FORMULAIRE

Tableaux de dérivées

f(x)		f'(x)	f(x)		f'(x)		
x^n	$n \in \mathbb{N}$	nx^{n-1}	e^{ax}	$a \in \mathbb{R}$	ae^{ax}		
x^{α}	$\alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$	a^x	$a \in \mathbb{R}^{+*}$	$(\ln a)a^x$		
\sqrt{x}		$\frac{1}{2\sqrt{x}}$	$\ln x$	$x \in \mathbb{R}^{+*}$	$\frac{1}{x}$		
$\sin x$		cos x	$\arcsin x$		$\frac{1}{\sqrt{1-x^2}}$		
$\cos x$		$-\sin x$	$\arccos x$		$\frac{-1}{\sqrt{1-x^2}}$		
$\tan x$		$1 + \tan^2 x$	$\arctan x$		$\frac{1}{1+x^2}$		

Tableaux de primitives

f(x)	$F(x) = \int f(x) dx$	f(x)		$F(x) = \int f(x) dx$
$x^n \qquad n \in \mathbb{N} - \{-1\}$	$\frac{1}{n+1}x^{n+1}$	e^{ax}	$a \in \mathbb{R}$	$\frac{1}{a}e^{ax}$
$x^{\alpha} \qquad \alpha \in \mathbb{R} - \{-1\}$	$\frac{1}{\alpha+1}x^{\alpha+1}$	a^x	$a \in \mathbb{R}^{+*}$	$\frac{1}{\ln a}a^x$
\sqrt{x}	$\frac{2}{3}x\sqrt{x}$	$\ln x$	$x \in \mathbb{R}^{+*}$	$x \ln x - x$
$\sin x$	$-\cos x$	$\tan x$		$-\ln \cos x $
$\cos x$	$\sin x$			

Formules tigonométriques:

$$\frac{\cos(2x) + \cos(2x) - \sin(2x)}{\cos(2x) - \cos(2x) - \sin^2(x)} = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) \qquad \sin(2x) = 2\sin(x)\cos(x)$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2} \qquad \sin^2(x) = \frac{1 - \cos(2x)}{2}$$
Formule de l'erreur d'approximation dans la méthode des trapèzes :

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b] et deux fois dérivable sur [a,b] telle que $|f''(x)| \leq K$, $\forall x \in]a, b[$, alors la valeur approchée \widetilde{I} de $I = \int_a^b f(x) \, dx$, obtenue par la méthode

des trapèzes à n sous-intervalles, vérifie : $\widetilde{I} - \varepsilon_n \le I \le \widetilde{I} + \varepsilon_n$ avec $\varepsilon_n = K \frac{(b-a)^3}{12n^2}$.

Propriétés de convergence des séries à termes positifs :

prop. 1 (théorème de conparaison avec une intégrale) : Soit f est une fonction continue

positive et décroissante sur $[a, +\infty[$. Si on pose $u_n = f(n)$ pour tout n entier $\geq a$:

alors la série $\sum_{n \geq a} u_n$ et l'intégrale généralisée $\int_a^{+\infty} f(t) dt$ sont de même nature.

prop. 2 (théorème de conparaison de deux séries):

Soient (u_n) et (v_n) deux séries à termes positifs :

Si
$$\forall k, \ u_k \leq v_k$$
 et que $\sum v_k$ est convergente, alors $\sum u_k$ l'est aussi. Si $\forall k, \ u_k \leq v_k$ et que $\sum u_k$ est divergente, alors $\sum v_k$ l'est aussi.

prop. 3 : Si les termes u_n d'une séries à termes positifs (non nuls) vérifient le critère de d'Alembert: ou bien

le critère de d'Alembert : ou bien le critère de Cauchy :
$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$$

$$\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$$
 alors

si l < 1 la série $\sum u_k$ est convergente, si l > 1 la série $\sum u_k$ est divergente,

si l=1 on ne peut rien conclure.