Préparation du test du 07/05/2010

Calculatrices interdites, formulaire du S1 autorisé. Sauf pour les questions 3. c) et 4. d), on pourra écrire seulement la réponse directement sur la feuille.

- 1. (a) Préciser les valeurs de α telles que l'intégrale $\int_0^1 \frac{dt}{t^{\alpha}}$ soit convergente.
 - (b) Enoncer le théorème de comparaison pour les intégrales de fonctions positives.
- 2. On s'intéresse à l'intégrale $\int_0^1 \ln t dt$.
 - (a) Calculer, en fonction de $m \in]0;1[$, l'intégrale $\int_m^1 \ln t dt$. On pourra intégrer par parties.
 - (b) Donner la nature, et le cas échéant la valeur, de $\int_0^1 \ln t dt$.
- 3. On souhaite étudier la nature de l'intégrale $\int_{1}^{+\infty} \frac{dt}{t^3 + t^2 + 1}$.
 - (a) Comparer, pour tout $t \ge 1$, t^3 avec $t^3 + t^2 + 1$.
 - (b) Rappeler la nature de l'intégrale $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^3}$.
 - (c) Conclure, en rédigeant un raisonnement citant le nom du théorème utilisé après la vérification de ses hypothèses.
- 4. On souhaite étudier la nature de l'intégrale $\int_0^1 \frac{dt}{t^2 + t}$.
 - (a) Comparer, pour tout $t \in]0; 1[$, t^2 avec t. Pour éviter les erreurs, il est conseillé de vérifier sa réponse dans le cas où t = 1/2.
 - (b) Comparer, pour tout $t \in]0; 1[, t^2 + t \text{ avec } 2t = t + t.$
 - (c) Rappeler la nature de l'intégrale $\int_0^1 \frac{\mathrm{d}t}{t}$.

 On admettra que l'intégrale $\int_0^1 \frac{\mathrm{d}t}{2t}$ est de même nature que celle-ci.
 - (d) Conclure, en rédigeant un raisonnement citant le nom du théorème utilisé après la vérification de ses hypothèses.
- 5. (a) Indiquer si la série $\left(\sum_{k\geq 1}\cos k\right)$ est convergente ou divergente.
 - (b) Indiquer si la série $\left(\sum_{k\geq 1} \left(\frac{2k+1}{3k+2}\right)^k\right)$ est convergente ou divergente.
 - (c) Indiquer si la série $\left(\sum_{k\geq 1} \frac{1}{(k!)^2}\right)$ est convergente ou divergente.
 - (d) Calculer $\sum_{k=0}^{+\infty} \frac{1}{3^k}$.

 \rightarrow Correction en page suivante.

Correction préparation du test du 07/05/2010

- 1. (a) Cf. Feuille 6 exercice 2, 3. : l'intégrale est convergente si et seulement si $\alpha < 1$.
 - (b) Soient deux fonctions f et q continues sur un intervalle a;b (a et b peuvent chacun être $\pm \infty$), toutes deux à valeurs positives.
 - 1. Si $\forall x \in]a; b[f(x) \leq g(x)]$ et que $\int_a^b g$ est convergente, alors $\int_a^b f$ est convergente.
 - 2. Si $\forall x \in]a; b[f(x) \ge g(x)]$ et que $\int_a^b g$ est divergente, alors $\int_a^b f$ est divergente.
- (a) Posons l'intégration par parties avec : u'(t) = 1, $v(t) = \ln t$.

On a alors u(t) = t et $v'(t) = \frac{1}{t}$ donc :

$$\int_{m}^{1} \ln t dt = -\int_{m}^{1} t \times \frac{1}{t} dt + \left[t \ln t\right]_{m}^{1}$$
$$= -\int_{m}^{1} dt - m \ln m$$
$$= m - 1 - m \ln m$$

(b) Reste à prendre la limite quand $m \to 0^+$. Rappelons que $\lim_{x \to 0^+} x \ln x = 0$; on conclut donc que $\int_0^1 \ln t dt$ tend vers -1 quand m tend vers 0^+ .

Ainsi l'intégrale proposée est convergente et vaut -1.

- 3. (a) $t^2 + 1$ étant positif, $t^3 + t^2 + 1$ est supérieur ou égal à t^3 , quelque soit $t \in \mathbb{R}$.
 - (b) Cette intégrale est convergente (cf. Feuille 6, exercice 1, question 5.).
 - (c) On a ainsi:

$$\forall t > 1, \quad \frac{1}{t^3 + t^2 + 1} \le \frac{1}{t^3}$$

- Par ailleurs : l'intégrale $\int_{1}^{+\infty} \frac{dt}{t^3}$ est convergente,

- les fonctions $t\mapsto \frac{1}{t^3}$ et $t\mapsto \frac{1}{t^3+t^2+1}$ sont positives sur $[1;+\infty[$, donc les hypothèses du théorème de comparaison pour les intégrales sont réunies et on peut conclure que $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^3 + t^2 + 1}$ est convergente.

- 4. (a) On a $t^2 \le t$ lorsque $t \in]0;1[$ (exemple : $(1/2)^2 = 1/4 \le 1/2$).
 - (b) Ainsi $t^2 + t \le t + t = 2t$ pour tout $t \in]0;1[$.
 - (c) Cette intégrale est divergente (cf. Feuille 6, exercice 1)
 - (d) On a encore:

$$\forall t \in]0;1[, \frac{1}{t^2 + t} \ge \frac{1}{2t}]$$

- Par ailleurs : l'intégrale $\int_0^1 \frac{dt}{2t}$ est divergente,

- les fonctions $t \mapsto \frac{1}{2t}$ et $t \mapsto \frac{1}{t^2 + t}$ sont positives sur]0;1[, donc les hypothèses du théorème de comparaison pour les intégrales sont réunies et on peut conclure que $\int_0^1 \frac{\mathrm{d}t}{t^2 + t} \text{ est divergente.}$

- 5. (a) Le terme général $u_k = \cos k$ n'a pas de limite quand $k \to +\infty$. La série n'est donc pas convergente.
 - (b) On applique la règle de Cauchy; le terme général est $u_k = \left(\frac{2k+1}{3k+2}\right)^k$, il est positif pour $k \ge 0$ et il vérifie :

$$(u_k)^{1/k} = \frac{2k+1}{3k+2} \to \frac{2}{3}$$
 (quotient des termes prépondérants)

Cette limite est < 1, donc la série est convergente.

(c) On applique la règle de D'Alembert; le terme général est $u_k = \frac{1}{(k!)^2}$, il est positif et il vérifie :

$$\frac{u_{k+1}}{u_k} = \frac{(k!)^2}{((k+1)!)^2} = \left(\frac{k!}{(k+1)!}\right)^2 = \left(\frac{1}{k+1}\right)^2 \to 0$$

Cette limite est < 1, donc la série est convergente

(d) Calculons le nème terme de la somme partielle de cette série :

$$S_n = \frac{1}{3^0} + \frac{1}{3^1} + \ldots + \frac{1}{3^n}$$

 S_n est donc la somme de n+1 termes d'une suite géométrique, et le premier terme dans la somme est 1. On a donc :

$$S_n = 1 \times \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}}$$
$$= \frac{3}{2} \times \left(1 - \frac{1}{3^{n+1}}\right)$$
$$\to \frac{3}{2} \text{ quand } n \to +\infty$$

D'où

$$\sum_{k=0}^{+\infty} \frac{1}{3^k} = \frac{3}{2}$$