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Introduction

The main sources for this series of lectures are the books [CLN06] and [Bre10]. When research
articles are invoked, appropriate references are given. Other books on an introduction of the Ricci
flow are: [MT07], [CK04] and [Top06] to mention a few. For a more in-depth study of this topic, see
[CCG+

07], [CCG+
08], [CCG+

10] and [CCG+
15].

Standard books on Riemannian geometry are [Pet06], [GHL04] among many others.
A very nice introduction to the heat equation and the analysis of self-similar solutions for non-

linear di↵usion equations can be found in [GGS10].
This course is an introduction to the Ricci flow introduced by Hamilton in the early eighties

in his seminal article [Ham82]. The Ricci flow can be interpreted as an intrinsic heat equation on
the space of Riemannian metrics up to scalings and di↵eomorphisms on a given (closed) smooth
manifold. Heuristically, we expect (or hope) that the flow either converges to a canonical metric or
decomposes the geometry into canonical ones.

The aim of this series of lectures is to give a proof of the uniformization theorem via the Ricci flow
that was originally proved by Hamilton [Ham88] and Chow [Cho91]. The first chapter derives the
evolution equations satisfied by the Ricci curvature and the scalar curvature. Chapter 2 is devoted
to the introduction of fixed points of the Ricci flow also called Ricci solitons: the classification of
shrinking gradient Ricci solitons on the 2-sphere lies at the heart of the uniformization theorem.
Chapter 3 establishes crucial interior bounds on the higher covariant derivatives of the curvature
tensor once a bound on the curvature holds: these are called Bernstein-Shi type estimates: the
weak maximum principle for functions is the main tool here. Some curvature conditions such as
nonnegative scalar curvature in all dimensions and nonnegative Ricci curvature in dimension 3 are
shown to be preserved along the Ricci flow in Chapter 4. Rigidity statements follow from the strong
maximum principle whose proof relies on local Harnack di↵erential inequality. Chapter 5 explains
some existence and uniqueness statements on the Ricci flow. This is the most technical part of these
lectures. Chapter 6 specializes to 2-dimensional Ricci flows on a closed surface of higher genus, the
torus case is left as a series of claims. Chapter 7 deals with the much more delicate case of the
2-sphere: Hamilton’s entropy and sharp Harnack di↵erential inequalities will be key tools to prove
the convergence of the Ricci flow to a constant curvature metric. If time allows, the last chapter
will introduce Perelman’s entropy [Per02] whose monotonicity implies the non-existence of periodic
(also known as breathers) solutions on a closed manifold.
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