
MATRICIAL APPROXIMATION OF QUANTUM AUTOMORPHISM GROUPS OF GRAPHS

AMAURY FRESLON

Abstract. We report on a joint work [BCF20] with M. Brannan and A. Chirvasitu investigating three
approximation properties "by matrices" for quantum permutation groups and quantum reflection
groups: the Connes embedding property, residual finite-dimensionality and inner linearity.

1. Introduction

We should start with a disclaimer: this text will only be concerned with the “most simple”
examples of quantum automorphism groups of graphs, namely the quantum permutation groups
S+
N and the quantum reflection groups H s+

N . However, it is our hope that some of the ideas used
in this work carry to more general quantum automorphism groups of graphs. These notes come
from talks given for audiences with sometimes no operator algebra background, but at least a
strong algebra culture. This is why we decided to work in the algebraic setting.

The quantum permutation groups were introduced by S. Wang in [Wan98] and have been stud-
ied from then on by operator algebraists. Moreover, they recently attracted attention from other
communities due to a connection with quantum information theory (see for instance [LMR20]),
based on so-called graph isomorphism games and the notion of quantum permutation. To define
such a quantum permutation, first note that classical permutations can be seen as specific ma-
trices, with only 1’s and 0’s, the sum on any row and column being 1. Since measurement in
quantum mechanics is based on Hilbert space projections, one may give the following tentative
generalization:

Definition 1.1. A quantum permutation of size N is a matrix (pij)1⩽i,j⩽N where pij ∈ B(H) for some
fixed Hilbert space H and such that for all 1 ⩽ i, j ⩽N ,

p∗ij = pij = p2
ij and

N∑
k=1

pik = IdH =
N∑
k=1

pkj .

To investigate these objects, it is natural to introduce a universal algebra of which they are
representations. This gives a possible definition of the quantum permutation groups.

Definition 1.2. The quantum permutation algebra O(S+
N ) is the universal ∗-algebra over C gener-

ated by N 2 elements (uij)1⩽i,j⩽N such that

• p∗ij = pij = p2
ij for all 1 ⩽ i, j ⩽N ,

•
N∑
k=1

uik = 1 =
N∑
k=1

ukj for all 1 ⩽ i, j ⩽N ,

1
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• uijuij ′ = δj,j ′uij and uijui′j = δi,i′uij for all 1 ⩽ i, j ⩽N .

Remark 1.3. The third condition is automatic for projections in a Hilbert space whose sum is a
again a projection, but not for idempotents in a general ∗-algebra. Indeed, by [BES94], there
exists four non-zero idempotents p1,p2,p3,p4 acting on a vector space V whose sum is 0. Setting
p5 = 1 and defining an involution on the algebra generated by these five elements through the
formula p∗i = pi for all 1 ⩽ i ⩽ 5, we get a ∗-algebra with five projections adding up to one, but
such that p5p1 = p1 , 0.

The algebra O(S+
N ) has a natural Hopf ∗-algebra structure where the coproduct is given on the

generators by

∆(uij) =
N∑
k=1

uik ⊗ukj

and the counit and antipode are defined by ε(uij) = δij and S(uij) = uji . Last but not least, there is
a positive linear form h : O(S+

N )→C which is invariant in the sense that for all x ∈ O(S+
N ),

(h⊗ id)∆(x) = h(x).1 = (id⊗ h)∆(x).

This means that we have an underlying compact quantum group (in the sense of [Wor98]) denoted
by S+

N and called the quantum permutation group on N points. This definition can be generalized
to encompass a graph structure on the N points.

Definition 1.4. Let Γ be a graph with N vertices and let dΓ be its adjacency matrix. A quantum
permutation P = (pij)1⩽i,j⩽N is said to be a quantum automorphism of Γ if

P dΓ = dΓ P .

The quotient of O(S+
N ) by the relations P dΓ = dΓ P yields a ∗-algebra O(QAut(Γ )) on which the map

∆ factors. This defines the quantum automorphism group of Γ , denoted by QAut(Γ ).

Our primary motivation for this work was the study of the Connes embedding property for the
von Neumann algebra L∞(S+

N ), which we now define. The positivity of h means that h(x∗x) ⩾ 0 for
all x, and this enables to define a pre-Hilbert space structure on O(S+

N ). Taking the completion1

yields a Hilbert space L2(S+
N ) and left multiplication yields an embedding of O(S+

N ) into B(L2(S+
N ).

The weak closure of the image is what we denote by L∞(S+
N ). In this setting, the Connes embed-

ding property2 means that given any finite number of self-adjoint elements a1, · · · , an ∈ L∞(S+
N ),

any ε > 0 and any integer m > 0, there exists an integer k and matrices M1, · · · ,Mn ∈Mk(C) such
that for any i1, · · · , ip ∈ {1, · · · ,n} with p ⩽m,∣∣∣∣∣h(ai1 · · ·aip)− 1

k
Tr(Mi1 · · ·Mip)

∣∣∣∣∣ < ε.

Such a statement can certainly be called a matricial approximation property. Note however that
it is analytical in nature since it is really a property of h rather than of the von Neumann algebra
1It turns out (see for instance [NT13]) that no separation is needed.
2From a free probabilistic point of view, this is the same as saying that any finite set of self-adjoint noncommutative

random variables has enough matricial microstates
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L∞(S+
N ). Here is another, purely algebraic property which also corresponds to realizing relations

of the algebra by matrices:

Definition 1.5. A ∗-algebra A is said to be residually finite-dimensional (RFD for short) if there
exists integers (ni)i∈I such that there is an embedding of ∗-algebras

A ↪→
∏
i∈I

Mni (C).

Note that no assumption is made on the cardinality of the set I .

In other words, finite-dimensional ∗-representations separate the points. If Γ is a finitely gen-
erated discrete group and A = C[Γ ], then this is the same as saying that Γ is a residually finite
group. It turns out that for compact quantum groups, this is stronger that the Connes embedding
property, as proven in [BBCW19, Thm 2.1]):

Theorem 1.6 (Bhattacharya-Brannan-Chirvasitu-Wang). Let G be a compact quantum group and let
O(G) be its canonical Hopf ∗-algebra. If O(G) is RFD, then L∞(G) has the Connes embedding property.

Sketch of proof. Pick any faithful tracial state τ on the product of matrix algebras in which O(G)
embeds and restrict it to a faithful tracial state τ̃ on O(G) which is by construction amenable (i.e.
a pointwise limit of traces which factor through finite-dimensional algebras). It is then well-
known that the sequence τ̃∗n converges to the Haar state pointwise and amenability is preserved
under such limits so that h is amenable. Eventually E. Kirchberg proved in [Kir94] that the
von Neumann algebra coming from the GNS construction of an amenable trace has the Connes
embedding property. □

We can therefore focus on residual finite-dimensionality. Here is the main result we want to
discuss from now on:

Theorem 1.7 (Brannan-Chirvasitu-F.). The Hopf ∗-algebras O(S+
N ) and O(H s+

N ) are RFD for any N ∈
N and any s ∈N∪ {+∞}.

2. Topological generation

The basic strategy for the proof of Theorem 1.7 for S+
N is induction on N , using the key notion

of topological generation. This idea was first introduced by A. Chirvasitu in [Chi15] (though not
under that name). To explain it, let us write H <G if G and H are compact quantum groups with
a surjective ∗-homomorphism π : C(G) → C(H) intertwining the coproducts. Moreover, recall
that of Hopf ∗-ideal in O(G) is a ∗-ideal I ⊂ O(G) such that

∆(I) ⊂ I ⊗O(G) +O(G)⊗ I.

Definition 2.1. Consider G1,G2 <G given by surjections π1 and π2. We say that G is topologicaly
generated by G1 and G2 if the kernel of the map

π := (π1 ⊗π2) ◦∆ : O(G)→O(G1)⊗O(G2)

does not contain any non-trivial Hopf ∗-ideal.
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The following result [BCF20, Thm 3.3 and Thm 3.12] is the key tool to prove residual finite-
dimensionality. In this statement, we see the inclusion S+

N−1 < S+
N through the surjection

π1 : O(S+
N )→O(S+

N−1)

sending u11 to 1.

Theorem 2.2 (Brannan-Chirvasitu-F.). For any N ⩾ 6, the quantum permutation group S+
N is topo-

logically generated by S+
N−1 and SN . The same holds for H s+

N for any finite s.

Before embarking into the proof, let us comment on this statement. From the point of view
of quantum automorphism groups of graphs, S+

N is associated to the graph consisting in N dis-
joint vertices. Then, S+

N−1 is nothing but the stabilizer of one vertex. For quantum reflection
groups, H s+

N−1 is the stabilizer of one of the N disjoint cycles forming the graph. This suggests the
following question:

Question 1. Under which condition on a graph Γ is QAut(Γ ) generated by Aut(Γ ) and the quantum
stabilizer of a subgraph ?

Unfortunately, the proof of Theorem 2.2 does not give hints into this conjecture because of
the lack of a convenient description of the intertwiner spaces of general quantum automorphism
groups of graphs. We now prepare for the proof of Theorem 2.2. The main tool is the explicit
description of the invariant theory of S+

N , which comes from the work of T. Banica [Ban99b].
Let us first consider the so-called fundamental comodule V = C

N of O(S+
N ), which is given on the

canonical basis by

ei 7→
N∑
j=1

uij ⊗ ej .

All we need to know for the proof are the following three facts:
• Any irreducible comodule over O(S+

N ) is isomorphic to a sub-comodule of V ⊗k for some k,
• For any integer k, there is a generating family of the space of invariant linear maps

V ⊗k→C

which is indexed by NC(k), the set of all the non-crossing partitions of {1, · · · , k},
• If dim(V ) ⩾ 4, then the previous generating family (fp)p∈NC(k) is linearly independent.

Proof of Theorem 2.2. We only do the proof for S+
N , the case of H s+

N begin similar. There are
some preliminary manipulations which reduce topological generation to an equivalent but more
tractable description. First, note that any comodule over O(G) is a comodule over both O(G1) and
O(G2) and that G is topologically generated by G1 and G2 if and only if, for any two comodules
M and N ,

HomO(G)(M,N ) = HomO(G1)(M,N )∩HomO(G2)(M,N ).
From this, decomposing into irreducible representations and using standard manipulations in-
volving Frobenius reciprocity, the problem reduces to proving the following statement: let V = C

N

be the fundamental comodule of O(S+
N ) and let

f : V ⊗k→C
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be a linear map which is both S+
N−1-invariant and SN -invariant. Then, f is S+

N -invariant.
So let us consider such a map f and, for 1 ⩽ i ⩽ N , let Vi = e⊥i . Because f is S+

N−1 invariant, its
restriction to V ⊗k1 is a linear combination of partitions maps: there exist (λp)p∈NC(k) ∈C such that

f|V ⊗k1
=

∑
p∈NC(k)

λpfp.

Let us set
f̃ = f −

∑
p∈NC(k)

λpfp.

This is still invariant under S+
N−1 and SN and vanishes on V ⊗k1 . Our task is to show that it vanishes

on the whole of V ⊗k.
For this purpose, let us set V ′i = Cei , so that

V ⊗k =
⊕
ϵ1,··· ,ϵk

V ϵ1
1 ⊗ · · · ⊗V

ϵk
1

where ϵ is either prime or nothing. Let us consider one of these summands where Vi appears ℓ
times and denote it by W . Since S+

N−1 acts trivially on V ′1, there exists a linear S+
N−1-equivariant

isomorphism
Φ : W → V ⊗ℓ1 .

As a consequence, there exist (µp)p∈NC(ℓ) ∈C such that

f̃ ◦Φ−1 =
∑

p∈NC(ℓ)

µpfp.

The idea now is to use the linear independence of the partition maps to conclude that µp = 0 for
all p ∈NC(ℓ), hence that f̃ ◦Φ−1 = 0.

To do this, set V1,N = V1 ∩VN and observe that

Φ−1
(
V ⊗ℓ1,N

)
⊂ V ⊗kN .

Now, by SN -invariance, we can exchange e1 and eN without changing the value of f̃ , hence it
vanishes on V ⊗kN . Thus, f̃ ◦ Φ−1 vanishes on V ⊗ℓ1,N . Now, since N ⩾ 6, dim(V1,N ) ⩾ 4 so that
noncrossing partition maps on V ⊗ℓ1,N are linearly independent. This forces µp = 0 for all p ∈NC(k),
hence f̃ = 0. □

So far, Theorem 2.2 is useless since we do not know that O(S+
5 ) is RFD so that we cannot start

the induction. Fortunately, it was recently showed by T. Banica in [Ban21, Thm 7.10] that S+
5

enjoys a much stronger property: there is no quantum group sitting in between S5 and S+
5 . The

idea of the proof is that by [Ban99a] and [TW18], any quantum subgroup of S+
5 yields a subfactor

at index 5, with extra properties if it contains S5. Moreover, this correspondence is injective. Now
one has to look at the complete list of subfactors at index 5 satisfying the extra properties and
check that none of the corresponding quantum groups contains S5.
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Proof of Theorem 1.7 for S+
N . First we can extend the statement of Theorem 2.2 to N = 5 by noticing

that the quantum subgroup generated by S+
4 and S5 strictly contains S5, hence equals S+

5 . Then,
it was proven by A. Chirvasitu in [Chi15, Cor 2.12] that if G is topologically generated by G1 and
G2, and if O(G1) and O(G2) are RFD, then O(G) is RFD. It therefore just remains to prove that S+

4
is RFD (for N ⩾ 3, S+

N = SN is finite) and this follows from the existence (see for instance [BC07,
Thm 4.1]) of an embedding

C(S+
4 ) ↪→ C(SU (2),M4(C)).

□

We may here make a more general remark: it is conjectured that for any N , there is no quantum
group sitting in between SN and S+

N . Such an inclusion is called maximal. This again suggests a
more general question:

Question 2. Under which condition on a graph Γ is the inclusion Aut(Γ ) ⊂QAut(Γ ) maximal ?

Let us add that for S+
N this is a longstanding, apparently difficult, problem. Solving it in that

case would be the first important step.
Let us now turn to quantum reflection groups. Theorem 2.2 is of no use for H s+

N since the
argument of [Ban21] does not work here to prove that H s+

5 is topologically generated by H s+
4 and

H s
5. Indeed, we still do not know whether this is true. We can nevertheless conclude by a trick

using the free wreath product (see [Bic04]) structure of quantum reflection groups. More precisely,
let Bi be the ∗-subalgebra of C(S+

N ) generated by the i-th row and set A0 = O(S+
N ). We define a

sequence of ∗-algebras inductively by setting

Ai+1 = (O(Zs) ∗Ai)/⟨[O(Zs),Bi]⟩.
Then, AN = O(H s+

N ) and this is enough to conclude.

Proof of Theorem 1.7 for H s+
N . If s is finite, one has to prove that taking the free product with a

finite-dimensional ∗-algebra and quotienting by commutators of this finite-dimensional algebra
with a finite-dimensional abelian subalgebra preserves the RFD property. This is done by embed-
ding the ∗-algebra into an amalgamated free product of the form A ∗D A where A is RFD and D is
finite-dimensional and then appealing to a result from [LS12].

If s is infinite, one can prove ([BCF20, Lem 2.13]) that H∞+
N is topologically generated by all the

H s+
N ’s for all finite s, and then conclude. □

Remark 2.3. The previous argument in fact gives more: if Γ is a residually finite group, then
O(̂Γ ≀∗ S+

N ) is residually finite-dimensional.

3. Flat matrix models

In this final section we will explain a strengthening of Theorem 1.7. We have defined quantum
permutation algebras as universal objects with respect to quantum permutations, so let us look
at the simplest case, namely when all the projections have rank 1. Then, because their sum is the
identity, they act on a space of dimension N , i.e. they must belong to MN (C) and the quantum
permutation is then said to be flat. The set of all flat quantum permutations is denoted by XN
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and is naturally a compact space as a closed (defined by polynomial equations) subspace of a
grassmanian3. Moreover, there is a ∗-homomorphism

π : O(S+
N )→ C(XN ,MN (C))

sending uij to the function sending a flat quantum permutation to its (i, j)-th coefficient called the
universal flat matrix model. A reasonable definition of “being able to recover S+

N from flat quantum
permutations” would be that π is inner faithful in the following sense:

Definition 3.1. A ∗-homomorphism π : O(G)→ A is said to be inner faithful if its kernel does not
contain any non-trivial Hopf ∗-ideal.

Let us define by induction maps ∆(k) : O(G)→O(G)⊗k by setting ∆(1) = ∆ and

∆(k+1) = (∆⊗ id) ◦∆(k) = (id⊗∆) ◦∆(k).

Then, setting π∗k = π⊗k ◦∆(k) : O(G)→ A⊗k, we observe that⋂
k∈N

ker(π∗k) = {0}

because this intersection is a Hopf ∗-ideal. Thus, if A is residually finite-dimensional then so is
O(G). It was conjectured by T. Banica that the universal flat matrix model is inner faithful for S+

N .
We managed to prove this for almost all values of N in [BCF20, Cor 4.9].

Theorem 3.2 (Brannan-Chirvasitu-F.). For N ⩽ 5 and N ⩾ 10, the universal flat matrix model of S+
N

is inner faithful.

We will not explain the proof in details here. Part of it relies on elementary manipulations with
latin squares. Another part uses a refined topological generation result [BCF20, Prop 3.10] which
we now state since it is responsible for the N ⩾ 10 assumption in the statement of Theorem 3.2.

Proposition 3.3. Let M ⩾ 5 and N ⩾ 2M. Let G < S+
M ∗ S

+
N−M be such that the composition

C(S+
M) ↪→ C(S+

M) ∗C(S+
N−M)→ C(G)

is faithful. Then, G and SN topologically generate S+
N .

A close look at the proof of Theorem 3.2 in fact shows that we can even do more: we just need
(at most) three points of XN to get an inner faithful map. This means that O(S+

N ) has an inner
faithful map to a finite-dimensional C*-algebra. In other words, S+

N is inner linear, a property
analogous to linearity for discrete groups.

Let us conclude with yet another question coming naturally from this result. If Γ is a finite
vertex-transitive4 graph, one can consider the closed subspace XΓ ⊂ XN of matrices which com-
mute with the adjacency matrix dΓ of Γ . This yields a universal flat matrix model for QAut(Γ ).

Question 3. Under which condition on a vertex-transitive graph Γ is the universal flat matrix model
of QAut(Γ ) inner faithful ?
3It is therefore a projective ∗-algebraic manifold, the geometry of which has not been studied yet.
4In the sense that its automorphism group acts transitively on vertices.
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Note that even for classical transitive automorphism groups (or more generally transitive sub-
groups of SN ), the answer is not clear. More precisely, the following criterion was given in [BF17,
Prop 5.5]: the matrix model is inner faithful (in fact automatically faithful) if and only if there
exist N automorphisms σ1, · · · ,σN such that for any vertex v and i , j, σi(v) , σj(v). Moreover,
it may be that the model is inner faithful for the quantum autmorphism group but not for the
classical one, or vice-versa.
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