CHAPTER 3

Covariant derivatives estimates

1. The maximum principle for functions

We first state and prove the maximum principle for subsolutions to reaction-diffusion equations
on a closed manifold.

Lemma 3.1. Let (M, g(t))cjo,r) be a smooth one-parameter family of metrics on a closed manifold
M and let u: M x [0,T) — R be a smooth function that satisfies
ou
ot
where V (t) is a vector field on M and F' is a Lipschitz function. If u(-,0) < ¢ for some real constant
¢ then u(x,t) < U(t) where U(t) is the solution to the ODE ‘2—[{ = F(U) satisfying U(0) = c.

— Agpyu < g(O)(V (1), V/Du) + F(u),

PROOF. Observe that by definition of the solution U,
0
ot
since U depends on time only.
Since F' is Lipschitz, there exists a constant C' such that:

(u—U) = Dgy(u—U) < g(t)(V(t), VI (u — U)) + F(u) — F(U),

%(u —U) = Aypy(u—U) < g(t)(V(t), VIO (u—U)) + Clu - U|.

The previous differential inequality would let us conclude in case the absolute value on the righthand

side was not there. To circumvent this issue, let us consider the auxiliary function v := e~*(u —U).

Then v satisfies: 5

210~ Dgor <9V (1), VIOp) + C (Jv] —v).

Moreover, for € > 0, we make use of the usual trick to force the desired contradiction, i.e. we define
ve(x,t) :=v(x,t) —e(1 4+ t) so that,

0

at

Now, we claim that v. < 0 for all time. Assume it is not the case and let us derive a contradiction.

Since v (2,0) < —e < 0, to :=sup{t € [0,T), supy;ve(-,7) <0, 7 € [0,t]} is positive and there

must be some point ¢ € M such that v.(xo,t9) = 0. Here we have made use of the compactness of M

and the continuity of v.. Therefore, at that point (zg,tp), the lefthand side of (1.1)) is nonnegative

and the gradient term vanishes so that C (|v| —v) |(ac y =& < 0. Now, ve(zo,to) = 0 so that

ve = Byyve < 9OV (5), V9 W02) +C (o] —v) — <. (1.1)

0,to
v(xg,t9) = € > 0. We have reached a contradiction.

We have proved that v(z,t) < e(1+t) for all t € [0,7) and all ¢ > 0. Letting € tend to 0, we
get u(x,t) < U(t) for all t € [0,T). O

Remark 3.2. The proof and the conclusion of Lemmause the qualitative regularity of the function
F only, i.e. its Lipschitz constant does not come into play here.

Remark 3.3. Lemma admits a corresponding statement for supersolutions of the same differential
inequality under the same assumptions on the data by reversing the signs.

Lemma is applied to a solution to the Ricci flow in order to bound the scalar curvature from
below:
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30 3. COVARIANT DERIVATIVES ESTIMATES

Proposition 3.4. Let (M", g(t))icpo,r) be a solution to the Ricci flow on a closed manifold M. Then,

e if Ry) > ¢ for some constant c € R then Ry > ¢ fort € [0,T). In particular, nonnegativity of
the scalar curvature is preserved along the Ricci flow.

e More generally,
n IninM Rg(O)

> .
Rg(t) ~ n —2tminyy Rg(O)

PrOOF. Observe by Propositionthat the scalar curvature Ry(;) along a solution to the Ricci
flow is a supersolution of the heat equation: % Rywy = Ag(t) Ry on M x (0,T). Let us apply Lemma
to F' = 0 combined with Remarkto get the expected lower bound, i.e. Ry > U(t) where
QU (t) = F(U(t)) = 0 with U(0) = ¢ such that Ry > ¢. This implies the desired lower bound.

Dropping the squared norm of the Ricci tensor in the evolution equation from Proposition
satisfied by the scalar curvature is a loss of (geometric) information. Observe that |Ric(g(t))|3(t) >
%Rz(t) pointwise on M for each time ¢ € (0,T") since Ric(g(t)) is a symmetric 2-tensor. Therefore,
Ry(r) satisfies:

%Rg(t) > Ag(t) Rg(t) —l—% Rz(t), on M x (0,7).
Applying Lemmato F(z):= %x2 for x € R combined with Remarkgives: Ryt = U(t) where
U(t) = %U(t)Q, U(0) = cif Ry(g) > c. This again implies the desired lower bound. O

The following result is a straightforward consequence of Proposition

Corollary 3.5. (Finite time singularity) Let (M™,g(t))co,r) be a solution to the Ricci flow on a
closed manifold M such that minpys Ryg) > 0. Then
n

< ——.
~ 2minyy Rg(O)

2. A toy example

Let us start with a toy example of great interest: let (M, g(t)) be a solution the Ricci flow and

let w: M x [0,T) — R be a solution to the heat equation
ou
o Ag(ayu-

Then, on the one hand,

8’&2 _ A - A 2 g(t),,12
E =2u g(t)u = g(t)u — 2|V u|g(t)’

On the other hand, the norm of the gradient |V9(t)u|§(t) satisfies

g(t)
= 29(t) ( Ay (vga)u) ,vga)u) (2.1)
= Dy V¥ Oulfy) — 2[99 20l .

Here we have used the Bochner formula for functions: Ag(V9u) = V9(Agu) + Ric(g)(V9u) for a C}
function v : M — R.
In particular, going back to the computation (2.1f), one gets:

o 1 1
ot (t|Vg(t)u|§<t) + 2“2) = By) (”Vg(t)U@(t) + 2u2> =2V,

%vg(”uﬁ = 2Ric(g(t))(VIOu, VIOu) + 29(t) (VI (A pyu) , VIOu)

This implies in particular that ¢|V9 (t)u\g( nt %uQ is a subsolution to the heat equation along the Ricci

flow. The maximum principle as stated in Lemmaimplies that v/Zsup,, |VI®u| gty < C'supyy |ug|
for some universal positive constant C.
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Remark 3.6. Compare with the usual heat equation
o _
ot

where (M, g) is a static Riemannian manifold, for which one can prove that:

Agu,

9 .
a|vgu|§ = A9|V9u|§ - 2|V9’2u|3 — 2Ric(g)(VIu, Viu).

3. Covariant derivatives of the curvature tensor

Lemma 3.7. Let (M", g(t))icjo,1) be a solution to the Ricci flow on a closed manifold. Then,

k
O OF Rin(g(1)) = Ay VOF Rin(g(1)) + 3 VO Rmg(1)) » VOF - Rmg(1)), 1 € [0,7]
=0

PROOF. The proof is by induction on k > 0. The case k = 0 is true by Proposition [1.24]
Assume the result is true for indices 0 < i < k — 1. Then, on the one hand,

0
9(t) [ Lgat)k—1 —
V (atv Rm(g(t))>

k—1
vI®) (Ag(t)w(t%k—l Rm(g(t)) + > VIO Rm(g(t)) « vIOF-1 Rm(g(t)))
1=0
= Ay VID*F Rm(g(t)) + [V9D, Ay ] VID+F1 Rm(g(t))
k—1
+ 3 VIO Rm(g(#)) « VIO Rm(g(1)) + VIO Rm(g(t)) « VIOHF R (g(t)).
=0

Now, by Lemmall.1{applied to T := V9"-k~1Rm(g(t)), one gets:

(VIO Ay ]VIODHFT Rm(g(t)) = Rm(g(t)) = VIO* Rm(g(t)) + V9D Rm(g(t)) * VIO* Rm(g(t)).
(3.2)

(3.1)

On the other hand, by Proposition|1.14]
0 0

Y o9(t),k R v ON
O 9ok Rm(g(1) = v (at

The result follows by inserting (3.2) and (3.3) back to (3.1)).

vo(t)k-1 Rm(g(t))) + V9O Rm(g(t)) * VIOFE I Rm(g(t)). (3.3)

O

Proposition 3.8. Let (M™, g(t))icjo,r) be a solution to the Ricci flow on a closed manifold. If
S]‘\I}) | Rm(g(t))|g(t) < CT?I; on [07 T]7

then for all k > 0, there exists a positive constant C(n, k) such that:
IVIOF Rm(g(t)) ]y < Cln, K)TH73,  t € (0,T).

PRrOOF. The proof is again by induction on k. For k£ = 0, there is nothing to be proved since it
is true by assumption. Assume the result is true for all indices | < k — 1, i.e. for each such index [,
there exists a positive constant C' = C(n,[) such that:

VIO Rm(g (1)) < CKt™2, te(0,T].
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According to Lemma applied to the index k — 1,

0 _
(55— 20 ) 19704 Rana(0)

k—1
< =2[VIODHFRm(g(t))| 2 + C Y VIO Rm(g(t))] o) [ VIOF Rm(g(8)) o) [ V/OF T Rm(g(8)|gqr)
=0

< —2|V9OF Rin(g(t))[2 ) + CT 3+

< —2|VIO* Rm(g(t))|2 ) + CT 2,

(3.4)
where we have used the induction assumption in the second inequality together with the fact that
t < T in the last line. Here C' denotes a positive constant that depends on k and n only and that
might vary from line to line.

Similarly,

0
(2 - 800 1999 Rm(g )

k
< =2/VIORRm(g(1))[3 ) + C D IVIO Rin(g(0) gy [V F R (g(8)) g [ V9 Rm(g(#)) g0
=0

—_ _9,_k
< —2|VIOFH Rin(g (1)) |5 + CTH VI OF Rm(g (1)) 5 ) + CT 242 [V/OF Rm(g (1))

< =2 VIO Rin(g(1)|2 ) + CtHVIOF Rm(g(t)) 2, + CT ™27 VIO Rin(g (1)),
(3.5)
where we have used the induction hypothesis in the third line.
Define now the auxiliary function for some positive constant K to be specified later:

Ry, := t" V9O Rin(g(8)) 2,y + K |V9OF Rm(g (1)) 5,

Based on estimates (3.4) and (3.5)), one arrives at:
0 1,k
(57— 200 ) B < CEITHOF Ry + CT 5[990 Ranf))
k
+ Kth (—2|v9<t>v’f Rm(g(t))[2) + CT % + ;|v9<t>v’f*1 Rm(g(t))g(t)) (3.6)
3C

< (2 _ 2K> k| v9@)k Rm(g(t)) |2 + <(k +O)K + g) T,

where we have used Young’s inequality 2ab < a? 4+ b? together with the induction hypothesis in the
last line.

In particular, if K is large enough so that 4K > 3C, then the function Ry — ((k +O)K + %) tT—2
is a subsolution of the heat equation along the underlying solution to the Ricci flow (g(t))sc[o,7]- The
maximum principle applied to M x [0,t] C M x [0,T] implies then the expected result:

5 sup [VIOF Rmn(g(1)) 2y < sup Ry < ((k: +O)K + C) tT2.
M Mx[0,4] 2
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As a corollary, one obtains interior in time estimates for the covariant derivatives of the curvature
tensor along a solution to the Ricci flow:

Corollary 3.9. Let (M", g(t)).ejo,r) be a solution to the Ricci flow on a closed manifold. If
S}\14P|Rm(g(t))|g(t) <CT7',  on[0,7T],

then for all k > 0, there exists a positive constant C(n, k) such that:

T
IVIOF Rm(g(t)) gy < Cln, )T 37, te {2, T} :
4. A criteria for convergence of the Ricci flow

The main result of this section is the following (necessary and) sufficient condition to get con-
vergence of the flow as time approaches some time eventually equal to +oc.

Proposition 3.10. Let (M", g(t))ico,1), T < +00, be a smooth one-parameter family of metrics on a
closed manifold. If the following conditions,
dt < +00,

T 0
/ sup ‘Vg(t)’k <g(t)>
0 M ot a(t)

hold for all k > 0 then the metrics g(t) converge to a smooth metric gr in the C* topology as t
tends to T'.

Before giving the proof of Proposition|3.10] we state and prove the following lemma that rephrases
the conditions from that in terms of a time-independent Levi-Civita connection.

Lemma 3.11. Let (M",g(t))icjo,r), T < +oo, be a smooth one-parameter family of metrics on a
closed manifold. The following conditions are equivalent:

Q)
g ok (9
9Ok (= g(t
/ S}JF‘V (f%g( )>
< 400, Vk>0.

4 ok [ 9
sup |VIW <g t )
/0 M ‘ ot “ 9(0)

PROOF. We only show the implication (i) = (ii). Observe first that for ¢t € [0,7) and k > 1,

t
VIO kg (t) —/ Vo) (ig(s)) ds

0

< 400, Vk>0,
g(t)

(i)

since the metric ¢(0) is parallel with respect to the Levi-Civita connection with respect to g(0).
Therefore, for t € [0,7) and ¢ > 1,
. ¢ O
sup |Vg(0)”g(t)|g(o) < / sup ’Vg(o)’z (g(s)) ds, te€l0,7T). (4.1)
M 0 M Os g(0)
If & = 0, the assumption implies that the metrics g(¢) are uniformly equivalent: there exists
C > 0 such that C~1g(0) < g(t) < Cg(t) for t € [0,T).
Let us assume that the implication (¢) = (i¢) holds true for all indices less than or equal to k — 1
for some k£ > 1 and let us prove the assertion for index k. Thanks to Lemma applied to the
one-parameter family of metrics ¢g(t) and the tensor 1" := 9,¢(t) for each t € [0,T):

k—1
0 0 . . k)
9(t).k _w9(0),k — 9(0),71 9(0),2 9(0),1
\% (atg(t)> \Y% <3tg<t)> E E \% g(t)*..x VI g (1)« V ((‘%g(t)) .

1=0 iy+...+ig=k—l
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In particular, there exists a time-independent constant C' such that:

\vg (o) <[k (S0 .

+cki D )Vg(o)’ilg(t)‘g(o)...‘Vg(o)’iqg(t)‘

1=0 i1+...+ig=k—l
By induction together with ,

0 0
vg<°>’f< g<t>) \VW ( g<t>)
‘ ot 4(0) ot

9(0)

0
g(0),
\% ((%g(t))
0
+C<1+ vIOkg (¢ )’( t>
o | g<>\g(0) 50|,

9(0)

k—1 9
+CY (vl (;;(t)) .
i=0 o 9(0)
By taking the supremum on M, if y(¢ fo Sup s {Vg(o) ok (839(8)) }g(O) ds,
Yy (t) < sup vtk ( 0 g(t)) +C <1 + sup ‘Vg(o)’kg(t)‘ ) sup (ag(t)>
ot g(0) M 9(0) M ot g(0)
k—1 P
+C'Zsup v9(0)i <8t (t)>
=0 9(0)
<oup [ V0% (290)| w0 o) (Frat0)) + O sup| w0 (590)
M Ot lg(0) 0t )l S 0" lg00)

for some large constant C' that may vary from line to line. Here we have invoked (4.1) in the second
line. By Gronwall’s lemma and the induction assumption again:
Tl ro
—g(t
( 579 ))

T 0
log(1 + () < Tog(1 + () + [ swp ]vgw <g<t>) arc [
M ot 9(0) 0

0
dt < +o0.

k=1 P
+C / sup ’Vg(o)’i (g(t))
; 0 M O™/ lg(0)

dt
9(0)

PROOF OF PROPOSITION [3.10] Thanks to Lemma|3.11| we know that

T 0),k 9
/ sup |V9(0): <atg(t)>
o M 9(0)

Therefore, Vg(o)vkg(t) is a Cauchy sequence for all £k > 0 as ¢t tends to 7. A diagonal argument
shows then that g(¢) converges to a smooth symmetric 2-tensor denoted by g7 in the C* topology.
The tensor gr is a Riemannian metric since the bound g(t) > C~1¢(0) holds for all t > 0 for some
uniform positive constant C'. O

< 400, Vk=>0.

5. Curvature blow-up at finite-time singularities

Before proving the main result of this section, we need several preliminary results:

Lemma 3.12. Let gy and g be two Riemannian metrics on M. Then the difference of the Levi-Civita
connections Dy g4 1 (X,Y) — V‘g{Y — VggY s a tensor. More precisely,
29(Dygg0(X,Y), Z2) = VR9(Y. Z) + V(X Z) = Vg(X,Y).

PROOF. Left as an exercise: use the formula that gives the Levi-Civita connection in terms of
the Lie bracket. O
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We continue with a lemma independent of the Ricci flow which estimates the difference of the
covariant derivatives of a tensor in terms of two Riemannian metrics:

Lemma 3.13. Let gy and g be two Riemannian metrics on M and let T' a tensor on M. Then for all
k>1,

k—1
VIR — Ik = Z Z V90 g s V900 g 4 VIOLT,
1=0 i1+ tig=k—1

PROOF. As usual, the proof is by induction on k& > 1. If £ = 1, Lemma implies that:
VIT — VT = V9%g+T. Now, assume the result is true for indices less than or equal to kK — 1. Then

by applying Lemma repeatedly :
VIR _ 90k — I (vg,k—lT _ vgo7k—1T) + (Vg _ Vgo)vgmk—lT

k—2
= VY Z Z VQOailg - Vgo,iqg * V90l
1=0 i1+ tig—k—1—1

+ V90g 5 VIOR-IT

k—2
= Z Z VIl g gk VIV90iiag £\790:
————

1=0 i1+...Fig=k—1-1 _90ria+1g 4 V90 gy T0ria g

k—2
+ Z Z VI0ilg k% V90 g x VI 90
—_——
=0 i1+...+ig=k—1-1 =V90-1+1 T4 V90 g« V904 T
4+ V9 g % v90.k—1p

k—1
— E E V.‘]Ovilg - vgo,iqg % VgOJ:T’
1=0 iy +...+ig=k—1

as expected.
O

Theorem 3.14. Let (M", g(t));cjo,r) be a mazimal solution to the Ricci flow on a closed manifold.
Then either T'= 400 or T' < oo and limsup,_,p supy, | Rm(g(t))[g) = +o0.

PROOF. Assume that T' < 400 and assume by contradiction that lim sup,_,;-sup,, | Rm(g(t))|g¢) <
+00. Then Corollary ensures that for all k > 1, there exists C'(n, k,T) > 0 such that:

T
|v9(t)vk Rm(g<t))|g(t) < C(TL,]C,T), te |:2,T>.
In particular, this implies by the very definition of the Ricci flow, that for all £ > 0:
<C(n,k,T). (5.1)

0
vk <g(t)>
’ ot q(t)

We claim that the metrics g(¢) converge to a limiting smooth Riemannian metric gy as ¢ tends to T'.

For this purpose, let us define the following time integrals:
ds, tel0,T), k=>O0.

t
Ry(t) ::/ sup v9(s)k gg(s)
0 M Os 9(s)

Conditions (5.1) imply that for all k¥ > 0, Ri(T") are finite.
This ends the proof by applying the existence result from Proposition
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6. Exercices

Exercise 3.15. Show that if a tensor S satisfies %S = AypS + Rm(g(t)) x S along a solution
(9(t))iepo,1) to the Ricci flow on a closed manifold M then interior estimates also holds for the covari-
ant derivatives of S. More precisely, if sup s o1y | Rm(g(t)) gy < T andsupprio1) 1SE) gy < S,
show that for all k > 0, there exists a positive constant C = C(n, k) such that:

|vg(t),ks(t)|g(t) S Cstig, t e (O,T]

Exercise 3.16. ([Ban87|) Let (T", g) be a flat torus and let u be a solution to the heat equation with
initial condition a continuous function ug.

(i) Show that for k >0,
0
E'W“E = Ag| V9 |2 — 2|Vok Ly 2.

(ii) Show that for m > 1,

m k m
at (Z (2t) |vgk ) — Ag <Z (2]:') |Vg’ku|3> . 2(:? |vg,m+1u|3.

k=0 ’

(iii) Show that the series } j~q -7 (Qt) |V u|2 converges uniformly in space and time over a time
interval to be defined with the help of the maximum principle.
iv) Conclude about the analyticity in space of the solution wu.
Y Y
(v) Does it imply the analyticity in time of the solution u?



