
CHAPTER 3

Covariant derivatives estimates

1. The maximum principle for functions

We first state and prove the maximum principle for subsolutions to reaction-di↵usion equations
on a closed manifold.

Lemma 3.1. Let (M, g(t))t2[0,T ) be a smooth one-parameter family of metrics on a closed manifold
M and let u : M ⇥ [0, T ) ! R be a smooth function that satisfies

@u

@t
��g(t)u  g(t)(V (t),rg(t)u) + F (u),

where V (t) is a vector field on M and F is a Lipschitz function. If u(·, 0)  c for some real constant
c then u(x, t)  U(t) where U(t) is the solution to the ODE dU

dt
= F (U) satisfying U(0) = c.

Proof. Observe that by definition of the solution U ,

@

@t
(u� U)��g(t)(u� U)  g(t)(V (t),rg(t)(u� U)) + F (u)� F (U),

since U depends on time only.
Since F is Lipschitz, there exists a constant C such that:

@

@t
(u� U)��g(t)(u� U)  g(t)(V (t),rg(t)(u� U)) + C|u� U |.

The previous di↵erential inequality would let us conclude in case the absolute value on the righthand
side was not there. To circumvent this issue, let us consider the auxiliary function v := e�Ct(u�U).
Then v satisfies:

@

@t
v ��g(t)v  g(t)(V (t),rg(t)v) + C (|v|� v) .

Moreover, for " > 0, we make use of the usual trick to force the desired contradiction, i.e. we define
v"(x, t) := v(x, t)� "(1 + t) so that,

@

@t
v" ��g(t)v"  g(t)(V (t),rg(t)v") + C (|v|� v)� ". (1.1)

Now, we claim that v"  0 for all time. Assume it is not the case and let us derive a contradiction.
Since v"(x, 0)  �" < 0, t0 := sup {t 2 [0, T ), supM v"(·, ⌧) < 0, ⌧ 2 [0, t]} is positive and there

must be some point x0 2 M such that v"(x0, t0) = 0. Here we have made use of the compactness ofM
and the continuity of v". Therefore, at that point (x0, t0), the lefthand side of (1.1) is nonnegative
and the gradient term vanishes so that C (|v|� v)

��
(x0,t0)

� " < 0. Now, v"(x0, t0) = 0 so that

v(x0, t0) = " > 0. We have reached a contradiction.
We have proved that v(x, t)  "(1 + t) for all t 2 [0, T ) and all " > 0. Letting " tend to 0, we

get u(x, t)  U(t) for all t 2 [0, T ). ⇤
Remark 3.2. The proof and the conclusion of Lemma 3.1 use the qualitative regularity of the function
F only, i.e. its Lipschitz constant does not come into play here.

Remark 3.3. Lemma 3.1 admits a corresponding statement for supersolutions of the same di↵erential
inequality under the same assumptions on the data by reversing the signs.

Lemma 3.1 is applied to a solution to the Ricci flow in order to bound the scalar curvature from
below:
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30 3. COVARIANT DERIVATIVES ESTIMATES

Proposition 3.4. Let (Mn, g(t))t2[0,T ) be a solution to the Ricci flow on a closed manifold M . Then,

• if Rg(0) � c for some constant c 2 R then Rg(t) � c for t 2 [0, T ). In particular, nonnegativity of
the scalar curvature is preserved along the Ricci flow.

• More generally,

Rg(t) �
nminM Rg(0)

n� 2tminM Rg(0)
.

Proof. Observe by Proposition 1.23 that the scalar curvature Rg(t) along a solution to the Ricci

flow is a supersolution of the heat equation: @

@t
Rg(t) � �g(t)Rg(t) on M⇥(0, T ). Let us apply Lemma

3.1 to F ⌘ 0 combined with Remark 3.3 to get the expected lower bound, i.e. Rg(t) � U(t) where
@tU(t) = F (U(t)) = 0 with U(0) = c such that Rg(0) � c. This implies the desired lower bound.

Dropping the squared norm of the Ricci tensor in the evolution equation from Proposition 1.23
satisfied by the scalar curvature is a loss of (geometric) information. Observe that |Ric(g(t))|2

g(t) �
1
n
R2

g(t) pointwise on M for each time t 2 (0, T ) since Ric(g(t)) is a symmetric 2-tensor. Therefore,
Rg(t) satisfies:

@

@t
Rg(t) � �g(t)Rg(t)+

2

n
R2

g(t), on M ⇥ (0, T ).

Applying Lemma 3.1 to F (x) := 2
n
x2 for x 2 R combined with Remark 3.3 gives: Rg(t) � U(t) where

@tU(t) = 2
n
U(t)2, U(0) = c if Rg(0) � c. This again implies the desired lower bound. ⇤

The following result is a straightforward consequence of Proposition 3.4.

Corollary 3.5. (Finite time singularity) Let (Mn, g(t))t2[0,T ) be a solution to the Ricci flow on a
closed manifold M such that minM Rg(0) > 0. Then

T  n

2minM Rg(0)
.

2. A toy example

Let us start with a toy example of great interest: let (M, g(t)) be a solution the Ricci flow and
let u : M ⇥ [0, T ) ! R be a solution to the heat equation

@u

@t
= �g(t)u.

Then, on the one hand,
@u2

@t
= 2u�g(t)u = �g(t)u

2 � 2|rg(t)u|2
g(t).

On the other hand, the norm of the gradient |rg(t)u|2
g(t) satisfies

@

@t
|rg(t)u|2

g(t) = 2Ric(g(t))(rg(t)u,rg(t)u) + 2g(t)(rg(t)
�
�g(t)u

�
,rg(t)u)

= 2g(t)
⇣
�g(t)

⇣
rg(t)u

⌘
,rg(t)u

⌘

= �g(t)|rg(t)u|2
g(t) � 2|rg(t),2u|2

g(t).

(2.1)

Here we have used the Bochner formula for functions: �g(rgu) = rg(�gu)+Ric(g)(rgu) for a C3
loc

function u : M ! R.
In particular, going back to the computation (2.1), one gets:

@

@t

✓
t|rg(t)u|2

g(t) +
1

2
u2
◆

= �g(t)

✓
t|rg(t)u|2

g(t) +
1

2
u2
◆
� 2|rg(t),2u|2

g(t).

This implies in particular that t|rg(t)u|2
g(t)+

1
2u

2 is a subsolution to the heat equation along the Ricci

flow. The maximum principle as stated in Lemma 3.1 implies that
p
t supM |rg(t)u|g(t)  C supM |u0|

for some universal positive constant C.
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Remark 3.6. Compare with the usual heat equation

@u

@t
= �gu,

where (M, g) is a static Riemannian manifold, for which one can prove that:

@

@t
|rgu|2g = �g|rgu|2g � 2|rg,2u|2g � 2Ric(g)(rgu,rgu).

3. Covariant derivatives of the curvature tensor

Lemma 3.7. Let (Mn, g(t))t2[0,T ] be a solution to the Ricci flow on a closed manifold. Then,

@

@t
rg(t),k Rm(g(t)) = �g(t)rg(t),k Rm(g(t)) +

kX

i=0

rg(t),iRm(g(t)) ⇤ rg(t),k�iRm(g(t)), t 2 [0, T ].

Proof. The proof is by induction on k � 0. The case k = 0 is true by Proposition 1.24.
Assume the result is true for indices 0  i  k � 1. Then, on the one hand,

rg(t)

✓
@

@t
rg(t),k�1Rm(g(t))

◆
=

rg(t)

 
�g(t)rg(t),k�1Rm(g(t)) +

k�1X

i=0

rg(t),iRm(g(t)) ⇤ rg(t),k�1�iRm(g(t))

!

= �g(t)rg(t),k Rm(g(t)) + [rg(t),�g(t)]rg(t),k�1Rm(g(t))

+
k�1X

i=0

rg(t),i+1Rm(g(t)) ⇤ rg(t),k�1�iRm(g(t)) +rg(t),iRm(g(t)) ⇤ rg(t),k�iRm(g(t)).

(3.1)

Now, by Lemma 1.1 applied to T := rg(t),k�1Rm(g(t)), one gets:

[rg(t),�g(t)]rg(t),k�1Rm(g(t)) = Rm(g(t)) ⇤ rg(t),k Rm(g(t)) +rg(t)Rm(g(t)) ⇤ rg(t),k�1Rm(g(t)).
(3.2)

On the other hand, by Proposition 1.14,

@

@t
rg(t),k Rm(g(t)) = rg(t)

✓
@

@t
rg(t),k�1Rm(g(t))

◆
+rg(t)Rm(g(t)) ⇤ rg(t),k�1Rm(g(t)). (3.3)

The result follows by inserting (3.2) and (3.3) back to (3.1).
⇤

Proposition 3.8. Let (Mn, g(t))t2[0,T ] be a solution to the Ricci flow on a closed manifold. If

sup
M

|Rm(g(t))|g(t)  CT�1, on [0, T ],

then for all k � 0, there exists a positive constant C(n, k) such that:

|rg(t),k Rm(g(t))|g(t)  C(n, k)T�1t�
k
2 , t 2 (0, T ].

Proof. The proof is again by induction on k. For k = 0, there is nothing to be proved since it
is true by assumption. Assume the result is true for all indices l  k � 1, i.e. for each such index l,
there exists a positive constant C = C(n, l) such that:

|rg(t),l Rm(g(t))|g(t)  CKt�
l
2 , t 2 (0, T ].
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According to Lemma 3.7 applied to the index k � 1,
✓

@

@t
��g(t)

◆
|rg(t),k�1Rm(g(t))|2

g(t)

 �2|rg(t),k Rm(g(t))|2
g(t) + C

k�1X

l=0

|rg(t),l Rm(g(t))|g(t)|rg(t),k�1�l Rm(g(t))|g(t)|rg(t),k�1Rm(g(t))|g(t)

 �2|rg(t),k Rm(g(t))|2
g(t) + CT�3t�k+1

 �2|rg(t),k Rm(g(t))|2
g(t) + CT�2t�k,

(3.4)

where we have used the induction assumption in the second inequality together with the fact that
t  T in the last line. Here C denotes a positive constant that depends on k and n only and that
might vary from line to line.

Similarly,
✓

@

@t
��g(t)

◆
|rg(t),k Rm(g(t))|2

g(t)

 �2|rg(t),k+1Rm(g(t))|2
g(t) + C

kX

l=0

|rg(t),l Rm(g(t))|g(t)|rg(t),k�l Rm(g(t))|g(t)|rg(t),k Rm(g(t))|g(t)

 �2|rg(t),k+1Rm(g(t))|2
g(t) + CT�1|rg(t),k Rm(g(t))|2

g(t) + CT�2t�
k
2 |rg(t),k Rm(g(t))|g(t)

 �2|rg(t),k+1Rm(g(t))|2
g(t) + Ct�1|rg(t),k Rm(g(t))|2

g(t) + CT�1t�
k
2�1|rg(t),k Rm(g(t))|g(t),

(3.5)

where we have used the induction hypothesis in the third line.
Define now the auxiliary function for some positive constant K to be specified later:

Rk := tk+1|rg(t),k Rm(g(t))|2
g(t) +Ktk|rg(t),k�1Rm(g(t))|2

g(t).

Based on estimates (3.4) and (3.5), one arrives at:
✓

@

@t
��g(t)

◆
Rk  Ctk|rg(t),k Rm(g(t))|2

g(t) + CT�1t
k
2 |rg(t),k Rm(g(t))|g(t)

+Ktk
✓
�2|rg(t),k Rm(g(t))|2

g(t) + CT�2t�k +
k

t
|rg(t),k�1Rm(g(t))|2

g(t)

◆


✓
3C

2
� 2K

◆
tk|rg(t),k Rm(g(t))|2

g(t) +

✓
(k + C)K +

C

2

◆
T�2,

(3.6)

where we have used Young’s inequality 2ab  a2 + b2 together with the induction hypothesis in the
last line.

In particular, if K is large enough so that 4K � 3C, then the function Rk�
�
(k + C)K + C

2

�
tT�2

is a subsolution of the heat equation along the underlying solution to the Ricci flow (g(t))t2[0,T ]. The
maximum principle applied to M ⇥ [0, t] ⇢ M ⇥ [0, T ] implies then the expected result:

tk+1 sup
M

|rg(t),k Rm(g(t))|2
g(t)  sup

M⇥[0,t]
Rk 

✓
(k + C)K +

C

2

◆
tT�2.

⇤
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As a corollary, one obtains interior in time estimates for the covariant derivatives of the curvature
tensor along a solution to the Ricci flow:

Corollary 3.9. Let (Mn, g(t))t2[0,T ] be a solution to the Ricci flow on a closed manifold. If

sup
M

|Rm(g(t))|g(t)  CT�1, on [0, T ],

then for all k � 0, there exists a positive constant C(n, k) such that:

|rg(t),k Rm(g(t))|g(t)  C(n, k)T� k
2�1, t 2


T

2
, T

�
.

4. A criteria for convergence of the Ricci flow

The main result of this section is the following (necessary and) su�cient condition to get con-
vergence of the flow as time approaches some time eventually equal to +1.

Proposition 3.10. Let (Mn, g(t))t2[0,T ), T  +1, be a smooth one-parameter family of metrics on a
closed manifold. If the following conditions,

Z
T

0
sup
M

����r
g(t),k

✓
@

@t
g(t)

◆����
g(t)

dt < +1,

hold for all k � 0 then the metrics g(t) converge to a smooth metric gT in the C1 topology as t
tends to T .

Before giving the proof of Proposition 3.10, we state and prove the following lemma that rephrases
the conditions from that in terms of a time-independent Levi-Civita connection.

Lemma 3.11. Let (Mn, g(t))t2[0,T ), T  +1, be a smooth one-parameter family of metrics on a
closed manifold. The following conditions are equivalent:

(i) Z
T

0
sup
M

����r
g(t),k

✓
@

@t
g(t)

◆����
g(t)

< +1, 8 k � 0,

(ii) Z
T

0
sup
M

����r
g(0),k

✓
@

@t
g(t)

◆����
g(0)

< +1, 8 k � 0.

Proof. We only show the implication (i) ) (ii). Observe first that for t 2 [0, T ) and k � 1,

rg(0),kg(t) =

Z
t

0
rg(0),k

✓
@

@s
g(s)

◆
ds

since the metric g(0) is parallel with respect to the Levi-Civita connection with respect to g(0).
Therefore, for t 2 [0, T ) and i � 1,

sup
M

|rg(0),ig(t)|g(0) 
Z

t

0
sup
M

����r
g(0),i

✓
@

@s
g(s)

◆����
g(0)

ds, t 2 [0, T ). (4.1)

If k = 0, the assumption implies that the metrics g(t) are uniformly equivalent: there exists
C > 0 such that C�1g(0)  g(t)  Cg(t) for t 2 [0, T ).

Let us assume that the implication (i) ) (ii) holds true for all indices less than or equal to k�1
for some k � 1 and let us prove the assertion for index k. Thanks to Lemma 3.13 applied to the
one-parameter family of metrics g(t) and the tensor T := @tg(t) for each t 2 [0, T ):

rg(t),k

✓
@

@t
g(t)

◆
�rg(0),k

✓
@

@t
g(t)

◆
=

k�1X

l=0

X

i1+...+iq=k�l

rg(0),i1g(t)⇤...⇤rg(0),iqg(t)⇤rg(0),l

✓
@

@t
g(t)

◆
.



34 3. COVARIANT DERIVATIVES ESTIMATES

In particular, there exists a time-independent constant C such that:
����r

g(0),k

✓
@

@t
g(t)

◆����
g(0)


����r

g(t),k

✓
@

@t
g(t)

◆����
g(0)

+ C
k�1X

l=0

X

i1+...+iq=k�l

���rg(0),i1g(t)
���
g(0)

...
���rg(0),iqg(t)

���
g(0)

����r
g(0),l

✓
@

@t
g(t)

◆����
g(0)

.

By induction together with (4.1),
����r

g(0),k

✓
@

@t
g(t)

◆����
g(0)


����r

g(t),k

✓
@

@t
g(t)

◆����
g(0)

+ C

✓
1 +

���rg(0),kg(t)
���
g(0)

◆ ����

✓
@

@t
g(t)

◆����
g(0)

+ C
k�1X

i=0

����r
g(0),i

✓
@

@t
g(t)

◆����
g(0)

.

By taking the supremum on M , if yk(t) :=
R
t

0 supM
��rg(0),k

�
@

@s
g(s)

���
g(0)

ds,

y0
k
(t)  sup

M

����r
g(t),k

✓
@

@t
g(t)

◆����
g(0)

+ C

✓
1 + sup

M

���rg(0),kg(t)
���
g(0)

◆
sup
M

����

✓
@

@t
g(t)

◆����
g(0)

+ C
k�1X

i=0

sup
M

����r
g(0),i

✓
@

@t
g(t)

◆����
g(0)

 sup
M

����r
g(t),k

✓
@

@t
g(t)

◆����
g(0)

+ C (1 + yk(t)) sup
M

����

✓
@

@t
g(t)

◆����
g(0)

+ C
k�1X

i=0

sup
M

����r
g(0),i

✓
@

@t
g(t)

◆����
g(0)

for some large constant C that may vary from line to line. Here we have invoked (4.1) in the second
line. By Grönwall’s lemma and the induction assumption again:

log(1 + yk(t))  log(1 + yk(0)) +

Z
T

0
sup
M

����r
g(t),k

✓
@

@t
g(t)

◆����
g(0)

dt+ C

Z
T

0

����

✓
@

@t
g(t)

◆����
g(0)

dt

+ C
k�1X

i=0

Z
T

0
sup
M

����r
g(0),i

✓
@

@t
g(t)

◆����
g(0)

dt < +1.

⇤

Proof of Proposition 3.10. Thanks to Lemma 3.11, we know that
Z

T

0
sup
M

����r
g(0),k

✓
@

@t
g(t)

◆����
g(0)

< +1, 8 k � 0.

Therefore, rg(0),kg(t) is a Cauchy sequence for all k � 0 as t tends to T . A diagonal argument
shows then that g(t) converges to a smooth symmetric 2-tensor denoted by gT in the C1 topology.
The tensor gT is a Riemannian metric since the bound g(t) � C�1g(0) holds for all t � 0 for some
uniform positive constant C. ⇤

5. Curvature blow-up at finite-time singularities

Before proving the main result of this section, we need several preliminary results:

Lemma 3.12. Let g0 and g be two Riemannian metrics on M . Then the di↵erence of the Levi-Civita
connections Dg,g0 : (X,Y ) ! rg

X
Y �rg0

X
Y is a tensor. More precisely,

2g(Dg,g0(X,Y ), Z) = rg0
X
g(Y, Z) +rg0

Y
g(X,Z)�rg0

Z
g(X,Y ).

Proof. Left as an exercise: use the formula that gives the Levi-Civita connection in terms of
the Lie bracket. ⇤
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We continue with a lemma independent of the Ricci flow which estimates the di↵erence of the
covariant derivatives of a tensor in terms of two Riemannian metrics:

Lemma 3.13. Let g0 and g be two Riemannian metrics on M and let T a tensor on M . Then for all
k � 1,

rg,kT �rg0,kT =
k�1X

l=0

X

i1+...+iq=k�l

rg0,i1g ⇤ ... ⇤ rg0,iqg ⇤ rg0,lT.

Proof. As usual, the proof is by induction on k � 1. If k = 1, Lemma 3.12 implies that:
rgT �rg0T = rg0g ⇤T. Now, assume the result is true for indices less than or equal to k� 1. Then
by applying Lemma 3.12 repeatedly :

rg,kT �rg0,kT = rg

⇣
rg,k�1T �rg0,k�1T

⌘
+ (rg �rg0)rg0,k�1T

= rg

0

@
k�2X

l=0

X

i1+...+iq=k�1�l

rg0,i1g ⇤ ... ⇤ rg0,iqg ⇤ rg0,lT

1

A

+rg0g ⇤ rg0,k�1T

=
k�2X

l=0

X

i1+...+iq=k�1�l

rg0,i1g ⇤ ... ⇤ rgrg0,iqg| {z }
=rg0,iq+1

g+rg0g⇤rg0,iq g

⇤rg0,iT

+
k�2X

l=0

X

i1+...+iq=k�1�l

rg0,i1g ⇤ ... ⇤ rg0,iqg ⇤ rgrg0,iT| {z }
=rg0,i+1T+rg0g⇤rg0,iT

+rg0g ⇤ rg0,k�1T

=
k�1X

l=0

X

i1+...+iq=k�l

rg0,i1g ⇤ ... ⇤ rg0,iqg ⇤ rg0,iT,

as expected.
⇤

Theorem 3.14. Let (Mn, g(t))t2[0,T ) be a maximal solution to the Ricci flow on a closed manifold.
Then either T = +1 or T < 1 and lim supt!T supM |Rm(g(t))|g(t) = +1.

Proof. Assume that T < +1 and assume by contradiction that lim supt!T supM |Rm(g(t))|g(t) <
+1. Then Corollary 3.9 ensures that for all k � 1, there exists C(n, k, T ) > 0 such that:

|rg(t),k Rm(g(t))|g(t)  C(n, k, T ), t 2

T

2
, T

◆
.

In particular, this implies by the very definition of the Ricci flow, that for all k � 0:
����r

g(t),k

✓
@

@t
g(t)

◆����
g(t)

 C(n, k, T ). (5.1)

We claim that the metrics g(t) converge to a limiting smooth Riemannian metric gT as t tends to T .
For this purpose, let us define the following time integrals:

Rk(t) :=

Z
t

0
sup
M

����r
g(s),k

✓
@

@s
g(s)

◆����
g(s)

ds, t 2 [0, T ), k � 0.

Conditions (5.1) imply that for all k � 0, Rk(T ) are finite.
This ends the proof by applying the existence result from Proposition 3.10.

⇤
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6. Exercices

Exercise 3.15. Show that if a tensor S satisfies @

@t
S = �g(t)S + Rm(g(t)) ⇤ S along a solution

(g(t))t2[0,T ] to the Ricci flow on a closed manifold M then interior estimates also holds for the covari-
ant derivatives of S. More precisely, if supM⇥[0,T ] |Rm(g(t))|g(t)  T�1 and supM⇥[0,T ] |S(t)|g(t)  S,
show that for all k � 0, there exists a positive constant C = C(n, k) such that:

|rg(t),kS(t)|g(t)  CSt�
k
2 , t 2 (0, T ].

Exercise 3.16. ([Ban87]) Let (Tn, g) be a flat torus and let u be a solution to the heat equation with
initial condition a continuous function u0.

(i) Show that for k � 0,

@

@t
|rg,ku|2g = �g|rg,ku|2g � 2|rg,k+1u|2g.

(ii) Show that for m � 1,

@

@t

 
mX

k=0

(2t)k

k!
|rg,ku|2g

!
= �g

 
mX

k=0

(2t)k

k!
|rg,ku|2g

!
� 2(2t)m

m!
|rg,m+1u|2g.

(iii) Show that the series
P

k�0
(2t)k

k! |rg,ku|2g converges uniformly in space and time over a time
interval to be defined with the help of the maximum principle.

(iv) Conclude about the analyticity in space of the solution u.
(v) Does it imply the analyticity in time of the solution u?


