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One of Elisabeth’s favourite themes : Blind deconvolution

What is deconvolution?

X ∼ P, Y ∼ Q and Z = X+ Y ∼ R.

Knowing P and Q⇒ compute R. Direct problem Convolution

Knowing P and R⇒ compute Q. Inverse problem Deconvolution
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Once upon the time, blind deconvolution
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Elisabeth Ph. D main results
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Elisabeth Ph. D main results

Frame in a nutshell :

(Zn)n∈Zd observed A.R. built on an i.i.d. non Gaussian sequence
(Xn)n∈Zd ,

b∗ = (b∗j )j∈S the unknown weight vector (|S| = m <∞),

Yn(b
∗) :=

∑
j∈S b

∗
jZn−j,

Zn = Yn(b
∗) + Xn, n ∈ Zd

Observing only Z1, . . .Zn recover both b∗ and X1, . . .Xn
⇒Blind deconvolution (much more greedy than the deconvolution ! !)
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Elisabeth Ph. D main results

Results in a nutshell :

Build b̂ as an M-estimator of b∗,

The good M functions are the ones decreasing by convolution
(typically normalized cumulants),

Under very weak assumptions (even no variance for X ! !)
convergence and asymptotic rates for b̂
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One step beyond : optimality
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One step beyond : optimality

Results in a nutshell :

For the estimation of b∗ under assumptions on the density of X the
model is LAN

log

(
dLb∗+ h√

n

dLb∗

)
= 〈h,∆n〉−

1

2
hT Ib∗h+ op(1),

with ∆n
L⇒ Nm(0, Ib∗)

First consequence : lower bound for the asymptotic variance of a
regular estimator (b̂ is regular).

b̂ may be modified using one step Newton method to built asymptotic

optimal ̂̂b
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Uniqueness and stability in the generalized moment
problem

F. Gamboa (IMT Toulouse) Free multiplicative deconvolution June 2023 12 / 34



One of Elisabeth’s favourite themes : Deconvolution Sparsity and discrete mixtures Free multiplicative deconvolution RMT for Large Covariance Matrices

Uniqueness and stability in the Hausdorff moment
problem

ν∗(dx) :=
∑l
j=1 p

∗
j δx∗j (dx) ∈ P(]0, 1[) is completely determined by

its 2l first algebraic moments

mj(ν
∗) =

∫
]0,1[

xjν∗(dx), j = 1 . . . 2l.

Hankel Matrix : Hp+1(ν) = (mi+j−2(ν))16i,j6p+1, ν ∈ P(]0, 1[),
Hp+1(ν) > 0
detHp+1(ν) = 0⇔ ν is supported by less than p+ 1 points.
So that detHp+1 can be used as M-function for deconvolution if the
noise is discretely supported ! !
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Blind discrete deconvolution
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Extension to source separation and mixtures
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Recent contribution using this sparsity paradigm
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Recent contribution of Elisabeth on deconvolution
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Classical convolutions

X and Y real random variables,

Z = X+ Y classical additive convolution

XY classical multiplicative convolution

If
P(X ∈ dx) := f(x)dx and P(Y ∈ dy) := g(y)dy

then

P(Z ∈ dz) = f ∗a g(x)dx =
(∫
f(z− y)g(y)dy

)
dz , and ϕZ = ϕX ×ϕY

P(XY ∈ dz) = f ∗m g(x)dx =
(∫
f(z/y)g(y)dy

)
dz .
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Classical convolution with matrices

A(n) ∈Mn(C)

µA(n) :=
1

n

∑
λ∈Spec(A(n))

δλ (spectral measure of A(n))

Two i.i.d. independent samples of positive random variables with laws µ1
and µ2 X1,X2,X3, . . . ,Xn and Y1, Y2, Y3, . . . ,Yn.
A(n) := diag(X1, . . . ,Xn) and B(n) := diag(Y1, . . . ,Yn).

Lemma (Obvious but illustrative)

We have
lim
n→∞µA(n) = µ1 , lim

n→∞µB(n) = µ2 ,

and also

lim
n→∞µA(n)B(n) = lim

n→∞µ(B(n))
1
2A(n)(B(n))

1
2
= µ1 ∗m µ2 .
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Free multiplicative convolution

Two iid independent samples of positive random variables with laws µ1
and µ2 :

X1,X2,X3, . . . ,Xn, . . . and Y1, Y2, Y3, . . . ,Yn, . . .

A(n) := diag(X1, . . . ,Xn) and B(n) := Un diag(Y1, . . . ,Yn)U
∗
n,

Un Haar on the orthogonal group (independent of X and Y).

Theorem
Of course, we still have

lim
n→∞µA(n) = µ1 , lim

n→∞µB(n) = µ2 ,

but this time :
lim
n→∞µ(B(n))

1
2A(n)(B(n))

1
2
= µ1 � µ2 .

Here µ1 � µ2 is a a deterministic measure which depends only on µ1 and
µ2 called their free multiplicative convolution.
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Two pioneering papers
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Our work in progress
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Brute force SVD is wrong in large dimension

Consider a sequence of centered observables in Rd, X1,X2, . . . . The
empirical covariance

Σ̂ =
1

n

n∑
i=1

XiX
∗
i =

1

n
XX∗ ,

where X = (X1, . . . ,Xn) ∈Md,n(R) is the matrix with columns given by
the Xi’s.

Take the Xi having iid components as well.

If d fixed and n→∞,

lim
n→∞ 1

n
XX∗ = Id ,

recovering the true covariance.
If both d = dn,n→∞, this is not true.

F. Gamboa (IMT Toulouse) Free multiplicative deconvolution June 2023 25 / 34



One of Elisabeth’s favourite themes : Deconvolution Sparsity and discrete mixtures Free multiplicative deconvolution RMT for Large Covariance Matrices

Theorem (Marchenko-Pastur 1967)

Assume that dn/n→ c < 1. Almost surely, as n→∞, we have the weak
convergence of probability measures limn µ 1

nXX∗
=MPc 6= δ1 where

MPc(dx) := 1{x∈[l,r]}

√
(x− l)(r− x)

2πx
dx

is the Marchenko-Pastur distribution, l = (1−
√
c)2, r = (1+

√
c)2.

 Naive SVD for spectral recovery suffers from an infinite dimensional
bias.
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The inverse problem

Assume
Z = XY with X = Σ

1
2 ,

with Σ ∈Md(R) true covariance, and Y ∈Md,n(R) with iid entries with
distribution N(0, 1).

Question

When d/n ≈ c > 0, how to estimate the spectrum of Σ?

More precisely, we will focuss on the case where the limit spectral
measure is

ν∗ =

k∑
i=1

p∗iδσ∗i
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Model

Who is ν∗ ?

lim
n→+∞ 1

dn
Tr(Σr) =

∫
xrν(dx), (r ∈ N).

Very roughly speaking, dnp∗i is the multiplicity of the eigenvalue σ∗i
⇒ Model not well defined

Parametric model θ∗ = (σ∗1 , . . . ,σ
∗
k,p
∗
1 , . . . ,p

∗
k−1)

T ,

As the white Gaussian is invariant under isometry take Σ diagonal,

Diagonal elements σ∗1 , . . . ,σ
∗
k with random multiplicity

N1,n, . . . ,Nk,n (N1,n + · · ·+Nk,n = dn),

limn→∞ Ni,n
dn

= p∗i and n(Ni,ndn − p∗i ) = Op(1).
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La La LAN

Under some assumptions on the random multiplicities :

Proposition

The model is LAN for the rate n−1

log

(
dLθ∗+h

n

dLθ∗

)
= 〈h,∆n〉−

1

2
hT Iθ∗h+ op(1),

with ∆n
L⇒ N2k−1(0, Iθ∗)

Consequently, possible asymptotic efficient estimation could be possible
(Newton Method).
But

Iθ∗ is not yet completely computable ! !

Our estimate (see next slides) have to be regular (not shown yet) ! !
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Definitions and notations

The Cauchy-Stieltjes transform of µ, a probability measure on R+ is :

Gµ : C+ → C−

z 7→
∫
R+

µ(dv)
z−v ,

where
C± := {z ∈ C | ± =z > 0} .

The moment generating function is Mµ(z) = zGµ(z) − 1

For µ 6= δ0, Mµ is invertible in the neighborhood of ∞ and the inverse is
denoted by M〈−1〉

µ . The S-transform of µ is defined as

Sµ(m) =
1+m

mM
〈−1〉
µ (m)

,

and is analytic in a neighborhood of m = 0. (WARNING : Inverse is
multi-valued).
For a diagonalizable matrix A(N) ∈MN(R), we write SA(N) := Sµ

A(N)
,

GA(N) := Gµ
A(N)

, MA(N) :=Mµ
A(N)

.
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S-transforms and free convolution

A more complete statement on free multiplicative convolution :

Theorem (Voiculescu, 1987)
Consider two sequences of positive matrices, each element inMN(R)

(
A(N) ; N > 1

)
,
(
B(N) ; N > 1

)
,

such that :
lim
N→∞µA(N) = µA , lim

N→∞µB(N) = µB .

Under the (technical) assumption of asymptotic freeness forA(N) and B(N) , there exists a deterministic probability measure
µA �µB such that :

lim
N→∞µ(A(N))

1
2 B(N)(A(N))

1
2

= µA �µB .

The operation� is the multiplicative free convolution. Moreover

SµA�µB
(m) = SµA (m)SµB (m) . (1)
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Recall X = Σ
1
2Y so that :

1

n
XX∗ = Σ

1
2

(
1

n
YY∗

)
Σ

1
2 .

Corollary

Assume that Y has iid coefficients, and Σ has a spectral measure
converging to ν. Under our assumptions, µ 1

nXX∗
converges weakly to a

measure µ satisfying :
µ = ν�MPc .

 We want to estimate ν by free deconvolution i.e. such that

Sν(m) = Sµ(m)/SMPc(m) .

In particular we want to construct an empirical version ν̂n such that

Sν̂n(m) ≈ S 1
nXX∗

(m)/SMPc(m)
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Ingredients for the estimator ν̂n :

Proposition (Inversion)

It is possible to recover moments of ν̂n via (numerically constructible and
small) contour integrals implicating G 1

nXX∗
.

Proposition (Reconstruction)

From the observation of (noisy) moments m1,m2, . . . ,mk, one can
reconstruct an atomic probability measure ν̂n having these moments.
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