
Absolutely continuous harmonic measure on
Cantor sets

Guy David, Université de Paris-Saclay
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1. two statements

Goal of the lecture: mainly two results that concern
harmonic/elliptic measure on Cantor sets in the plane.
Results, then comments, then some ideas of proofs.

Theorem (D. - Mayboroda)

Let K be the Garnett-Ivanov Cantor set of dimension 1 in R2.
There is a measurable function a : R2 \ K → [1,C ] such that

C−1H1(E ) ≤ ωL(E ) ≤ CH1(E ) for E ⊂ K .

where ωL denotes the elliptic measure on K associated to the
operator L = div a∇.

We take ωL = ω∞L with pole at ∞ for simplicity.
New also for elliptic matrices A, but we like the fact that we can
take A = a I2 scalar. Notice that L = ∆ fails.
Maybe later in the lecture: variant by Polina Perstneva on
snowflakes K ⊂ R2 (and there A = a I2 matters).



The Garnett-Ivanov 1-dimensional Cantor set

K =
⋂

k≥0 Kk , suggested by the picture.

Kk is composed of 4k squares of size 4−k

A natural measure µ on K gives the same mass 4−k to each square
of Kk . And then µ = cH1

|K .

K is totally unrectifiable: µ(E ∩ Γ) = 0 for every curve Γ with
finite length

One dimensional, NTA complement.

Figure: The set K3 (three generations of the construction of K )



Theorem 2

Theorem (G. D. - C. Jeznach - A. Julia)

For 0 < d < 0.4, there is an Ahlfors regular d-dimensional Cantor
set K in R2 such that

C−1Hd(E ) ≤ ωL(E ) ≤ CHd(E ) for E ⊂ K ,

where ω∆ is harmonic measure on K associated to the Laplacian.

Ahlfors regular means that there is a constant C ≥ 1 such that

C−1rd ≤ Hd(K ∩ B(x , r)) ≤ C−1rd for x ∈ K and r < diam(K ).

In fact, K is a perturbation and a bilipschitz image of the
self-similar d-dimensional analogue of the Garnett-Ivanov set.
When d < 0.249, we can even get K ⊂ R as a perturbation of a
“middle nth ” Cantor set.
A theorem of Tolsa says that for K ⊂ R, d ≥ 1/2 is impossible.
And d = 1 is impossible for any unrectifiable K .



The asymmetric Cantor set of Theorem 2

A picture of the Cantor set in Theorem 2,
with 3 generations, exagerated differences, and d larger than real.



2. Definitions. Harmonic measure

First the Brownian path definition of the harmonic measure ωX in
a nice domain Ω ⊂ Rn. Say K = ∂Ω is bounded and smooth and
Ω is the unbounded component of Rn \ K .

We define the harmonic measure ωX (centered at X ∈ Ω) by this:

For A ⊂ E , ωX (A) is the probability for a Brownian trajectory
starting from X to lie in A the first time it hits E .

X

E
A

�

� (exterior domain)

A

Rather easy from the mean value property: ωX (A) is a harmonic
function of X ∈ Ω; hence by Harnack its size depends nicely on X .



Definition with the Dirichlet problem

The above is intuitive, but requires some work and appropriate
assumptions to write it down. And in practice we use the definition
based on the Dirichlet problem:
Justification: for A ⊂ ∂Ω, ωX (A) is harmonic. Believable: it

“tends to” 1A on ∂Ω. And ωX (A) =

∫
∂Ω

1A(ξ)dωX (ξ).

Definition 2: for each g ∈ C(∂Ω) (that is, continuous on ∂Ω),
there is a unique continuous extension f of g to Ω which is
harmonic in Ω. (Still assume Ω is “regular” enough). Then for
each X ∈ Ω, g → f (X ) is a continuous linear form on C(∂Ω) and
by the Riesz Theorem there is a finite measure ωX on ∂Ω such that

f (X ) =

∫
∂Ω

g(ξ)dωX (ξ) for g ∈ C(∂Ω).

It is even a probability measure, by the maximum principle.
Coincides with the previous defn (with g = 1A) in the good cases.
Often easier to manipulate. And to generalize:



Elliptic operators

This was for harmonic functions and the Laplacian ∆ =
∑n

j=1
∂2

∂xj
2 .

But the definitions work also for some other elliptic operators. Let
us consider only the operators in divergence form:

(1) L = divA∇

where A = A(X ) is an n× n real matrix (measurable in X ), and we
require the usual boundedness property

(2) |A(X )| ≤ C for X ∈ Ω

and ellipticity condition

(3) 〈A(x)ξ, ξ〉 ≥ C−1|ξ|2 for X ∈ Ω and ξ ∈ Rn.

Then it is possible to define elliptic measure ωX
L as above, but with

solutions of Lf = 0. We should rather call ωX
L elliptic measure.



Motivations 1: Positive absolute continuity results

Often K = ∂Ω comes with a natural measure µ: surface measure
for smooth (or Lipschitz) domains, Hd

|K for the Cantor sets above.

When are ω and µ absolutely continuous to each other?

The notion does not depend on X ; thus we take ω = ω∞.

Answer yes when K and L are both nice. Main symbolic example:

Dahlberg 77: When Ω ⊂ Rn is a Lipschitz domain and L = ∆,
ω and µ are mutually absolutely continuous, with a Muckenhoupt
A∞ density.

Some connectedness for Ω is needed: typically one sided NTA:
Ω contains corkscrew points and Harnack chains. We pass.

Next: does it work for other good sets and operators?



Motivations 2: Extensions of Dahlberg

Does this generalize?
• To more general domains, yes. Many results; the typical
conditions for an Ahlfors regular boundary ∂Ω of co-dimension 1
are:
- [Uniform] rectifiability of ∂Ω;
- one-sided NonTangential Access from Ω (or slightly weaker)
And then one gets that ω and µ = Hn−1

|∂Ω are mutually absolutely

continuous [with an A∞ density].
• Even results for mere absolutely continuous and rectifiability
• Extensions to elliptic operators L = divA∇, A sufficiently
close to constant (Dahlberg-Kenig-Pipher and WDKP conditions,
all stated with Carleson measures).
• Some extensions to higher co-dimensional boundaries too.

Many contributors: Azzam, Martell, Mayboroda, Jerison,
Hofmann, Lacey, Mourgolgou, Semmes, Tolsa, Toro, Volberg,
Zhao...



Counterexamples: bad A and why we like scalar matrices

Recall L = divA∇, where A is always assumed to be elliptic.

Traditional counterexamples for bad operators: Modica-Mortola;
Caffarelli-Fabes-Kenig: Even on the half plane, when A is badly
behaved, ωL may be singular with respect to µ.

Nice fact here: if ψ : Ω0 → Ω is quasiconformal and u : Ω→ R is
harmonic, then u ◦ ψ satisfies Lu = 0 for some elliptic L = divA∇.
But ψ may distort distances a lot and not preserve abs. continuity.

Are there nice examples with L = div a∇?

Certainly the MM and CFK and examples from QC mappings are
not like that.

L = div a∇ is more about the (locally isotropic) geometry
associated to the distance coming from a weight w through

distw (X ,Y ) = inf
Γ from X to Y

∫
Γ
w(x)1/ndH1(x).



Counterexamples 2: good operators L but bad sets K

Beautiful (and hard) converse results by [AHMMT] and
subsequent: in codimension 1, the (A∞) absolute continuity of ωL,
L close enough to ∆, essentially implies the (uniform) rectifiability
of ∂Ω.

For 0 < d ≤ 1, if K is a self-similar Cantor set in the plane, then ω
(for ∆) is singular, and even carried by a subset of dimension < d
of K .
Not easy [Carleson 85, Batakis, Volberg, ...]

But surprisingly...

Theorem 1: bad set, bad operator, and good elliptic measure;

Theorem 2: bad set, good operator ∆ but wrong dimension, good
elliptic measure.

Comment if it helps: the Brownian motion, with the adapted drift
or the adapted boundary, goes uniformly to the boundary.



Common points and the Green function

Main actor: the Green function (follows ideas from Azzam and
DM, DLM).

Main psychological progress (for me at least): usually the Green
function G = G∞ is impossible to compute, but not if you first
choose it!

We also had an example of explicit Green functions with the DEM
magic case in large co-dimensions, where Gα is equal to the
adapted smooth distance Dα.

Anyway, for Theorem 1 it is enough to check that

C−1 dist(X ,K ) ≤ G∞(X ) ≤ C dist(X ,K )

[Think of the smooth case where the density of ω is ∂G
∂n ].



Proof of Theorem 1: Pairs of conjugated functions

[Not sure this is the right term.]
We want to construct G on Ω = R2 \ K , and then show that
div a∇G = 0 for some elliptic function a.

We will use another function R, such that ∇R ⊥ ∇G everywhere
(but we do the construction locally, where both gradients are 6= 0).

A computation shows that if ∇R ⊥ ∇G , then div a∇G = 0 with

a(x) = |∇R|/|∇G |.

So we shall draw the level curves of G and the level curves of R
(they are orthogonal), check that |∇R|/|∇G |, or the distances
between curves, stay under control, and we are done!

We’ll use a fractal construction: this way we can be sure that
a = |∇R|/|∇G | and a−1 stay bounded, if we have a control in a
fundamental domain and if we can glue correctly.



A fundamental domain

We cut R2 \ K into annular regions.
The fundamental region (in grey) is the A0 bounded by the
exterior circle ∂B0 and the four small green circles.
“Enough” to construct G and R in A0, and then, by symmetry, in
the smaller A00 (one eighth of A0).

00

B0

Q1
A

Q1

Q3

Q2

Q
4

B1

Figure: The cubes Qj of generation 1, the balls B0 (large) and B1 (small),
the annulus A0 (in grey) and a fundamental piece A00 (one eighth of A0)



We draw the red and green curves in A0

Figure: The level and gradient lines of G in A0. Mind the symmetry.
Also, it is fair that the green curves surround K (recall that G = 0 on K )
and the red curves go towards K .



We prepare for gluing

Figure: We prepare four, 4 times smaller copies of the same picture, to be
put in the main holes



We glue the next generation

Figure: The level and gradient lines of G on a larger region than A0,
completed by self-similarity

... And so on. The fractal construction allows uniform estimate.
Important additional constraint to get uniform bounds on
a(x) = |∇R|/|∇G |:
The end of red curve that starts along the first large green circle
runs along the four smaller green circles at constant speed.



Some other examples

Figure: The third iteration of a rotating version of the Cantor set

Figure: The third iteration of a variable scale/multiplicity analogue of K ;
there is no point in trying to draw polygones in this case

And snowflakes (with A = aI ) by Polina Perstneva.



Ideas for Theorem 2

How to control the Green function G∞ on the complement of our
Cantor set K ⊂ R2 of small dimension (constructed on purpose)?

Usual definition for K : For n ≥ 0, construct Kn, composed of 4n

squares Qj = Qn
j , j ∈ J(n) of size rn, and take the limit.

Here r is small because rd ≤ 1/4.
One way to describe the self-similar set K0 of dimension d is by
nested squares (as above), or by a parameterization
F0 : E = 4N → R2. Choose four points e1, e2, e3, e4 of ∂B(0, 1),
on the diagonal, and for ε = (εk)k∈N, set

F0(ε) =
∑
k

rkeεk .

Now for K we take

F (ε) =
∑
k

rkλk(ε)eεk ,

with λk(ε) ∈ [1, 2] that depends only on ε0, . . . εk−1.



Idea 2

That is, when we construct the 4 children of the square Q of
generation k, we place the next cubes at distance λQr

d from the
center xQ .

F (ε) =
∑
k

rkλk(ε)eεk ,

Easy to check: K = F (4N) is a bi-lipschitz image of K0, and
Ahlfors regular of dimension d .

We have a natural measure µk on Kn, such that µn(Q) = 4−n for
each cube Q of generation n.
And the natural limit µ of the µn on K .
Here is a natural harmonic function g : set, for z ∈ R2 \ K ,

g(z) = µn ∗ ln(| · |)(z) =

∫
K

ln(|z − x |)dµ(x).



Idea 3

g(z) = µn ∗ ln(| · |)(z) =

∫
K

ln(|z − x |)dµ(x).

The integral converges because µ is Ahlfors regular.
At ∞, g(z) ∼ ln(|z |), which not bad.
It would be great if we had g(z) = 0 on K , but of course this
won’t happen.
It will be equally good if g is a constant c on K , because then
G = g − c is the Green function! so that is what we aim for, if K
is chosen well.

Missing piece, which I won’t do: check that

g(z)− c ' dist(z ,K )d ,

and then conclude using the relation between G (z) at a corkscrew
point and harmonic measure of the corresponding disk.



We discretize

Call Qn the set of cubes of generation n, and xQ the center of
Q ∈ Qn. Then set

gn(z) = µn ∗ ln(| · |)(z) = 4−n
∑
Q∈Qn

ln(|z − xQ |). (1)

We want to arrange things so that gn is almost constant on Kn (or
the union of the circles centered on the xQ and radius rn, say).
Something like

sup
Kn

gn(z)− inf
Kn

gn(z) ≤ C4−n (2)

The main question: assuming (2) at generation n, how do we
arrange (2) at generation n + 1.

That is, how do we choose the λQ to make the oscillation of gn+1

smaller?



Idea 5

Take d and r very small. This way, gn is roughly constant near
each cube Q ∈ Qn, and the differences between cubes Q is not
large.
Call Qj the four children of Q.
Then write gn+1(z)− gn(z) for points z near Q.
There are a few terms, that are not small, but are roughly the
same on all the ∂Qj across Q, so we we don’t care, they feed the
constant.
And the main term is something like

δn(z) = 4−n−1
∑
j

[
ln(|z − xQj

|)− ln(|z − xQ |)
]

= 4−n−1
∑
j

ln
( |z − xQj

|
|z − xQ |

.
) (3)



Idea 6

δn(z) = 4−n−1
∑
j

ln
( |z − xQj

|
|z − xQ |

)
For z in a circle of fixed small radius around xQj

, |z − xQj
| is always

the same (across the whole set), while

|z − xQ | ' |xQi
− xQ | = cλQr

n.

That’s it. We are adding essentially equal terms, minus
4−n−1 ln(λQ).
If gn was larger than average near Q, we take λQ small. Otherwise,
we take λQ larger. This allows us to add a varying constant of size
4−n−1 ln(λQ) to gn near Q, which turns out to be enough to
compensate variations of the averages of gn among the Q.



Last comments about the proof

Taking r and d small simplifies the proof: the scales are more and
more independent, and the extra errors are smaller. Then we sort
of optimized.

The effect of increasing the distances |xQj
− xQ | ∼ λQrn is to

increase the chance that a Brownian path that passes nearby will
land on the Qn+1

` . But we are lucky that we din’t need to evaluate
the absorption probabilities and we can sum potentials instead.

Again, once we know that g ≡ c on K , we can estimate the Green
function G∞ = g − c , and then use G to estimate ω.
For instance we can estimate ∇g = µ ∗ 1

z near K .

We could do other shapes (for instance, K ⊂ R), but squares seem
to be nice.



Snowflakes by Polina Perstneva

Figure: Cutting the domain above into puzzle pieces

Figure: Filling of two pieces of puzzle by red and green curves

... Thanks!



Snowflakes by Polina Perstneva

Figure: Cutting the domain above into puzzle pieces

Figure: Filling of two pieces of puzzle by red and green curves

... Thanks!


