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Introduction to Plateau

There are many Plateau problems (“minimize area” given
“topological constraints”):

- With parameterizations (Radó, Douglas)
- With sets: Reifenberg (homology), sliding (deformations),
Harrison-Pugh (linking)
- With currents, chains, varifolds : Federer, Fleming, De Giorgi,
Almgren, Allard, ....
I will only mention very briefly as comparisons and insist on
“sliding”.

Many have existence results, but some are still resisting:
size-minimizing currents, sliding minimizers.
Regularity results, especially near the boundary, are often very
incomplete.



Plateau with sets (1)

General notation: we work in Rn, with a given boundary set Γ.

We look for a closed set E ⊂ Rn, which minimizes the Hausdorff
measure Hd(E ) under some topological constraints. We often say
“bounded by Γ” but many meanings are possible.

Very soon, here, d = 2 and Γ is composed of smooth curves.

First an ancestor (Radó-Douglas): Γ is a loop, and we look for
E = f (D) for f such that f (∂D) parameterizes the loop.
Surface is computed through

∫
D Jac(f )(x)dx .

Looks very bad because parameterizations for a minimizing
sequence could go crazy.
But beautiful results (d = 2) using conformal parameterizations to
gain compactness.
Yet difficulties with different shapes (why D?) and importantly
injectivity (should we count multiplicity?).



Things happen when soap films cross

[Thanks to John Sullivan]
[Same problem with mass-minimizing currents]



Two words about Reifenberg

Here we minimize Hd(E ) under a homology constraint.
For instance pick a group G , some elements of the homology of
dimension d − 1 in Γ (with coefficients in G ), and minimize Hd(E )
under the constraint that these elements become 0 when we
embed Γ in E .

Quite general existence results (with Cech homology):
E. Reifenberg, F. Almgren, Y. Fang,
Simpler proofs by C. De Lellis - F. Ghiraldin - F. Maggi ;
G. De Phllipis - A. De Rosa- F. Ghiraldin ;
Y. Fang - S. Kolasiński ; C. Labourie.

Looks like size minimizing currents.

Amusing that the results change with G , orientability is sometimes
an issue, but beautiful and solutions that look like soap.



Sliding Plateau problem

Finally my preferred.
Definitions in general, existence theorems only for d = 2.
We are given Γ ⊂ Rn and E0 ⊂ Rn compact (say).
The competitors (the class E(E0)) are the closed sets E ⊂ Rn that
are deformations of E0 through mappings that preserve Γ.
That is, E ∈ E(E0) when E = ϕ1(E0) where {ϕt}, 0 ≤ t ≤ 1 is s.t.:
- (x , t)→ ϕt(x) : E0 × [0, 1]→ Rn is continuous
- ϕ0(x) = x for all x
- ϕ1 is Lipschitz [not necessarily needed]
- ϕt(x) ∈ Γ when x ∈ E0 ∩ Γ. [the sliding condition]

Think that d = 2, Γ is a finite collection of closed curves, and E0 is
a rubber sheet attached to Γ like a shower curtain.

Of course minimizers for Hd in E(E0) depend on E0, and stupid
choices of E0 yield trivial Plateau problems.

Definition: a sliding minimal set is a closed set E that minimizes
Hd in the class E(E ).



Status of the Sliding Plateau Problem (SSP)

The SPP is tempting: Flexible problem; minimizers really look like
real soap films, Reifenberg minimizers or Size minimizing currents
give sliding minimizers.

But in general: no existence result for the SPP, and only vague
regularity results.
Even for d = 2 and Γ is a finite union of smooth loops: no general
existence result; some interior regularity (Jean Taylor, etc.);
incomplete description at the boundary.
But (Fang and Kolasiński), existence and regularity for tubular
boundaries Γ ⊂ R3! As for this result, regularity first (as in the
next picture) and existence follows (by the argument below).



The worst singularity (for tubes)

The smoothness of E is as suggested here, due to a small number
of possible blow-up limits on Γ.

[Picture by
John Sullivan]



Another case when E leaves the tube Γ

[Picture by
Ken Brakke]



Yet another example



What happens when the thickness tends to 0?

- What are the singularities of the sliding minimal set at the
boundary (even in d = 2, n = 3)?
- How does E leave Γ (we know for tubes, but does this help?)

One example (X. Liang) of probable sliding minimal cone in R3:



A (not so bright) existence result for the SPP

THEOREM (with Camille Labourie)

Take for Γ a finite union of disjoint smooth loops in Rn. Suppose Γ
has a good access to the complement of the convex hull of Γ. Let
E0 ⊂ Rn compact. Then there is a set E(E0) such that H2(E ) is
minimal.

Simple example of good access: n = 3 and Γ is contained in the
boundary of K .
There is an old theorem of Morgan with these last conditions, for
size minimizing currents. Quite different proof (I think), but the
starting point is to control a set that contains minimal sets.
Some flexibility in the access condition. Also Hd can be replaced
by slightly different functionals [advertisement for almost minimal
sets].



Good Access

The point of K is that we need find a minimizing sequence {Ek}
such that Ek ⊂ K . Convex hull works for H2. There is some
flexibility but possibly hard to organize.

Good access means: for every blow-up limit L0 of Γ at a point
x0 ∈ Γ, and every blow-up blow-up limit K0 of K at x0, if e1, e2, e3
are three unit vectors that are orthogonal to L0 such that
e1 + e2 + e3 = 0 and e0 is a unit vector in L0, for each t > 0 at
least one of the e0 + tei lies outside of K0.

Main point of the condition: no blow-up limit of a limit of the Ek

has a Y-singularity with a spine contained in L0.



Idea of proof (1): find a minimizing sequence

Let Γ and E0 be given. We start with a sequence {Ek} so that
H2(Ek) tends to infE∈E(E0)Hd(E ). [d = 2 is only needed later]

Usual attempt: take a subsequence that converges.

But the only topology on sets where this automatically happens
with any {Ek} is “Hausdorff limits”. And then the limit E∞ could
be anything.

Reifenberg (and later Feuvrier, Fang, and others): modify Ek so
that the limit E∞ has a chance of being a minimizer.

Two main difficulties: prove that Hd(E∞) ≤ lim infk→+∞Hd(Ek),
and prove that E∞ ∈ E(E0).



Idea of proof (2): weak limits of measures.

In the Reifenberg tradition: we modify the Ek so that they have an
extra property, like quasiminimality, so that

Hd(E∞) ≤ lim infk→+∞Hd(Ek).

Idea of De Lellis - Ghiraldin - Maggi, then also used by
G. De Phllipis - De Rosa - Ghiraldin: consider µk = 1Ek

Hd
|Ek

, and
take a weak limit µ∞ of the µk . Then use µk to find a minimizer.

What works well: use the minimizing properties of {Ek} to prove
lower semicontinuity for the µk , and eventually that µ∞ = Hd

|E∞
for some sliding minimal set E∞.

Variant by C. Labourie: use less precise assumptions and a limiting
theorem for almost minimal sets, to get a similar result with almost
minimal limits. Morte flexible and uses less strong theorems about
minimal sets.

But does E∞ ∈ E(E0)? [No in general!]



Wires and topology (1)

What happens if E0 is the thin catenoid on the right?

The soap film will become the union E∞ of two disks, plus, for the
Sliding Condition, a wire that connects them.
Without the wire, E∞ /∈ E(E0). So for the SPP, we need to add
something to E∞.
Incidentally, the SPP no longer describes soap films so well in this
example!



Wires and topology (2)

For the method of Reifenberg, . . . , Fang, they manage to keep
track of the wires in the haircutting construction.

For the Harrison-Pugh linking problem (with limits of the µk), I
think one proves that the linking condition is not affected by losing
the wires in the limit.

For (with limits of the µk), Labourie shows that this does not
affect the Reifenberg conditions either.

Here with the SPP, we need to keep the wires, because we want a
parameterization of our competitor by E0.

Looks again like the Radó-Douglas problem: each Ek has a
parameterization by E0, and we want to parameterize the limit.
Here we’ll use the fact that (under strong assumptions) E∞ is nice.



Existence (3)

This is where we use a description of E∞, coming from the fact
that it is Sliding minimal (or almost minimal!).

Alas, this is only available so far
- when d = 2 and away from the boundaries (J. Taylor + GD, and
then existence result of V. Feuvrier),
- when d = 2, n = 3, for tubular (or smooth oriented 2d-)
boundaries Γ (Fang, Fang-Kolasiński),
- when d = 2 and with our accessibility condition on K and Γ
(D., D.-Labourie).

That is, we use the accessibility condition to prove that E∞ has no
blow-up with a piece of type Y with a spine in the tangent direction
of Γ; then we have a correct local description of E∞ near Γ.

We use this description of E∞ near Γ to construct a contraction

π : E
(ε)
∞ → E∞ (defined in an ε-neihborhood of E∞).



Existence (4)

We extend π to a mapping π : Rn → Rn.

By construction, π is the endpoint of an acceptable deformation
(as in the defnition of E(E0)).

So Ê∞ = π(Ek) ∈ E(E0). Is this the minimizer we wanted?

At least π(E
(ε)
∞ ) ⊂ E∞, so H2(π(E

(ε)
∞ )) ≤ H2(E∞)...

But maybe Hd(π(Ek \ E
(ε)
∞ )) is large and compensates?

Yes but Hd(Ek \ E
(ε)
∞ ) tends to 0 (by definition of µ∞).

So we first do a Federer-Fleming projection in the complement of

E
(ε/2)
∞ , that kills Hd(Ek \ E

(ε)
∞ ). And then Hd(π(Ek \ E

(ε)
∞ )) = 0.

We don’t care if the projection increases the mass of Ek in E
(ε)
∞ ,

because this part gets mapped to a subset of E∞.



Pictures of Sliding minimal sets near Γ



Other pictures


