TD nº 4 – Fonctions de plusieurs variables

1. Continuité et dérivées partielles premières

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

- (1) Montrer que les fonctions $x \mapsto f(x,0)$ et $y \mapsto f(0,y)$ sont continues en 0.
- (2) La fonction f est-elle continue en (0,0)?

Exercice 2. Pour chacune des fonction suivantes définies sur $\mathbb{R}^2 \setminus \{(0,0)\}$, dire si elle admet un prolongement par continuité à \mathbb{R}^2 .

(1)
$$f(x,y) = \frac{x^2y^2}{x^2 + xy + y^2}$$
.

(2)
$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$$
.

(3)
$$f(x,y) = \frac{x^2y^2}{x^4 + y^4}$$
.

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0 \\ y & \text{si } x = 0 \end{cases}$$

- (1) Montrer que f admet des dérivées partielles au point (0,0).
- (2) La fonction f est-elle continue au point (0,0)?

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 . On pose

$$g(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{si } x = y \end{cases}$$

- (1) On pose $\Delta = \{(x, x), x \in \mathbb{R}\}$. Montrer que g est de classe C^1 sur $\mathbb{R}^2 \setminus \Delta$.
- (2) En utilisant un développement limité, montrer que g est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que

$$x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 0.$$

- (1) On pose, pour $r, \theta \in \mathbb{R}$, $F(r, \theta) = f(r\cos(\theta), r\sin(\theta))$. Calculer les dérivées partielles de F.
- (2) En déduire l'expression générale de F, puis celle de f.

Exercice 6. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et soit $\alpha \in \mathbb{R}$. Montrer que les assertions suivantes sont équivalentes :

(1) Pour tout $x \in \mathbb{R}^n$ et t > 0, $f(tx) = t^{\alpha} f(x)$.

(2) Pour tout $x \in \mathbb{R}^n$,

$$\sum_{k=1}^{n} x_k \frac{\partial f}{\partial x_k}(x) = \alpha f(x).$$

2. Dérivées partielles secondes

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- (1) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- (2) Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- (3) La fonction f est-elle de classe C^2 ?

Exercice 8. Soit Ω un ouvert non vide de \mathbb{R}^n et soit $f:\Omega\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 . On pose, pour $x\in\Omega$,

$$\Delta f(x) = \sum_{k=1}^{n} \frac{\partial^2 f}{\partial x_k^2}(x).$$

(1) Soit $\varphi: \mathbb{R}_+^* \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 et $f_{\varphi}: \mathbb{R}^n \setminus \{(0,0)\}$ la fonction définie par

$$f_{\varphi}(x) = \varphi(||x||).$$

Calculer Δf_{φ} .

(2) On suppose n=3. Pour $\lambda < 0$, déterminer toutes les fonctions $\varphi : \mathbb{R}^+_* \to \mathbb{R}$ telles que $\Delta f_{\varphi} = \lambda f_{\varphi}$. On pourra montrer que la fonction $t \mapsto t\varphi(t)$ satisfait une équation différentielle simple.

Exercice 9. Soit $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}^2$ une fonction de classe \mathcal{C}^2 telle que

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial x^{2}} = 0.$$
 (1)

- (1) On pose F(u, v) = f(u, uv). Calculer les dérivées partielles secondes de F.
- (2) Résoudre l'équation (1).

3. Extrema

Exercice 10. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la fonction définie par

$$f(x,y) = xye^{x^2 + y^2}.$$

- (1) Calculer les dérivées partielles de f.
- (2) Trouver les points critiques de f.
- (3) Pour chaque point critique, dire si c'est un extremum local.

Exercice 11. On fixe un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$ du plan. Pour $\theta \in [0, 2\pi]$, on note $A(\theta)$ le point du plan de coordonnées $(\cos(\theta), \sin(\theta))$.

- (1) Pour $0 < \theta < \theta' < 2\pi$, déterminer le pérmiètre du triangle $A(0)A(\theta)A(\theta')$. On notera $f(\theta,\theta')$ ce nombre.
- (2) On admet que parmi les triangles inscrits dans un cercle donné, il y en a au moins un dont le périmètre est maximal. Quel est ce périmètre? En déduire tous les triangles inscrits de périmètre maximal.

Exercice 12. Pour chacune des fonctions suivantes définies sur \mathbb{R}^2 , déterminer ses extrema locaux.

- (1) $f(x,y) = x^3 + xy + y^3$.
- (2) $f(x,y) = x^2 + 2\alpha xy + y^2 + 2\beta x + 2\gamma y$, où $\alpha, \beta, \gamma \in \mathbb{R}$ et $\alpha^2 \neq 1$.
- (3) $f(x,y) = \varphi(x) + \psi(y)$, où $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ sont des fonctions de classes \mathcal{C}^2 telles qu'il existe un unique couple $(a,b) \in \mathbb{R}^2$ tel que : $\varphi'(a) = 0 = \psi'(b)$ et $\varphi''(a), \psi''(b) > 0$.