THE
INTERMEDIATE QUANTUM PERMUTATION
PROBLEM

Amaury FRESLON !
Dedicated to Roland Speicher on the occasion of his birthday.

These are notes from a talk given on the occasion of Roland Speicher’s sixty-fifth birthday. They deal with a problem
on which Roland and I have worked in the past, without success. I will introduce and motivate the question, and

then explain our failed attempt, in hope that someone can make it successful.

1 THE PROBLEM

1.1 INTERMEDIATE QUANTUM PERMUTATION GROUPS

As the title suggests, the problem we are interested in concerns quantum groups, and
more precisely compact quantum groups. Fortunately for the reader, even though this is
the setting in which the question arose, it can be stated with very little quantum group
apparatus and there is no need for the general theory, at least for the moment.

In a nutshell, the question is to decide whether there exists quantum groups G that
sit in between the usual permutation group Sy and the quantum permutation group
Sy To make sense of this, we therefore have to introduce both S}, as a quantum group,
and the notion of quantum subgroup. The story starts with an object introduced by SH.
WANG in [Wan98]. Even though the original setting involves C*-algebra, there is a purely
algebraic version [BicO8] which will be more practical for our use.

DEFINITION 1.1. The quantum permutation algebra on N points is the universal -
algebra @’(SX,) generated by N2 elements (p; )1<i,j<N such that

. p?]:le :p:‘_] for all 1<i,j<N;

N N
e Y pir=1=) ppjforall1<i,j<N;
k=1 k=1

* PirPik' = Ori'Pik and pr;pr; = O Pri for all 1<i,k,k'<N.
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If P e Mn(G(Sy)) is the matrix with coefficients (p;;)1<i,j<n, then the pair

Sy = (0(S}),P)

is an orthogonal compact matrix quantum group in the sense of [Wor87]. The reader
may refer to [Fre23] for a comprehensive treatment of the theory of orthogonal compact
matrix quantum group in the algebraic setting.

To understand what S;{, has to do with permutations, the simplest thing to do is to
consider its abelianization. Consider the classical permutation group Sy, seen as the
group of N x N permutation matrices. If c¢;; denotes the function sending a matrix to
its (i, j)-th coefficient, then the algebra G(Sy) of all complex-valued functions on Sy is
generated by the elements (c;;)1<; j<n, Which moreover satisfy the relations of Definition
1.1. Therefore, there is a surjective *-homomorphism

Tab : O(S}y) — O(Sy)

sending p;; to ¢;j. Because the right-hand side is abelian, any commutator in @(S]“:,) is in
ker(m,p), and it is not difficult to show (see for instance [Fre23, Ex 1.3]) that the converse
holds.

This is a justification for thinking of S}, as a quantum or — perhaps more accurately —
free version of Sp. But there is more in that comparison. Indeed, consider the group law
on Sy. At the level of the coefficient functions c;;, we have for 0,7 € Sy,

N N
Agy :cij(oT) =) cip(o)erj(r) =) (cix ® cp)0,T),
k=1 k=1

where we used the canonical *-isomorphism
O(Sn xSN) =O(SN)®O(Sn).

At the level of the function algebra, the group law is therefore encoded through the map

N
Cij— Z Cik ® Cpj.
k=1
As it turns out, a similar map exists for S}, thereby providing a type of group-like struc-
ture.

Lemma 1.2. There exists a unique *-homomorphism A :0(Sy) — O(Sy) ® O(S},) such
that forall 1<i,j<N,

N
Apij)=Y Dpir®Prj
k=1

With this in hand, we can make sense of a “quantum subgroup” of S7,, which is the
core of our problem. This should be the analogue of a subset stable under products, which
by contravariance of the €@ functor yields the following:

DEFINITION 1.3. A quantum subgroup of SX, is a pair G = (0(G),Ag), where
e O(G)is a x-algebra;
e There is a surjective *-homomorphism 7g : @’(S;(]) — 0(G);
e Ag:0(G)— O(G)®O(G) is a *-homomorphism such that

Agom=(m®m)oA.

— 2 _
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If G is a quantum subgroup of S}, then we write G < S},. There are lots of quantum
subgroups of S}

o Sy itself;
e Hence, all finite groups acting faithfully on N points;
e In particular, all quantum automorphism groups of graphs on N vertices.

Note however that there are finite quantum groups which are not quantum subgroups
of SX, (see [BBN12] for examples), and that it is an open problem to characterize these
quantum subgroups. But we are not interested in all quantum subgroups here, but only
in those which contain Sy as a quantum subgroup. Here is a simple way of defining that
notion.

DEFINITION 1.4. A quantum subgroup G < SX, is said to be an intermediate quantum
permutation group if the map n factors the map m,y : @(Sjv) — 6’(8;,), or more plainly, if
there exists a *-homomorphism 7’ : G(G) — @(Sy) such that

Tap =7 0 TG.

Remark 1.5. Let us just check for sanity that in the previous definition, the map 7’ indeed
realizes Sy as a quantum subgroup of G. We have to prove that (7' ® 7)o Ag = Ag, o7/,
and by surjectivity it is enough to check that equality on the elements ng(p;;) for all
1<i,j<N,

(n' ®7'")o Ag (m6(pij)) = (' @ ') o (G ® MG) 0 Alpi;)
= (7ap ® Map) 0 A(p;;)
= Agy °Tab(pij)
=Agy o1 omG(pij)-

We will write Sy <G < S;(, if G is an intermediate quantum permutation group. We
can now state the question this text is about.

Problem. Is there an integer N and a compact quantum group G such that Sy <G < SI‘:]
but G¢ {SN,SX,}, in the sense that m and 7’ are not injective ? If yes, then we write

SN<G<SX7

Before going further, let us summarize what is known about the problem for small
values of N.

e For 1 <N <3, the map 7, is injective (see for instance [Fre23, Ex 1.9]), hence there
is no intermediate quantum permutation group;

e For N = 4, browsing through the list of all quantum subgroups of S, shows that
there is no intermediate quantum permutation group, and this result from [BB09]
led to the statement of the problem;

e For N =5, it was shown in [Ban21] that there is no intermediate quantum permu-
tation group, and the proof relies on the classification of subfactors at index 5 (see
for instance the survey [JMS14]).
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1.2 A COMBINATORIAL FORMULATION

My personal history with the intermediate quantum permutation problem started in
2014, when I arrived as a post-doctoral researcher in the UNIVERSITAT DES SAARLAN-
DES in the team of ROLAND SPEICHER, though I first heard it from M. WEBER. Anyways,
the question is stated as a quantum group question, but concerns a specific type of quan-
tum groups, namely easy quantum groups. These have a rich combinatorial structure,
which was formalised by T. BANICA and ROLAND SPEICHER in a seminal work [BS09].
That formalisation is based on the framework of partitions of finite sets. Let us therefore
give some definitions.

A partition is given by two integers 2 and ¢ and a partition p of the set {1,...,k + ¢}.
It is useful to represent such partitions as diagrams, in particular for computational
purposes. A diagram consists in an upper row of & points, a lower row of ¢ points and
some strings connecting these points if and only if they belong to the same set of the
partition. Let us consider for instance the partitions pi = {{1,8},{2,6},{3,4},{5,7}} and
po=1{{1,4,5,6},{2,3}}. Their diagram representations are:

AT

The key notion is that of a non-crossing partition.

DEFINITION 1.6. Let p be a partition. A crossing in p is a tuple k1 < ko < k3 < k4 of
integers such that:

e k1 and k3 are in the same block,
e k9 and k4 are in the same block,
e The four points are not in the same block.

If there is no crossing in p, then it is said to be a non-crossing partition. The set of non-
crossing partitions will be denoted by NC. In the example above, p1 is crossing whereas
p2 is not.

There are several operations on the set &2 of all partitions. To describe them, let us
denote by Z2(k, ¢) the set of all partitions with £ upper points and ¢ lower points.

e The tensor product of two partitions p € (k,¢) and q € 2(k',¢') is the partition
p®qePEk+Ek' 0+ ) obtained by horizontal concatenation, i.e. the first k of the
k+k' upper points are connected by p to the first [ of the £+ ¢’ lower points, whereas
q connects the remaining %’ upper points with the remaining !’ lower points.

e The composition of two partitions p € P(k,f) and q € Z2(¢,m) is the partition gp €
P(k,m) obtained by vertical concatenation. Connect £ upper points by p to / middle
points and then continue the lines by q to m lower points. This yields a partition,
connecting k2 upper points with m lower points. By the composition procedure,
certain loops might appear resulting from blocks around the middle points. These
are simply removed.
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e The involution of a partition p € P(k,¥) is the partition p* € Z2(¢,k) obtained by
turning p upside down.

* We also have a rotation on partitions. Let p € 22(k,¢) be a partition connecting &
upper points with ¢ lower points. Shifting the very left upper point to the left of the
lower points (or the converse) — without changing the strings connecting the points
— gives rise to a partition in 22(k - ¢,/ + 1) (or in Z(k + ¢,¢ — 1)), called a rotated
version of p. This procedure may also be performed on the right-hand side of the %
upper and / lower points. In particular, for a partition p € 22(0,¢), we might rotate
the very left point to the very right and vice-versa.

These operations (tensor product, composition, involution and rotation) are called the
category operations. The name comes from the fact that they enable the construction of
tensor categories, and then of compact quantum groups through Tannaka-Krein duality
(see [Fre23, Chap 3] for a detailed exposition). The following definition summarizes the
properties needed for such a reconstruction procedure to work.

DEFINITION 1.7. A collection ¥ of subsets €(k,¢) <€ ZP(k,¢) (for every k,¢ € Ny) is a cat-
egory of partitions if it is invariant under the category operations and if the identity
partition | € 22(1,1) is in €(1,1).

The fundamental idea of [BS09] is that to any category of partitions ¢ and any integer
N, one can associate a quantum group. In particular, S;(] corresponds to the category NC
of all non-crossing partitions, while Sy corresponds to the category &2 of all partitions. It
is not true however that conversely, any quantum subgroup of S}, is given by a category
of partitions, but it is not difficult to slightly enlarge the setting for that purpose.

DEFINITION 1.8. A linear category of partitions is a collection of vector spaces P(k,¥) of
complex linear combinations of partitions (for every k,¢ € Ng) which is invariant under
the obvious (bi)linear extensions of the category operations, and such that | € 2(1,1).

Setting 2(k,¢) = Span€6'(k, ¢) associates to any category of partitions a linear category
of partitions, but they do not all come from that construction. What is nevertheless true,
is the following:

Proposition 1.9. Any quantum group G containing Sy as a quantum subgroup is given
by a linear category of partitions. Moreover, for any quantum subgroup G < S]“:, which is
given by a linear category of partitions 9, one has

Span NC(k,0) c D(k,0).

There is a subtlety in the above statement. As we said, the data of a linear category
of partitions does not determine a compact quantum group, since for instance S}, always
corresponds to NC. The way the integer N enters the picture is at the core of [BS09] and
consists in a way of associating to any partition p € 2(k, ¢) a linear map

T, (CN)@»k B (CN)M.

To describe it, let (e;)1<;<n be the canonical basis of C¥. Then, we set

N
Tpleiy® - ®e;)= Z op(i,jlej, ® - ®ej,
Jisje=1
where 6,(i,j) is computed as follows: we write the indices i1,---,i; on the upper row of p
and the indices ji,---,j, on the lower row. If whenever two indices are connected, they

are equal, then we set §,(i,j) = 1, and otherwise we set §,(i,j) = 0. For instance, for the
partition
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J1 J2  J3  Ja

we have
6p((i1,12),(J1,72,78,74)) = Oiyigjs0jyjy-
The association p — T, is extended to linear categories of partitions in the obvious
way:
Ty, Agq— ;)LqTq.

With this in hand, we can give a more combinatorial reformulation of the problem.

Problem. Is there an integer N, a linear category of partitions 9 and integers k1,ko,01,¥9
such that

e Span{T, | p € Z(k1,¢1)} # Span{T, | p € P(k1,¢1)};
e Span{T, | p € D(ka,l2)} # Span{T, | p e NC(kg,2)}?

This might not seem helpful at first sight, but provides a basic strategy to try to
produce a genuine intermediate quantum permutation group. That is, take a formal
linear combination of partitions

Y= Z App
peP(n)
and consider the linear category of partitions 2(y) generated by this and all non-crossing
partitions. Then, the corresponding compact quantum groups sits in between Sy and SI“:]
by construction.

To ensure that it is not equal to S}, there must be at least one crossing partition
appearing with non-zero coefficient in y. Moreover, because we can make arbitrary lin-
ear combinations with non-crossing partitions, we can even assume that all partitions
appearing in y have crossings. The problem now is that it might be possible that when
turning these linear combinations into linear maps, on can combine them in order to ob-
tain a map of the form 7', for some crossing partition p. But then, G = Sy and we loose.
We can safely say that for the moment, we do not have an efficient way of ensuring that
this does not happen. One last remark one can make is that there are no non-crossing
partitions on at most three points, and only one on four points. As a consequence, one
has to look for linear combinations of partitions on at least five points.

2 A PROBABILISTIC APPROACH

Before trying to answer the question, we should decide whether we believe or not that
there exist intermediate quantum permutation groups. The results up to N =5 suggest
that there are none, but that could be a specificity of low dimension. We therefore need
a better intuition, and there is one which is given by free probability theory. To explain
it, we first have to recall some of the fundamental works of ROLAND SPEICHER on the
subject, and more precisely two fundamental results: the classification of universal in-
dependences, and the free de Finetti theorem. Let us work counter-chronologically and
explain these two theorems and their connection to our problem.

— 6 —
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2.1 DE FINETTI THEOREMS
2.1.1 The classical case

The de Finetti theorem is a deep result which in a sense relates probability theory and
group theory. To explain this, let us consider an infinite family (X;);cn of random vari-
ables, all defined on a common probability space (2,P). We want to translate the fact
that these variables are somewhat not distinguishable from one another by empirical
means. Assuming that we empirically have access at least to the joint moments, the next
definition is very natural.

DEFINITION 2.1. The family of random variables (X;);cn is said to be exchangeable if its
joint distribution is invariant under permutation. Concretely, this means that for any
integer N € N and any permutation o € Sy, the tuples (X1, ,Xn) and (X51),- -, Xo@v))
have the same joint distribution. Otherwise said, forany 1<sn<N and 1<iq,---,i, <N,

E(X:) - Xi,) =E(Xot) - Xot,))

This is really a group-theoretical property: it means that the natural action of the
family of permutation groups (Sy)nen given, for o € Sy, by

o Xo.—l(i) lf ZSN
“'X“{ X; if i>N

preserves the probability distribution. One therefore sometimes terms this kind of prop-
erty a distributional symmetry.

Example 2.2. Assume that the variables are all independent and identically distributed.

Then, there exist integers n1,---,ny such that
E(Xy) o Xy,) =E(X] - X3Y)
=E(X7]) - E(XYY)
=E(x;0) - E(XoaT)
= [E(Xa(i1)" Xa(tn))

where independence was used in the second and fourth lines and identical distribution
in the third one. Thus, (X;);cn is exchangeable.

Example 2.3. Independence is far from necessary, as the following trivial example shows:
if X; = X for all i € N, then the family (X;);cn is exchangeable, simply because all joint
moments are just ordinary moments of X;.

To get a better understanding of the general situation, observe that both examples
above satisfy the following general criterion: if the variables are conditionnally inde-
pendent and identically distributed, then they are exchangeable. The contents of the de
Finetti theorem is a converse to this observation. The first problem in general is to find
a o-algebra with respect to which these conditions are achieved, and there is a natural
candidate for that.

DEFINITION 2.4. Let (X;);en be a family of random variables. Their tail algebra is the
o-algebra

T =) oX;li=N).
NeN
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Intuitively, an event is measurable with respect to 9 if it does not depend upon the
outcome of any fixed finite number of the variables (X;);cn. We can now state the mo-
tivating theorem of this section, which relates permutational symetry with conditional
independence. Even though the name of B. DE FINETTI stays attached to it, he only
proved it for Bernoulli random variables in [dF37, Chap III], and the general statement
hereafter is due to E. HEWITT and L. SAVAGE in [HS55].

THEOREM 2.5 (DE FINETTI, HEWITT-SAVAGE) The family of random variables (X;);en
is exchangeable if and only if the variables are independent and identically dis-
tributed conditionnally to their tail algebra.

2.1.2 The free case

We will now explain how this result can be generalized to a non-commutative setting.
More precisely, if S}, plays the réle of a free analogue of Sy, then what does invariance
under its action entail ? To answer that question, one first needs to make sense of the
words “non-commutative setting”. Basically, this means that random variables should be
replaced by operators on a Hilbert space. It is nevertheless convenient to assume a bit
more structure on the set of random variables.

DEFINITION 2.6. A non-commutative measure space is given by a von Neumann algebra
A acting on a Hilbert space H that is, a subalgebra .4 of the algebra %8(H) of all bounded
operators on H, which is stable under taking adjoints and closed under the strong opera-
tor topology".

We will moreover assume that ./ admits a tracial state, which is a linear map 7 :
A — C such that

e T(xy)=1(yx) forall x,y e N;
e T(x*x)=0forall xe A;
e 7 is continuous with respect to the strict operator topology.

Then, one may think of 7 as the integration functional with respect to a probability mea-
sure, and we will accordingly call (A,7) a non-commutative probability space. Given
an element X € A4, which we may think of as a non-commutative random variable, its
moments are the numbers

mk(X):T(Xk)

Classically, there are many instances where the moments of a random variable enable
to recover the whole distribution, for instance if its support is compact. In the non-
commutative setting, if we assume X to be self-adjoint (i.e. X* = X), then X has a com-
pact spectrum? Sp(X) and its moments therefore define a unique probability measure
on Sp(X) which is called the spectral measure of X. Even though we will not use that
measure later on, we will restrict ourselves to the case of self-adjoint random variables.

Exchangeability is, as we have explained above, an invariance property of the joint
distribution under the action of the symmetric groups. Based on this, we should look for
some kind of action® of SX, on a family of non-commutative random variables to define a
quantum version of exchangeability. Note that classically, we have

N N
Xowy= ) Xjbjoiy= ) Xjcjil0),
=1 =
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so that it would be natural for an action of S;(, to send X; for some 1 <i <N to

N
ZXj@pji‘
Jj=1

This can be straightforwardly extended to monomials in the X;’s,

Xy Xiy— Y Xji X, ®Djiy D jpin:
J.ly'" ,.jn
To obtain a quantum notion of exchangeability we simply have to translate the fact that
7 should be invariant under the above map.
DEFINITION 2.7. A family of non-commutative random variables (X;);cn in a non-com-

mutative probability space (A, 1) is said to be quantum exchangeable if for any N € N
and 1<iqy,---,i, <N,

N
T(Xiy o Xi)= ) T(Xjy X)) Py P @

To convince the reader that this is the correct invariance condition, let us make a
sanity check. If Equation (1) is satisfied, then it also holds when p;; is replaced by the
coefficients of any quantum permutation matrix. In particular, it should hold for the
coefficients of a permutation matrix P, for o € Sy. In that case, p;; = §;4(;), so that
Equation (1) becomes

(X, X)) =1 Xo6y) X))

Therefore, quantum exchangeability implies classical exchangeability. In order to make
sense of the statement of Theorem 2.5, we now have to define the tail algebra of a family
of non-commutative random variables, and this is rather straightforward.

DEFINITION 2.8. Let (X;);en be non-commutative random variables in a non-commutative
probability space (A, 7). Their tail algebra is the von Neumann subalgebra

Nail = ﬂ<X1|J>l>
1eN

where the closure is taken in the strong operator topology.

It follows from the general theory of von Neumann algebras that there exists a linear
map Eiaj : A — Aai1 Which is a conditional expectation in the sense that it satisfies the
following properties:

o Tol =T,

Etail(axd) = aEiqi(x)b for all x € A and a, b € Aai1;

Eiail(x*x) is a positive operator for all x € A

Etain(1) = 1;

IEtaitll = 1.

Remark 2.9. If 7 is not assumed to be tracial, then the existence of a conditional expecta-
tion can still be proven as soon as one assumes the variables to be classically exchange-
able, see [KS09, Prop 4.2].
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The last ingredient needed is a non-commutative analogue of independence. Note that
because X; and X; are not assumed to commute, independence is of no use: how can we
compute for instance E;,;1(X1X2X1X2) ? What we are looking for is a rule which enables
us to compute any mixed moment of the variables in terms of their individual moments
in a coherent way. It turns out that they are only two ways of doing this (a precise
meaning for that sentence is given in Subsection 2.2 below): classical independence and
free independence.

The problem is that we have to introduce free independence not only in the scalar
setting, but also in the conditional one and that entails subtleties. Plainly, we are going
to explain what it means for non-commutative random variables to be freely independent
with respect to the conditional expectation Eiyj;. This definition should be a statement
about the conditional joint moments of the variables and these would classically be num-
bers of the form [Fi,;(P(X1)Q(X3)) for polynomials P,Q € C[X]. Here, first note that we
should take an alternating product of polynomials since X1 and X9 do not commute. But
this is not sufficient, since the polynomials should have coefficients in .A4%,i1, and the latter
need not commute with X; nor with Xs. Hence, the following definition is necessary.

DEFINITION 2.10. Given a von Neumann algebra ./ and a von Neumann subalgebra .,
a non-commutative 4 -valued polynomial is a linear combination of elements of the form

boXb1X:---b,-1Xb,

for some by, ,b, € 4. The space of such polynomials is denoted by .#(X).
We are now ready for the definition.

DEFINITION 2.11. The variables (X;);cn are said to be conditionally freely independent
with respect to A, if for any i1 #Zio#--- #i, and any p1,--+, pm € Hai1(X) such that

Etail (p2(Xi,)) =0

for all 1 <k <n, we have

Etail (p1(X,) - pn(X;,)) =0

The definition may seem complicated at first sight, but the main point is that it en-
ables to compute by induction any mixed moment. Let us do this in a simple case. Setting
Y, =X; -E(X;), we have for i #

Etait(X; X j) = Etail (Vi + Etait(X))(Yj + Egait (X))
= Eil(Y:Y ) — Etail (Etait(X:)Y ) — Etail (YiEtai(X 7))
+ Etail (Etait(X 1) Egait (X))
= Etait(Y;Y) — Etait(Xi)Etail (V) — Etait (Vi) Etait(X )
+ Etail (X i) Etain (X ;)
=0-0- 0+ Etan(X;)E(X )
= Etail(X;)Etail (X 5)

Remark 2.12. For products of two variables, the result in the free case in the same as in
the classical one. To see the difference, one should use non-commutativity. An indeed,
assuming for instance [Ei,;1(X1) = 0 = E¢,;1(X2) for simplicity, free independence yields

Etait(X1X2X1X2) =0,
while for classically independent random variables,

Etail(X1 X2 X1X9) = Egin(X %X 3 ) = Etait (X % )Eail (X % ).
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We are now in position to state the main result of [KS09], which provides an ana-
logue of the de Finetti theorem in the context of free probability theory, using SX, as the
symmetries.

THEOREM 2.13 (KOSTLER-SPEICHER) A family of non-commutative random vari-
ables (X;);en is quantum exchangeable if and only if the variables are freely inde-
pendent and identically distributed with respect to their tail algebra.

2.2 UNIVERSAL INDEPENDENCES

Comparing the classical and free de Finetti theorems, one might be led to the following
reasoning: since Sy and S}, are exactly the symmetries characterizing classical and
free independence, families of intermediate quantum permutation groups Sy <Gy < S}
should encode intermediate notions of independence. This is where another result of
ROLAND SPEICHER comes into play: there is no other notion of independence. The goal of
this section is to give a precise meaning to that statement.

Classical and free independence give general methods to compute the mixed moments
of families of (non-commutative) random variables. This immediately raises the question
of the existence of more notions of independence, and of a classification thereof. One
issue is of course to properly axiomatize this concept, and we will work in the original
framework of [Spe97]. First, we consider unital algebras equipped with a unital linear
form, which plays the role of integration with respect to a fixed measure. Given two such
object (#1,¢1) and (sfo, @2), one can form the unital free product*

oA = * oA,

and the question is to find a universal way of producing a unital linear map ¢ = @1 ¢ @2
on &

Second, we need a few combinatorial definitions. The main idea is that we want a rule
to compute @(a; - -a,) recursively by grouping terms which belong to the same factor. For
classical independence, this is done by simply gathering all terms belonging </; on one
side, all terms belonging to <% on the other side and then multiplying the values of the
original linear forms on these two products. In general, things are trickier and require
heavier notations. Given a partition p € 22(k), we will say that a1---a; € o, if whenever
m and n are connected in p, a,, and a, belong to the same factor. In that situation, we can
gather terms which are connected and the following definition is practical to formulate
this:

DEFINITION 2.14. A block of a partition p is a maximal set of points which are connected
in p.

Ifai---ap € o,, and if By,---,By denote the blocks of p ordered according to their

leftmost point, then we may set

— —

pplar---ar) = Qr) (HieBlai) X o X Pp(b) (HieBlai)

where the arrow indicates that the product is taken in the same order as in the original
product, and k() denotes the index of the factor to which all the elements belong. The
previous formula in fact makes sense more generally for any partition g which is compat-
ible with p in the sense that any block of ¢ is wholly contained in a single block of p. We
will write ¢ < p in that case. With this in hand, we can give the definition of a universal
product.

DEFINITION 2.15. A universal product is a construction associating to (¢1,¢2) a new
linear form ¢ ¢ @2 such that
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o pre(pae@3)=(p1°¢p2)e@s;

e For any k£ € N and p,q € (k) with g < p, there exists t(p;q) € C such that for all
ai--ap € sfy,
¢plar--ap)= )Y tp;Q)@qlar---ap).
q=p

With this in hand, the main result of [Spe97] can be easily stated.

THEOREM 2.16 (SPEICHER) There exist exactly two universal independences, namely
classical independence and free independence.

Before turning to the core of this text, let us make a remark. The previous discussion
might be a motivation to believe that there is no intermediate quantum permutation
group, but it really points to a more precise and weaker problem.

Problem: Assume we have a sequence Sy < Gy < SX, of compact quantum groups such
that Gy # Sy for N large enough. If a family of non-commutative random variables is in-
variant under the action of all the Gy'’s, is it automatically free and identically distributed
conditionally to the tail algebra ?

This statement is closer to the idea that if there is no notion of independence be-
tween classical and free, then there should be no “quantum symmetries” implementing
it. Moreover, the problem above comes quite close to deep results of W. LI1U, who proved
such generalized de Finetti theorems in [Liul5].

3 MIXING PROBABILITY AND COMBINATORICS

A few years ago, ROLAND SPEICHER and I had a try at the intermediate quantum per-
mutation group problem. Even though it did not lead us to a solution, the method proved
useful in other works involving quantum permutation groups (see for instance [FSW25]).
Besides, our strategy might still be useful for the original problem, since it does not in-
corporate an important ingredient yet, as we will see at the end.

The starting point is the quantum analogue of the Haar measure, which is called
the Haar state and exists for any compact quantum group. Let us gather the essential
features of that object in one statement (see for instance [Fre23, Sec 5.2] for details).

THEOREM 3.1 (WORONOWICZ) Let (G,u) be an intermdiate quantum permutation
group. Then, there exists a unique state hg : 0(G) — C such that

(hg®id)oAg =hg.1=(id®hg)oAg.

Moreoveor, 4 is tracial and faithful®.

So let Sy <G < S}, and let ¢ be the state on G(S},) defined by
@ =hgom.

We will investigate the moments of ¢ in the sense of non-commutative probability theory,
that is to say its values on monomials in the coefficients of u.

DEFINITION 3.2. For an integer k&, a moment of order k of ¢ is a number of the form

(P(pilh"'pikjk)
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The key point is that the definition of ¢ forces its moments to satisfy several symmetry
properties. To express these properties, we will need some combinatorial notations. For a
tuple of integers I =(i1,---,iz) let ker(I) denote the partition of the set {1,---,k} where a
and b belong to the same subset if and only if i, = i;. Here is the first important property.

Lemma 3.3. The moment ¢(p;,j, - pi,;,) only depends on the partitions p = ker(iq,---,ir)
and q =ker(ji,---,jr). We will denote by ¢(p,q) that common value.

Proof. This comes from the fact that since Sy < G, Ag must in particular be invariant
under permutations. More precisely, we observe that
(pem)oA=(hg®id)o(mr®m)o A
=(hg®id)oAorm
=(hgom).1
=¢.1

and applying 7’ to both sides of that equality yields

(p(piu'l"'pikjk) = Z (p(pilm"'piknk) Cnij1" " Cnpjp-

ni-np

Evaluating at a permutation o € Sy and using the fact that c;;(0) = §,,(;), this becomes

(p(piljl "'pikjk) =9 (pi10(j1) - 'pikU(jk)) .

As a consequence, we can permute arbitrarily the j-indices without changing the value
of ¢. Using (id®¢)o A instead yields the same result for the i-indices. This means that
the moment only depends on which indices are equal and which are different but not on
their precise value. This is exactly what the partitions ker(iq,---,iz) and ker(ji,---,jz)
encode. [ ]

We can now work directly on the partitions and exploiting the various definitions
yields a list of constraints on the moments of ¢.

Lemma 3.4. The numbers ¢(p,q) enjoy the following properties:

1. Rotating an endpoint of p and q to the other end does not change the value of the
moment;

2. ¢(p,q)=¢(q,p);

3. If two neighbouring points are connected in p but not in q (or the converse) then the
corresponding moment vanishes;

4. If two neighbouring points are connected both in p and in q then ¢(p,q) = ¢(p,q),
where ~ corresponds to contracting these two points,

5. If p or q contains a singleton, then ¢(p,q) is a linear combination of moments of
order at most k with no singletons in the partitions,

6. We have

o(p, @)= Y. CWN,r¢(p,re(r,s),
reP(k)

where Cy(r) is the number of tuples K of {1,---,N} such that ker(K)=r.

Proof. Let us work itemwise.
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. Let us for instance rotate the rightmost point to the left. This is equivalent to
considering the moment

% (pikjkpiljl "'pik—1jk—1)

which is the same as the original one by traciality of ¢. The same holds if the first
point is rotated to the end.

. The quantum group structure of SX, provides an anti-homomorphism S of @’(SX,)
called the antipode and satisfying S(p;;) = p ;. Moreover, it follows from the general
theory that ¢oS = ¢. Applying S exchanges the i and j indices, but also reverses the
order of the factors. Nevertheless, one can further apply the involution of G(S},) to
put the factors back in the original order, at the price of taking complex conjugates®.

. Assume that the points a and a +1 are connected in p but not in q. This means that
the monomial on which we evaluate ¢ has a factor of the form p;_ ;. pi,j,., With
Ja # Ja+1- By the defining relations of @’(SX,), this product must vanish, hence also
the corresponding moment.

. Assume that points a and a + 1 are connected both in p and in q. This means that
the monomial on which we evaluate ¢ has a factor of the form p? j, = Piqja> hence
the moment can be obtained by contraction.

. Up to rotating, we may assume that the first point of p is a singleton. Using the
second defining relations of @’(S;{,), we then have

N
@ (Pisjs Pirja) = Zi(p (Pij1Pisjs " Piriy)-

i=
Consider a term in this sum. If i =i, for some a € {1,---,k}, then the moment is
of the form ¢(p’,q) where p’ has one singleton less than p since its first point is
now connected to at least one other point. If i = i; then this is just ¢(p,q). As
a consequence, the latter can be written as a linear combination of a moment of
lower order and moments where the first partition has one singleton less than p.
Applying the same procedure again, and doing the same for q, we end up with no
singletons at all.

. Noticing that (t® m)o A = Ag o, we have

@ (Pivj1 Pirjy) =h6om Dy Pirji)
=(he®hg)oAgomm (piyj = Piyjy)
=(@®@)oA(piyjy - Pirji)
= Z @ (Pirna - Pigny) @ (Prjs** Pryip)

ni, = ,ng

and the result follows.

With this in hand, we can elucidate all moments of ¢ up to order four. Note that we

already have two such available families of moments : those of st and those of hg,.

Proposition 3.5. Let (G,u) be an intermediate quantum permutation group. Then, either

all moments of ¢ up to order four equal those of h St or they all equal those of hg,.
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Proof. Let us start by observing that a partition of length at most three with no singleton
must be the one-block partition. Thus, denoting by 1; the one-block partition of {1,---, &},
all moments of length £ < 3 are determined by

@1, 1) = (p;;) = p(1y).

Summing over i shows that this number equals 1/N. In particular, moments up to order
3 do not depend on G.

We now consider moments of order four. By Lemma 3.4, these are linear combinations
of moments of lower order (which are independent from G) and moments of the form
¢(p,q) where p and g do not contain singletons and do not have two neighbouring points
connected up to a rotation. The only partition satisfying these two conditions is

pe={13L12,4h= |

Thus, any moment of order at most 4 is of the form A+ up(p.,p.) for some A,u € C.
But then, point (6) of Lemma 3.4 shows that ¢(p., p.) satisfies a polynomial equation of
degree two. As a consequence, there are at most two possible values for it. For N =4,
we already know two distinct solutions for this : A SI+V(pc, pe) and hg,(pe,pe). Since they
determine the values of all the other moments of order at most four, the result follows. W

Remark 3.6. One can of course write down explicitly the quadratic relation alluded to
above, and deduce from it the two possible values:

hSN(Pc,Pc): m

2N -5
NN -1(N2+5N+1)

The argument can be pushed slightly further, by observing that for a partition on a
odd number of points, there will always be either a singleton or a point connected to one
of its neighbours up to rotation. As a consequence, moments up to order five are in fact
completely determined by the value of ¢(p.,p.). Things break down however at & = 6.
The reason for that is that there are now three partitions that have no singleton and no
connected neighbours, namely (up to rotations)

hSX, (De,pe) =

pl = {{173}7{2’ 5}7{4?6}} :i o l i [ ] O‘
p2 =1{(1,4},{2,5},{3,6}) :l [ ‘ o
p3=1{1,3,5},{2,4,6}} Zi . i . l .

This gives us a system of quadratic equations with six unknowns, which might have
more than two triples of solutions. To conclude, let us simply point out an interesting
fact: the Haar state is — as its name suggests — a state. In other words, its values of
elements of the form x*x is always a positive real number. This gives a set of additional
constraints on the values, which might help rule out solutions of the systems of quadratic
equations until there are only two left. We did not find an efficient way of doing this so
far unfortunately, but perhaps some reader of this document will do !
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NOTES

. The strong operator topology on %(H) is the topology for which a sequence (T;),en of bounded operators
converges to T if and only if | T,,(¢) —¢&|| — 0 for all { € H.

. The spectrum of an element X in a complex unital algebra A is the set of A € C such that X — 1.1 is not
invertible.

. There is a well-defined notion of action of a compact quantum group on a von Neumann algebra (see for
instance [De 17] for a comprehensive treatment) but we do not need it here, since we are only interested in
the notion of invariance of a state under the action.

. The reader may refer to [Fre23, Sec 6.4.1] for the definition of the unital free product of unital algebras.
. A state ¢ on a x-algebra is faithful if ¢(x*x) = 0 implies x = 0.
. It follows from the fact that Ag(x*x) = 0 for all x € G(G) (that is the definition of a state) that Ag(x*) = hg(x).
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