14 mai 2020

Zhangchi Chen (Laboratoire de Mathématiques d'Orsay)
Explicit differential invariants

Plus d'infos...

Résumé : Fix certain Lie group G like SL(n,R), given two manifolds M and N in R^n, when is there a diffeomorphism h in G transforming M into N locally ? Such Cartan’s equivalence problem can be solved by computing and comparing differential invariants of the manifolds, namely, G-invariant functions on the jet space of submanifolds.
Inspired by Chern-Moser normal form in CR geometry, one can try to normalize Taylor coefficients of a submanifold. The differential invariants are those coefficients one cannot normalize. In this talk I will introduce the algorithm to compute explicit differential invariants, the unavoidable branching phenomenon, recurrence formulas which describe relations among the invariants, and the homogeneous models.

Notes de dernières minutes : Lien BBB : https://bbb.imo.universite-paris-saclay.fr/b/nic-av7-y4q

Explicit differential invariants  Version PDF

Nir Schwartz, Changzhen Sun, Ayman Rimah (Université Paris-Saclay)
Séminaire ANEDP : doctorants de 2e année [EN LIGNE ]

Plus d'infos...

Lieu : https://bbb.imo.universite-paris-saclay.fr/b/jul-a4t-cq4 (ouvert 10 min avant)

Résumé : 14h : Nir Schwartz : « The full delocalization of eigenfunctions for the quantized cat map »
14h40 : Changzhen Sun : ’’Uniform stability of equilibria for the Navier-Stokes-Poisson system in the inviscid limit.’’
15h20 : Ayman Rimah : “On the quasilinearity of the Water Waves system”

Séminaire ANEDP : doctorants de 2e année [EN LIGNE ]  Version PDF