
CLASSICAL SPACES AND QUANTUM
SYMMETRIES

A. FRESLON†

These are notes originally written as a support for a talk on results obtained in collaboration with SIMENG WANG

and FRANK TAIPE in [FTW21]. The talk was intended for an audience with a background in operator algebras, hence

all basics concerning C*-algebras are assumed to be known to the reader.

1 THE QUANTUM SYMMETRY PROBLEM

Non-commutative geometry emerged from the idea of considering non-commutative algebras as
substitutes for classical spaces, for instance when their topological or geometric properties become
ill-behaved (see for instance [Con94] for numerous illustrations of that principle). As soon as such
spaces where considered, the following question arose :

Question. What are the symmetries of a non-commutative space ?

Stated in such generality, the question does not make much sense, but it suggests interesting
problems. To illustrate this, let us focus on the case of C*-algebras, seen as generalizations of
locally compact Hausdorff spaces. Of course, they have a group of ∗-homomorphisms, but could
there be more ? At the same time as the appearance of non-commutative geometry, the concept
of quantum group emerged to unify several situations where Hopf algebraic structures play an
important rôle as generalized symmetries. In particular, compact quantum groups were developed
at that time at the intersection of both worlds and it is therefore natural to wonder whether they
have a systematic interpretation in terms of symmetries of non-commutative spaces.

1.1 THE SETTING

Compact quantum groups are a generalization of the theory of compact groups to the setting
of non-commutative geometry introduced by S.L. WORONOWICZ in [Wor87] and [Wor98]. This
means that the basic object is a “non-commutative compact space”, i.e. a unital C*-algebra. Since
it is intended to play the rôle of the algebra of continuous functions on a fictious object G, we
usually denote it by C(G). We will however simplify the setting here, because we are mainly
interested in the quantum permutation group S+

N (see Definition 1.6 below) which belongs to the
specific class of orthogonal compact matrix quantum groups.

DEFINITION 1.1. An orthogonal compact matrix quantum group1 is given by a unital C*-algebra
C(G) together with N2 generators (ui j)1Éi, jÉN such that

(1) U = [ui j]1Éi, jÉN is an orthogonal matrix, i.e. for all 1É i, j É N, u∗
i j = ui j and

N∑
k=1

uiku jk = δi j.1C(G) =
N∑

k=1
ukiuk j.

(2) There exists a (necessarily unique) ∗-homomorphism2 ∆ : C(G) → C(G)⊗C(G) such that for
all 1É i, j É N,

∆(ui j)=
N∑

k=1
uik ⊗uk j.
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For reasons which will become clearer later on (see Section 2.1), U is called the fundamental
representation of G.

The basic example is of course that of “usual” (we say “classical”) groups :

Example 1.2. Let G ⊂ON be a closed subgroup and let ci j ∈ C(G) be the function sending a matrix
g ∈ G to its (i, j)-th coefficient. Then, the elements (ci j)1Éi, jÉN satisfy Condition (1) because all
elements of G are orthogonal matrices, and Condition (2) holds by using the map ∆ induced by
the matrix product : identifying C(G)⊗C(G) with C(G×G), we have

∆( f ) : (g,h) 7→ f (gh).

Eventually, by the Stone-Weierstrass theorem, the coefficient functions generate a dense subalge-
bra of the algebra C(G) of continuous complex-valued functions on G. In conclusion any compact
group of orthogonal matrices is an orthogonal compact matrix quantum group, and such kind of
quantum groups will be called classical3.

Because of the analogy between ∆ and the matrix product, the former is called the coproduct
of the quantum group G. Just like classical groups, quantum groups can act on commutative
and non-commutative spaces. For the sake of simplicity, we will focus here on actions on unital
C*-algebras.

DEFINITION 1.3. A continuous right action4 of G on a unital C*-algebra A is a ∗-homomorphism

α : A → A⊗C(G)

satisfying the equations

(α⊗ id)◦α= (id⊗∆)◦α & (id⊗ε)◦α= idA,

where ε : C(G)→C is the unique5 ∗-homomorphism such that ε(ui j)= δi, j.

Let us briefly explain the meaning of these two equations. The first one translates the fact
that we have a “quantum semigroup” action, that is to say compatibility of the action map with
the group operation. As for the second one, it is analogous to the fact that the neutral element
acts trivially.

Remark 1.4. The continuity of the action is not given by a specific axiom since it is contained in
the existence of the ∗-homomorphism α. The reader is invited to check that if X is a compact
space and A = C(X ), then the notion above coincides for classical groups with that of a continuous
right action. Moreover, there is nothing specific about the action being on the right, the definition
of left actions being similar.

Observe that any compact (quantum) group can act on any (not necessarily commutative)
space through the trivial action

αtriv : x 7→ x⊗1.

Therefore, to consider that a quantum group embodies genuine quantum symmetries of a space,
one should rule out this kind of example. There are several notions for that, and we will now
define two of them.

DEFINITION 1.5. An action α of a compact quantum group G on a C*-algebra A is said to be

• Faithful if there is no C*-subalgebra C(H)⊂ C(G) such that

∆(C(H))⊂ C(H)⊗C(H)

and
α(A)⊂ A⊗C(H);

• Ergodic if
Fix(α) := {x ∈ A |α(x)= x⊗1}=C.1A.

Assuming G to be classical in the definition of faithfulness, it follows that C(H) is the algebra of
functions on a quotient group of G. The condition therefore means that the action does not factor
through any quotient. As for the second one, it can be shown to be equivalent to the existence of
a unique state in A which is invariant under the action. Classically, the state corresponds to a
measure on the space which is therefore ergodic with respect to the action, hence the name.
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1.2 THE QUANTUM PERMUTATION GROUPS

The simplest of all examples is certainly the finite-dimensional commutative C*-algebras, i.e.
CN . It turns out that besides its classical ∗-automorphism group SN , this space has quantum
symmetries. This was first shown by SH. WANG in a seminal paper [Wan98] by constructing the
following quantum group :

DEFINITION 1.6. We denote by C(S+
N ) the universal C*-algebra with generators (ui j)1Éi, jÉN sat-

isfying the following relations :

(1) u2
i j = ui j = u∗

i j for all 1É i, j É N ;

(2)
N∑

k=1
uik = 1=

N∑
k=1

uk j for all 1É i, j É N.

Because the elements ui j are orthogonal projections, they are pairwise orthogonal on each
row and column since their sum is a projection. This shows that U = [ui j]1Éi, jÉN is orthogonal. As
for the existence of the map ∆, it follows from the universal property6 of C(S+

N ). Therefore, this
defines an orthogonal compact matrix quantum group called the quantum permutation group and
denoted by S+

N .
The quantum permutation group naturally acts on CN . Indeed, denoting by (e i)1ÉiÉN the

canonical basis of CN , we can set

αU (e i)=
N∑

i=1
e j ⊗ui j.

It is very easy to check that this action is ergodic7, and even more is true.

THEOREM 1.7 (WANG) Let G be a compact quantum group and let α be an action of G on
CN . Then, there is a surjective ∗-homomorphism π : C(S+

N )→ C(G) such that

α= (id⊗π)◦αU .

In other words, any action on CN factors through S+
N , so that the latter can rightfully be

termed the quantum automorphism group of CN . Despite that remarkable result, it turns out
that the general situation is very difficult to understand. For instance, SH. WANG showed in
[Wan98] that if A is a non-commutative finite-dimensional C*-algebra, then there it has no quan-
tum automorphism group. The reason is that any action of a quantum group automatically fixes
a state on the C*-algebra, but no non-trivial action can fix all of them.

This suggests that one considers an extra structure on the space and restricts attention to
actions preserving that structure. But then, exploring commutative spaces leads to a series of
negative results. Let us briefly summarize some of them,

• If M is a compact connected smooth manifold, and if G is a quantum group acting faithfully
and smoothly8 on M, then G is a subgroup of the classical diffeomorphism group Diff(M) (D.
GOSWAMI [Gos20]) ;

• If (M, g) is a compact connected Riemaniann manifold with strictly negative curvature and G
is a quantum group acting faithfully isometrically9 on the underlying geodesic metric space,
then G is a subgroup of the classical isometry group Iso(X ,d) (A. CHIRVASITU [Chi16]) ;

• Almost all compact metric spaces (in the Baire sense) have trivial quantum automorphism
group, i.e. any action of a compact quantum group on them must be trivial (A. CHIRVASITU

[Chi21]).

The first two results critically use connectedness, and combined with the fact that the only
known ergodic compact quantum group action on a classical space is an action on a discrete space,
this led to the conjecture that connected compact spaces should not have any quantum symmetry
in general. However, it is extremely difficult to say something about actions of arbitrary compact
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quantum groups on arbitrary compact spaces. One way around can be to consider actions of a
given compact quantum group on arbitrary spaces. This is the line of thought triggered by the
following question of D. GOSWAMI :

Question. Can S+
N act faithully on a connected compact space ?

It turns out that any action of S+
N is either trivial or faithful, and that there does exist non-

trivial action on classical connected spaces. This was shown by H. HUANG in [Hua13] through an
explicit construction.

Example 1.8 (HUANG). Let Y be a compact connected space. If YN denotes the disjoint unions of
N copies of Y , then there is an isomorphism

C(YN )≃ C(Y )⊗CN .

Letting S+
N act trivially on the first tensorand and through αU on the second one then provides an

action on YN . Of course, YN is not connected, but we can make it so by gluing the various copies
together. To do this, let Z ⊂Y be a closed subset and consider an element

a =
N∑

i=1
f i ⊗ e i ∈ C(Y )⊗CN

such that for any z ∈ Z and any 1 É i, j É N, f i(z) = f j(z). Then, if evz : C(Y ) → C denotes the
evaluation map at some z ∈ Z, we have

(evz ⊗ e∗k ⊗ id)◦α(a)= (evz ⊗ id⊗ id)

(
N∑

i=1

N∑
j=1

f i ⊗ e j ⊗ui j

)

=
N∑

i=1
f i(z)uik

= f1(z)
N∑

i=1
uik

= f1(z).

This means that if A ⊂ C(YN ) denotes the subalgebra of functions which all coincide on Z,
then α(A) ⊂ A⊗C(S+

N ). In other words, we have produced an action on A. Gelfand duality then
shows that A = C(X ), where X is the quotient of YN identifying all copies of Z pointwise. This is
compact and connected, and not a point if Z ̸=Y .

There remains to check that the action is non-trivial. To see this, let x ∉ Z and let f ∈ C(Y ) be
such that f (x) = 1 and f (z) = 0 for all z ∈ Z (such a function exists by Urysohn’s Lemma). Setting
a = f ⊗ e1, we see that

(evx ⊗ e∗2 ⊗ id)◦α(a)= u12 ̸= 0,

so that α(a) ̸= a⊗1.

Observing that the action is nevertheless not ergodic (consider constant tuples of non-constant
functions), H. HUANG asked the following strengthened question :

Question. Can S+
N act ergodically on a connected compact space ?

We will explain hereafter why the answer is no, but this first requires taking a different look
at actions.

2 THE CATEGORICAL SIDE OF LIFE

2.1 TANNAKA-KREIN DUALITY

Quantum groups, like their classical analogues, can be considered under several points of view.
In particular, the Tannaka-Krein duality established by S.L. Woronowicz in [Wor88] shows that
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they can be seen as a C*-tensor category10 equipped with a specific functor. Let us explain how
this works.

Let G be a compact quantum group with fundamental representation U . It defines a map
ρU : CN →CN ⊗C(G) through the formula

ρU (e i)=
k∑

j=1
e j ⊗ui j

which is the same, if G is classical, as a unitary representation of the underlying group. It is
straightforward to check that

(ρU ⊗ id)◦ρU = (id⊗∆)◦ρU & (id⊗ε)◦ρU = idCN .

These are the defining equations of an action, except that ρU is only linear and not multiplicative
in general. Such a map is therefore called a representation of G, the terminology being justified
by the classical case.

Example 2.1. Let G be a compact group of matrices. Then, a linear map ρ : V → V ⊗C(G) for
some finite-dimensional vector space V . For g ∈ G, let evg be the corresponding evaluation map
and set

φg : v ∈V 7→ (id⊗evg)◦ρ(v) ∈V .

This is a linear map and if we assume that (ρ⊗ id)◦ρ = (id⊗∆)◦ρ, then

φg ◦φh = (id⊗evg)◦ρ ◦ (id⊗evh)◦ρ
= (id⊗evg ⊗evh)◦ (ρ⊗ id)◦ρ
= (id⊗evg ⊗evh)◦ (id⊗∆)◦ρ
= (id⊗(evg ⊗evh)◦∆)◦ρ

But for a function f ∈ C(G),

(evg ⊗evh)◦∆( f )= f (gh)= evgh( f )

so that in the end, φg ◦φh =φgh. Moreover, because evId = ε, we have φId = IdV . This means that
φ : G×V →V is a linear action of G i.e. a representation, which is moreover continuous.

For a classical group of orthogonal matrices, ρU is just the inclusion G ,→ MN (C) and this map
“contains” in a sense all the information about the group G. And it does indeed, even if G is a
quantum group. To explain this, let us first consider the tensor powers of ρU , that is to say, for
n ∈N, the representations

ρ⊗n
U :

(
CN

)⊗n →
(
CN

)⊗n ⊗C(G)

given by

ρ⊗n
U (e i1 ⊗·· ·⊗ e in )=

N∑
j1,··· , jn=1

e j1 ⊗·· ·⊗ e jn ⊗ui1 j1 · · ·uin jn .

We want to build a category with (ρ⊗n
U )n∈N as objects, but we lack morphisms for the moment. The

natural ones to consider are the following :

DEFINITION 2.2. A linear map T :
(
CN)⊗n → (

CN)⊗m is an intertwiner if

(T ⊗ id)◦ρ⊗n
U = ρ⊗m

U ◦T.

We can now define the category Rep(G,U) whose objects are tensor powers of ρU and mor-
phisms are intertwiners. This is a C*-tensor category and there is moreover a unitary tensor
functor11 to the category of finite-dimensional Hilbert spaces

FU : Rep(G,U)→Hilb f

sending ρ⊗n
U to (CN )⊗n and being the identity on morphisms. We now have everything in hand to

state the celebrated duality theorem proven by S.L. WORONOWICZ in [Wor88].
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THEOREM 2.3 (WORONOWICZ) Let C be a C*-tensor category with object set N and let
F :C→Hilb f be a unitary tensor functor. Then, there exists a quantum group G with funda-
mental representation U such that C is isomorphic to Rep(G,U) and F is isomorphic to FU .
Moreover, the pair (G,U) is unique up to isomorphism.

2.2 A DUALITY THEOREM FOR ERGODIC ACTIONS

Theorem 2.3 tells us that Rep(G,U) is in a sense “the same thing” as the quantum group G. As
a consequence, any notion concerning quantum groups should have an equivalent categorical
description, usually in terms of a specific functor on Rep(G,U). Let us apply this principle to
ergodic actions.

Given an ergodic action α of G on a unital C*-algebra A, we would like to build a functor Fα

encoding its properties. We first have to find the images of the objects ρ⊗n
U . To do this, observe

that α is in particular a representation of G on the vector space underlying A. We can therefore
try to “compare” it with ρ⊗n

U by considering the subspaces

An =Fix
(
A⊗ (CN )⊗n

)
,

where the action ρn : A⊗ (CN )⊗n → A⊗ (CN )⊗n ⊗C(G) is given by12

ρn(x⊗v)=α(x)13ρ
⊗n(v)23.

It then follows from the general theory developped by F. BOCA in [Boc95] that

1. An is finite-dimensional for all n ∈N ;

2.
⋃

n∈N An is dense13 in A ;

3. If T : (CN )⊗n → (CN )⊗m is an intertwiner, then (idA ⊗T) commutes with the corresponding
representations of G, hence restricts to a map from An to Am.

This gives a unitary functor
Fα : Rep(G,U)→Hilb f

sending ρ⊗n
U to An. The only issue is with the tensor structure. Of course, there needs to be an

issue since we are consider actions and we know that unitary tensor functors recover quantum
groups. And indeed, it turns out that even though there always exist embeddings

ın,m : An ⊗ Am ,→ An+m

given by ın,m(x⊗ y) = x12 y13, these fail to be surjective in general. We therefore need to weaken
our definition of a tensor functor.

DEFINITION 2.4. Let C be a C*-tensor category with object set N. A unitary functor

F :C→Hilb f

is said to be a weak unitary tensor functor if there exist embeddings

ın,m : F (n)⊗F (m) ,→F (n+m)

for all n,m ∈N, satisfying some natural compatibility conditions14.

We can now state the first important theorem of our work [FTW21, Thm 3.3].

THEOREM 2.5 (F.-TAIPE-WANG) Let G be a quantum group and let F be a weak unitary
tensor functor on Rep(G,U). Then, there exists an ergodic action α of G on a unital C*-algebra
A such that F is isomorphic to Fα.
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Proof. We will not explain the proof here, but simply mention that the result is a variant of
a similar reconstruction theorem by C. PINZARI and J. ROBERTS in [PR08]. The difference is
that they use a functor defined on the category of all finite-dimensional representations while our
functor is defined on a smaller full subcategory. This entails differences in the proofs, even though
the spirit is the same. Let us also mention that similar results were obtained by N. NESHVEYEV

for abritrary (not necessarily ergodic) actions, see [Nes14]. ■
One can go futher in that direction and try to characterize properties of the action in terms

of Fα. This is done for one of the most important properties, that of being (braided commutative)
Yetter-Drinfeld. We refer to [FTW21, Sec 3.2 and Appendix A] for more details.

3 APPLICATION TO QUANTUM SYMMETRIES

The work [FTW21] gives two applications of Theorem 2.5. The first one is the construction of
ergodic actions of a given quantum group. Indeed, there is a family of quantum groups called easy
quantum groups (introduced by T. BANICA and R. SPEICHER in [BS09]) for which the category
Rep(G,U) has a nice combinatorial description based on partitions of finite sets. One may there-
fore take advantage of the underlying combinatorics to build weak unitary tensor functors, and
then investigate the corresponding actions. This is the subject of [FTW21, Sec 4] but we will not
say anything more about it here.

3.1 THE MAIN RESULT

The other application is the “inverse quantum rigidity problem”, that is to say investigating the
classical spaces on which a given quantum group cannot act ergodically. In that direction, we
obtained in [FTW21, Thm 6.5] the following result :

THEOREM 3.1 (F.-TAIPE-WANG) Let X be compact connected topological space. Then, S+
N

cannot act ergodically on X unless it is a point.

We will now explain the proof of this result. But before, let us mention that it also works
for other important examples of quantum groups, and in particular for all easy quantum groups
corresponding to non-crossing partitions in the sens of [BS09] (see [FTW21, Thm 6.7]).

The proof requires a bit more detail on the representation theory of S+
N . More precisely, a

representation is said to be irreducible if its self-intertwiners form a one-dimensional space. The
irreducible representations of S+

N were classified by T. BANICA in [Ban99].

THEOREM 3.2 (BANICA) The irreducible representations of S+
N can be indexed by the inte-

gers in such a way that ρ0 is the trivial representation (the one underlying the trivial action
on C), ρU = ρ0 ⊕ρ1 and for any n ∈N,

ρ1 ⊗ρn = ρn−1 ⊕ρn ⊕ρn+1.

A straightforward induction yields the more general formula

ρk ⊗ρn =
k+n⊕

i=|k−n|
ρ i. (1)

Now if X is a compact space and α an ergodic action of S+
N on C(X ), we have a corresponding weak

unitary tensor functor Fα. This is only defined on tensor powers of ρU , but standard arguments
enable to extend it to all finite-dimensional representations and in particular to all irreducible
ones. The idea is then that the commutativity of X forces some relations on the possible images
of the representations ρn.

To be more precise, we need to introduce some notations. For k ∈N, it follows from Equation (1)
that (CN )⊗k contains a unique subrepresentation isomorphic to ρk. Denoting by Hk the subspace
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on which it acts and using once again Equation (1), there exists for each 0 É n É 2k a unique
subspace of Hk ⊗ Hk such that the corresponding subrepresentation of ρk ⊗ ρk is ρn. We will
denote by Pk,k

n the orthogonal projection onto that subspace. By definition, this is an intertwiner,
hence once the functor Fα is extended to all finite-dimensional representations it makes sense to
consider Fα(Pk,k

n ).

Lemma 3.3. With the previous notations, assume that Fα(Pk,k
n ) ̸= 0 for some n Ê 2 and k Ê n/2.

Then, the range of Pk,k
n is contained in an eigenspace of the flip map σk on Hk ⊗Hk.

Proof. Theorem 2.5 comes with an explicit description of A by generators and relations expressed
in terms of irreducible representations. Then, commutativity of A implies that some sum involv-
ing all subrepresentations of ρk ⊗ρk is invariant under the flip map. But since ρn appears with
multiplicity one in ρk ⊗ρk, each summand of the previous sum must itself be invariant under the
flip map and the result follows. We refer to [FTW21, Lem 6.1] for details. ■

The main virtue of the necessary condition appearing in Lemma 3.3 is that it can be directly
checked by exhibiting vectors which are neither symmetric nor anti-symmetric.

Proposition 3.4. Let n Ê 2. Then, there is a vector in the range of Pk,k
n which is not symmetric nor

anti-symmetric. Therefore, Fα(Pk,k
n )= 0 for any action α on a classical space.

Proof. The proof is done by building an explicit vector and checking that it is not an eigenvector
for the flip map σ. The crucial point here is that we have a good combinatorial description of the
projection Pk,k

n given in [FW16]. We refer to [FTW21, Prop 6.4] for details. ■
Bringing together the two previous facts, one can eventually prove Theorem 3.1.

Proof of Theorem 3.1. In the same way as we can decompose A using the representations ρ⊗n
U , we

can decompose it using the irreducible representations. By the general theory of [Boc95], this
yields finite-dimensional subspaces A(n) for all n ∈N such that

A = ⊕
n∈N

A(n)

is dense in A and A(n) is equivalent as a representation to a direct sum of copies of ρn. Let now k be
the smallest strictly positive integer such that A(k) ̸= 0. Using once again the explicit description
of A in terms of Fα, we see that given x, y ∈ A(n), the product xy must lie in A(0)⊕A(1) ⊂ A(0)⊕A(k).
As a consequence,

A′ = A(0) ⊕ A(k)

is a finite-dimensional C*-subalgebra15 of A of dimension at least 2. In particular, it contains a
non-trivial projection, contradicting connectedness of X . ■

3.2 FURTHER QUESTIONS

This result, though satisfying, raises other questions. For instance, we still do not know of any
classical space, apart from finite ones, on which S+

N can act ergodically. It is therefore tempting to
conjecture that such a space must be very far from connected, and the next question pushes that
idea to the extreme :

Question. If S+
N acts ergodically on a compact space X, then does it follow that X is finite ?

There are weaker notions of being “far from connected” than discreteness. For instance, one
could soften the previous question by asking whether X needs to be totally disconnected. Since
the Cantor set is a particularly nice example of totally disconnected but not dicrete space, inves-
tigating its quantum symmetries could be a first step in that direction.

If we drop the commutativity assumption, very little is known. Of course S+
N can act non-

trivially on many non-commutative C*-algebras (starting with C(S+
N ) itself), but as we saw in the

proof of Theorem 3.1 the key property of connectedness that we used is the absence of non-trivial
projection. The next question is therefore a natural generalization.
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Question. Can S+
N act ergodically on a projectionless C*-algebra ?

Eventually, going back to H. HUANG’s example at the beginning, we may even wonder whether
it is possible to classify all actions of S+

N on a compact topological space. Indeed, given an action
on X , we have by Gelfand duality that C(X )α = C(Y ) for some quotient space X ↠ Y . The fibres
are the orbits in the sense of [Hua16], on which the action is ergodic by [Hua16, Thm 4.15].
Therefore, a positive answer to the first question above would give us more information on X . It
is quite unclear however how far this can be pushed. Let us just summarize this as a general
question :

Question. What can be said of a general non-trivial action of S+
N on a compact space X ?
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NOTES

1. From now on we will simply write “quantum group” since this is the only kind of quantum groups we will consider.
Note that even the terminology “orthogonal compact matrix quantum group” is not completely accurate since we are
furthermore assuming the quantum group to be of so-called Kac type. We will however not enter these details here.

2. All tensor products of C*-algebras in this document are maximal.

3. One may prove, using Gelfand duality, that conversely any quantum group with commutative C*-algebra is classical,
see for instance [NT13, 1.1.2].

4. Abbreviated to “action” in the sequel.

5. Consider the abelianization map πab : C(G) → C(G)ab. As stated earlier, C(G)ab is isomorphic to C(G) for a compact
group of orthogonal matrices G. Composing πab with the evaluation at the identity matrix then yields the existence of
ε. Uniqueness follows from the definition.

6. Simply check that the elements vi j =
N∑

k=1
uik ⊗uk j satisfy all the defining relations.

7. If x =
N∑

i=1
λi e i is fixed, then (e∗k ⊗ id)◦α(x)=λk.1 for all 1É k É N. However, direct computation yields

(e∗k ⊗ id)◦α(x)=
N∑

i=1
λiuik

so that λk =
N∑

i=1
λiuik. Multiplying that equation by u jk for some 1 É j É k leads to λku jk = λ ju jk so that all the

coefficients are equal, hence x =λ.1.

8. This means that α(C ∞(M))⊂C ∞(M) and that the span of α(C ∞(M))(1⊗C(G)) is dense in C ∞(M)⊗C(G) in the Fréchet
topology.

9. An action on a metric space (X ,d) is said to be isometric if α(dx)(y)= S ◦α(dy)(x) for all x, y ∈ X , where dx : y 7→ d(x, y)
and S : C(G)→ C(G) is the unique anti-homomorphism such that S(ui j)= u ji . This is called the antipode of G.

10. See for instance [NT13, Chap 2] for details on that notion.

11. Being “unitary’ means that it commutes with taking adjoints on morphisms, while being “tensor” means that there are
isomorphisms

FU (ρ⊗n
U )⊗FU (ρ⊗n

U )≃FU
(
ρ⊗(n+m)

U

)
which satisfy a set of natural compatibility conditions (see for instance [NT13, Def 2.1.3]).

12. We use here the leg-numbering notations : if T is an operator acting on a tensor product of two vector spaces, then Ti j
is its extension to a larger tensor product acting only on the i-th and j-th tensorands.

13. Note that the union is not increasing in general, but the inclusion An.Am ⊂ An+m always holds.

14. These are straightforward adaptations of the compatibility conditions between the isomorphisms giving a usual tensor
structure on a functor.

15. We have not proven that A′ is stable under the involution, but this directly follows from the definition of the involution
in the reconstruction theorem together with the fact that all the irreducible representations of S+

N are self-conjugate.
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