An introduction to Ricci flow

Alix Deruelle ¹

 $[\]overline{\ }^{1} a lix.deruelle @ universite-paris-saclay.fr \\$

Contents

Introduction	5
Chapter 1. Basics of the Ricci flow equation	7
1. Basic notions from Riemannian geometry	7
2. First definitions and remarks	8
3. Evolutions of zeroth order geometric quantities	11
4. Evolutions of first order geometric quantities	13
5. Evolutions of second order geometric quantities	14
6. Exercises	17
Chapter 2. Solitons and special solutions	19
1. Definitions and identities	19
2. A short digression on Kähler Ricci solitons	21
3. First examples	22
4. The cigar soliton	22
5. Expanders coming out of two dimensional cones	23
6. Classification results	24
7. Exercises	27
Chapter 3. Covariant derivatives estimates	29
1. The maximum principle for functions	29
2. A toy example	30
3. Covariant derivatives of the curvature tensor	31
4. A criteria for convergence of the Ricci flow	33
5. Curvature blow-up at finite-time singularities	34
6. Exercices	36
Chapter 4. Preserved curvature conditions	37
1. The strong maximum principle for functions	37
2. Baby Harnack differential inequality	38
3. Maximum principles for symmetric 2-tensors	40
4. Exercises	42
Chapter 5. Uniformization of surfaces of high genus	43
1. Proof of Theorem 5.1	43
2. The torus case	47
Chapter 6. Uniformization of surfaces of genus 0	49
1. Strategy of the proof	49
2. Hamilton's entropy	51
3. Uniform curvature bounds and their consequences	53
4. Differential Harnack estimate	56
5. End of the proof of the main theorem	58
6. Exercises	61

4 CONTENTS	
Chapter 7. Perelman's entropy and (some of) its consequences	63
1. Definition and properties	63
2. Rigidity of shrinking gradient Ricci solitons	66
Chapter 8. Existence, uniqueness and convergence of the Ricci flow	69
1. Equivalence between the Ricci flow and the DeTurck Ricci flow	69
2. Uniqueness	72
3. Existence	74
4. Exercises	79
Appendix A. Results from Riemannian geometry	81
1. Exercises	84
Appendix. Bibliography	85

Introduction

The main sources for this series of lectures are the books **[CLN06]** and **[Bre10]**. When research articles are invoked, appropriate references are given. Other books on an introduction of the Ricci flow are: **[MT07]**, **[CK04]** and **[Top06]** to mention a few. For a more in-depth study of this topic, see **[CCG⁺07]**, **[CCG⁺08]**, **[CCG⁺10]** and **[CCG⁺15]**.

Standard books on Riemannian geometry are **Pet06**, **GHL04** among many others.

A very nice introduction to the heat equation and the analysis of self-similar solutions for nonlinear diffusion equations can be found in **GGS10**.

This course is an introduction to the Ricci flow introduced by Hamilton in the early eighties in his seminal article **[Ham82]**. The Ricci flow can be interpreted as an intrinsic heat equation on the space of Riemannian metrics up to scalings and diffeomorphisms on a given (closed) smooth manifold. Heuristically, we expect (or hope) that the flow either converges to a canonical metric or decomposes the geometry into canonical ones.

The aim of this series of lectures is to give a proof of the uniformization theorem via the Ricci flow that was originally proved by Hamilton **Ham88** and Chow **Cho91**. The first chapter derives the evolution equations satisfied by the Ricci curvature and the scalar curvature. Chapter 2 is devoted to the introduction of fixed points of the Ricci flow also called Ricci solitons: the classification of shrinking gradient Ricci solitons on the 2-sphere lies at the heart of the uniformization theorem. Chapter 3 establishes crucial interior bounds on the higher covariant derivatives of the curvature tensor once a bound on the curvature holds: these are called Bernstein-Shi type estimates: the weak maximum principle for functions is the main tool here. Some curvature conditions such as nonnegative scalar curvature in all dimensions and nonnegative Ricci curvature in dimension 3 are shown to be preserved along the Ricci flow in Chapter 4. Rigidity statements follow from the strong maximum principle whose proof relies on local Harnack differential inequality. Chapter 5 explains some existence and uniqueness statements on the Ricci flow. This is the most technical part of these lectures. Chapter 6 specializes to 2-dimensional Ricci flows on a closed surface of higher genus, the torus case is left as a series of claims. Chapter 7 deals with the much more delicate case of the 2-sphere: Hamilton's entropy and sharp Harnack differential inequalities will be key tools to prove the convergence of the Ricci flow to a constant curvature metric. If time allows, the last chapter will introduce Perelman's entropy **Per02** whose monotonicity implies the non-existence of periodic (also known as breathers) solutions on a closed manifold.