}d^{1/4} \land nd^{1/6})$ (UB and LB).
- ► An associated poly.-time ranking method.
- ▶ Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- ▶ Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092], accepted in AOS (2022)

Research Directions:

- ▶ Unknown order on questions.
- ▶ Removing the isotonicity constraint on questions.
- ▶ Unknown answers: -observing labels instead of correctness.

► Isotonicity in experts **for** an unknown permutation π^*

- $M_{ik} \in [0,1]$
- \triangleright (ε_{ik}) independent and Subgaussian

 Isotonicity in experts for an unknown permutation π*

- ▶ $M_{ik} \in [0,1]$
- (ε_{ik}) independent and Subgaussian

- Isotonicity in experts for an unknown permutation π*
- ► Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$

- $M_{ik} \in [0,1]$
- (ε_{ik}) independent and Subgaussian

 Isotonicity in experts for an unknown permutation π*

- ▶ $M_{ik} \in [0,1]$
- \triangleright (ε_{ik}) independent and Subgaussian

- Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$

- $M_{ik} \in [0,1]$
- (ε_{ik}) independent and Subgaussian

Isotonicity in experts for an unknown permutation π*

- Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$

Isotonicity in experts for an unknown permutation π*

(Bi-isotonic)- (π^*, σ^*)

- Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions for an unknown permutation σ*

- ► Isotonicity in experts for an unknown permutation
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$

Isotonicity in experts for an unknown permutation π*

(Bi-isotonic)- (π^*, σ^*)

- Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions for an unknown permutation σ*

- ► Isotonicity in experts for an unknown permutation
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$ (known permutation σ^*)

Isotonicity in experts for an unknown permutation π*

(Bi-isotonic)- (π^*, σ^*)

- Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions for an unknown permutation σ*

(Bi-isotonic)- π^*

- ► Isotonicity in experts for an unknown permutation π*
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot (k+1)}$ (known permutation σ^*)

Statistical difficulty:

(Isotonic)- π^* > (Bi-isotonic)- (π^*, σ^*) > (Bi-isotonic)- π^*

References I

Bradley, R. A. and Terry, M. E. (1952).

Rank analysis of incomplete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324-345.

Chen, P., Gao, C., and Zhang, A. Y. (2022).

Partial recovery for top-k ranking: Optimality of mle and suboptimality of the spectral method.

The Annals of Statistics, 50(3):1618-1652.

Chen, Y., Fan, J., Ma, C., and Wang, K. (2019).

Spectral method and regularized mle are both optimal for top-k ranking.

Annals of statistics, 47(4):2204.

References II

Dawid, A. P. and Skene, A. M. (1979).

Maximum likelihood estimation of observer error-rates using the em algorithm.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):20–28.

Flammarion, N., Mao, C., and Rigollet, P. (2019). Optimal rates of statistical seriation.

Liu, A. and Moitra, A. (2020).

Better algorithms for estimating non-parametric models in crowd-sourcing and rank aggregation.

In Abernethy, J. and Agarwal, S., editors, *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pages 2780–2829. PMLR.

References III

Mao, C., Pananjady, A., and Wainwright, M. J. (2018).

Towards optimal estimation of bivariate isotonic matrices with unknown permutations.

arXiv preprint arXiv:1806.09544.

Pananjady, A. and Samworth, R. J. (2020).

Isotonic regression with unknown permutations: Statistics, computation, and adaptation.

 $arXiv\ preprint\ arXiv:2009.02609.$

Shah, N., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. (2016).

Stochastically transitive models for pairwise comparisons: Statistical and computational issues.

In International Conference on Machine Learning, pages 11–20. PMLR.

References IV

Shah, N. B., Balakrishnan, S., and Wainwright, M. J. (2019).

Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons.

IEEE Transactions on Information Theory, 65(8):4854–4874.