Double multiplicative Poisson vertex algebras (Algèbres vertex de Poisson multiplicatives doubles)

Maxime Fairon

School of Mathematics and Statistics, University of Glasgow

Department of Mathematical Sciences, Loughborough University

Motivation (1)

Example

Volterra lattice eq. on
$$V = \mathbb{k}[u_n \mid n \in \mathbb{Z}]$$
: $(char(\mathbb{k}) = 0)$

$$\frac{du_n}{dt} = u_n u_{n+1} - u_{n-1} u_n \,, \quad n \in \mathbb{Z}$$

Underlying structure :

- eq. commutes with automorphism $S: u_n \mapsto u_{n+1}$
- Poisson bracket $\{u_m,u_n\}=(\delta_{m,n+1}-\delta_{m,n-1})u_mu_n$ compatible with S

Intuitively:

– Hamiltonian " $h = \sum_{m \in \mathbb{Z}} u_m = (\sum_{m \in \mathbb{Z}} S^m) u_0$ " (!!!)

Motivation (2) – local lattice PA

Fix V a commutative algebra with Poisson bracket

(\hookrightarrow bilinear skewsymmetric map $\{-,-\}: V \times V \to V + \mathsf{Leibniz}$ rules + Jacobi identity)

Definition

 $(V,\{-,-\})$ is a lattice Poisson algebra if it admits an automorphism S of infinite order compatible with $\{-,-\}$, that is $\{S(a),S(b)\}=S(\{a,b\})$.

Furthermore, it is local if, given $a,b\in V$, we have $\{S^n(a),b\}=0$ for all but finitely many $n\in\mathbb{Z}$.

 \leadsto can define the Laurent polynomial $\{a_{\lambda}b\}:=\sum_{n\in\mathbb{Z}}\{S^n(a),b\}\lambda^n$. recover $\{a,b\}:=\mathrm{mRes}_{\lambda}\{a_{\lambda}b\}$ by picking order λ^0

Motivation (3) – equivalence

Fix V a commutative algebra with infinite order $S \in \operatorname{Aut}(V)$

Theorem ([De Sole-Kac-Valeri-Wakimoto,'19])

There is a 1-1 correspondence between the following structures on V :

- local lattice Poisson algebra (with $\{-,-\}$);
- multiplicative Poisson vertex algebra (with $\{-\lambda -\}$);

which is given by

$$\{-,-\} \longrightarrow \{a_{\lambda}b\} := \sum_{n \in \mathbb{Z}} \{S^n(a), b\} \lambda^n$$

$$\{a,b\} := \mathsf{mRes}_{\lambda} \{a_{\lambda}b\} \longleftarrow \{-_{\lambda}-\}$$

The second type of structure is obtained by translating properties : compatibility with $S \leftrightarrow$ sesquilinearity Leibniz rules \leftrightarrow left/right Leibniz rules skewsymmetry \leftrightarrow "skewsymmetry" Jacobi identity \leftrightarrow "Jacobi identity"

Evample (Valtorra lattice

Example (Volterra lattice)

 $\{u_m,u_n\}=(\delta_{m,n+1}-\delta_{m,n-1})u_mu_n \text{ is equivalent to}$ $\{u_\lambda u\}=u\,\lambda S(u)-u\,\lambda^{-1}S^{-1}(u) \text{ for } u:=u_0$

Motivation (4) - MPVA

Fix V a commutative algebra with infinite order $S \in \operatorname{Aut}(V)$

Definition ([De Sole-Kac-Valeri-Wakimoto,'19,'20])

A multiplicative λ -bracket on V is a linear map

$$\{-\lambda-\}:V\otimes V o V[\lambda^{\pm 1}],\quad a\otimes b\mapsto \{a_\lambda b\}\,,$$
 such that $\{a_\lambda b\}=\lambda^{-1}\{a_\lambda b\}=\lambda^{-1}\{a$

$$\{S(a)_{\lambda}b\} = \lambda^{-1}\{a_{\lambda}b\}, \quad \{a_{\lambda}S(b)\} = \lambda S(\{a_{\lambda}b\}),$$
 (sesquilinearity)
$$\{a_{\lambda}bc\} = \{a_{\lambda}b\}c + b\{a_{\lambda}c\},$$
 (left Leibniz rule)

$$\{ab_{\lambda}c\} = \{a_{\lambda x}c\} \Big(\Big|_{x=S}b\Big) + \Big(\Big|_{x=S}a\Big) \{b_{\lambda x}c\} \,. \tag{right Leibniz rule}$$

V is a multiplicative Poisson vertex algebra if moreover

$$\{a_{\lambda}b\} = -\big|_{x=S} \{b_{\lambda^{-1}x^{-1}}a\} \,, \qquad \qquad \text{(skewsymmetry)}$$

$$\{a_{\lambda}\{b_{\nu}c\}\} - \{b_{\nu}\{a_{\lambda}c\}\} - \{\{a_{\lambda}b\}_{\lambda\nu}c\} = 0 \,. \qquad \qquad \text{(Jacobi identity)}$$

Motivation (5) – $D\Delta E$

Fix V a multiplicative Poisson vertex algebra (for S, $\{-_{\lambda}-\}$) Let $\overline{V}:=V/(S-1)V$, with elements denoted $\int f$ ("local functionals")

Proposition ([De Sole-Kac-Valeri-Wakimoto,'19,'20])

We have that \overline{V} is a Lie algebra for $\{\int f, \int g\} := \int \{f_{\lambda}g\}\big|_{\lambda=1}$

Furthermore, \overline{V} acts by derivations on V through $\{\int f,g\} := \{f_{\lambda}g\}\big|_{\lambda=1}$ and such derivations commute with S.

Example (Volterra lattice)

Recall $\{u_{\lambda}u\} = u \, \lambda S(u) - u \, \lambda^{-1}S^{-1}(u)$ for $u := u_0$ on $V = \mathbb{k}[u_n \mid n \in \mathbb{Z}]$

Then $\int u$ is such that

$$\frac{du_n}{dt} := \{ \int u, u_n \} = \left((\lambda S)^n \{ u_\lambda u \} \right) \Big|_{\lambda = 1} = u_n u_{n+1} - u_n u_{n-1}$$

(so $\int\! u$ allows to make sense of " $h=\sum_m S^m(u)$ ")

Plan for the talk

- Definition and properties of DMPVA
- 2 Application to integrable systems
- Non-local and rational cases

Double Poisson brackets (1)

 ${\mathcal V}$ denotes an associative unital algebra over ${\Bbbk}$

For
$$d \in \mathcal{V}^{\otimes 2}$$
, set $d = d' \otimes d'' (= \sum_k d'_k \otimes d''_k)$, and $d^{\sigma} = d'' \otimes d' \qquad (\otimes = \otimes_{\Bbbk})$ Multiplication on $\mathcal{V}^{\otimes 2} : (a \otimes b)(c \otimes d) = ac \otimes bd$.

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on $\mathcal V$ is a \Bbbk -linear map $\{\!\{-,-\}\!\}:\mathcal V^{\otimes 2}\to\mathcal V^{\otimes 2}$ with

$$\{a,b\} = -\{b,a\}^{\sigma}$$

("cyclic" skewsymmetry)

(left Leibniz rule)

(right Leibniz rule)

Double Poisson brackets (1)

 ${\mathcal V}$ denotes an associative unital algebra over ${\Bbbk}$

For
$$d \in \mathcal{V}^{\otimes 2}$$
, set $d = d' \otimes d'' (= \sum_k d'_k \otimes d''_k)$, and $d^{\sigma} = d'' \otimes d' \qquad (\otimes = \otimes_{\mathbb{k}})$ Multiplication on $\mathcal{V}^{\otimes 2} : (a \otimes b)(c \otimes d) = ac \otimes bd$.

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on $\mathcal V$ is a \Bbbk -linear map $\{\!\{-,-\}\!\}:\mathcal V^{\otimes 2}\to\mathcal V^{\otimes 2}$ with

(left Leibniz rule)

(right Leibniz rule)

To shorten notations, use the $\mathcal V$ -bimodule structures on $\mathcal V^{\otimes 2}$

$$a(d' \otimes d'')b := ad' \otimes d''b$$
, $a * (d' \otimes d'') * b := d'b \otimes ad''$

$$\Rightarrow \{\!\!\{a,bc\}\!\!\} = b\,\{\!\!\{a,c\}\!\!\} + \{\!\!\{a,b\}\!\!\}\,c\,, \qquad \{\!\!\{ac,b\}\!\!\} = a*\{\!\!\{c,b\}\!\!\} + \{\!\!\{a,b\}\!\!\} * c\,$$

Double Poisson brackets (2)

Let $\mathcal V$ be equipped with a double bracket $\{\!\{-,-\}\!\}$

Definition ([Van den Bergh,'08], [De Sole-Kac-Valeri,'15])

$$(\mathcal{V}, \{\!\!\{-,-\}\!\!\})$$
 is a double Poisson algebra if $\forall a,b,c \in \mathcal{V}$

$$\begin{split} \text{for } \{\!\!\{ a,b'\otimes b'' \}\!\!\}_L = \{\!\!\{ a,b' \}\!\!\} \otimes b'', \; \{\!\!\{ a,b'\otimes b'' \}\!\!\}_R = b'\otimes \{\!\!\{ a,b'' \}\!\!\}, \\ \{\!\!\{ a'\otimes a'',b \}\!\!\}_L = \{\!\!\{ a',b \}\!\!\} \otimes_1 a'' := \{\!\!\{ a',b \}\!\!\}' \otimes a'' \otimes \{\!\!\{ a',b \}\!\!\}''. \end{split}$$

Double Poisson brackets (2)

Let $\mathcal V$ be equipped with a double bracket $\{\!\{-,-\}\!\}$

Definition ([Van den Bergh,'08], [De Sole-Kac-Valeri,'15])

$$(\mathcal{V}, \{\!\!\{-,-\}\!\!\})$$
 is a double Poisson algebra if $\forall a,b,c\in\mathcal{V}$

$$\begin{split} \text{for } & \{\!\!\{ a,b'\otimes b'' \}\!\!\}_L = \{\!\!\{ a,b' \}\!\!\} \otimes b'', \, \{\!\!\{ a,b'\otimes b'' \}\!\!\}_R = b'\otimes \{\!\!\{ a,b'' \}\!\!\}, \\ & \{\!\!\{ a'\otimes a'',b \}\!\!\}_L = \{\!\!\{ a',b \}\!\!\} \otimes_1 a'' := \{\!\!\{ a',b \}\!\!\}' \otimes a''\otimes \{\!\!\{ a',b \}\!\!\}''. \end{split}$$

On rep. space :
$$a \in \mathcal{V} \leadsto \text{``matrix entry''} \ a_{ij} \in \mathcal{V}_N := \mathbb{C}[\operatorname{Rep}(\mathcal{V},N)]$$

Theorem ([Van den Bergh,'08])

If $(\mathcal{V}, \{\!\{-,-\}\!\})$ is a double Poisson algebra, then \mathcal{V}_N has a unique Poisson bracket $\{-,-\}$ satisfying

$${a_{ij},b_{kl}} = {\{a,b\}}'_{kj} {\{a,b\}}''_{il}.$$

(squared) NC Volterra lattice

Example

$$\mathcal{V} = \Bbbk \langle u_n \mid n \in \mathbb{Z} \rangle \text{ has double Poisson bracket}$$

$$\{\!\!\{ u_m, u_n \}\!\!\} = (\delta_{m,n+1} - \delta_{m,n-1}) u_n u_m \otimes u_m u_n$$

Thm.
$$\Rightarrow \mathcal{V}_N = \mathbb{k}[u_{n,ij} \mid n \in \mathbb{Z}, 1 \leq i, j \leq N]$$
, $N \geq 1$, has a Poisson bracket
$$\{u_{m,ij}, u_{n,kl}\} = (\delta_{m,n+1} - \delta_{m,n-1})(u_n u_m)_{kj} \ (u_m u_n)_{il}$$

For
$$N=1$$
, $V=\Bbbk[\hat{u}_n:=u_{n,11}\mid n\in\mathbb{Z}]\simeq\mathcal{V}_1$ has Poisson bracket $\{\hat{u}_m,\hat{u}_n\}=(\delta_{m,n+1}-\delta_{m,n-1})\hat{u}_m\hat{u}_n\,\hat{u}_n\hat{u}_m=(\delta_{m,n+1}-\delta_{m,n-1})\hat{u}_m^2\hat{u}_n^2$

(This is the square of the PB for Volterra lattice)

Note : the double Poisson structure is compatible with $S:u_n\mapsto u_{n+1}$ \leadsto lattice double Poisson algebra

Local lattice DPA

(From now on, mainly follow [F.-Valeri,'21 / arXiv:2110.03418])

Definition

 $(\mathcal{V}, \{\!\{-,-\}\!\})$ is a lattice double Poisson algebra if it admits an infinite order automorphism $S \in \operatorname{Aut}(\mathcal{V})$ compatible with its double Poisson bracket : $\{\!\{S(a),S(b)\}\!\} = S(\{\!\{a,b\}\!\}) := S^{\otimes 2}\{\!\{a,b\}\!\}.$

Furthermore, it is local if, given $a,b\in\mathcal{V}$, we have $\{S^n(a),b\}=0$ for all but finitely many $n\in\mathbb{Z}$.

$$\leadsto$$
 Laurent polynomial $\{\!\{a_{\lambda}b\}\!\} := \sum_{n \in \mathbb{Z}} \{\!\{S^n(a),b\}\!\} \lambda^n \in \mathcal{V}^{\otimes 2}[\lambda^{\pm 1}].$ recover $\{\!\{a,b\}\!\} := \mathrm{mRes}_{\lambda} \{\!\{a_{\lambda}b\}\!\}$ by picking order λ^0

NC equivalence

Fix V an associative algebra with infinite order $S \in \operatorname{Aut}(V)$

Theorem ([F.-Valeri,'19])

There is a 1-1 correspondence between the following structures on $\mathcal V$:

- local lattice double Poisson algebra (with {{−,−}});
- double multiplicative Poisson vertex algebra (with $\{-\lambda-\}$);

which is given by

The second type of structure is obtained by translating properties : compatibility with S; Leibniz rules; "cyclic" skewsymmetry; double Jacobi identity

Example (squared Volterra lattice)

$$\{\!\!\{u_m,u_n\}\!\!\} = (\delta_{m,n+1} - \delta_{m,n-1})u_nu_m \otimes u_mu_n \text{ on } \mathcal{V} = \mathbb{k}\langle u_n \mid n \in \mathbb{Z}\rangle$$

$$\{\!\!\{u_\lambda u\}\!\!\} = \sum_{\epsilon = \pm 1} \epsilon \, uS^\epsilon(u) \otimes S^\epsilon(u)u \; \lambda^\epsilon \qquad \text{for } u := u_0$$

double MPVA

Fix \mathcal{V} an associative algebra with infinite order $S \in \operatorname{Aut}(\mathcal{V})$

Definition ([F.-Valeri,'21], see also [Casati-Wang,'21])

A double multiplicative λ -bracket on \mathcal{V} is a linear map

$$\{\!\!\{ab_{\lambda}c\}\!\!\} = \{\!\!\{a_{\lambda x}c\}\!\!\} *_1 \left(\Big|_{x=S}b\right) + \left(\Big|_{x=S}a\right) *_1 \{\!\!\{b_{\lambda x}c\}\!\!\} \ . \qquad \text{(right Leibniz rule)}$$

 ${\mathcal V}$ is a double multiplicative Poisson vertex algebra if moreover

$$\{a_{\lambda}b\} = -\big|_{x=S} \{b_{\lambda^{-1}x^{-1}}a\}^{\sigma} ,$$
 (skewsymmetry)
$$\{a_{\lambda}b\} = -\big|_{x=S} \{b_{\lambda^{-1}x^{-1}}a\}^{\sigma} ,$$
 (skewsymmetry)

$$\{\!\{a_{\lambda}\,\{\!\{b_{\mu}c\}\!\}\!\}_{L} - \{\!\{b_{\mu}\,\{\!\{a_{\lambda}c\}\!\}\!\}_{R} - \{\!\{\{\!\{a_{\lambda}b\}\!\}_{\lambda\mu}\,c\}\!\}_{L} = 0\,.$$
 (Jacobi identity)

$$\begin{split} \text{for } & \{\!\!\{a_\lambda b'\otimes b''\}\!\!\}_L = \{\!\!\{a_\lambda b'\}\!\!\}\otimes b'', \, \{\!\!\{a_\lambda b'\otimes b''\}\!\!\}_R = b'\otimes \{\!\!\{a_\lambda b''\}\!\!\}, \\ & \{\!\!\{a'\otimes a''_\lambda b\}\!\!\}_L = \{\!\!\{a'_{\lambda x} b\}\!\!\}\otimes_1 \left(\left|_{x=S} a''\right). \end{split}$$

There is a master formula to write $\{-\lambda - \}$ easily, e.g. with generators

Link to representation spaces (1)

Recall $\mathcal{V} \leadsto \mathcal{V}_N$ parametrised by "matrix entries" a_{ij} , $a \in \mathcal{V}$, $1 \leq i, j \leq N$ Extend $S \in \operatorname{Aut}(\mathcal{V})$ through $S(a_{ij}) = (S(a))_{ij}$

Theorem ([F.-Valeri,'21])

Assume that $\{\!\{-_{\lambda}-\}\!\}$ is a double multiplicative λ -bracket on \mathcal{V} . Then there is a unique multiplicative λ -bracket on \mathcal{V}_N which satisfies

$$\begin{aligned} \{a_{ij\,\lambda}b_{kl}\} &= \sum_{n\in\mathbb{Z}} (a_nb)'_{kj}(a_nb)''_{il}\lambda^n \,, \\ \text{where } \{\!\!\{a_\lambda b\}\!\!\} &= \sum_{n\in\mathbb{Z}} ((a_nb)'\otimes (a_nb)'')\lambda^n \,. \end{aligned}$$

Furthermore, if $(\mathcal{V}, \{\!\{-_{\lambda}-\}\!\})$ is a double multiplicative Poisson vertex algebra, then $(\mathcal{V}_N, \{-_{\lambda}-\})$ is a multiplicative Poisson vertex algebra.

Link to representation spaces (2)

Combining this Theorem with the one of Van den Bergh + equivalences :

$$(\mathcal{V}, \{\!\{-,-\}\!\}, S) \xleftarrow{\qquad \qquad } (\mathcal{V}, \{\!\{-_{\lambda}-\}\!\}, S)$$

$$\mathsf{Thm of} \qquad \qquad \mathsf{Thm of} \qquad \mathsf{[F-V,'21]}$$

$$(\mathcal{V}_N, \{-,-\}, S) \xleftarrow{\qquad \qquad } (\mathcal{V}_N, \{-_{\lambda}-\}, S)$$

Theorem ([F.-Valeri,'21])

This diagram commutes.

Plan for the talk

- Definition and properties of DMPVA
- 2 Application to integrable systems*
- Non-local and rational cases

* Initiated in [Casati-Wang,'21] for $\mathcal{V}=\mathbb{R}\langle u_{i,n}\mid i\in I, n\in\mathbb{Z}\rangle$, $S(u_{i,n})=u_{i,n+1}$ Ideas follow the application of DPVA from [De Sole-Kac-Valeri,'15]

Trace map and associated Lie bracket

Fix V a double multiplicative Poisson vertex algebra (for S, $\{-\lambda -\}$)

Let
$$\mathcal{F}:=\mathcal{V}/ig((S-1)\mathcal{V}+[\mathcal{V},\mathcal{V}]ig)$$
, with elements denoted $\int f$

$$f \in \mathcal{V} \quad \mapsto \quad \underbrace{\operatorname{tr}(f) \in \mathcal{V}/[\mathcal{V},\mathcal{V}]}_{\text{trace functions}} \quad \mapsto \quad \underbrace{\int f \in \mathcal{F}}_{\text{local functionals}}$$

Proposition ([F.-Valeri,'21])

We have that $\mathcal F$ is a Lie algebra for $\{\int f, \int g\} := \int \operatorname{m} \{f_\lambda g\}\}\Big|_{\lambda=1}$ (extend multiplication $\operatorname{m}: \mathcal V^{\otimes 2} \to \mathcal V$ as map $\operatorname{m}: \mathcal V^{\otimes 2}[\lambda^{\pm 1}] \to \mathcal V[\lambda^{\pm 1}]$)

Furthermore, \mathcal{F} acts by derivations on \mathcal{V} through $\{\int f,g\} := m \{f_{\lambda}g\}\}\Big|_{\lambda=1}$ and such derivations commute with S.

$$\Rightarrow \qquad \{ \int f_1, \{ \int f_2, - \} \} - \{ \int f_2, \{ \int f_1, - \} \} = \{ \{ \int f_1, \int f_2 \}, - \} \quad \text{ on } \mathcal{V}$$

NC D Δ E

Given $\int f \in \mathcal{F}$, get a Hamiltonian equation on \mathcal{V} :

$$\frac{du}{dt} := \left\{ \int f, u \right\} = \mathbf{m} \left\{ \left\{ f_{\lambda} u \right\} \right\} \Big|_{\lambda = 1} \qquad \forall u \in \mathcal{V}.$$

 \Rightarrow NC differential-difference equation commuting with S

Example (squared Volterra lattice)

Recall that we have a DMPVA structure on $\mathcal{V} = \mathbb{k}\langle u_n \rangle$, $S(u_n) = u_{n+1}$,

$$\{\!\!\{u_\lambda u\}\!\!\} = \sum_{\epsilon=\pm 1} \epsilon \, u S^\epsilon(u) \otimes S^\epsilon(u) u \; \lambda^\epsilon \qquad \text{ for } u := u_0$$

Then $\int u$ is such that

$$\frac{du}{dt} := \{ \int u, u \} = \sum_{\epsilon = \pm 1} \epsilon \, u \, S^{\epsilon}(u^2) \, u = u u_1^2 u - u u_{-1}^2 u$$

Towards integrable systems

On DMPVA
$$(\mathcal{V},\{\!\{-_{\lambda}-\}\!\}):\{\int f_1,\{\int f_2,-\}\}-\{\int f_2,\{\int f_1,-\}\}=\{\{\int f_1,\int f_2\},-\}$$

When are derivations $X_k := \{ \int f_k, - \}$ on $\mathcal V$ commuting?

e.g.
$$\{\int f_j, \int f_k\} = 0$$
, $\forall j, k$

 \Rightarrow To have compatible D Δ Es on $\mathcal V$, need to find such local functionals!

First, we need examples of DMPVA to play with

NC polynomials in $\ell=1$ variable (1)

Fix
$$\mathcal V$$
 to be $\mathbb k\langle u_n\mid n\in\mathbb Z
angle$, $S(u_n)=u_{n+1}$. Set $u:=u_0$

Lemma

Any DMPVA structure with
$$\{u_{\lambda}u\}\in\mathcal{V}^{\otimes 2}[\lambda^{\pm 1}]$$
 must satisfy $\{u_{\lambda}u\}=\sum_{k\in\mathbb{Z}}(f_k\lambda^k-S^{-k}f_k^\sigma\lambda^{-k}),\ f_k=f_k(u,u_1,\ldots,u_k)$

Proposition ([VdB,'08 – Powell,'16])

Any DMPVA structure with
$$\{u_{\lambda}u\}\in\mathcal{V}^{\otimes 2}$$
 (no λ !) is s.t. $\{u_{\lambda}u\}=\alpha(u\otimes 1-1\otimes u)+\beta(u^2\otimes 1-1\otimes u^2)+\gamma(u^2\otimes u-u\otimes u^2)$ for $\alpha\gamma-\beta^2=0$.

Not interesting for integrability as $\{\int u^k, u\} = m \{\{u^k\}u\}\} |_{\lambda=1} = 0, \forall k \geq 1$

NC polynomials in $\ell = 1$ variable (2)

Fix $\mathcal V$ to be $\Bbbk\langle u_n\mid n\in\mathbb Z
angle$, $S(u_n)=u_{n+1}$. Set $u:=u_0$ Introduce bullet product : $(a'\otimes a'')\bullet (b'\otimes b'')=a'b'\otimes b''a''$

Proposition ([F.-Valeri,'21])

Any DMPVA structure with

$$\{\!\!\{u_\lambda u\}\!\!\} = g(u) \bullet r(\lambda S)g(u), \qquad r(z) \in \mathbb{k}[z^{\pm 1}] \text{ s.t. } r(z^{-1}) = -r(z), \\ \text{is such that } g = (\alpha u + \beta) \otimes (\alpha u + \beta) \text{ for } \alpha, \beta \in \mathbb{k}.$$

Proposition ([F.-Valeri,'21], [Casati-Wang,'21])

Any DMPVA structure with

$$\{\{u_{\lambda}u\}\}=f\lambda^k-S^{-k}(f)\lambda^{-k}, \qquad f\in\mathcal{V}\otimes\mathcal{V}, \ k\geq 1,$$

is such that $f = g \bullet S^k g$ for g as above.

No easy commuting local functionals to identify...

NC polynomials in $\ell = 2$ variables (1)

Fix $\mathcal V$ to be $\mathbb k\langle u_n,v_n\mid n\in\mathbb Z\rangle$, $S(u_n)=u_{n+1},S(v_n)=v_{n+1}.$ Set $u:=u_0,v:=v_0.$

If e.g. $\{u_{\lambda}u\}=0$, guaranteed that $\{\int u^k, \int u^l\}=0$, $\forall k,l\geq 1$

NC polynomials in $\ell = 2$ variables (1)

Fix \mathcal{V} to be $\mathbb{k}\langle u_n, v_n \mid n \in \mathbb{Z} \rangle$, $S(u_n) = u_{n+1}, S(v_n) = v_{n+1}$. Set $u := u_0, v := v_0$.

If e.g. $\{u_{\lambda}u\}=0$, guaranteed that $\{\int u^k, \int u^l\}=0$, $\forall k,l\geq 1$

Proposition ([F.-Valeri,'21])

Any DMPVA structure on $\mathcal V$ of the form $\{u_\lambda u\}=0=\{v_\lambda v\}$, $\{u_\lambda v\}=g\lambda^k$, $g\in\mathcal V^{\otimes 2}$ is given, modulo translation $(u,v)\mapsto (u+\alpha,v+\beta)$, by

- (i) $q = a \cdot 1 \otimes 1$, $a \in \mathbb{k}$;
- (ii) $g = a v \otimes v, a \in \mathbb{k}^{\times}$;
- (iii) $g = a u_k \otimes u_k$, $a \in \mathbb{k}^{\times}$;
- (iv) $g = a v \otimes v + b [v \otimes u_k + u_k \otimes v] + \frac{b^2}{a} u_k \otimes u_k, \ a, b \in \mathbb{k}^{\times}$;
- (v) $g = a v u_k \otimes u_k v + b \left[v u_k \otimes 1 + 1 \otimes u_k v \right] + \frac{b^2}{a} \otimes 1, \ a \in \mathbb{R}^{\times}, \ b \in \mathbb{R}.$

NC polynomials in $\ell = 2$ variables (2)

The 5 DMPVA structures ($\{u_{\lambda}v\}\}=g\lambda^k$) on $\mathcal{V}=\mathbb{k}\langle u_n,v_n\mid n\in\mathbb{Z}\rangle$ give 5 families of compatible D Δ Es (for $k\geq 1$ fixed) with $\frac{d}{dt_i}:=\frac{1}{i}\{\int u^j,-\}$

Example

$$(i) \quad \frac{dv}{dt_j} = a \, u_k^{j-1} \,, \quad \frac{du}{dt_j} = 0$$

$$(ii) \quad \frac{dv}{dt_j} = a \, v u_k^{j-1} v \,, \quad \frac{du}{dt_j} = 0$$

$$(iii) \quad \frac{dv}{dt_i} = a \, u_k^{j+1} \,, \quad \frac{du}{dt_i} = 0$$

$$(iv) \quad \frac{dv}{dt_j} = a \, v u_k^{j-1} v + b (v u_k^j + u_k^j v) + \frac{b^2}{a} u_k^{j+1} \,, \quad \frac{du}{dt_j} = 0$$

$$(v) \quad \frac{dv}{dt_i} = a \, v u_k^{j+1} v + b (v u_k^j + u_k^j v) + \frac{b^2}{a} u_k^{j-1} \,, \quad \frac{du}{dt_i} = 0$$

NC polynomials in $\ell = 2$ variables (3)

Slight generalisation of cases (iv)-(v):

$$\frac{dv}{dt_j} = \alpha v u_k^{j-1} v + (v u_k^j + u_k^j v) + \beta u_k^{j+1} \,, \quad \frac{du}{dt_j} = 0 \,, \quad j \in \mathbb{Z}_+ \,,$$

These are compatible D Δ Es.

They come from $(\int u^j)$ with skewsym. double mult. λ -bracket $\{\!\{u_\lambda u\}\!\} = 0 = \{\!\{v_\lambda v\}\!\}$, $\{\!\{u_\lambda v\}\!\} = (v \otimes u_k + u_k \otimes v + \alpha v \otimes v + \beta u_k \otimes u_k)\lambda^k$ This operation does not satisfy Jacobi identity when $\alpha\beta \neq 1$

 \Rightarrow There is a "weaker" version of DMPVA to get compatible D Δ Es (see Subsect. 6.4.3 in [F.-Valeri,'21], also Sect.5 in [Casati-Wang,'21])

Plan for the talk

- Definition and properties of DMPVA
- 2 Application to integrable systems
- Non-local and rational cases

Nonlocal DMPVA

Take the definition of DMPVA and use nonlocal map

$$\{\!\{-_{\lambda}-\}\!\}: \mathcal{V}^{\otimes 2} \to \mathcal{V}^{\otimes 2}[[\lambda^{\pm 1}]], \quad a \otimes b \mapsto \{\!\{a_{\lambda}b\}\!\}$$

All properties still make sense!

Example

$$\mathcal{V} = \mathbb{k}\langle u_n \mid n \in \mathbb{Z} \rangle$$
, $S(u_n) = u_{n+1}$. Set $u := u_0$

We have a nonlocal DMPVA structure :

$$\{\!\!\{u_{\lambda}u\}\!\!\} := \sum_{n\in\mathbb{Z}} \operatorname{sgn}(n) (uu_n \otimes u_n u) \lambda^n$$

Nonlocal DMPVA and rational operators

In [Casati-Wang,'21], different point of view with operators

e.g.
$$H={\rm r}_uS{\rm r}_u-{\rm l}_uS{\rm l}_u-\frac{1}{2}{\rm a}_u{\rm c}_u-\frac{1}{2}{\rm c}_u\,\frac{1+S}{1-S}{\rm c}_u$$
 (for the non-commutative Narita-Itoh-Bogoyavlensky hierarchy) to be interpreted as

$$\{\{u_{\lambda}u\}\} := (1 \otimes u)\lambda S \bullet (1 \otimes u) - (u \otimes 1)\lambda S \bullet (u \otimes 1)$$
$$-\frac{1}{2}(u \otimes 1 + 1 \otimes u) \bullet (u \otimes 1 - 1 \otimes u)$$
$$-\frac{1}{2}(u \otimes 1 - 1 \otimes u)\frac{1 + \lambda S}{1 - \lambda S} \bullet (u \otimes 1 - 1 \otimes u)$$

 $\sqrt{\ }$ all axioms are formally satisfied

X it does *not* define a nonlocal DMPVA due to Jacobi identity using suitable expansion $\frac{1+\lambda S}{1-\lambda S} = \sum_{n>0} [(\lambda S)^n - (\lambda S)^{-n}]$ for skewsymm.

Rational DMPVA

Use (positive) embedding of rational functions as Laurent series :

$$\iota_+: \Bbbk(z) \hookrightarrow \Bbbk((z)) = \{\sum_{n \geq -N} a_n z^n \mid a_n \in \Bbbk\} \text{ e.g. } \iota_+(\frac{1}{1-z}) = \sum_{n \geq 0} z^n \}$$

Rational operators $\mathcal{Q}(\mathcal{V}) := \{ \sum f_1 \iota_+ r_1(S) \bullet \cdots \bullet f_n \iota_+ r_n(S) \bullet f_{n+1} \in (\mathcal{V} \otimes \mathcal{V})((S)) \}$

$$\begin{array}{l} \text{adjoint } A(S) \mapsto A(S)^* = \sum f_{n+1}^\sigma \iota_+ r_n(S^{-1}) \bullet \cdots \bullet f_2^\sigma \iota_+ r_1(S^{-1}) \bullet f_1^\sigma \\ \text{e.g. } A(S) = \iota_+ \frac{1}{1-S} = \sum_{n \geq 0} S^n \quad \leadsto \quad A(S)^* = \iota_+ \frac{-S}{1-S} = -\sum_{n \geq 1} S^n \end{array}$$

Rational DMPVA

Use (positive) embedding of rational functions as Laurent series :

$$\iota_+: \Bbbk(z) \hookrightarrow \Bbbk((z)) = \{\sum_{n \geq -N} a_n z^n \mid a_n \in \Bbbk\} \text{ e.g. } \iota_+(\frac{1}{1-z}) = \sum_{n \geq 0} z^n \}$$

Rational operators
$$\mathcal{Q}(\mathcal{V}) := \{ \sum f_1 \iota_+ r_1(S) \bullet \cdots \bullet f_n \iota_+ r_n(S) \bullet f_{n+1} \in (\mathcal{V} \otimes \mathcal{V})((S)) \}$$

adjoint
$$A(S) \mapsto A(S)^* = \sum f_{n+1}^{\sigma} \iota_+ r_n(S^{-1}) \bullet \cdots \bullet f_2^{\sigma} \iota_+ r_1(S^{-1}) \bullet f_1^{\sigma}$$

e.g. $A(S) = \iota_+ \frac{1}{1-S} = \sum_{n \geq 0} S^n \quad \leadsto \quad A(S)^* = \iota_+ \frac{-S}{1-S} = -\sum_{n \geq 1} S^n$

Definition ([F.-Valeri,'21])

A rational double multiplicative λ -bracket on $\mathcal V$ is a double multiplicative λ -bracket (i.e. sesquilinearity/Leibniz rules) with $\{a_\lambda b\}=A_{ab}(\lambda)$ being the symbol of an element $A_{ab}(S)\in\mathcal Q(\mathcal V)$

 ${\cal V}$ is a rational double multiplicative Poisson vertex algebra if moreover $A_{ab}(\lambda) = -A_{ba}(\lambda)^*$ (skewsymmetry) + (Jacobi identity) as before

A classification result

$$H(S) = (1 \otimes u)\iota_{+}a(S) \bullet (1 \otimes u) + (1 \otimes u)\iota_{+}b(S) \bullet (u \otimes 1) + (u \otimes 1)\iota_{+}c(S) \bullet (1 \otimes u) - (u \otimes 1)\iota_{+}a(S^{-1}) \bullet (u \otimes 1)$$

Theorem ([F.-Valeri,'21])

The pseudodifference operator H(S) induces a DMPVA structure of rational type on $\mathcal{V} = \mathbb{k}\langle u_n \mid n \in \mathbb{Z}\rangle$ through $\{u_\lambda u\} = H(\lambda)$ (symbol of H) if and only if for some $k \geq 1$ and $p \in \mathbb{Z}$, $a(z) = z^p a_1(z^k)$, $a_1(z) := \alpha \frac{1}{1-z}$,

$$a(z)=z$$
 $a_1(z)$, $a_1(z):=a_{1-z}$, $b(z)=c(z)=b_1(z^k)$, $b_1(z):=eta_{1-z}^{1+z}$, here $a_1\beta\in \mathbb{R}$ are such that $a_1(2\beta+\alpha)=0$

where $\alpha, \beta \in \mathbb{k}$ are such that $\alpha(2\beta + \alpha) = 0$.

Example (Casati-Wang operator)

Case
$$k=1$$
, $p=2$, $\alpha=-1$, $\beta=\frac{1}{2}$
$$H(S)=-\mathbf{r}_u\iota_+\frac{S^2}{1-S}\bullet\mathbf{r}_u+\frac{1}{2}\mathbf{r}_u\iota_+\frac{1+S}{1-S}\bullet\mathbf{l}_u+\frac{1}{2}\mathbf{l}_u\iota_+\frac{1+S}{1-S}\bullet\mathbf{r}_u-\mathbf{l}_u\iota_+\frac{S^{-1}}{1-S}\bullet\mathbf{l}_u\\ =(\mathbf{r}_uS\bullet\mathbf{r}_u-\mathbf{l}_uS^{-1}\bullet\mathbf{l}_u)-\frac{1}{2}\mathbf{a}_u\bullet\mathbf{c}_u-\frac{1}{2}\mathbf{c}_u\iota_+\frac{1+S}{1-S}\bullet\mathbf{c}_u$$

Thank you for your attention!

Maxime Fairon@glasgow.ac.uk — M.Fairon@lboro.ac.uk https://www.maths.gla.ac.uk/~mfairon/