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Introduction post-lectures: I do not proofread the text, so please
forgive all mistakes. There should be many.

There should be a shorter part on Minimal sets of dimension 2.
In these lectures, only a limited number of topics (those that I
understand), and in Parts I and II, we’ll insist on relations to the
regularity of the boundary. Sorry If I repeat things that you know.



Part I: Harmonic measure. 1.Brownian motion intuition

We start with an intuitive definition of Harmonic measure.
Our notation: Ω ⊂ Rn is a bounded domain, we give ourselves
X ∈ Ω (a pole) and we “define” a measure ωX on ∂Ω by

ωX (E ) is the probability that a Brownian path starting from X

will lie in E the first time it hits the boundary ∂Ω
(1)

Comment:

• Possibly hard to define, depending on Ω.

• If ∂Ω is too thin, the Brownian path will never hit it. But for
most of our cases, a Wiener criterion will say that it hits.

• Easy to see, with a stopping time argument, that X 7→ ωX (E )
satisfies the mean value property, and hence is harmonic.

[That is
ffl
∂B(X ,r) ω

Y (E ) = ωX (E ) for r small.]

• And to imagine that ωX (E ) tends to 1E when X tends to ∂Ω.



2. Harmonic measure by Dirichlet Problem

Now the definition that we use. Suppose Ω is such that for all
continuous f defined on Ω there is a unique harmonic function uf ,
with a continuous extension on Ω such that uf = f on ∂Ω.

[That is, ∆uf = 0 on Ω and uf = f on ∂Ω.]
Notice that by the maximum principle (to be checked but),

supX∈Ω uf (X ) = sup∂Ω f (ξ).
Then by Riesz, for each X ∈ Ω there is a probability measure ωX

on ∂Ω such that

uf (X ) =

ˆ
∂Ω

f (ξ)dωX (ξ). (2)

Our main questions: Is all this defined? What does ωX look like?
Is it supported on a small set? What geometric properties of Ω
matter for this?
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3. Simple examples: the ball and upper half space

When Ω = B(0, 1) ⊂ Rn, ωX can be computed: it is the absolutely
continuous measure P(X , y)dσ(y) whose density (the Poisson
kernel) is given by

P(X , y) =
1− |X |2

ωn−1|X − y |n
for X ∈ B(0, 1) and y ∈ ∂B(0, 1). (3)

Here ωn−1 = σ(∂B(0, 1) (so that
´
y P(X , y)dσ(y) = 1). Similarly

for the upper half space Rn
+, and with X = (x , t) (with t > 0) and

x , y ∈ Rn−1,

P(X , y) =
cnt

(t2 + |x − y |2)n/2
(4)

Comment: We can check that this works, or use Fourier.
By (48) applied to B(X , 9 dist(x , ∂Ω)/10, harmonic functions are
(locally) smooth on Ω. And also for u ≥ 0 harmonic on Ω, and
X ,Y ∈ Ω such that |X − Y | ≤ dist(X , ∂Ω)/2,

C−1
n u(X ) ≤ u(Y ) ≤ Cnu(X ) (Harnack inequality). (5)
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Simple examples (2): simply connected domains in R2

Let Ω ⊂ R2 ' C and ψ : D→ Ω a conformal mapping. Suppose
ψ(0) = X ∈ Ω. Observe that u is harmonic on Ω iff u ◦ ψ is
harmonic on D. If ∂Ω is a Jordan curve, ψ extends to a
homeomorphism ψ : D→ Ω. And for f continuous on ∂Ω, its
continuous harmonic extension is v ◦ ψ−1, where v is the harmonic
extension of u ◦ ψ. Thus

u(X ) :

 
∂D

u ◦ ψ (6)

F. and M. Riesz proved that if ∂Ω is a (Jordan) curve with finite
length, then ψ−1 exists a.e. and that (6) becomes

u(X ) = c

ˆ
∂Ω

u(ξ)|(ψ−1)′|(ξ)d`(ξ). (7)

That is, in this case ωX is absolutely continuous with respect to σ,
with density |(ψ−1)′|.
Comment: All the ωX , X ∈ Ω, have the same behavior: compose
with a conformal mapping of D. In general, true by Harnack!



A delicate example : a self-similar Cantor set

Let K ⊂ R2 be a four-corner Cantor set of dimension d ∈ (0, 2).
See next page.

Let σ be the natural probability measure on K .

Set Ω = R2 \ K . Then (Carleson, I think)

for all X ∈ Ω, ωX ⊥ σ. (8)

That is, there is a set E ⊂ K such that σ(E ) = 0 and ωX (E ) = 1.

Subtle proof, but in short Brownian paths like to land on the
corners. And for non self-similar Cantor set, the story can be
different (see later).



The Garnett-Ivanov 1-dimensional Cantor set (d=1)

K =
⋂

k≥0 Kk , suggested by the picture.

Kk is composed of 4k squares of size 4−k .

A natural measure µ on K gives the same mass 4−k to each square
of Kk . And then µ = cH1

|K .

K is totally unrectifiable: µ(E ∩ Γ) = 0 for every curve Γ with
finite length.

This set one-dimensional Ahlfors regular, with a one-sided NTA
complement.

Figure: The set K3 (three generations of the construction of K ).
Then just continue and only keep the dust at the limit.



4. Rapid overview of the situation (more later)

For Ω such that ∂Ω is of dimension n − 1 (for instance, Ahlfors
regular), we know that the absolute continuity of ωX with respect
to σ = Hn−1|∂Ω is a matter of:
• quantitative connectedness of Ω
• Rectifiability.

Results of (among others) Riesz, Lavrentiev, Makarov, Jones,
Wolff (n = 2);
Dahlberg (for Lipschitz domains), and many others (David-Jerison,
Semmes, Hofmann, Martell, ... (n ≥ 3);
And these results are essentially optimal: Azzzam-Hofmann-Lacey-
Martell-Mayboroda-Mourgoglou-Tolsa-Volberg.



Geometric conditions 1: AR or mixed dimension boundaries

For all our results Ω ⊂ Rn will have some minimal regularity.
Either E = ∂Ω is Ahlfors-regular of some dimension d < n, i.e.,
there is a measure σ supported on E such that

C−1rd ≤ σ(B(x , r)) ≤ Crd for x ∈ E and 0 < r < dim(E ). (9)

For instance, Lipschitz graphs, or the Cantor sets above. For
harmonic functions, we will take d > n − 2 because (for instance)
otherwise the brownian paths will not see E .
Or more general, and often convenient, E has mixed dimensions:
there is a doubling measure σ supported on E such that in
addition, with a lower bound d on the moral local dimension:

σ(B(x , tr)) ≤ Ctdσ(B(x , r)) for x ∈ E , 0 < r < dim(E ), and 0 < t < 1.
(10)

[for standard elliptic operators, we ask d > n− 2]. Doubling means

σ(B(x , 2r)) ≤ Cσ(B(x , r)) for x ∈ E and 0 < r < dim(E ) (11)



Geometric conditions 2: One-sided NTA = uniform

Easy to see that for wX to be tame, Ω should have some uniform
connectedness property. Here we will always assume one-sided
NTA (non-tangential access), i.e., Ω is a uniform domain. We say
that Ω is 1-NTA when it has corkscrew balls and Harnack chains:
• There exists C > 1 such that: for x ∈ ∂Ω and 0 < r < diamΩ,
there is Y ∈ Ω such that B(Y ,C−1r) ⊂ Ω ∩ B(x , r);
• For A > 1 there is an integer N = N(A) > 1 such that: if
X ,Y ∈ Ω are such that |X − Y | ≤ Amin(δ(X ), δ(Y )), then there
is a Harnack chain of length N that goes from X to Y .
Here δ(X ) = dist(X , ∂Ω). A harnack chain is a chain of balls Bj ,
0 ≤ j ≤ N, such that Bj+1 ∩ Bj 6= ∅ for 0 ≤ j ≤ N − 1, and
2Bj ⊂ Ω. It connects X to Y when X ∈ B0 and Y ∈ BN .

Comments: Useful, because if u ≥ 0 is harmonic on Ω, then by
Harnack, u(Y ) ≤ C (N(A))u(X ). In particular we have upper and
lower bounds on u on compact sets K ⊂⊂ Ω.
Some times one can do with even less: recent works with just
Corkscrew balls.
We never assume corckscrew balls in Rn \ Ω though.
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Pictures for 1-NTA (here the domain is outside)
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Figure: A corkscew ball (top) and a Harnack chain between two points
(right). The domain is outside.
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Figure: A situation with bad 1-NTA constants



A∞ mutual absolute continuity

If x ∈ ∂Ω, 0 < r < diam(∂Ω), X ∈ Ω \ B(x , 2r), and
E ⊂ ∆ := ∂Ω ∩ B(x , r), we say that ω ∈ A∞(σ) when we always
have that

σ(E ) ≤ δσ(∆) =⇒ ωX (E ) ≤ εωX (∆). (12)

Other equivalent definitions exist, including with other quantifiers.
This implies estimates, like

C−1
(σ(E )

σ(∆)

)α
≤ ωX (E )

ωX (∆)
≤ C

(σ(E )

σ(∆)

)β
. (13)

Thus we require a uniform estimate on the various balls B(x , r)
and X (adapted to the situation).
Here we assume σ doubling, not a priori the ωX . But this follows.
Stronger than just doubling: E could be a complicated set in ∆,
not just a ball. Also implies that σ ∈ A∞(ω) too.



Rapid overview for the Laplacian (again)

Here are some statements:

• Dahlberg 77: If Ω =
{

(x , t) ∈ Rn+1 ; t > A(x)
}

for some
Lipschitz A : Rn → R, then ω ∈ A∞(σ), where σ is the forward
image of dx .
• Many authors: If Ω ⊂ Rn is one-sided NTA and ∂Ω is uniformly
rectifiable of dimension n − 1, then ω ∈ A∞(σ), where σ = Hn−1

|∂Ω .

• And [AzHoLaMaMaMoToVo] there is a converse of the type
1-NTA +A∞ =⇒ UR (even true with less uniform assumptions).

Proofs always connected some way to L2-boundedness of singular
integral operators on ∂Ω. We’ll discuss small parts later.

Comment about α and β, or Lq integrability of dω
dσ (mystery except

for Dahlberg).



What about other operators?

We’ll study solutions of other operators

L = −divA∇ (14)

where A = A(X ) is a n × n matrix-valued function on Ω, with real
valued coefficients (we won’t do complex). And for the moment, A
is bounded elliptic which means that there are constants C , c > 0
such that for every X ∈ Ω,

||A(X )|| ≤ C ; (15)

that is for “bounded” and usually we would use the operator norm
on the set of matrices, which means that

||A(X )|| = sup
{
|〈A(X )ξ, ζ〉| ; ξ ∈ Rn; ||ξ|| ≤ 1 and ζ ∈ Rn; ||ζ|| ≤ 1

}
(16)

and (for elliptic) that for X ∈ Ω and ξ ∈ Rn

〈A(X )ξ, ξ〉 ≥ c ||ξ||2. (17)



Other operators (2)

... But we want A to be measurable, not more regular (than
bounded elliptic). Which means that we’ll need to be careful when
we define solutions of Lu = −divA∇u = 0. And we’ll see that
solutions are no as smooth as harmonic functions!
Here is an interesting example. Suppose u : Ω̃→ R is harmonic,
Φ : Ω→ Ω̃ is a change of variable, and let v = u ◦ Φ. Does v
satisfy an equation? We’ve seen that v is harmonic when Φ is
conformal, but conformal mappings are rare! A computation shows
that Lv = 0, where A is given by

A = A(X ) = det(M)−2MtM , (18)

where M = M(X ) is the matrix of DΦ(X ) and det(M) is its
determinant.
If M is an isometry or a dilation, A = I . And if M has bounded
distortion, i.e. sup||ξ||=1 ||Mξ|| ≤ K inf ||ξ||=1 ||Mξ||, we get that A
is bounded elliptic...



Other operators (3)

... That is, quasiconformal (QC) mappings preserve the class of
bounded elliptic mappings.

This gives a few examples, as for instance the image by Φ−1 of the
smooth ω

Ω̃
on Ω̃ may be more singular because of measure

distortion!
Note: a typical, rather simple QC mapping is the radial dilation
given by Φ(x) = |x |α x

|x | , α > 0, which is more (or less) singular
than the identity at the origin. Certainly QC mappings are wilder
than conformal mappings, and as a consequence v is not as
smooth as u.
Note: lots of interesting elliptic operators do not come from a QC
mapping, so this was only an example. Typical use: description of
a non isotropic or even just variable material (conductivity, etc).
Probably later, the Dahlberg-Kenig-Pipher conditions.

Next (after some analysis/geometry): definition of (weak)
solutions, existence, regularity.



Our main tool Poincaré & traces. 1. The Hilbert space W

Needed for our definition of weak solution and proof of existence,
which will be based on the space

W = W 1,2(Ω) =
{
f ∈ L2

loc(Ω) ; ∇f ∈ L2(Ω)
}
. (19)

Actually, I should write Ẇ because I mean the homogeneous space

(for the moment), with the norm ||f ||W =
( ´

Ω |∇f |
2
)1/2

.
This is only a Hilbert space of functions defined modulo an additive
constant (and we feel better here assuming that Ω is connected).
This won’t cause problems. And ∇f is the distribution derivative
(or gradient, I will not be careful here), which we assume is given
by an L2 function. Thus the coordinate ∂j f = ∂f

∂xj
is such that

ˆ
Ω
f ∂jϕ = −

ˆ
Ω
ϕ∂j f (20)

for every ϕ ∈ C∞c (Ω). We’ll work with this beautiful space for
some time. There may be a weighted variant later.



Poincaré 2: the basic local Poincaré estimate

We’ll need to know that for f ∈W 1,2(Ω) and B = B(X , r) ⊂ Ω, 
B
|f −mB f |2 ≤ Cr2

 
B
|∇f |2. Here mB f =

 
B
f . (21)

There are lots of better variants, for instance we have the same
estimate for

( ffl
B |f −mB f |p)2/p for some p > 2.

Notice that adding a constant to f changes nothing.

Easy proof: first check that test functions are (locally) dense, then
check (21) for test functions f . Write f (x)− f (y), x , y ∈ B, as an
average of

´
Γ∇f on a collection of paths in B from x to y , then

estimate brutally some multiple integral. We’ll see a variant soon.

Typical consequence: for B1,B2 ⊂ Ω,

|mB1f −mB2f | ≤ C (B1,B2) ||f ||W , (22)

where C (B1,B2) can be computed in terms of a Harnack chain
from B1 to B2 (and you could guess its homogeneity).



Traces 1

And now consider ∆ = B(x , r) centered on ∂Ω and pick a ball
D ⊂ Ω ∩ B(x , r), with radius C−1r , a corkscrew ball.
Say f is smooth to simplify. Then 

∆
|f −mD f |2dσ ≤ Cr2rβ

 
CB∩Ω

|∇f (X )|2δ(X )−βdX (23)

provided that d > n − 2− β and σ ∈ AR(d). Even true with
mixed dimension boundary.

The blue part will be useful when we study ∂Ω of higher
co-dimensions.

Proof by 1-NTA (you may construct nontangential access regions
that connect x ∈ ∂Ω to D (and stay in Ω ∩ CB)), Hölder, and for
instance (21) or (22) on strings of balls.

Below is a toy computation in the upper half space; otherwise look
at the mixed Astérisque book.
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Traces 2 (proof of (23) in the upper half space)

Consider H = Rn
+ is the upper half space in Rn, or even the

complement of Rd in Rn, d < n − 1. So ∂H ∈ AR(d).
Take B = B(0, r) and ∆ = B ∩ ∂H.
For x ∈ ∆ and k ≥ 0, call Qk(x) a cube of size rk = 2−k r centered
above x at distance rk . And fk(x) = mQk (x)f .
We want to evaluate ||fk+1 − fk ||22. First

|fk+1(x)− fk(x)|2 ≤ Cr2
k

 
Rk (x)

|∇f |2 ≤ Cr2−n
k

ˆ
Rk (x)

|∇f |2 (24)

for some slightly larger Rk(x) ⊃ Qk(x) ∪ Qk+1(x). Cover ∆ by
essentially disjoint cubes S of size C−1rk (of measure σ(S) ∼ rdk ),
and sum over S . This yieldsˆ

∆
|fk+1(x)−fk(x)|2 ≤ Crdk

∑
S

r2−n
k

ˆ
Rk (S)

|∇f |2 ≤ Crd+2−n
k

ˆ
Ak

|∇f |2

(25)
with Ak =

{
X ∈ B(0,Cr) ; rk+1 ≤ dist(X , ∂H) ≤ 4rk+1

}
.



Traces 3 (end of proof)

Recall (and add the harmless blue)ˆ
∆
|fk+1(x)−fk(x)|2 ≤ Crd+2−n

k

ˆ
Ak

|∇f |2 ≤ Crd+2−n+β
k

ˆ
Ak

|∇f |2δ(X )−β.

If d + 2− n + β > 0 the coefficient tends to 0, we can take the
root and sum, and we get∑
k

||fk+1(x)−fk(x)||L2(∆) ≤ Cr (d+2−n+β)/2||∇f (X )||L2(B(0,Cr),δ−βdX ),

(26)
as needed for (23). In fact, this is enough to define a correct trace
Tr f ∈ L2

loc(σ).

In general, replace direct contact by a short Harnack chain; the
homogeneities stay the same.

We can see that when n − d ≥ 2, we need the weight δ−β because
otherwise

´
|∇f |2 is not enough to control f on ∂H. Even true

when f is harmonic.



Traces and extensions (More about the trace)

In fact when Ω is 1-NTA, ∂Ω ∈ AR(d), and

W =
{
f ;

ˆ
Ω
|∇f |2δ(X )−β < +∞

}
(with d + 2− n+β > 0), we can identify the space of traces
Tr (f ); f ∈W ) as the space H defined by semi-norm

||g ||H =

ˆ
∂Ω

ˆ
∂Ω

|g(x)− g(y)|2

|x − y |2d+2+β−n dσ(x)dσ(y). (27)

This is a Gagliardo semi-norm (logical to use, on a metric space)
See Astérisque for the generalization to mixed dimensions.
The numerology seems strange, but at least when n = d + 1 and
β = 0 (the classic case) we recover d + 1 which corresponds to the
usual H1/2(∂Ω).
We even know H is the right space, because there is a bounded
extension operator Ext : H →W such that Tr ◦ Ext = I .



Definition of weak solutions

Time to say what is a weak solution of Lu = 0 in Ω: it is a
function u ∈W such that

a(u, ϕ) :=

ˆ
Ω
〈A∇u,∇ϕ〉 = 0 (28)

for every ϕ ∈ C∞c (Ω). Well defined because u ∈W and A ∈ L∞.
This is the local condition in Ω. We would get this if everything
was smooth, by an integration by part:

ˆ
Ω

(divA∇u)ϕ = −
ˆ

Ω
〈A∇u,∇ϕ〉+ vanishing boundary terms.

Then we can add conditions at the boundary, like Tr (u) = f at the
boundary (or Rob(u) = 0, see later).
General idea: this is easy to define, then weak solutions exist and
have some regularity (if L is elliptic). And then they are strong
solutions, at least when L = −∆.



Existence by Lax-Milgram

Assume 1-NTA and ∂Ω ∈ AR(d) with d > n − 2, for instance.

Theorem

For g ∈ H, there is a unique weak solution u ∈W of Lu = 0 such
that Tr (u) = g.

Proof: consider the following Lax-Milgram situation.
Set W0 =

{
u ∈W ; Tr (u) = 0

}
. This is a real Hilbert space,

because Tr : W → H is continuous, and there is a single u ∈W
with ||u||W = 0 and Tr (u) = 0.
Set a(u, v) :=

´
Ω〈A∇u,∇v〉. This is a continuous bilinear forem

on W0, and it is even accretive because

a(u, u) =

ˆ
Ω
〈A∇u,∇u〉 ≥ c

ˆ
Ω
|∇u|2

for u ∈W0, by (17). We also need a linear form on W0, so we take
G ∈W such that Tr (G ) = g , and set L(ϕ) = a(G , ϕ) for ϕ ∈W0.



Existence by Lax-Milgram (2) and variational definition

Lax-Milgram says that we can find ω ∈W0 such that

L(ϕ) = a(w , ϕ) for all ϕ ∈W

That is, a(G , ϕ) = a(w , ϕ), for al ϕ, i.e., u = G − w is a weak
solution of Lu = 0, and its trace is g = Tr (G ), as needed.
Comment: So easy! But then we need to deal with weak solutions.
Comment: When A(X ) is a symmetric matrix for a.e. X ∈ Ω, then
u is also the unique minimizer in W of the energy

E (u) = a(u, u) =

ˆ
Ω
〈A∇u,∇u〉 (29)

with the constraint that Tr (u) = g .
Hint: First, we can write u = G + w and then

E (u) = E (G + w) = E (w) + 2
´

Ω〈A∇G ,∇w〉+ C

so we minimize a strictly convex function of v , on a vector space.
Easy to see that E (u)� E (G ) when w has a large norm, so
minimizers u0 exist. And then the Lagrange equation (try u0 + λϕ,
ϕ ∈ C∞c (Ω)) exactly says that Lu0 = 0. Hence u = u0.



Hölder Regularity of weak solutions (1/3)

We did not define ωX
L,Ω yet. There is a long but classical road, and

we’ll skip details. We have all the ingredients (with Poincaré, the
stronger version in Lq, the trace and the extension). Here are key
words:
- Caccioppoli estimates (we’ll see some): local improvement of the
regularity in smaller balls
- Moser estimates, which use the above, and embeddings, to prove
local improvements of Lp bounds, all the way to L∞. So u ∈ L∞loc .
- Similar bounds for balls centered on ∂Ω.
- Oscillation decay: if u is a solution in B = Ω ∩ B(x , r), with
u = 0 on ∂Ω ∩ B(x , r), and setting osc(u,B) = supB u − infB(u),
we get that osc(u,Ω ∩ B(x , r/2) ≤ (1− η)osc(u,B). This leads to
- the comparizon principle (also called Harnack up to the
boundary): if u, v are two positive solutions of Lu = Lv = 0 in
Ω ∩ B(x , r), x ∈ ∂Ω, with u(ξ) = v(ξ) at a corkscrew point for B,

then C−1 ≤ u

v
≤ C on Ω ∩ B(x , r/2).



Caccioppoli (1)

More on the Caccioppoli inequality because it is an important tool.
Suppose u ≥ 0 is a solution in Ω ∩ B(x , (1 + η)r), and u = 0 on
∂Ω ∩ B(x , (1 + η)r). Then

ˆ
Ω∩B(x ,r)

|∇u|2 ≤ Cη−2r−2

ˆ
Ω∩B(x ,(1+η)r)

u2 (30)

Idea of variational proof (in the symmetric case). We try the
competitor v = χu, where χ is a cut-off function that vanishes in
B(x , r). We save

´
Ω∩B(x ,r)〈∇u,∇u〉 ∼

´
Ω∩B(x ,r) |∇u|

2, and we
lose something coming from ∇χ in the annulus.
Well, we can also try u + t(v − u), t small, and still get some
information. And then the information is the same as with the
definition of a weak solution. Hence the proof below:



Caccioppoli (2)

Let u be as in the statement. Set I =
´

Ω χ
2|∇u|2. Notice that

I ≤ C

ˆ
Ω
χ2〈A∇u,∇u〉 (31)

by ellipticity. Test (28) against the function ϕ = uχ2, where now
χ = 1 in B(x , r) and χ = 0 in Rn \ B(x , (1 + η)r).
Thus ∇ϕ = χ2∇u + 2χu∇χ, and (28) becomesˆ

Ω
〈A∇u, χ2∇u〉+ 2

ˆ
Ω
〈A∇u, χu∇χ〉 =

ˆ
Ω
〈A∇u,∇ϕ〉 = 0. (32)

So
I ≤ −2C

ˆ
Ω
〈A∇u, χu∇χ〉 ≤ 2C

ˆ
Ω
|A| |∇u|χu|∇χ|. (33)

By Cauchy-Schwarz and the boundedness of A,

I ≤ C
{ˆ

Ω
χ2|∇u|2

}1/2{ˆ
Ω
u2|∇χ|2

}1/2
≤ CI 1/2

ˆ
B(x ,(1+η)r

u2|∇χ|2

(34)
and (30) follows because |∇χ| ≤ C (ηr)−1.



Harmonic measure is finally defined

At this stage, we have weak solutions, and it is possible to prove
(with the ingredients above) that, say, if Ω is 1-NTA and
∂Ω ∈ AR(d), d > n − 2, the solution of Lu = 0 with Tr (u) = f is
Hölder-continuous on Ω, as soon as f is.

By this (and the maximum principle), Lu = 0 & Tr (u) = f also
has a continuous solution when f is continuous on ∂Ω (recall Ω is
bounded). This goes further than just for f ∈ H.

Then we define ωX = ωX
L,Ω as above: uf (X ) =

ˆ
∂Ω

f (ξ)dωX (ξ).

Here ωX is doubling (ωX (B(x , 2r) ≤ CωX (B(x , r) for all x , r ,X ),
but maybe it is not A∞. For instance, when L = −∆ but ∂Ω is a
regular Cantor set, or Ω = Rn

+ but A is a “bad” elliptic matrix.
Classical counterexamples of Modica-Mortola 80 and
Caffarelli-Fabes-Kenig 81.
So A∞ holds only for special combinations of Ω and L. As in
Dahlberg 77, or Fefferman-Kenig-Pipher 91. The two facts are
related (changes of variable).



Techniques for proving A∞

For Dahlberg 77, If I recall, Maximal functions and integrations by
parts. And the vertical direction is important.
To get to chord-arc surfaces (i.e., ∂Ω ∈ AR(n − 1), 1-NTA, and
corkscrew in the complement), but L = −∆ use either “big pieces
of Lipschitz graphs” and the maximum principle (D-Jerison) or
“Corona decompositions” (Semmes).
For general uniformly rectifiable boundaries (see later) with
∂Ω ∈ AR(n − 1) and 1-NTA, more geometry and corona
decompositions (Hoffman-Martell).
For more general operators, Carleson conditions on the oscillation
of coefficients (DKP), square functions, and more harmonic
analysis. Lipschitz domains (and a bit more) can also be reduced
to the half space by good parameterizations, with Carleson
estimates on their distortion.
Approximation results (Poggi, Cao, Hidalgo-Palencia, Martell, ...):
two operators whose coefficients are close enough (in terms of
Carleson measures) behave the same way on Ω.



Token for more (1/5)

Comment Post-lectures : token means that at some point I
thought I could speak about this if I had too much time. This
rarely happenned.

Concerning rectifiability: Dahlberg’s example is Lipschitz graphs.

Then we finally have the case of 1-NTA domains with uniformly
rectifiable Ahlfors-regular boundaries if co-dimension 1.

Def of UR by “big pieces of bilipschitz images of Rd”.
Example: bilipschitz images of Rn−1 in Rn.
(Unbounded) chord-arc curves in R2.

Big pieces and harmonic (not elliptic for a long time) measure.

The β(x , r) numbers of P. Jones and Carleson measure estimates.

Existence for Dirichlet in Lp spaces. Lipschitz graphs (B2) vs
chord-arc curves (only A∞ by Jerison–Jones-Zinsmeister). Why?



Token for more (2): Carleson measures and
Dahlberg-Kenig-Pipher conditions

Say E = ∂Ω ∈ AR(d). A Carleson measure µ on Ω is ... such that

µ(Ω ∩ B(x , r)) ≤ Crd for x ∈ ∂Ω and 0 < r < diam(∂Ω). (35)

A Carleson measure µ on E × [0, diam(E )) (the set of balls
centered on E ) is defined by

µ(B(x , r)× (0, r)) ≤ Crd for x ∈ ∂Ω and 0 < r < diam(∂Ω).

For our DKP conditions on a matrix A, we compute a distance
γ(x , r) between A and constant matrices in a Whitney box

W (x , r) =
{
X ∈ Ω ∩ B(x , r) ; δ(X ) ≥ C−1r

}
,

and then we require that

µ = γ(x , r)2dσ(x)
dr

r
be a Carleson measure (36)

(comment on the infinite“invariant” measure dσ(x)drr ).



Dahlberg-Kenig-Pipher conditions...

Classical choices of γ:

γs(x , r) = inf
A0(x ,r)

sup
X∈W (x ,r)

|A(X )− A0| (37)

with a supremum taken over constant elliptic matrices
A0 = A0(x , r). Or even the stronger

γvs(x , r) = δ(X ) sup
X∈W (x ,r)

|∇A(X )|. (38)

And I personally like the weak

γvs(x , r) = inf
A0(x ,r)

{ 
W (x ,r)

|A(X )− A0|2
}1/2

(39)

Choice related to dependence on parameters. Controls the same
thing on tents. [DLM] Arch. Rational Mech. Anal.

Good parameterizations of Lipschitz graphs and the DKP condition

CASSC, big pieces of (flat) Lipschitz graphs, and weak DKP
coefficients.



Higher codimensions

Started with S. Mayboroda, mostly for fun.
Can we extend the classical codimension results (∂Ω ∈ AR(n − 1))
to larger co-dimensions (∂Ω ∈ AR(d) with any d < n − 1)?
One way we found: use L = −divA∇, but with
A(X ) = δ(X )−βÃ(X ), with Ã bounded elliptic and
n − d − 2 < β < n − d (central value at n − d − 1, γ = 0 in the
classical case).
The method above, with the weighted Sobolev space
W =

{
f ∈ L1

loc(Ω) ;
´

Ω |∇f |
2δ(X )−β < +∞

}
, gives Hölder

continuous, weak solutions, and doubling elliptic measures ωX
L .

Next [D.-Mayboroda-Feneuil] there is a (class of) smoother
operators, like the Laplacian when n − 2 < d < 1, and for which
ωX
L ∈ A∞ as soon as ∂Ω is uniformly rectifiable.

Other devlopments with Engelstein, Li, ...



Token for more higher co-dimensions

Our class of “degenerate” operators when d < n − 1:
L = −divA∇, where δ(X )n−d−1+τA(X ) is elliptic (any τ ∈ (0, 1)
works).

Our replacement for ∆: Lβ = −divD−(n−d−1)
β ∇, with

D = Dβ(X ) =
{ˆ

∂Ω
|y − X |−(d+β)dσ(y)

}−1/β
, (40)

with any σ ∈ AR(d) on ∂Ω and any β > 0.
Turns out to give A∞ elliptic measure when ∂Ω ∈ UR.

Special (magic) case when d + β = n − 2 (possible when
d < n− 2). We claim that L(Dβ) = 0 (and hence, Dβ turns out to
be the Green function for L on Ω.
Indeed, V = D−β is harmonic on Ω and ∇D = ∇(V−1/β) =
(−1/β)V−1−1/β∇V = −cDβ(1+1/β)∇V = −cDβ+1∇V . So

L(Dβ) = −divD−(n−d−1)
β ∇Dβ = divD0

β∇V = c∆V = 0 because
−(n − d − 1) + β + 1 = −n + d + 2 + β = 0.



The Green function

Take any Ω and L as above. For X ∈ Ω, there is a function
GX = GX

Ω,L, whose main properties are:

• GX is a nonnegative solution of Lu = 0 in Ω \ {X}, with
• Tr (GX ) = 0 on ∂Ω, and
• Some normalization near X (formally, Lu = δX , a Dirac mass).

Traditionally, used to recover solutions of Lu = f by integrating
against f (X )dX . But, thanks to the comparison principle, GX

gives the local boundary behavior of any nonnegative solution with
a vanishing trace!

And we found out (after Azzam) that A∞ is related to the good
approximation of the GX by multiples of the distance to ∂Ω.

Often we like better G∞, some limit of GX when X goes to ∞.

But of course hard to compute, except in some very simple
examples (ball, half space) or when the example is constructed
from GX .



The Green function is our friend (1)

Two or three examples to convince you that we can use the Green
function G .

Usually G is impossible to compute. Except if we decide about G
first and construct everything around!

Baby example: Find x-independent elliptic operators L on
H =

{
(x , t) ; t > 0

}
such that f (t) is the Green function with pole

at ∞. Here f ≥ 0 is given, with f (0) = 0.
Take A = A(t)I , and Lu = 0 means that divA(t)∂fdt en = 0, i.e.,

A′(t)f ′(t) + A(t)f ′′(t) = 0. Easy to check that A(t) = C
f ′(t) works,

with elliptic coefficients as soon as C−1 ≤ f ′(t) ≤ C .
This gives easy examples where G is not so close to affine
functions (when A is not too close to I ).



Green friend (2): Good Green function on the Cantor set

Here K is the Garnett-Ivanov Cantor set of dimension 1 in the
plane, and Ω = R2 \ K .

Theorem (D.-Mayboroda)

There is an elliptic operator L = −div a(X )∇ on Ω such that
ω∞Ω,L = σ. Here σ = cH1

|K is the natural probability measure on K.

A priori surprising because K was known to be bad for harmonic
measure (but for ∆).

So A = aI is isotropic but it cannot be close to I or constant
coefficients in the DKP sense.

I think isotropy is nice; L = −div a(X )∇ should be connected to
the geometry of R2 with the distance

distw (X ,Y ) = inf
Γ from X to Y

ˆ
Γ
w(x)1/2dH1(x).

coming from a weight.



Green friend (3): proof on the GI Cantor set

We construct G by pictures: we draw the level sets of G = G∞

and its conjugate function R (in red).
The red curves are orthogonal to the green ones, and are also the
gradient lines of G .
Finding G and R amount to labeling these curves.

By algebra, we can reconstruct the equation from G and R,
assuming their level sets are orthogonal: we can take

a(X ) =
|∇R(X )|
|∇G (X )|

(41)

So A is elliptic as soon as C−1 ≤ |∇R||∇G | ≤ C , which can also be
seen from the level lines, and here will be ensured by the
self-similarity of the construction.



Green friend (4): proof on the GI Cantor set (2)

Also we’ll make sure that

C−1 dist(X ,K ) ≤ G∞(X ) ≤ C dist(X ,K ) (42)

This is enough to show that ω∞L ∼ σ: Think of the smooth case
where the density of ω is ∂G

∂n . But in fact we get equality as
announced.

In the next slides we show the construction by pictures. We need
to glue the level lines correctly to make sure the level lines are well
distributed and G satisfies the equation. The fractal invariance will
do the rest.



A fundamental domain

We cut R2 \ K into annular regions.
The fundamental region (in grey) is the A0 bounded by the
exterior circle ∂B0 and the four small green circles.
“Enough” to construct G and R in A0, and then, by symmetry, in
the smaller A00 (one eighth of A0).

00

B0

Q1
A

Q1

Q3

Q2

Q
4

B1

Figure: The cubes Qj of generation 1, the balls B0 (large) and B1 (small),
the annulus A0 (in grey) and a fundamental piece A00 (one eighth of A0)



We draw the red and green curves in A0

Figure: The level and gradient lines of G in A0. Mind the symmetry.
Also, it is fair that the green curves surround K (recall that G = 0 on K )
and the red curves go towards K .
Finally the critical point at the center is forced by the geometry, but
there G behaves like Re(z4) which is harmonic.



We prepare for gluing

Figure: We prepare four, 4 times smaller copies of the same picture, to be
put in the main holes



We glue the next generation

Figure: The level and gradient lines of G on a larger region than A0,
completed by self-similarity

... And so on. The fractal construction allows uniform estimate.
An important additional constraint to get uniform bounds on
a(x) = |∇R|/|∇G | is that the end of red curve that starts along
the first large green circle runs along the four smaller green circles
at constant speed.



Some other examples

There is some limited flexibility in the example above (rotations,
different dimensions), but not much.

Figure: The third iteration of a rotating version of the Cantor set

Figure: The third iteration of a variable scale/multiplicity analogue of K



Elliptic measure on snowflakes (1) [P. Perstneva]

This time Ω is one of the components of the complement of a
snowflake Γ in the plane, as below or closer to a line.

Theorem (P. Perstneva)

There is an (isotropic) elliptic operator L = −div a(X )∇ on Ω
such that C−1σ ≤ ω∞Ω,L ≤ Cσ.
Here σ = cHs

|Γ is the natural Hausdorff measure on Γ, snowflake of
dimension s > 1.

Figure: The snowflake Γ can be seen at the center; the rest is the
beginning of a covering of Ω by tiles.



Elliptic measure on snowflakes (2)

As before she constructs a Green function.
To ensure that the level lines of G and R stay at comparable
distances, she also uses selfsimilarity, and the first step is to cover
Ω by similar tiles, of only 2 or 3 types. Here are partial coverings:

Figure: Two local pictures of tilings above, and the last one below, with
colored tiles.



Elliptic measure on snowflakes (3)

And now Green and Red level lines inside the tiles, that will
connect efficiently.

Figure: Level sets in the two types of tiles.

Left-Right symmetry, and constant speed of arrival for the red
curves, are important for global control.
A few different models of snowflakes are possible, but for the
moment, not yet general Reifenberg-flat curves because symmetry
is used.
Higher dimensional Rn would be interesting, but...



More Green: A.C. Harmonic measure on Cantor sets in R2

Finally a counterexample where the harmonic measure (for ∆) on
a Cantor set in the plane is proportional to Hd . Here K is a (non
self-similar) Cantor set in the plane, and Ω = R2 \ K .

Theorem (G. D. - C. Jeznach - A. Julia)

For 0 < d < 0.4, there is an Ahlfors regular d-dimensional Cantor
set K in R2 such that

C−1Hd(E ) ≤ ω∆,Ω(E ) ≤ CHd(E ) for E ⊂ K ,

where ω∆ is harmonic measure on K associated to the Laplacian.

Most people (A. Volberg) expected the opposite.
Impossible for d = 1 (K = ∂Ω should be rectifiable!)
Again made possible thanks to a friendly Green function.



The asymmetric Cantor set of the DJJ Theorem

A picture of the Cantor set in the DJJ Theorem,
with 3 generations, exagerate differences, and d larger than real.

The size of the various squares is adjusted along the proof, so that
G looks like what we want.



Ideas for the proof of DJJ (1)

How to control the Green function G∞ on the complement of our
Cantor set K ⊂ R2 of small dimension (constructed on purpose)?

Usual definition for K : For n ≥ 0, construct Kn, composed of 4n

squares Qj = Qn
j , j ∈ J(n) of size rn, and take the limit.

Here r is small because rd ≤ 1/4.
One way to describe the self-similar set K0 of dimension d is by
nested squares (as above), or by a parameterization
F0 : E = 4N → R2. Choose four points e1, e2, e3, e4 of ∂B(0, 1),
on the diagonal, and for ε = (εk)k∈N, set

F0(ε) =
∑
k

rkeεk .

Now for K we take

F (ε) =
∑
k

rkλk(ε)eεk ,

with λk(ε) ∈ [1, 2] that depends only on ε0, . . . εk−1.



Ideas for the proof (2)

That is, when we construct the 4 children of the square Q of
generation k, we place the next cubes at distance λQr

d from the
center xQ .

F (ε) =
∑
k

rkλk(ε)eεk ,

Easy to check: K = F (4N) is a bi-lipschitz image of K0, and
Ahlfors regular of dimension d .

We have a natural measure µk on Kn, such that µn(Q) = 4−n for
each cube Q of generation n.
And the natural limit µ of the µn on K .
Here is a natural harmonic function g : set, for z ∈ R2 \ K ,

g(z) = µn ∗ ln(| · |)(z) =

ˆ
K

ln(|z − x |)dµ(x).



Ideas for the proof (3)

g(z) = µn ∗ ln(| · |)(z) =

ˆ
K

ln(|z − x |)dµ(x).

The integral converges because µ is Ahlfors regular.
At ∞, g(z) ∼ ln(|z |), which not bad.
It would be great if we had g(z) = 0 on K , but of course this
won’t happen.
It will be equally good if g is a constant c on K , because then
G = g − c is the Green function! so that is what we aim for, if K
is chosen well.

Missing piece, which I won’t do: check that

g(z)− c ' dist(z ,K )d ,

and then conclude using the relation between G (z) at a corkscrew
point and harmonic measure of the corresponding disk.



Ideas for the proof (4): we discretize

Call Qn the set of cubes of generation n, and xQ the center of
Q ∈ Qn. Then set

gn(z) = µn ∗ ln(| · |)(z) = 4−n
∑
Q∈Qn

ln(|z − xQ |). (43)

We want to arrange things so that gn is almost constant on Kn (or
the union of the circles centered on the xQ and radius rn, say).
Something like

sup
Kn

gn(z)− inf
Kn

gn(z) ≤ C4−n (44)

The main question: assuming (44) at generation n, how do we
arrange (44) at generation n + 1.

That is, how do we choose the λQ to make the oscillation of gn+1

smaller?



Ideas for the proof (5)

Take d and r very small. This way, gn is roughly constant near
each cube Q ∈ Qn, and the differences between cubes Q is not
large.
Call Qj the four children of Q.
Then write gn+1(z)− gn(z) for points z near Q.
There are a few terms, that are not small, but are roughly the
same on all the ∂Qj across Q, so we we don’t care, they feed the
constant.
And the main term is something like

δn(z) = 4−n−1
∑
j

[
ln(|z − xQj

|)− ln(|z − xQ |)
]

= 4−n−1
∑
j

ln
( |z − xQj

|
|z − xQ |

.
) (45)



Ideas for the proof (6)

δn(z) = 4−n−1
∑
j

ln
( |z − xQj

|
|z − xQ |

)
For z in a circle of fixed small radius around xQj

, |z − xQj
| is always

the same (across the whole set), while

|z − xQ | ' |xQi
− xQ | = cλQr

n.

That’s it. We are adding essentially equal terms, minus
4−n−1 ln(λQ).
If gn was larger than average near Q, we take λQ small. Otherwise,
we take λQ larger. This allows us to add a varying constant of size
4−n−1 ln(λQ) to gn near Q, which turns out to be enough to
compensate variations of the averages of gn among the Q.



Last comments about the proof

Taking r and d small simplifies the proof: the scales are more and
more independent, and the extra errors are smaller. Then we sort
of optimized.

The effect of increasing the distances |xQj
− xQ | ∼ λQrn is to

increase the chance that a Brownian path that passes nearby will
land on the Qn+1

` . But we are lucky that we din’t need to evaluate
the absorption probabilities and we can sum potentials instead.

Again, once we know that g ≡ c on K , we can estimate the Green
function G∞ = g − c , and then use G to estimate ω.
For instance we can estimate ∇g = µ ∗ 1

z near K .

We could do other shapes (for instance, K ⊂ R), but squares seem
to be nice.



II. The Robin boundary problem – first the strong definition

To simplify (and avoid talking about the conormal derivative), we
take L = −∆. And also Ω bounded, with 1-NTA.
In the smooth case of codimension 1, the Robin problem is −∆u = 0 in Ω

Roba(u) :=
1

a

∂u

∂n
+ Tr (u) = f on ∂Ω.

(46)

Here ∂u
∂n is the outwards normal derivative and a > 0 is a constant.

Tr(u) is the trace on ∂Ω.
Often we work locally with u given on Ω \ B(x , r) and f = 0.

a = 0 corresponds to Neumann boundary conditions ∂u
∂n = 0 ;

a = +∞ corresponds to the Dirichlet boundary conditions above.

Comment: we chose the outwards normal, so that typically u > 0
on ∂Ω and u is larger on Ω than on ∂Ω.

Trivial examples, with f = 0: u(x , t) = t + 1
a on R2

+ ;

u(x) = 1
a − log(|x |) on Ω = B(0, 1) ⊂ R2.

Comment: L = divA∇, A bounded elliptic, is allowed too.



Why Robin?

A natural condition. Introduced by Fourier and studied by Robin.

• Example of the temperature u in a room Ω. It is harmonic inside
(if equilibrium);
- Dirichlet, u = f on ∂Ω corresponds to prescribing the
temperature on the walls.
- Neumann, ∂u

∂n = 0, corresponds to perfect insulation (put a
source for the Green function).
And in real life, there is some transmission, Robin corresponds to a
transmission proportional to the temperature.

• Example of the deep lung, u is the concentration of oxygen:
imagine mostly diffusion (less convection), and a describes the
(small) absorption rate of oxygen along the walls.
Why does a fractal shape for the lungs really helps (a small)?

• Variants with a potential fractal boundary: catalysis, electrodes.



Lungs are fractal

Figure: Pictures of rat lungs by tomography performed at the Grenoble
Syncrotron. Credits: S. Bayat, H. Leclerc, S. Martin, B. Maury, B. Semin.



Robin harmonic measure

Assume for the moment that ∂Ω is sufficiently smooth of
co-dimension 1 so that everything is well defined.
Take a pole X ∈ Ω. Define the Robin harmonic measure ωX

Rob by
ωX
Rob(E ) = uE (X ), where for E ⊂ ∂Ω, uE solves (at least formally) −∆u = 0 in Ω

Roba(u) :=
1

a

∂u

∂n
+ u = 1E on ∂Ω.

(47)

Or ωX
Rob is the probability measure on ∂Ω such that the solution of{

−∆u = 0 in Ω

Roba(u) = f on ∂Ω.
(48)

is given, for f ∈ C (∂Ω), by

u(X ) =

ˆ
ξ∈∂Ω

f (ξ) dωX
Rob(ξ). (49)

[Same as for the Dirichlet harmonic measure ωX
Dir above, where

we would require u = f on ∂Ω. We’ll need to construct all this.]



Brownian interpretation

In the Dirichlet case, we think of ωX
Dir (E ) as the probability that a

Brownian particle starting at X first exits Ω through a point of E .

For ωX
Rob(E ), think of a Brownian particle that starts from X , and

each time it hits ∂Ω, has a certain “probability” (small if a is
small) of being absorbed. And if not we start it again from where
it is, and continue playing until the particle is absorbed.

In fact, easier to define discretely, with random walks; otherwise
one would try to use local time in ∂Ω of Brownian motion in Ω.

Main question for us:
• Define the Robin problem and ωX

Rob(E ) in a general enough
context.
• find out where on ∂Ω is ωX

Rob(E ) supported and how regular it is.
(is it A∞?)

Comment: People like the Robin problem a lot, but apparently not
the Robin harmonic measure, especially for irregular boundaries!



The team

Figure: Stefano Decio Max Engelstein Marcel Filoche

Figure: Svitlana Mayboroda Marco Michetti

And thanks to Anna Rozanova-Pierrat (similar results, discussions)
and Jill Pipher (help).



Comments before we start

Do we expect the regularity ωX to depend on Ω as before? How?

Does the choice of the specific elliptic operator L matter?

Can Robin harmonic measure live on a set of smaller dimension
than ∂Ω?

Do we expect a phase transition when a changes?

As we’ll see, the same basic tools as for Dirichlet are used
(Poincaré, traces, extensions).
Having used boundaries of dimension d 6= n − 1 helped us.
Specific new lemmas will be needed too.

Maybe later: back to the lungs



Definition of a weak solution

In what follows, we take Ω bounded and assume that ∂Ω comes
equipped with a “natural” doubling measure σ.
For instance, ∂Ω ∈ AR(d) and σ = Hd

|∂Ω; in general, we allow
“mixed dimensions” with a doubling measure σ that behaves in a
“more-than (n − 2)-dimensional” way.
A (weak) solution to the Robin problem −∆u = 0 in Ω

1

a

∂u

∂n
+ u = f on ∂Ω.

(50)

is a function u ∈W 1,2(Ω) =
{
u ∈ L2(Ω) ; ∇u ∈ L2(Ω)

}
(we now

use the usual Sobolev space) such that

1

a

ˆ
Ω
∇u · ∇ϕ+

ˆ
∂Ω

Trace(u)ϕdσ =

ˆ
∂Ω

f ϕdσ (51)

for all test functions ϕ ∈ C 1
c (Rn).

[and to get that ∆u = 0 on Ω, we would just consider ϕ ∈ C 1
c (Ω).]



Comments on the definition of weak solution

1

a

ˆ
Ω
∇u · ∇ϕ+

ˆ
∂Ω

Trace(u)ϕdσ =

ˆ
∂Ω

f ϕdσ ∀ϕ ∈ C 1
c (Rn)

First, restricting to ϕ ∈ C 1
c (Rn) gives that u is harmonic in Ω.

Next, if everything is smooth (and σ is the surface measure),
integrating by parts yields

ˆ
Ω
∇u · ∇ϕ = −

ˆ
∂Ω
ϕ
∂u

∂n
dσ (52)

because ∆u = 0. Whence we get
´
∂Ω

[
1
a
∂u
∂n + u

]
ϕdσ =

´
∂Ω f ϕdσ

for all ϕ, which fits with (50).

Notice that ∂u
∂n makes no sense in general, but for u harmonic, the

product ∂u
∂n dσ will make sense (weakly by Partial Integration).

Notice that Tr (u) is defined (and lies in H ⊂ L2(dσ)), see above.



Weak solution exist

And now we follow the same route as for Dirichlet! Take (Ω, σ) as
above, now with Ω bounded.

Theorem

For every f ∈ L2(σ), there is a unique weak solution to (51). In
addition ||u||W ≤ C ||f ||L2(σ).

Ingredients: Poincaré, traces, extensions as above. Also, the fact
that Ω is an extension domain for W 1,2 functions, because it is
uniform [Jones].
Proof by Lax-Milgram. This time we use the accretive form

a(u, v) =

ˆ
Ω
〈A∇u,∇v〉+

ˆ
∂Ω

Tr (u)Tr (v)dσ.

And the bounded linear form v 7→ L(v) =
´
∂Ω Tr (v)fdσ. There is

a unique u ∈W such that a(u, v) = L(v) for all v ∈W .
The theorem follows.



Weak solution are Hölder-continuous
Here again we prove versions of Caccioppoli (almost the same
proof), Moser, oscillation decay (we need to prove it for Neumann
too), comparison principle, and finally we get that...

Theorem

If f ∈ L2(σ) is Hölder continuous, then the weak solution to (51)
is also Hölder continuous on the whole Ω.

Some proofs need to be adapted.
We want our constants not to depend on a.
Have to find proofs that work both for (vanishing) Dirichlet (u = 0
on ∂Ω) and Neumann (∂u∂n = 0 on ∂Ω).
Homogeneity is strange (see later).

Corollary

We can define the Robin harmonic measure ωX
Rob as hinted before.

As before, this and the existence of a Green function follow from
the above. And ωX

Rob turns out to be doubling.



The “density lemma”

Here is an example of a new ingredient called density lemma,
relative to oscillation. Variants (and the name) known before us.

Lemma

Suppose 0 ≤ u ≤ 1 is a solution in B(x , r) ∩ Ω, with Rob(u) = 0
on ∂Ω ∩ B(x , r). Then we have 0 ≤ u ≤ (1− η) on Ω ∩ B(x , r/2)
or η ≤ u ≤ 1 on Ω ∩ B(x , r/2).

Here η > 0 does not depend on a or u (just on the geometric
constants). For Dirichlet, we would have the first option, but for
instance if ∂u

∂n = 0 on ∂Ω, we need to leave the two options.

Rough idea of the proof. An interesting case is when ∂u
∂n = 0 and

u ≤ 1
2 on most of B(′x , r) ∩ Ω, and we prove the second option.

Idea when A = I (otherwise adapt): u minimizes
´

Ω∩B(x ,r) |∇u|
2

given its values on ∂B(x , r). Try to truncate u by above, at
various levels, do the accounting, and choose the best level by
Chebyshev. To be checked (different proof).



Different scale invariance/Neumann condition

An important feature of the problem. Annoying at first but very
useful to know: our problem is not scale invariant.

When u is a solution of Roba(u) = 0 on ∂Ω, i.e., when
1
a
∂u
∂n + u = 0, then the function v given by

v(x) = u(λ−1x) solves Robλ−1a(v) = 0 on ∂(λΩ).

And/or, for physicists, the constant a scales like 1
length .

Our results will have to acknowledge this. Said in other words,

at small scales we expect u to look more like a Neumann solution
(small a), and at large scales like a Dirichlet solution (large a).

And, for symmetric operators at least, ∂u
∂n = 0 just says that u

minimizes the energy
´

Ω〈A∇u,∇u〉. Thus globally u would be
constant (see later).
Locally it still sees the geometry, but not so much. The Brownian
particles bounce all the time, but maybe their presence is not
uniform?



A statement finally (1)

Recall our assumptions:
• Ω is bounded and 1-NTA (corkscrew points and Harnack chains)
• ∂Ω is the support of a doubling measure σ, which is “mixed of
dimension d > n − 2”: there is C ≥ 1 such that (as in (10))

σ(B(x , tr)) ≤ Ctdσ(B(x , r)) for x ∈ E , 0 < r < dim(E ), and 0 < t < 1.
(53)

This allows different behaviors at different scales.
Example: ∂Ω ∈ AR(d) and σ = Hd

|∂Ω.

• L = −divA∇ is elliptic (or stick to L = −∆).

Thus bad, unrectifiable sets, non-integer dimensions, and “bad”
coefficients A are allowed.



A statement finally (2)

Theorem (DDEFMM)

With the assumptions above, ωRob is A∞, with the precise linear
A∞ estimate for small radii: for x ∈ ∂Ω, 0 < r < diam(Ω) such
that

aσ(B(x , r))r2−n ≤ 1 (54)

and X ∈ Ω \ B(x , 2r), then for all E ⊂ ∆ = ∂Ω ∩ B(x , r),

C−1 σ(E )

σ(∆)
≤
ωX
Rob(E )

ωX
Rob(∆)

≤ C
σ(E )

σ(∆)
. (55)

Good for small scales. For large scales, we do not get better than
the estimates for GDir , which in the best cases (UR of codimension
1 and good coefficients A) are

C−1
(σ(E )

σ(∆)

)α
≤
ωX
Rob(E )

ωX
Rob(∆)

≤ C
(σ(E )

σ(∆)

)β
(56)

for some α, β > 0 that usually one does not know precisely.



A statement (3): more comments

• Thus, no phase transition, and optimal bounds at small scales
(the two measures are essentially proportional on small balls).
• Much more than A∞ (but at small scales that depend on a).

• (54) defines the scale r at which we switch from Neumann mode
to Dirichlet mode (given x , r is essentially unique, by (53)).

• So the Brownian motion goes all over the place, essentially
uniformly at small scales. Not true for Dirichlet, and the lung is
probably right to be fractal because a is small.

• In the computations, a and σ go together, only the product aσ
counts. And if we want slightly variable coefficients a, just multiply
σ by a density!
• More general cases under way (where a may be very small in
some places, or with nonlinear Robin conditions ∂u

∂n = F (u)).



Mostly for my fun: a variational definition of ωX
Rob

We do the computation in co-dimension 1, with a smooth
boundary, and L = −∆. Call σ the surface measure.

Let E ⊂ ∂Ω. Minimize (for the given Robin constant 0 < a < +∞)

J(u) =
1

a
E(u) +

ˆ
∂Ω

u2dσ − 2

ˆ
E
udσ, with E(u) =

ˆ
Ω
|∇u|2.

(57)
Not so hard to prove that a unique minimizer uE exists, by
convexity, Poincaré, and the existence of a nice trace.

Next, the minimizer u = uE is harmonic on Ω.

We can integrate by parts to compute that E(u) =

ˆ
∂Ω

u
∂u

∂n
dσ.

By Lagrange (i.e., expand J(u + tv) and differentiate at t = 0),
Rob(u) = 1E on ∂Ω. So

ωX
Rob(E ) = uE (X ). (58)



Variational definition of ωX
Rob (2)

Or (more directly), we can compare the variational and weak
definitions. Since u = uE minimizes

J(u) =
1

a

ˆ
Ω
|∇u|2 +

ˆ
∂Ω

u2dσ − 2

ˆ
E
udσ, (59)

the linear term in t of J(u + tϕ) is null for alll ϕ ∈ C 1
c (Rn), i.e.,

2

a

ˆ
Ω
∇u · ∇ϕ+ 2

ˆ
∂Ω

uϕdσ − 2

ˆ
E
ϕdσ = 0 (60)

which is exactly the definition of “u is a weak solution of ∆u = 0,
with Rob(u) = 1E”.

Even if we did not know about weak solutions, the fact that J is
well defined and has minimizers for rough ∂Ω and σ would be a
hint that some definition of ωX

Rob should exist, at least through
(58).



Mutual absolute continuity by the calculus of variations

Here is a simple argument for the mutual absolute continuity of
ωX and σ (but qualitative only) by the calculus of variation, also
assuming the symmetry of the coefficient matrix A).

Assume A = I for simplicity.
Recall that ωX

Rob(E ) = uE (X ) where u = uE minimizes

J(u) =
1

a

ˆ
Ω
|∇u|2 +

ˆ
∂Ω

u2dσ − 2

ˆ
E
udσ,

We want to show that ωX (E ) = 0 if and only if σ(E ) = 0.

• If σ(E ) = 0, then J ≥ 0, the minimum is for u ≡ 0, and then
ωX
Rob(E ) = u(X ) = 0.

• If ωX
Rob(E ) = 0, then uE = 0 everywhere on Ω by nonnegativity

and Harnack, and so J(u) ≥ 0 for all u. But if σ(E ) > 0, taking
u = c , where c is a very small constant, gives J(u) < 0.
So σ(E ) = 0.

This was easy! We could probably make this quantitative, but
painfully and we prefer the proof, with the Green function (below).



Proof with the Robin Green function (1)

The Robin Green function is a nonnegative function
GX
Rob(Y ) = GRob(X ,Y ), which satisfies Lu = 0 in Ω \ {X} and

Roba(GX
Rob) = 0 on ∂Ω (61)

and has a normalized singularity at X .
Existence and some regularity for GRob is a little bit as usual, once
we know that solutions are Hölder-continuous.

We will use the fact that morally ∂G
∂n = −aG at the boundary while

(traditionally) the density of ωX is ∂G
∂n , here equal to −aG . In fact

we have the nice formula

ωX
Rob(E ) = a

ˆ
E
GRob(X , y)dσ(y) (62)

for E ⊂ ∂Ω, obtained by algebraic manipulations.



Proof with the Robin Green function (2)

Recall that

ωX
Rob(E ) = a

ˆ
E
GRob(X , y)dσ(y)

for E ⊂ ∆ = ∂Ω ∩ B(x , r) if, say, X ∈ ΩB(x , 2r).

We compare GRob(X , y) with GRob(X ,YB), where YB is a
corkscrew point for B(x , r). With (54) and by a variant of the
density lemma,

GRob(X , y) ≥ C−1GRob(X ,YB) for y ∈ ∆.

[To be checked, the proof in the paper is different]
By local Hölder continuity and Harnack, we also get that

GRob(X , y) ≤ CGRob(X ,YB).

Then
ωX
Rob(E ) ∼ aGRob(X ,YB)σ(E ).

This is true also with E = ∆; compare and get
ωX
Rob(E )

ωX
Rob(∆)

∼ σ(E )

σ(∆)
,

as needed.



Comparison between the Green functions (1): the splitting
scale

Claim: the behavior of the Robin Green function GRob near ∂Ω is
not so mysterious: at small (Neumann) scales it is nearly constant;
at large scales (Dirichlet) it is equivalent to GDir .
What are these scales? For x ∈ ∂Ω, consider the quantity

I (x , r) = aσ(B(x , r))r2−n (63)

of (54). Due to the ≥ d-dimensional behavior of σ (d > n − 2),
this quantity is essentially increasing:

I (x , tr) ≤ Ctd+2−nI (x , r) for 0 ≤ t ≤ 1.

Thus for x given, there is a r(x) such that I (x , r) ≤ C for r ≤ r(x)
and I (x , r) ≥ C−1 for r > r0 (minor modifications when
aσ(∂Ω) < diam(Ω)2−n).

We expect Neumann behavior at scales smaller than the splitting
scale r(x), and Dirichlet behavior above.

When σ ∈ AR(d), this yields r(x)d+2−n ∼ a−1.
When in addition d = n − 1, this yields ar(x) ∼ 1.



Comparison between Green (3): token for two lemmas

The Balance lemma for (nearly) Neumann functions

Approximation by Dirichlet when a is large.



PART III: Minimal sets of dimension 2 in R2

A few questions and pictures concerning the sliding Plateau
problem in R3: finding sets E bounded by a (smooth) curve
Γ ⊂ R2 and that minimize (or almost minimize) H2(E ).

Because of potential new progress by Camillo De Lellis and
Federico Glaudo, I will insist on a “preliminary” question: what is
the list of minimal cones of dimension 2 bounded by a line?

No final result yet, but I will show pictures



Very rapid introduction to the Plateau problem

There are many Plateau problems (“minimize area” given
“topological constraints”):

- With parameterizations (Radó, Douglas)
- With sets: Reifenberg (homology), sliding (deformations),
Harrison-Pugh (linking)
- With currents, chains, varifolds : Federer, Fleming, De Giorgi,
Almgren, Allard, ....
I will only mention very briefly as comparisons and insist on the
one I prefer: “sliding minimizers”.

Many have existence results, but some are still resisting:
size-minimizing currents, sliding minimizers.
Regularity results, especially near the boundary, are often very
incomplete.



Plateau with sets (1)

General notation: we work in Rn, with a given boundary set Γ.

We look for a closed set E ⊂ Rn, which minimizes the Hausdorff
measure Hd(E ) under some topological constraints. We often say
“bounded by Γ” but many meanings are possible.

Very soon today, d = 2 and Γ is composed of smooth curves.

First an ancestor (Radó-Douglas): Γ is a loop, and we look for
E = f (D) for f such that f (∂D) parameterizes the loop.
Surface is computed through

´
D Jac(f )(x)dx .

Looks hard because parameterizations for a minimizing sequence
could go crazy.
But beautiful results (d = 2) using conformal parameterizations to
gain compactness.
Even so, difficulties with different shapes (why parameterize by
D?) and importantly injectivity (should we count multiplicity?).



Things happen when soap films cross

[Thanks to John Sullivan]
[Same problem with mass-minimizing currents]



Two words about Reifenberg (because I like it!)

Here we minimize Hd(E ) under a homology constraint.
For instance pick a group G , some elements of the homology of
dimension d − 1 in Γ (with coefficients in G ), and minimize Hd(E )
under the constraint that these elements become 0 when we
embed Γ in E .

Quite general existence results (with Cech homology):
E. Reifenberg, F. Almgren, Y. Fang,
Simpler proofs by C. De Lellis - F. Ghiraldin - F. Maggi ;
G. De Phllipis - A. De Rosa- F. Ghiraldin ;
Y. Fang - S. Kolasiński ; C. Labourie.

Looks like size minimizing currents.

Amusing that the results change with G , orientability is sometimes
an issue, but beautiful and solutions that look like soap.



Sliding Plateau problem

Finally here is my preferred notion.
Definitions in general, then we take d = 2.
We are given Γ ⊂ Rn and E0 ⊂ Rn compact (say).
The competitors (the class E(E0)) are the closed sets E ⊂ Rn that
are deformations of E0 through mappings that preserve Γ.
That is, E ∈ E(E0) when E = ϕ1(E0) where {ϕt}, 0 ≤ t ≤ 1 is s.t.:
- (x , t)→ ϕt(x) : E0 × [0, 1]→ Rn is continuous
- ϕ0(x) = x for all x
- ϕ1 is Lipschitz [not necessarily needed]
- ϕt(x) ∈ Γ when x ∈ E0 ∩ Γ. [the sliding condition]

Think that d = 2, Γ is a finite collection of closed curves, and E0 is
a rubber sheet attached to Γ like a shower curtain.

Of course minimizers for Hd in E(E0) depend on E0, and stupid
choices of E0 yield trivial Plateau problems.

Definition: a sliding minimal set is a closed set E that minimizes
Hd in the class E(E ) defined by E itself.



Status of the Sliding Plateau Problem (SPP)

The SPP is tempting: Flexible problem; minimizers really look like
real soap films, Reifenberg minimizers or Size minimizing currents
give sliding minimizers.

But in general: no existence result for the SPP, and only vague
regularity results.

A little more for d = 2 and Γ is a finite union of smooth loops, but
no general existence result; some interior regularity (Jean Taylor,
etc.), and an incomplete description at the boundary.

But (Fang and Kolasiński), existence and regularity for tubular
boundaries Γ ⊂ R3! For this result, regularity first (as in the next
picture) and existence follows (by the argument below).



The worst singularity (for tubes)

The smoothness of E (bounded by a tube or surface) is as
suggested here, due to a small number of possible blow-up limits
on Γ.

[Picture by
John Sullivan]

Question: what happens to E when the diameter of the tube tends
to 0?



A typical example where E departs from a (thick) wire

Here there is no soap near the bottom part. What happens for
very thin tubes? [Again picture by John Sullivan]



A plan for proving existence, SPP

Alas, not a conclusive plan yet. But it is tempting to try this.

Let E0 and Γ be given.

Use a minimizing sequence {Ek}, Ek = ϕk,1(E0).

Take a subsequence where {Ek} converges (Hausdorff) to E∞.

Then (done), E∞ is a Sliding minimal set.

But is it a sliding deformation of E0?

So prove a regularity result for E∞, which says we can
slidong-deform a neighborhood of E∞ onto E∞. To be done!

Then we could conclude.



A plan for proving existence, SPP

Alas, not a conclusive plan yet. But it is tempting to try this.

Let E0 and Γ be given.

Use a minimizing sequence {Ek}, Ek = ϕk,1(E0).

Take a subsequence where {Ek} converges (Hausdorff) to E∞.

Then (done), E∞ is a Sliding minimal set.

But is it a sliding deformation of E0?

So prove a regularity result for E∞, which says we can
slidong-deform a neighborhood of E∞ onto E∞. To be done!

Then we could conclude.



Sliding minimal cones

For our program, a first step is a description of the sliding minimal
cones (centered on Γ), when Γ is a line.
This is because there the density

θ(x , r) = lim
r→+∞

r−2H2(E ∩ B(x , r))

is monotone nondecreasing, for x ∈ E ∩ Γ.

And blow-up limits at x ∈ E ∩ Γ are sliding minimal (with a line).
And they are even cones, because sliding minimal sets with
constant density at x are cones centered at x .

Thus it is enough to enumerate the minimal cones (sliding, for
instance) and then prove a regularity result near each type of cone.



Partial list of minimal cones centered at 0

With a sliding boundary L, a line through 0.
• All the J. Taylor cones, which are already minimal without L: sets
P (planes) , Y (three half planes making 2π/3 angles along a line
L′, T (cone over the edges of a regular tetraedron centered at 0.
• The sets H: a half plane bounded by L.
• The sets V: two half planes bounded by L, with angle
θ ∈ [2π/3, π].

All known to be minimal (I think)
• ...And some “new ones”



Partial list of minimal cones (2)

With a sliding boundary L, a line through 0. Here are two ones,
believed to be minimal:
• The (cone over the edges of a) cube, with the long diagonal L
(X. Liang). Believed to be minimal, tested against soap and I think
Surface evolver.
• Probably neighbors of this one, with L passing through an edge
near opposite vertices.
• The Thin Fish (Camillo De Lellis and Federico Glaudo). Believed
to be minimal, tested against soap and maybe Surface evolver.
• A long list of candidates (that verify the required angle
conditions) obtained by C. De Lellis and F. Glaudo. Maybe the list
is complete by now, but still to be checked. Some tested against
Surface Evolver/soap. All believed not to be minimal (except the
above).



Token for a slide show

OpenScad pictures and 3D prints done at Institut Charpak (Orsay);

Nice cones printed by Michael Niedermeyer et Doerte Rueweler
from Passau University, pictures by Camillo De Lellis and Federico
Glaudo.



What are we missing for the SPP?

For getting existence and some regularity for the SPP, not much
more would be needed:

“Merely” prove a local description of E when it is close enough to
a Y, with L′ = L.
For instance, a metric condition on some unions of 8 geodesics on
the sphere would suffice (too hard for me so far).

Then even near exotic cones (like the T or the Thin Fish) we
would still get something, because exotic points are isolated.

A small consolation result with C. Labourie, where we make sure
to exclude these Y-sets from the limits: existence when the set Γ
of curves is traced on the boundary of a convex set C ⊂ R3.
In fact a bit more general, but not much. And compare with an old
result of F. Morgan for size minimizers.


