STUDIES ON FREE QUANTUM GROUPS : ANALYSIS, ALGEBRA AND PROBABILITY

Amaury FRESLON

December 13, 2019

- Liberation of classical groups,
- Analogue to (duals of) free groups,
- Free probability analogue of classical groups.

- Liberation of classical groups,
- Analogue to (duals of) free groups,
- Free probability analogue of classical groups.

Example : the quantum permutation group S_N^+ .

Part I

Analysis

The graph isomorphism game

Two graphs X and Y, two players A and B.

Winning condition

 $w_A \sim w_B$ if and only if $v_A \sim v_B$.

The graph isomorphism game

Two graphs X and Y, two players A and B.

Winning condition

 $w_A \sim w_B$ if and only if $v_A \sim v_B$.

<u>ATSERIAS-MANČINSKA-ROBERSON-ŠÁMAL-SEVERINI-VARVITSIOTIS</u> **Perfect Classical Strategy :** permutation matrix P_{σ} such that $P_{\sigma}A_X = A_Y P_{\sigma}$.

The graph isomorphism game

Two graphs X and Y, two players A and B.

Winning condition

 $w_A \sim w_B$ if and only if $v_A \sim v_B$.

<u>ATSERIAS-MANČINSKA-ROBERSON-ŠÁMAL-SEVERINI-VARVITSIOTIS</u> **Perfect Classical Strategy :** permutation matrix P_{σ} such that $P_{\sigma}A_X = A_Y P_{\sigma}$.

Perfect Quantum Strategy : matrix $P = (P_{ij})_{1 \le i,j \le N} \in M_N(\mathscr{B}(H))$ such that $PA_X = A_Y P$ and P is a *quantum permutation*, i.e.

$$P_{ij}^2 = P_{ij} = P_{ij}^*$$
 and $\sum_{k=1}^N P_{ik} = \mathrm{Id}_H = \sum_{k=1}^N P_{kj}$.

Definition (Wang)

Let $C\left(S_{N}^{+}\right)$ be the universal C*-algebra generated by N^{2} elements P_{ij} such that

•
$$P_{ij}^2 = P_{ij} = P_{ij}^*$$
,
• $\sum_{k=1}^N P_{ik} = \text{Id}_H = \sum_{k=1}^N P_{kj}$.

Definition (Wang)

Let $C\left(S_{N}^{+}\right)$ be the universal C*-algebra generated by N^{2} elements P_{ij} such that

•
$$P_{ij}^2 = P_{ij} = P_{ij}^*,$$

• $\sum_{k=1}^N P_{ik} = \text{Id}_H = \sum_{k=1}^N P_k.$

With the coproduct Δ : $C\left(S_{N}^{+}\right) \rightarrow C\left(S_{N}^{+}\right) \otimes C\left(S_{N}^{+}\right)$

$$\Delta(P_{ij}) = \sum_{k=1}^{N} P_{ik} \otimes P_{kj}.$$

this is a compact quantum group called the *quantum permutation group*.

Definition (Wang)

Let $C\left(S_{N}^{+}\right)$ be the universal C*-algebra generated by N^{2} elements P_{ij} such that

•
$$P_{ij}^2 = P_{ij} = P_{ij}^*$$
,
• $\sum_{k=1}^N P_{ik} = \text{Id}_H = \sum_{k=1}^N P_{kj}$.

With the coproduct $\Delta : C(S_N^+) \to C(S_N^+) \otimes C(S_N^+)$

$$\Delta(P_{ij}) = \sum_{k=1}^{N} P_{ik} \otimes P_{kj}.$$

this is a compact quantum group called the quantum permutation group.

Note : Abelianization = $S_N \rightsquigarrow S_N^+$ is a "liberation" of S_N .

Analytical properties of the quantum permutation group

- <u>BANICA</u> : Non-amenable for $N \ge 5$,
- <u>BRANNAN</u>: Exact, ICC (for $N \ge 8$), C*-simple with unique trace (for $N \ge 8$), Haagerup property, Rapid Decay,
- <u>De Commer-Yamashita-F.</u>: $\Lambda_{cb}(C(S_N^+)) = 1$,
- <u>VOIGT</u> : K-amenable, Baum-Connes conjecture,
- <u>BRANNAN-CHIRVASITU-F.</u>: Residually finite, hyperlinear.

Assume we have quotients $\pi_i : \Gamma \twoheadrightarrow \Gamma_i$ such that

- Γ_i is RFD for all i,
- Any non-trivial element in Γ has a non-trivial image in at least one of the Γ_i's.

Then, Γ is RFD.

Assume we have quotients $\pi_i : \Gamma \twoheadrightarrow \Gamma_i$ such that

- **1** Γ_i is RFD for all *i*,
- Any non-trivial element in Γ has a non-trivial image in at least one of the Γ_i's.

Then, Γ is RFD.

Idea : If Γ is abelian, then (π_i) jointly faithful $\iff \widehat{\Gamma} = \overline{\langle \widehat{\Gamma}_i \rangle}$. This topological generation property can be expressed at the level of representations.

Assume we have quotients $\pi_i : \Gamma \twoheadrightarrow \Gamma_i$ such that

- Γ_i is RFD for all i,
- Any non-trivial element in Γ has a non-trivial image in at least one of the Γ_i's.

Then, Γ is RFD.

Idea : If Γ is abelian, then (π_i) jointly faithful $\iff \widehat{\Gamma} = \overline{\langle \widehat{\Gamma}_i \rangle}$. This topological generation property can be expressed at the level of representations.

Definition

A compact quantum group \mathbb{G} is *topologically generated by* $\pi_i : C(\mathbb{G}) \to C(\mathbb{G}_i)$ if for any representation V of \mathbb{G} ,

$$\operatorname{Fix}_{\mathbb{G}}(V) = \bigcap_{i} \operatorname{Fix}_{\mathbb{G}_{i}}(\pi_{i*}(V))$$

Assume we have quotients $\pi_i : \Gamma \twoheadrightarrow \Gamma_i$ such that

- **1** Γ_i is RFD for all *i*,
- Any non-trivial element in Γ has a non-trivial image in at least one of the Γ_i's.

Then, Γ is RFD.

Idea : If Γ is abelian, then (π_i) jointly faithful $\iff \widehat{\Gamma} = \langle \widehat{\Gamma}_i \rangle$. This topological generation property can be expressed at the level of representations.

Definition

A compact quantum group \mathbb{G} is *topologically generated by* $\pi_i : C(\mathbb{G}) \to C(\mathbb{G}_i)$ if for any representation V of \mathbb{G} ,

$$\operatorname{Fix}_{\mathbb{G}}(V) = \bigcap_{i} \operatorname{Fix}_{\mathbb{G}_{i}}(\pi_{i*}(V))$$

• $\pi_1 : C(S_N^+) \to C(S_{N-1}^+)$ given by $u_{11} \mapsto 1$, • $\pi_2 : C(S_N^+) \to C(S_N)$ given by abelianization.

Theorem (BRANNA-CHIRVASITU-F.)

For all N, S_N^+ is topologically generated by S_{N-1}^+ and S_N .

Part II

Algebra

Invariants of classical permutations

Let p be a partition of a finite set, for instance $\{\{1, 2, 4\}, \{3, 6\}, \{5\}\}$

and set

$$f_p\left(e_{i_1}\otimes e_{i_2}\otimes e_{i_3}\otimes e_{i_4}\otimes e_{i_5}\otimes e_{i_6}\right)=\delta_{i_1i_2i_4}\delta_{i_3i_6}.$$

Invariants of classical permutations

Let p be a partition of a finite set, for instance $\{\{1, 2, 4\}, \{3, 6\}, \{5\}\}$

and set

$$f_p\left(e_{i_1}\otimes e_{i_2}\otimes e_{i_3}\otimes e_{i_4}\otimes e_{i_5}\otimes e_{i_6}\right)=\delta_{i_1i_2i_4}\delta_{i_3i_6}.$$

Theorem (JONES, MARTIN)

Set $V = \mathbb{C}^N$ with the permutation representation of S_N . Then, for any $k \ge 1$,

$$\operatorname{Fix}_{S_N}\left(V^{\otimes k}\right) = \operatorname{Span}\left\{f_p^* \mid p \in P(k)\right\}$$

where P(k) is the set of partitions of $\{1, \dots, k\}$.

Invariants of quantum permutations

Definition

A partition is *non-crossing* if it can be drawn without letting the strings cross.

Invariants of quantum permutations

Definition

A partition is *non-crossing* if it can be drawn without letting the strings cross.

Theorem (BANICA)

Set $V = \mathbb{C}^N$ with the representation $e_i \mapsto \sum P_{ij} \otimes e_j$ of S_N^+ . Then, for any $k \ge 1$,

$$\operatorname{Fix}_{S_N}\left(V^{\otimes k}\right) = \operatorname{Span}\left\{f_p^* \mid p \in NC(k)\right\}$$

where NC(k) is the set of non-crossing partitions of $\{1, \dots, k\}$.

A category of coloured partition \mathscr{C} is a set of partitions with colours on the points and stable under the category operations : concatenations and relfections.

A category of coloured partition \mathscr{C} is a set of partitions with colours on the points and stable under the category operations : concatenations and relfections.

<u>TANNAKA-KREIN-WORONOWICZ</u> : compact quantum group $\mathbb{G}_N(\mathscr{C})$.

A category of coloured partition \mathscr{C} is a set of partitions with colours on the points and stable under the category operations : concatenations and relfections.

<u>TANNAKA-KREIN-WORONOWICZ</u> : compact quantum group $\mathbb{G}_N(\mathscr{C})$.

Examples : $\mathbb{G}_N(P) = S_N$, $\mathbb{G}_N(NC) = S_N^+$.

This parallels the passage from classical to free probability theory.

The *fusion semi-ring* of G is the free abelian group $R^+(G)$ on Irr(G) with the product coming from the tensor product.

The *fusion semi-ring* of G is the free abelian group $R^+(G)$ on Irr(G) with the product coming from the tensor product.

Recipe of a free fusion semi-ring :

- **1** A set *S* with involution $x \mapsto \overline{x}$ and $*: S \times S \to S \cup \{\emptyset\}$,
- **2** Build the free abelian group $R^+(S)$ over the set of words on S,

3 Set
$$\overline{w_1 \cdots w_n} = \overline{w_n} \cdots \overline{w_1}$$
 and
 $(w_1 \cdots w_n) * (w'_1 \cdots w'_k) = w_1 \cdots w_{n-1} (w_n * w'_1) w'_2 \cdots w'_k,$

③ Define a semi-ring structure on $R^+(S)$ by the formula

$$w \otimes w' = \sum_{w=az, w'=\overline{z}b} ab + a * b$$

Example : $S = \{x\}, x * x = x, \overline{x} = x \rightsquigarrow R^+(S_N^+).$

The *fusion semi-ring* of G is the free abelian group $R^+(G)$ on Irr(G) with the product coming from the tensor product.

Recipe of a free fusion semi-ring :

- **1** A set *S* with involution $x \mapsto \overline{x}$ and $*: S \times S \to S \cup \{\emptyset\}$,
- **2** Build the free abelian group $R^+(S)$ over the set of words on S,

Set
$$\overline{w_1 \cdots w_n} = \overline{w_n} \cdots \overline{w_1}$$
 and
 $(w_1 \cdots w_n) * (w'_1 \cdots w'_k) = w_1 \cdots w_{n-1} (w_n * w'_1) w'_2 \cdots w'_k,$

③ Define a semi-ring structure on $R^+(S)$ by the formula

$$w \otimes w' = \sum_{w=az,w'=\overline{z}b} ab + a * b.$$

Example : $S = \{x\}, x * x = x, \overline{x} = x \rightsquigarrow R^+(S_N^+).$

Definition

A compact quantum group is *free* if $R^+(\mathbb{G})$ is free as a fusion semi-ring.

Motivation : Powers property for free groups.

Theorem (BANICA, BRANNAN, CHIRVASITU, LEMEUX)

If \mathbb{G} is a free quantum group, then it is C^* -simple with unique trace.

Motivation : Powers property for free groups.

Theorem (BANICA, BRANNAN, CHIRVASITU, LEMEUX)

If $\mathbb G$ is a free quantum group, then it is C*-simple with unique trace.

Theorem (F.)

If \mathbb{G} is a free quantum group, then there exists a partition quantum group \mathbb{H} such that $R^+(\mathbb{G}) \simeq R^+(\mathbb{H})$.

Motivation : Powers property for free groups.

Theorem (BANICA, BRANNAN, CHIRVASITU, LEMEUX)

If $\mathbb G$ is a free quantum group, then it is C*-simple with unique trace.

Theorem (F.)

If \mathbb{G} is a free quantum group, then there exists a partition quantum group \mathbb{H} such that $R^+(\mathbb{G}) \simeq R^+(\mathbb{H})$.

Theorem (F.)

Any free partition quantum group is isomorphic to a free product of copies of O_N^+ , U_N^+ and

$$\left(\hat{*}_{S_N^+}^n \widetilde{H}_N^+\right)_{S_N^+} \left(\widehat{\Lambda}\wr_* S_N^+\right).$$

Part III

Probability

Problem : Imagine we pick transpositions uniformly at random and compose them. How many do we need to get any permutation with almost equal probability ?

Problem : Imagine we pick transpositions uniformly at random and compose them. How many do we need to get any permutation with almost equal probability ?

Definition

Let μ_{tr} be the uniform distribution on the set of transpositions. The corresponding *random walk* on S_N is given at step k by μ_{tr}^{*k} .

Problem : Imagine we pick transpositions uniformly at random and compose them. How many do we need to get any permutation with almost equal probability ?

Definition

Let μ_{tr} be the uniform distribution on the set of transpositions. The corresponding *random walk* on S_N is given at step k by μ_{tr}^{*k} .

Theorem (DIACONIS-SHAHSHAHANI)

Both $(\mu_{tr}^{*2k})_{k\in\mathbb{N}}$ and $(\mu_{tr}^{*2k+1})_{k\in\mathbb{N}}$ converge in $N\ln(N)/2$ steps in total variation distance.

$$\|\mu - \nu\|_{TV} = \sup_{A \subset S_N} |\mu(A) - \nu(A)|.$$

The cut-off phenomenon

The result is more precise : setting $k(N) = N \ln(N)/2$, then for any $\epsilon > 0$,

$$\begin{split} &\lim_{N\to+\infty} \|\mu_{\mathrm{tr}}^{*(1-\varepsilon)k(N)} - U\|_{TV} = 1\\ &\lim_{N\to+\infty} \|\mu_{\mathrm{tr}}^{*(1+\varepsilon)k(N)} - U\|_{TV} = 0 \end{split}$$

The cut-off phenomenon

The result is more precise : setting $k(N) = N \ln(N)/2$, then for any $\epsilon > 0$,

$$\begin{split} &\lim_{N \to +\infty} \|\mu_{\mathrm{tr}}^{*(1-\epsilon)k(N)} - U\|_{TV} = 1\\ &\lim_{N \to +\infty} \|\mu_{\mathrm{tr}}^{*(1+\epsilon)k(N)} - U\|_{TV} = 0 \end{split}$$

This is the *cut-off phenomenon*

The quantum realm

The quantum realm

The quantum realm

Classical probability	Quantum probability
$\mu \in \operatorname{Prob}(S_N)$	$\varphi \in S\left(C\left(S_{N}^{+}\right)\right)$
$\mu * \nu$	$(arphi st \psi) \circ \Delta$
Uniform measure U	Haar state h
$\ \mu - \nu\ _{TV}$	$\sup_{p} \varphi(p) - \psi(p) , \ p \in \operatorname{Proj}\left(L^{\infty}\left(S_{N}^{+}\right)\right)$

Quantum transpositions

Let C be the set of transpositions, it is a conjugacy class !

$$\int_{S_N} f d\mu_{\rm tr} = \int_{S_N} \left(\int_{S_N} f(\sigma \bullet \sigma^{-1}) d\sigma \right) d\mu_{\rm tr} = \mathbb{E}(f)(12).$$

Quantum transpositions

Let *C* be the set of transpositions, it is a conjugacy class !

$$\int_{S_N} f d\mu_{\rm tr} = \int_{S_N} \left(\int_{S_N} f(\sigma \bullet \sigma^{-1}) d\sigma \right) d\mu_{\rm tr} = \mathbb{E}(f)(12).$$

•
$$\mathbb{E}: C(S_N^+) \to C^*\left(\sum_{i=1}^N P_{ii}\right)$$
 conditional expectation,

•
$$\pi: C(S_N^+) \to C(S_N)$$
 abelianization,

• $ev_{(12)}: C(S_N) \rightarrow \mathbb{C}$ evaluation map.

Definition

The uniform measure on quantum transpositions is the state

$$\varphi_{\rm tr} = {\rm ev}_{(12)} \circ \pi \circ \mathbb{E}.$$

More explicitly, for a coefficient of the n-th irreducible representation of S_N^+ ,

$$\varphi_{\rm tr}(u_{ij}^n) = \delta_{ij} \frac{Q_n(N-2)}{Q_n(N)},$$

 $Q_0(X) = 1, Q_1(X) = X - 1$ and

 $Q_1(X)Q_n(X) = Q_{n-1}(X) + Q_n(X) + Q_{n+1}(X).$

More explicitly, for a coefficient of the n-th irreducible representation of S_N^+ ,

$$\varphi_{\rm tr}(u_{ij}^n) = \delta_{ij} \frac{Q_n(N-2)}{Q_n(N)},$$

 $Q_0(X) = 1, Q_1(X) = X - 1$ and

$$Q_1(X)Q_n(X) = Q_{n-1}(X) + Q_n(X) + Q_{n+1}(X).$$

Theorem (F.)

The random transposition walk exhibits a cut-off at $N \ln(N)/2$ steps.

More explicitly, for a coefficient of the *n*-th irreducible representation of S_N^+ ,

$$\varphi_{\rm tr}(u_{ij}^n) = \delta_{ij} \frac{Q_n(N-2)}{Q_n(N)},$$

 $Q_0(X) = 1, Q_1(X) = X - 1$ and

$$Q_1(X)Q_n(X) = Q_{n-1}(X) + Q_n(X) + Q_{n+1}(X).$$

Theorem (F.)

The random transposition walk exhibits a cut-off at $N \ln(N)/2$ steps.

Note : We do not have to distinguish even an odd walk, the whole sequence converges !

More explicitly, for a coefficient of the *n*-th irreducible representation of S_N^+ ,

$$\varphi_{\rm tr}(u_{ij}^n) = \delta_{ij} \frac{Q_n(N-2)}{Q_n(N)},$$

 $Q_0(X) = 1, Q_1(X) = X - 1$ and

$$Q_1(X)Q_n(X) = Q_{n-1}(X) + Q_n(X) + Q_{n+1}(X).$$

Theorem (F.)

The random transposition walk exhibits a cut-off at $N \ln(N)/2$ steps.

Note : We do not have to distinguish even an odd walk, the whole sequence converges !

Theorem (F.)

The random m-cycle walk exhibts a cut-off at $N \ln(N)/m$ steps.

Thank you for your attention !

Thank you for your attention !

