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1. two statements

Goal of the lecture: mainly two results that concern
harmonic/elliptic measure on Cantor sets in the plane.
Results, then comments, then some ideas of proofs.

Theorem (D. - Mayboroda)

Let K be the Garnett-lvanov Cantor set of dimension 1 in R?.
There is a measurable function a : R?\ K — [1, C] such that

C'HYE) <wi(E) < CHYE) for ECK.

where w; denotes the elliptic measure on K associated to the
operator L = div aV.

We take w; = w7 with pole at oo for simplicity.

New also for elliptic matrices A, but we like the fact that we can
take A = a l, scalar. Notice that L = A fails.

Maybe later in the lecture: variant by Polina Perstneva on
snowflakes K C R? (and there A = a l, matters).



The Garnett-lvanov 1-dimensional Cantor set

K = (x>0 Kk, suggested by the picture.

K is composed of 4¥ squares of size 4=

A natural measure 1 on K gives the same mass 4~ to each square
of K. And then p = CH|1K'

K is totally unrectifiable: u(E NT) = 0 for every curve I with
finite length

One dimensional, NTA complement.
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Figure: The set K3 (three generations of the construction of K)




Theorem (G. D. - C. Jeznach - A. Julia)

For 0 < d < 0.4, there is an Ahlfors regular d-dimensional Cantor
set K in R? such that

CYHYE) <wi(E) < CHYE) for ECK,

where wpa Is harmonic measure on K associated to the Laplacian.

o

Ahlfors regular means that there is a constant C > 1 such that
Clrf <HIYKNB(x,r)) < Cr? for x € K and r < diam(K).

In fact, K is a perturbation and a bilipschitz image of the
self-similar d-dimensional analogue of the Garnett-lvanov set.
When d < 0.249, we can even get K C R as a perturbation of a
“middle nt"" Cantor set.

A theorem of Tolsa says that for K C R, d > 1/2 is impossible.
And d = 1 is impossible for any unrectifiable K.



The asymmetric Cantor set of Theorem 2

|
L; E“: :‘—; alln
]
- d .
] U ] U C E_E
1 . slln
| = [T u
sllln slls L

A picture of the Cantor set in Theorem 2,
with 3 generations, exagerated differences, and d larger than real.



2. Definitions. Harmonic measure

First the Brownian path definition of the harmonic measure w” in

a nice domain  C R”. Say K = 0f2 is bounded and smooth and
(2 is the unbounded component of R" \ K.

We define the harmonic measure wX (centered at X € Q) by this:

For A C E, wX(A) is the probability for a Brownian trajectory
starting from X to lie in A the first time it hits E.

Q2 (exterior domain)

Rather easy from the mean value property: w”®(A) is a harmonic
function of X € €2; hence by Harnack its size depends nicely on X.



Definition with the Dirichlet problem

The above is intuitive, but requires some work and appropriate
assumptions to write it down. And in practice we use the definition
based on the Dirichlet problem:
Justification: for A C 9, w®(A) is harmonic. Believable: it
“tends to" 14 on 0Q. And w*(A) = / 14(8)dw™ (€).

o0
Definition 2: for each g € C(02) (that is, continuous on 02),
there is a unique continuous extension f of g to Q which is
harmonic in . (Still assume €2 is “regular” enough). Then for
each X € Q, g — f(X) is a continuous linear form on C(9f2) and
by the Riesz Theorem there is a finite measure w™ on O such that

f(X)= /{m g(f)dwx(g) for g € C(09).

It is even a probability measure, by the maximum principle.
Coincides with the previous defn (with g = 1 4) in the good cases.
Often easier to manipulate. And to generalize:



Elliptic operators

82
Ox;?
But the definitions work also for some other elliptic operators. Let

us consider only the operators in divergence form:

This was for harmonic functions and the Laplacian A = ZJ'-’Zl

(1) L = div AV

where A = A(X) is an n X n real matrix (measurable in X), and we
require the usual boundedness property

(2) AX)| < C for X € Q2
and ellipticity condition

(3) (A(x)E,€) > CL|€)? for X € Q and & € R".

Then it is possible to define elliptic measure wf as above, but with

solutions of Lf = 0. We should rather call wf elliptic measure.



Motivations 1: Positive absolute continuity results

Often K = 0f2 comes with a natural measure u: surface measure
for smooth (or Lipschitz) domains, 7—[|dK for the Cantor sets above.

When are w and p absolutely continuous to each other?
The notion does not depend on X; thus we take w = w.

Answer yes when K and L are both nice. Main symbolic example:

Dahlberg 77: When €2 C R" is a Lipschitz domain and L = A,
w and p are mutually absolutely continuous, with a Muckenhoupt
Ao density.

Some connectedness for €2 is needed: typically one sided NTA:
(2 contains corkscrew points and Harnack chains. We pass.

Next: does it work for other good sets and operators?



Motivations 2: Extensions of Dahlberg

Does this generalize?

e To more general domains, yes. Many results; the typical
conditions for an Ahlfors regular boundary 0€2 of co-dimension 1
are:

- [Uniform] rectifiability of 0€;

- one-sided NonTangential Access from € (or slightly weaker)
And then one gets that w and u = 7—[|”8_Ql are mutually absolutely

continuous [with an A, density].

e Even results for mere absolutely continuous and rectifiability

e Extensions to elliptic operators L = div AV, A sufficiently
close to constant (Dahlberg-Kenig-Pipher and WDKP conditions,
all stated with Carleson measures).

e Some extensions to higher co-dimensional boundaries too.

Many contributors: Azzam, Martell, Mayboroda, Jerison,

Hofmann, Lacey, Mourgolgou, Semmes, Tolsa, Toro, Volberg,
/Zhao...



Counterexamples: bad A and why we like scalar matrices

Recall L = div AV, where A is always assumed to be elliptic.

Traditional counterexamples for bad operators: Modica-Mortola;
Caffarelli-Fabes-Kenig: Even on the half plane, when A is badly
behaved, w; may be singular with respect to u.

Nice fact here: if 1 : €29 — Q is quasiconformal and uv: €2 — R is
harmonic, then u o 1) satisfies Lu = 0 for some elliptic L = div AV.
But @) may distort distances a lot and not preserve abs. continuity.

Are there nice examples with L = divaV?

Certainly the MM and CFK and examples from QC mappings are
not like that.

L = divaV is more about the (locally isotropic) geometry
associated to the distance coming from a weight w through

dist,, (X, Y) = i frorin; oy /r w(x)Y " dH(x).



Counterexamples 2: good operators L but bad sets K

Beautiful (and hard) converse results by [AHMMT] and
subsequent: in codimension 1, the (A, ) absolute continuity of wy,
L close enough to A, essentially implies the (uniform) rectifiability

of 0f).

For 0 < d <1, if K is a self-similar Cantor set in the plane, then w

(for A) is singular, and even carried by a subset of dimension < d

of K.
Not easy [Carleson 85, Batakis, Volberg, ...]

But surprisingly...
Theorem 1: bad set, bad operator, and good elliptic measure;

Theorem 2: bad set, good operator A but wrong dimension, good
elliptic measure.

Comment if it helps: the Brownian motion, with the adapted drift
or the adapted boundary, goes uniformly to the boundary.



Common points and the Green function

Main actor: the Green function (follows ideas from Azzam and
DM, DLM).

Main psychological progress (for me at least): usually the Green
function G = G*° is impossible to compute, but not if you first
choose it!

We also had an example of explicit Green functions with the DEM
magic case in large co-dimensions, where G is equal to the
adapted smooth distance D,,.

Anyway, for Theorem 1 it is enough to check that

C1dist(X, K) < G®(X) < Cdist(X, K)

[Think of the smooth case where the density of w is %—g .



Proof of Theorem 1: Pairs of conjugated functions

[Not sure this is the right term.]
We want to construct G on Q = R? \ K, and then show that
divaV G = 0 for some elliptic function a.

We will use another function R, such that VR L VG everywhere
(but we do the construction locally, where both gradients are # 0).

A computation shows that if VR L VG, then divaV G = 0 with
a(x) = |VR|/|VG]|.

So we shall draw the level curves of G and the level curves of R
(they are orthogonal), check that |V R|/|V G|, or the distances
between curves, stay under control, and we are done!

We'll use a fractal construction: this way we can be sure that
a=|VR|/|VG| and a~! stay bounded, if we have a control in a
fundamental domain and if we can glue correctly.



A fundamental domain

We cut R? \ K into annular regions.

The fundamental region (in grey) is the Ay bounded by the
exterior circle 0By and the four small green circles.

“Enough” to construct G and R in Ap, and then, by symmetry, in
the smaller Agg (one eighth of Ap).

Figure: The cubes Q; of generation 1, the balls By (large) and By (small),
the annulus Ag (in grey) and a fundamental piece Agy (one eighth of Ap)



We draw the red and green curves in A
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Figure: The level and gradient lines of G in Ap. Mind the symmetry.
Also, it is fair that the green curves surround K (recall that G = 0 on K)

and the red curves go towards K.



We prepare for gluing
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Figure: We prepare four, 4 times smaller copies of the same picture, to be
put in the main holes



We glue the next generation

Figure: The level and gradient lines of G on a larger region than Ay,
completed by self-similarity

... And so on. The fractal construction allows uniform estimate.
Important additional constraint to get uniform bounds on

a(x) = |VR|/|VG]|:

The end of red curve that starts along the first large green circle
runs along the four smaller green circles at constant speed.



Some other examples

e
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Figure: The third iteration of a rotating version of the Cantor set

Figure: The third iteration of a variable scale/multiplicity analogue of K;
there is no point in trying to draw polygones in this case

And snowflakes (with A = al) by Polina Perstneva.



|deas for Theorem 2

How to control the Green function G*° on the complement of our
Cantor set K C R? of small dimension (constructed on purpose)?

Usual definition for K: For n > 0, construct K}, composed of 4"
squares Q; = Qf’, J € J(n) of size r", and take the limit.

Here r is small because r? < 1/4.

One way to describe the self-similar set Ky of dimension d is by

nested squares (as above), or by a parameterization

Fo: E = 4N — R2. Choose four points e1, e, e3, e4 of 3B(0,1),
on the diagonal, and for € = (e )ken, set

Fo(e) = Z rhe., .
k

Now for K we take
Fle) =) rfa(e)e.,,
k
with A\(g) € [1, 2] that depends only on eq, ...k 1.



That is, when we construct the 4 children of the square @ of
generation k, we place the next cubes at distance Agr? from the

center xq.
F(e) =) rfae(e)e.,,
k
Easy to check: K = F(4Y) is a bi-lipschitz image of Kp, and
Ahlfors regular of dimension d.

We have a natural measure uyx on K, such that u,(Q) = 47" for
each cube @ of generation n.

And the natural limit p of the u, on K.

Here is a natural harmonic function g: set, for z € R? \ K,

£(2) = o+ In(| - )(2) = / In(lz — x|)du(x).

K



8(2) = o+ In(|- )2) = [ 0]z~ x|)du().

K
The integral converges because i is Ahlfors regular.
At oo, g(z) ~ In(|z]), which not bad.

It would be great if we had g(z) =0 on K, but of course this
won't happen.

It will be equally good if g is a constant ¢ on K, because then

G = g — c is the Green function! so that is what we aim for, if K
is chosen well.

Missing piece, which | won't do: check that
g(z) — ¢ ~ dist(z, K)?,

and then conclude using the relation between G(z) at a corkscrew
point and harmonic measure of the corresponding disk.



Call @, the set of cubes of generation n, and xg the center of
Q € Q,. Then set

gn(2) = pnxIn(| - N(2) =47" > In(|z = xql). (1)

QEQn

We want to arrange things so that g, is almost constant on K, (or
the union of the circles centered on the xg and radius r”, say).
Something like

sup gn(z) — infgn(z) < C47" (2)
K Kn

The main question: assuming (2) at generation n, how do we
arrange (2) at generation n+ 1.

That is, how do we choose the A\g to make the oscillation of gp41
smaller?



Take d and r very small. This way, g, is roughly constant near
each cube @ € Q,, and the differences between cubes @ is not
large.

Call Q; the four children of Q.

Then write g,1+1(2) — gn(2) for points z near Q.

There are a few terms, that are not small, but are roughly the
same on all the Q) across (, so we we don't care, they feed the
constant.

And the main term is something like

On(z) = 47" Z In(|z = xq,]) = In(|z — xql)]

: . 2 — xg]| (3)
=4 112,'”(\2—;;\')




iu(e) =4 Yo (E)
J

For z in a circle of fixed small radius around xq,, |z — xq,| is always
the same (across the whole set), while

|z — xq| ~ [xq, — Q| = cAqr”.

That's it. We are adding essentially equal terms, minus

4= In(Ag).

If g, was larger than average near @, we take Ag small. Otherwise,
we take A\ larger. This allows us to add a varying constant of size
4="=1In(Xg) to g, near @, which turns out to be enough to
compensate variations of the averages of g, among the Q.



Last comments about the proof

Taking r and d small simplifies the proof: the scales are more and
more independent, and the extra errors are smaller. Then we sort
of optimized.

The effect of increasing the distances |xq. — x| ~ Aqr" is to
increase the chance that a Brownian path that passes nearby will
land on the Q£+1. But we are lucky that we din't need to evaluate
the absorption probabilities and we can sum potentials instead.

Again, once we know that g = ¢ on K, we can estimate the Green
function G = g — ¢, and then use G to estimate w.

For instance we can estimate Vg = u x % near K.

We could do other shapes (for instance, K C R), but squares seem
to be nice.



Snowflakes by Polina Perstneva

Figure: Filling of two pieces of puzzle by red and green curves



Snowflakes by Polina Perstneva

Figure: Filling of two pieces of puzzle by red and green curves

... T'hanks!



