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Chapter 1
Jet schemes and arc spaces

This chapter is devoted to the study of jet schemes and arc schemes/spaces associated
with a scheme 𝑋 defined over the field of complex numbers.

Roughly speaking, an arc on a scheme 𝑋 is a formal path on 𝑋 , that is, a morphism
from the formal disc 𝐷 = SpecC[[𝑡]] to 𝑋 . Jets on 𝑋 are obtained by truncation of
such paths at a finite order.

The study of singularities via the space of arcs was initiated by Nash [163].
He conjectured a tight relationship between the geometry of the arc space and
the singularities of 𝑋 , see Ishii and Kollár [105]. More precisely, he suggested
that the study of the images by the truncation morphisms of the space of arcs
should give information about the fibers over the singular points in a resolution of
singularities of 𝑋 . The work of Mustaţă [161] supports these predictions; for example,
rational singularities of a locally complete intersection variety can be detected by the
irreducibility of all its jet schemes. The space of arcs also plays a key role in motivic
integration, as the domain over which functions are integrated. We refer the reader
to the the recent book by Chambert-Loir, Nicaise and Sebag [46], and the references
given there, for more about this topic.

It turns out that arc spaces are also of great importance in the theory of vertex
algebras. One of the main reasons is that the structure sheaf of the arc scheme over
a scheme 𝑋 has the structure of a sheaf of commutative vertex algebras ([36, 77]),
see Chap. 2. Moreover, any vertex algebra is canonical filtered, and the associated
graded space is a quotient of the space of the functions on the arc space of the
associated scheme of the vertex algebra, see Chap. 4 for more details. The space of
the functions on an arc space will be thus the most important example of commutative
vertex algebras.

The chapter is structured as follows. Section 1.1 is about the jet construction
of differential algebras. Section 1.2, Section 1.3, and Section 1.4 concerns first
properties and examples related to arc schemes. We study in Section 1.5 geometrical
properties of arc spaces. In the context of vertex algebras one needs also to consider
the loop space L 𝑋 of an affine scheme 𝑋 . This is the topic of Section 1.6. Arc
spaces of group schemes acting on a scheme is discussed in Section 1.7.
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8 1 Jet schemes and arc spaces

Throughout this chapter, the ground field will be the field C of complex numbers.
We shall work with the Zariski topology, and by variety we mean a reduced and
separated scheme of finite type over C.

1.1 Jet construction of differential algebras

Definition 1.1 In this book, a differential algebra is a commutative C-algebra 𝐴

equipped with a derivation 𝜕, that is, a homomorphism of vector spaces 𝜕 : 𝐴 ! 𝐴

satisfying the Leibniz product rule 𝜕 (𝑎𝑏) = 𝜕 (𝑎)𝑏 + 𝑎𝜕 (𝑏) for every 𝑎, 𝑏 ∈ 𝐴.
A differential algebra homomorphism 𝑓 : 𝐴! 𝐴′ between two differential alge-

bras (𝐴, 𝜕) and (𝐴′, 𝜕 ′) is a C-algebra homomorphism which commutes with the
derivations, that is, 𝜕 ′( 𝑓 (𝑎)) = 𝑓 (𝜕 (𝑎)) for every 𝑎 ∈ 𝐴.

Lemma 1.1 For any finitely generated unital commutative algebra 𝑅, there exists an
unique (up to an isomorphism) differential algebra J∞𝑅 such that

HomDif. Alg (J∞𝑅, 𝐴) � HomAlg (𝑅, 𝐴) (1.1)

for any differential algebra 𝐴. More precisely, the differential algebra J∞𝑅 satisfies
the following universal property: we have an algebra morphism 𝑗 : 𝑅 !J∞𝑅 such
that for any algebra morphism 𝑓 : 𝑅 ! 𝐴 from 𝑅 to a differential algebra (𝐴, 𝜕),
there is a unique differential algebra morphism 𝑓 : J∞𝑅 ! 𝐴 such that 𝑓 ◦ 𝑗 = 𝑓 .

Proof The uniqueness of J∞𝑅 follows from Yoneda’s lemma.
Let us show the existence. First, let 𝑅 = C[𝑥1, . . . , 𝑥𝑁 ]. We define J∞𝑅 to be

the polynomial ring C[𝜕 𝑗𝑥𝑖 : 𝑖 = 1, . . . , 𝑁, 𝑗 > 0] with infinitely many variables
𝜕 𝑗𝑥𝑖 , 𝑖 = 1, . . . , 𝑁 , 𝑗 > 0, with the differential

𝜕 : 𝜕 𝑗𝑥𝑖 7−! 𝜕 𝑗+1𝑥𝑖 , (1.2)

We have the embedding

𝑗 : 𝑅 ↩−!J∞𝑅, 𝑥𝑖 7−! 𝜕0𝑥𝑖 , (1.3)

and J∞𝑅 is generated by 𝑅 as a differential algebra. From now, we identify 𝑥𝑖 with
𝜕0𝑥𝑖 . It is clear that (J∞𝑅, 𝜕) satisfies the desired property.

Next, let 𝑅 be general. We may assume that

𝑅 = C[𝑥1, . . . , 𝑥𝑁 ]/〈 𝑓1, 𝑓2, · · · , 𝑓𝑟 〉

with 𝑓𝑖 ∈ C[𝑥1, . . . , 𝑥𝑁 ]. We define

J∞𝑅 = C[𝜕 𝑗𝑥𝑖 : 𝑖 = 1, . . . , 𝑁, 𝑗 > 0]/〈𝜕 𝑗 𝑓𝑖 : 𝑖 = 1, . . . , 𝑟, 𝑗 > 0〉, (1.4)

where 𝑓𝑖 is considered as an element of C[𝜕 𝑗𝑥𝑖 : 𝑖 = 1, . . . , 𝑁, 𝑗 > 0] by the embed-
ding 𝑗 . Since 〈𝜕 𝑗 𝑓𝑖 : 𝑖 = 1, . . . , 𝑟, 𝑗 > 0〉 is a differential ideal, J∞𝑅 is naturally a
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differential algebra with the derivation 𝜕. Because 〈𝜕 𝑗 𝑓𝑖 : 𝑖 = 1, . . . , 𝑟, 𝑗 > 0〉
is the smallest differential ideal of C[𝜕 𝑗𝑥𝑖 : 𝑖 = 1, . . . , 𝑁, 𝑗 > 0] containing
〈 𝑓1, 𝑓2, · · · , 𝑓𝑟 〉, (J∞𝑅, 𝜕) satisfies the required property.

From the above construction, one can also prove the uniqueness more explicitly.
Assume that there is another differential algebra (𝐵, 𝛿) satisfying the universal
property. First, since the identity is a differential algebra morphism from 𝐵 to 𝐵,
we get an algebra morphism 𝑗𝐵 from 𝑅 to 𝐵. Applying the universal property to 𝐵
and J∞𝑅, we get algebra morphisms 𝑓 : 𝐵 !J∞𝑅 and 𝑔 : J∞𝑅 ! 𝐵 such that
𝑓 ◦ 𝑗𝐵 = 𝑗 and 𝑔 ◦ 𝑗 = 𝑗𝐵. By the uniqueness, of liftings we get that 𝑓 ◦ 𝑔 = 𝑖𝑑J∞𝑅

and 𝑔 ◦ 𝑓 = 𝑖𝑑𝐵. �

The differential algebra J∞𝑅 is called the jet algebra of 𝑅.
By the proof of Lemma 1.1 we have the embedding 𝑗 : 𝑅 !J∞𝑅 given by the

correspondence (1.3). In particular, 𝑅 can be regarded as a subalgebra of J∞𝑅 and
the isomorphism (1.1) is given by restriction.

Observe that the correspondence 𝑅 7! J∞𝑅 is functorial. If 𝑓 : 𝑅 ! 𝑅′ is
an algebra homomorphism, then we naturally obtain a morphism J∞ 𝑓 : J∞𝑅 !
J∞𝑅′ making the following diagram commutative:

𝑅
𝑓

//

𝑗

��

𝑅′

𝑗

��

J∞𝑅
J∞ 𝑓

//J∞𝑅′

Lemma 1.2 Let 𝑅1 and 𝑅2 be finitely generated unital commutative algebras. Then

J∞ (𝑅1 ⊗ 𝑅2) �J∞𝑅1 ⊗ J∞𝑅2

as differential algebras, where the differential of J∞𝑅1 ⊗J∞𝑅2 is given by Δ(𝜕) =
𝜕 ⊗ 1 + 1 ⊗ 𝜕.

Proof For any differential algebra 𝐴, we have

HomAlg (𝑅1 ⊗ 𝑅2, 𝐴) � HomAlg (𝑅1, 𝐴) ⊗ HomAlg (𝑅2, 𝐴)
� HomDif. Alg (J∞𝑅1, 𝐴) ⊗ HomDif. Alg (J∞𝑅2, 𝐴)
� HomDif. Alg (J∞𝑅1 ⊗ J∞𝑅2, 𝐴).

Corollary 1.1 Let 𝐴 be a finitely generated commutative Hopf algebra with counit
𝜖 : 𝐴 ! C, coproduct Δ : 𝐴 ! 𝐴 ⊗ 𝐴 and antipode 𝑆 : 𝐴 ! 𝐴. Then J∞𝐴 is a
commutative Hopf algebra with counit J∞𝜖 , coproduct J∞Δ and antipode J∞𝑆.
Moreover, if 𝑀 is a comodule over 𝐴 with comodule map 𝜇 : 𝑀 ! 𝐴 ⊗ 𝑀 , then
J∞𝑀 is a comodule over J∞𝐴 with comodule map J∞𝜇.

Proof Note that J∞C = C. Hence J∞𝜖 defines an algebra homomorphism
J∞𝐴! C. It is straightforward to check the assertion using Lemma 1.2. �
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For any C-algebra 𝐴, we set

𝐴[[𝑧]] =
{∑︁
𝑛>0

𝑎𝑛𝑧
𝑛 : 𝑎𝑛 ∈ 𝐴

}
, (1.5)

which is naturally an algebra. Note that 𝐴 ⊗ C[[𝑧]] $ 𝐴[[𝑧]] in general.
As an algebra, J∞𝑅 has the following characterization.

Proposition 1.1 For a finitely generated unital commutative C-algebra 𝑅, J∞𝑅 is
the unique (up to isomorphisms) unital commutative C-algebra such that

HomAlg (J∞𝑅, 𝐴) � HomAlg (𝑅, 𝐴[[𝑧]])

for any unital commutative C-algebra 𝐴.

Proof The uniqueness follows from Yoneda’s lemma.
For 𝑓 ∈ J∞𝑅, we set

𝑒𝑧𝜕 𝑓 =
∑︁
𝑛>0

1
𝑛!

(𝜕𝑛 𝑓 )𝑧𝑛 ∈ (J∞𝑅) [[𝑧]] .

Next, for 𝛼 ∈ HomAlg (J∞𝑅, 𝐴), we define Φ(𝛼) ∈ HomAlg (𝑅, 𝐴[[𝑧]]) by

Φ(𝛼) ( 𝑓 ) = 𝛼(𝑒𝑧𝜕 𝑓 ) =
∑︁
𝑛>0

𝛼(𝜕𝑛 𝑓 /𝑛!)𝑧𝑛, 𝑓 ∈ 𝑅.

Since 𝑒𝑧𝜕 ( 𝑓 𝑔) = 𝑒𝑧𝜕 ( 𝑓 )𝑒𝑧𝜕 (𝑔), Φ(𝛼) is an algebra homomorphism. Hence, Φ
defines a map Φ : HomAlg (J∞𝑅, 𝐴) ! HomAlg (𝑅, 𝐴[[𝑧]]).

Conversely, define map Ψ : HomAlg (𝑅, 𝐴[[𝑧]]) ! HomAlg (J∞𝑅, 𝐴) by

Ψ(𝛽) (𝜕𝑛 𝑓 ) = lim
𝑧!0

𝜕𝑛𝑧 (𝛽( 𝑓 )), 𝑓 ∈ 𝑅, 𝑛 ∈ Z>0.

It is easy to see that Ψ is well-defined and we have Φ ◦ Ψ = Ψ ◦ Φ = id. This
completes the proof. �

We have

J∞𝑅 = lim−!
𝑚

J𝑚𝑅, (1.6)

where J𝑚𝑅 is the subalgebra of J∞𝑅 generated by 𝜕 𝑗𝑥𝑖 with 𝑖 = 1, . . . , 𝑁 ,
𝑗 = 0, . . . , 𝑚 in the presentation (1.4). The inductive limit is taken with respect to
the natural inclusions J𝑛𝑅 ↩!J𝑚𝑅, for 𝑛 6 𝑚.

The proof of the following assertion is similar to that of Proposition 1.1 and is
left to the reader.

Proposition 1.2 Let 𝑅 be a finitely generated unital commutative C-algebra. For
𝑚 > 0, J𝑚𝑅 is the unique (up to isomorphisms) commutative C-algebra such that
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HomAlg (J𝑚𝑅, 𝐴) � HomAlg (𝑅, 𝐴[𝑧]/(𝑧𝑚+1))

for any unital commutative C-algebra 𝐴.

Exercise 1.1 Let𝐾 be a field of characteristic 𝑝 > 0. Let us call a unital commutative
𝐾-algebra 𝐴 a differential algebra if it is equipped with linear maps

𝜕 [𝑛] : 𝐴! 𝐴, 𝑛 > 0,

(that corresponds to the divided power differential 𝜕𝑛/𝑛!) such that

𝜕 [𝑛] (𝑎𝑏) =
𝑛∑︁
𝑗=0
𝜕 [ 𝑗 ] (𝑎)𝜕 [𝑛− 𝑗 ] (𝑏), 𝑎, 𝑏 ∈ 𝐴.

Show that statements of Lemma 1.1, Proposition 1.1 and Proposition 1.2 hold by
replacing C-algebra by 𝐾-algebra and defining J𝑚𝑅 to be the subalgebra generated
by 𝜕 [ 𝑗 ]𝑥𝑖 with 𝑖 = 1, . . . , 𝑁 , 𝑗 = 0, . . . , 𝑚.

1.2 Arc spaces for affine schemes

Let 𝑆𝑐ℎ be the category of schemes over C.
Let 𝑋 be an affine scheme of finite type, that is, 𝑋 = Spec 𝑅 for some finitely

generated unital commutative C-algebra 𝑅. Define

J∞𝑋 := Spec(J∞𝑅). (1.7)

Then by Proposition 1.1,

{C-points of J∞𝑋} = Hom𝑆𝑐ℎ (SpecC,J∞𝑋) = HomAlg (J∞𝑅,C)
� HomAlg (𝑅,C[[𝑧]]) = Hom𝑆𝑐ℎ (𝐷, 𝑋),

where 𝐷 is the (formal) disc defined by

𝐷 = SpecC[[𝑧]] .

A morphism 𝛾 : 𝐷 ! 𝑋 is called an arc of 𝑋 . The scheme J∞𝑋 , whoseC-points
are arcs of 𝑋 , is called the arc space of 𝑋 . Note that J∞𝑋 is a scheme of infinite
type in general.

By Proposition 1.1, we have

Hom𝑆𝑐ℎ (Spec 𝐴,J∞𝑋) � Hom𝑆𝑐ℎ (Spec 𝐴[[𝑧]], 𝑋) (1.8)

for any commutative C-algebra 𝐴, and the arc space J∞𝑋 is characterized as the
unique scheme satisfying this property (see e.g. [66, VI.1]).

We also define for 𝑚 > 0
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J𝑚𝑋 = Spec(J𝑚𝑅). (1.9)

By the similar argument using Proposition 1.2, we find that the C-points of J𝑚𝑋

are the 𝑚-jets of 𝑋 , that is, the morphisms

Spec(C[𝑧]/(𝑧𝑚+1)) −! 𝑋.

The scheme J𝑚𝑋 is called the 𝑚-th jet scheme of 𝑋 . It is a scheme of finite type.
By Proposition 1.2, the 𝑚-th jet scheme J𝑚𝑋 is characterized as the unique

scheme satisfying

Hom𝑆𝑐ℎ (Spec 𝐴,J𝑚𝑋) � Hom𝑆𝑐ℎ (Spec 𝐴[𝑧]/(𝑧𝑚+1), 𝑋) (1.10)

for any commutative C-algebra 𝐴.
Denote by 𝜋𝑚 the canonical morphism

𝜋𝑚 : J𝑚 (𝑋) −!J0 (𝑋) � 𝑋

induced by the projection

C[𝑧]/(𝑧𝑚+1) −� C[𝑧]/(𝑧) � C.

More generally, we have truncation morphisms:

𝜋𝑚,𝑛 : J𝑚 (𝑋) −!J𝑛 (𝑋), 𝑚 > 𝑛,

induced by the projection

C[𝑧]/(𝑧𝑚+1) −� C[𝑧]/(𝑧𝑛+1).

Namely, 𝜋𝑚,𝑛 is the affine scheme morphism whose comorphism is the embedding
of C-algebras J𝑛𝑅 ↩!J𝑚𝑅.

By (1.6), we have

J∞𝑋 = lim
 −
𝑚

J𝑚𝑋 (1.11)

in the category of affine schemes. For 𝑚 ∈ Z>0, we have the canonical truncation
morphism

𝜋∞,𝑚 : J∞ (𝑋) −!J𝑚 (𝑋)

whose comorphism is the the embedding of C-algebras J𝑚𝑅 ↩!J∞𝑅.
The canonical injection C ↩! C[𝑧]/(𝑧𝑚+1) induces a morphism 𝜄𝑚 : 𝑋 !

J𝑚 (𝑋) whose comorphism is the canonical projection of C-algebras J𝑚𝑅 � 𝑅.
Since 𝜋𝑚 ◦ 𝜄𝑚 = id𝑋 , we get that 𝜋𝑚 is surjective and 𝜄𝑚 is injective.

Example 1.1 Let us consider a concrete example. Let

𝑋 = SpecC[𝑥1, 𝑥2, 𝑥3]/((𝑥1)2 + 𝑥2𝑥3) ⊂ A3.
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Set
𝑥
𝑗

(−𝑖−1) :=
1
𝑖!
𝜕𝑖𝑥 𝑗 , 𝑗 = 1, 2, 3, 𝑖 > 0.

Identifying 𝑥1 with 𝑥1
(−1) , 𝑥

2 with 𝑥2
(−1) and 𝑥3 with 𝑥3

(−1) , the equations of the
embedding of J∞ (𝑋) in J∞ (A3) are given by the vanishing of the coefficients of
the polynomial

(𝑥1
(−1)+𝑥

1
(−2) 𝑧+𝑥

1
(−3) 𝑧

2+· · · )2+(𝑥2
(−1)+𝑥

2
(−2) 𝑧+𝑥

2
(−3) 𝑧

2+· · · ) (𝑥3
(−1)+𝑥

3
(−2) 𝑧+𝑥

3
(−3) 𝑧

2+· · · )

in C[[𝑧]] or, equivalently, by the following equations:
(𝑥1

(−1) )
2 + 𝑥2

(−1)𝑥
3
(−1) = 0

2𝑥1
(−1)𝑥

1
(−2) + 𝑥

2
(−1)𝑥

3
(−2) + 𝑥

3
(−1)𝑥

2
(−2) = 0

2𝑥1
(−1)𝑥

1
(−3) + 2(𝑥1

(−2) )
2 + 𝑥2

(−1)𝑥
3
(−3) + 𝑥

2
(−2)𝑥

3
(−2) + 𝑥

3
(−1)𝑥

2
(−3) = 0

...
...

.

The truncation morphism 𝜋∞,𝑚 : J∞ (𝑋) ! J𝑚 (𝑋) is given by forgetting the
coordinates 𝑥 𝑗(−𝑖−1) , for 𝑖 > 𝑚.

1.3 Arc spaces for general schemes

The result of this section is not used for the rest of the book.

Theorem 1.1 (Greenberg [96, 97]) Let 𝑋 be a scheme of finite type.

i). For any 𝑚 ∈ Z>0 there exists a unique scheme J𝑚𝑋 such that

Hom𝑆𝑐ℎ (Spec 𝐴,J𝑚𝑋) � Hom𝑆𝑐ℎ (Spec 𝐴[𝑧]/(𝑧𝑚+1), 𝑋) (1.12)

for any commutative C-algebra 𝐴. Equivalently,

Hom𝑆𝑐ℎ (𝑍,J𝑚𝑋) � Hom𝑆𝑐ℎ (𝑍 ×SpecC C[𝑧]/(𝑧𝑚+1), 𝑋) (1.13)

for any scheme 𝑍 .
ii). there exists a unique scheme J∞𝑋 such that

Hom𝑆𝑐ℎ (Spec 𝐴,J∞𝑋) � Hom𝑆𝑐ℎ (Spec 𝐴[[𝑧]], 𝑋) (1.14)

for any commutative C-algebra 𝐴. Equivalently,

Hom𝑆𝑐ℎ (𝑍,J∞𝑋) � Hom𝑆𝑐ℎ (𝑍×̂SpecC SpecC[[𝑧]], 𝑋) (1.15)

for any scheme 𝑍 , where 𝑍×̂SpecC SpecC[[𝑧]] is the formal completion of 𝑍 ×
SpecC[[𝑧]] with respect to 𝑍 × {0}.
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Thus, the C-points of J𝑚 (𝑋) are the C[𝑧]/(𝑧𝑚+1)-points of 𝑋 , and the the C-
points of J∞ (𝑋) are theC[[𝑧]]-points of 𝑋 . From Theorem 1.1, we have for example
that J0 (𝑋) ' 𝑋 and that J1 (𝑋) ' 𝑇𝑋 , where 𝑇𝑋 denotes the total tangent bundle
of 𝑋 .

We have a canonical projection 𝜋𝑚,𝑛 : J𝑚 (𝑋) !J𝑛 (𝑋) for𝑚 > 𝑛. It is defined
at the level of the functor of points using (1.12): the induced map

Hom𝑆𝑐ℎ (Spec 𝐴[𝑧]/(𝑧𝑚+1), 𝑋) −! Hom𝑆𝑐ℎ (Spec 𝐴[𝑧]/(𝑧𝑛+1), 𝑋)

is induced from the truncation morphism 𝐴[𝑧]/(𝑧𝑚+1) ! 𝐴[𝑧]/(𝑧𝑛+1). Similarly,
we have a canonical projection 𝜋∞,𝑚 : J∞ (𝑋) !J𝑚 (𝑋) for 𝑚 ∈ Z>0.

For an arbitrary scheme 𝑋 of finite type, the following lemma allows to describe
the jet schemes J𝑚𝑋 , for 𝑚 ∈ Z>0, and the arc scheme J∞𝑋 from the affine case.

Lemma 1.3 ([64]) Given any𝑚 ∈ Z>0∪{∞} and any open subset𝑈 of 𝑋 , J𝑚 (𝑈) =
𝜋−1
𝑚 (𝑈).

Proof Assume first 𝑚 ∈ Z>0. Let 𝐴 be a C-algebra and

𝑗𝑚 : Spec 𝐴! Spec 𝐴[𝑧]/(𝑧𝑚+1)

be the morphism induced by truncation. An 𝐴-valued point of J𝑚 (𝑋) is a morphism
of schemes 𝛾 : Spec 𝐴[𝑧]/(𝑧𝑚+1) ! 𝑋 . Such a morphism is an 𝐴-valued point of
𝜋−1
𝑚 (𝑈) if and only if 𝛾 ◦ 𝑗𝑚 factors through𝑈. Clearly, if 𝛾 is an 𝐴-valued point of

J𝑚 (𝑈), that is, the image of 𝛾 lies in𝑈, then 𝛾 is an 𝐴-valued point of 𝜋−1
𝑚 (𝑈).

Conversely, assume that 𝛾 : Spec 𝐴[𝑧]/(𝑧𝑚+1) ! 𝑋 is an 𝐴-valued point of
𝜋−1
𝑚 (𝑈). Then 𝛾 ◦ 𝑗𝑚 factors through 𝑈. Note that the set of prime ideals of
𝐴[𝑧]/(𝑧𝑚+1) = 𝐴 ⊗ C[𝑧]/(𝑧𝑚+1) is in one-to-one correspondence with the set
of prime ideals of 𝐴 since SpecC[𝑧]/(𝑧𝑚+1) contains a unique element. Hence, 𝛾
induces a map from Spec 𝐴[𝑧]/(𝑧𝑚+1) to𝑈 (just between sets). Because𝑈 is open in
𝑋 , we have O𝑈 � O𝑋 |𝑈 . Hence the map induced from the morphism of schemes 𝛾
is automatically a morphism, too. So 𝛾 induces a morphism Spec 𝐴[𝑧]/(𝑧𝑚+1) ! 𝑈,
that is, an 𝐴-valued point of J𝑚 (𝑈).

For 𝑚 = ∞, the statement is obtained by taking the projective limit since
𝜋−1
∞,0 (𝑈) = lim

 −
𝑚

𝜋−1
𝑚 (𝑈) and J∞ (𝑈) = lim

 −
𝑚

J𝑚 (𝑈) . �

It follows from the lemma that for an arbitrary scheme 𝑋 of finite type with an
affine open covering {𝑈𝑖}𝑖∈𝐼 , its jet scheme J𝑚 (𝑋) is obtained by glueing the jet
schemes J𝑚 (𝑈𝑖) (see [64, 104]). Over an affine open subset 𝑈𝑖 ⊂ 𝑋 , the space of
arcs is described by(
𝜋∞,∗OJ∞𝑋

)
(𝑈𝑖) = OJ∞𝑋 (𝜋−1

∞,0 (𝑈𝑖)) = lim−!OJ𝑚𝑋 (𝜋−1
𝑚 (𝑈𝑖)) = OJ∞𝑋 (J∞𝑈𝑖),

where 𝜋∞,∗OJ∞𝑋 denotes the pushforward sheaf of OJ∞𝑋 induced by

𝜋∞,0 : J∞ ! 𝑋.
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In particular, the structure sheaf (𝜋∞,0)∗OJ∞ (𝑋 ) is a sheaf of differential algebras
on 𝑋 .

1.4 Functorial properties

The map from a scheme to its jet schemes, or its arc space, is functorial. If 𝑓 : 𝑋 ! 𝑌

is a morphism of schemes, then we naturally obtain a morphism J𝑚 𝑓 : J𝑚 (𝑋) !
J𝑚 (𝑌 ) making the following diagram commutative,

J𝑚 (𝑋)
J𝑚 𝑓

//

𝜋𝑚

��

J𝑚 (𝑌 )
𝜋𝑚

��

𝑋
𝑓

// 𝑌

In terms of arcs, it means that J𝑚 𝑓 (𝛼) = 𝑓 ◦ 𝛼 for 𝛼 ∈ J𝑚 (𝑋). This also holds
for 𝑚 = ∞.

In addition, we have the following results.

Lemma 1.4 ([64]) Let𝑚 ∈ Z>0∪{∞}. For every schemes 𝑋,𝑌 , we have a canonical
isomorphism

J𝑚 (𝑋 × 𝑌 ) ' J𝑚 (𝑋) × J𝑚 (𝑌 ).

For 𝑋,𝑌 affines, and 𝑚 = ∞, the lemma is just a reformulation of Lemma 1.2.

Proof Assume first that 𝑚 ∈ Z>0. Then for any affine scheme 𝑍 in 𝑆𝑐ℎ,

Hom(𝑍,J𝑚 (𝑋 × 𝑌 )) � Hom(𝑍 ×SpecC C[𝑧]/(𝑧
𝑚+1), 𝑋 × 𝑌 )

� Hom(𝑍 ×SpecC C[𝑧]/(𝑧
𝑚+1), 𝑋) × Hom(𝑍 ×SpecC C[𝑧]/(𝑧

𝑚+1), 𝑌 )
� Hom(𝑍,J𝑚 (𝑋)) × Hom(𝑍,J𝑚 (𝑌 ))
� Hom(𝑍,J𝑚 (𝑋) × J𝑚 (𝑌 )),

whence the statement in this case. For 𝑚 = ∞, just replace C[𝑧]/(𝑧𝑚+1) with C[[𝑧]]
and take the completion 𝑍×̂SpecC SpecC[[𝑧]] instead of 𝑍 ×SpecC C[𝑧]/(𝑧𝑚+1). �

Let 𝑓 : 𝑋 ! 𝑌 be a morphism between affine schemes 𝑋,𝑌 ∈ 𝑆𝑐ℎ. Recall that
𝑓 is called formally smooth (resp. unramified, étale) if for every C-algebra 𝐴, every
nilpotent ideal 𝐽 of 𝐴, and every commutative square,

Spec 𝐵
𝜑0 //

��

𝑋

𝑓

��

Spec 𝐴

𝜑

<<

𝜓
// 𝑌,
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where 𝐵 = 𝐴/𝐽, there exists one (resp. at most one, one unique) diagonal arrow 𝜑,
called the lifting, making the two triangles commutatives, [98].

Since 𝑓 is of finite type (the schemes 𝑋,𝑌 are of finite type), the morphism 𝑓

is formally smooth if and only if it is smooth. For the relation between formal and
standard smoothness we refer for instance to [152, Chap. 10, Section 28].

Lemma 1.5 ([64],[46, Proposition 3.7.1 and 3.7.4]) If 𝑓 : 𝑋 ! 𝑌 is a smooth sur-
jective morphism between affine schemes 𝑋,𝑌 ∈ 𝑆𝑐ℎ, then for every 𝑚 ∈ Z>0, J𝑚 𝑓

is also smooth and surjective. Moreover, J∞ 𝑓 is formally smooth and surjective.

Recall [178, proposition 4.8] that a morphism of schemes 𝑓 : 𝑋 ! 𝑌 is surjective
if and only if for any field 𝐾 and any 𝑦 ∈ 𝑌 (𝐾) there is a field extension 𝐿/𝐾 and
𝑥 ∈ 𝑋 (𝐿) whose image by 𝑋 (𝐿) ! 𝑌 (𝐿) is the image of 𝑦 under 𝑌 (𝐾) ! 𝑌 (𝐿)
Proof We prove at the same time the statements for J𝑚 𝑓 and J∞ 𝑓 . In the latter
case, set 𝑚 = ∞ and for every C-algebra 𝐴, read 𝐴[𝑧]/(𝑧𝑚+1) as 𝐴[[𝑧]].

Let us first prove the surjectivity. Let 𝐾 be a field. Given a 𝐾-valued point
J𝑚𝑌 (𝐾) is the same as giving a morphism 𝜓 : Spec𝐾 [𝑧]/(𝑧𝑚+1) ! 𝑌 . Denoting
by 𝜄𝐾 : Spec𝐾 ! Spec𝐾 [𝑧]/(𝑧𝑚+1) the natural closed immersion, the composition
map 𝜓 ◦ 𝜄𝐾 : Spec𝐾 ! 𝑌 yields a 𝐾-valued point 𝑦. Since 𝑓 is surjective, there is
a field extension 𝐿/𝐾 and 𝑥 ∈ 𝑋 (𝐿) whose image by 𝑋 (𝐿) ! 𝑌 (𝐿) is the image of
𝑦 under 𝑌 (𝐾) ! 𝑌 (𝐿). Hence we get an 𝐿-valued point 𝜑0 : Spec 𝐿 ! 𝑋 such that
the following diagram commutes:

Spec 𝐿
𝜑0 //

𝜄𝐿

��

𝑋

𝑓

��

Spec 𝐿 [𝑧]/(𝑧𝑚+1)
𝜇
// Spec𝐾 [𝑧]/(𝑧𝑚+1)

𝜓
// 𝑌,

where 𝜇 : Spec 𝐿 [𝑧]/(𝑧𝑚+1) ! Spec𝐾 [𝑧]/(𝑧𝑚+1) is the natural morphism induced
from 𝐾 ↩! 𝐿. Assume first that 𝑚 < ∞. Then the ideal of ker 𝜄∗

𝐿
is generated by

(𝑧), hence it is nilpotent in 𝐿 [𝑧]/(𝑧𝑚+1). The morphism 𝑓 being formally smooth,
there exists a morphism 𝜑 : Spec 𝐿 [𝑧]/(𝑧𝑚+1) ! 𝑋 , making the two triangles
commutative:

Spec 𝐿
𝜑0 //

𝜄𝐿

��

𝑋

𝑓

��

Spec 𝐿 [𝑧]/(𝑧𝑚+1)

𝜑

88

𝜓◦𝜇
// 𝑌,

that is, J𝑚 𝑓 (𝜑) = 𝜓 ′, with 𝜓 ′ := 𝜓 ◦ 𝜇. This proves the surjectivity of J𝑚 𝑓 .
Assume now that 𝑚 = ∞. Since J∞𝑋 is the projective limit of the J𝑚𝑋 , in

order to show the surjectivity of J∞ 𝑓 it is enough to check the compatibility of
J𝑚 𝑓 with the truncation morphisms 𝜋𝑚,𝑛 : J𝑚𝑋 ! J𝑛𝑋 . The foregoing shows
that for every 𝑛, there exists a morphism 𝜑𝑛 : Spec 𝐿 [𝑧]/(𝑧𝑛+1) ! 𝑋 such that
𝜓 ′ ◦ 𝜄𝑛 = 𝑓 ◦ 𝜑𝑛, that is, 𝜋∞,𝑛 (𝜓) = J𝑛 𝑓 (𝜑𝑛):
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Spec 𝐿
𝜑0 //

𝜄

��

𝑋

𝑓

��

Spec 𝐿 [𝑧]/(𝑧𝑛+1)

𝜄𝑛

��

𝜑𝑛

88

// 𝑌

Spec 𝐿 [[𝑧]],
𝜓′

88

where 𝜄𝑛 : Spec 𝐿 [𝑧]/(𝑧𝑛+1) ! Spec 𝐿 [[𝑧]] is the canonical closed immersion.
Moreover, 𝜋𝑚,𝑛 (𝜑𝑚) = 𝜑𝑛 for every 𝑚 > 𝑛. Therefore, the family (𝜑𝑛)𝑛 defines an
𝐿-valued point of lim −J𝑛 (𝑋), hence, an 𝐿-arc 𝜑 of 𝑋 . This proves the surjectivity
of J∞ 𝑓 .

We now show that J𝑚 (𝑋) is formally smooth, for 𝑚 ∈ Z>0 ∪ {∞}. As before,
we prove together the statement for J𝑚 𝑓 and J∞ 𝑓 . Notice that for 𝑚 < ∞, J𝑚 𝑓

is of finite type because 𝑓 is so. Hence J𝑚 𝑓 will be smooth if formally smooth.
Let 𝐴 be a C-algebra, 𝐽 a nilpotent ideal of 𝐴 and set 𝐵 = 𝐴/𝐽. Let

𝜓 : Spec 𝐴[𝑧]/(𝑧𝑚+1) ! 𝑌 be an 𝐴-valued point ofJ𝑚𝑌 and 𝜑0 : Spec 𝐵[𝑧]/(𝑧𝑚+1) !
𝑋 a 𝐵-valued point of J𝑚𝑋 such that 𝑓 ◦ 𝜑0 = 𝜓 ◦ 𝑗 ,

Spec 𝐵[𝑧]/(𝑧𝑚+1)
𝜑0 //

𝑗

��

𝑋

𝑓

��

Spec 𝐴[𝑧]/(𝑧𝑚+1)
𝜓

// 𝑌,

where 𝑗 : Spec 𝐵[𝑧]/(𝑧𝑚+1) ! Spec 𝐴[𝑧]/(𝑧𝑚+1) is the canonical closed immer-
sion. The ideal of ker 𝑗∗ is generated by 𝐽 [𝑧]/(𝑧𝑚+1), hence it is nilpotent. Since 𝑓
is formally smooth, there exists a morphism 𝜑 : Spec 𝐴[𝑧]/(𝑧𝑚+1) ! 𝑋 making the
two triangles commutatives:

Spec 𝐵[𝑧]/(𝑧𝑚+1)
𝜑0 //

𝑗

��

𝑋

𝑓

��

Spec 𝐴[𝑧]/(𝑧𝑚+1)

𝜑

88

𝜓
// 𝑌 .

This shows that the morphism J𝑚 𝑓 is formally smooth. Indeed, by definition, an
𝐴-valued point of J𝑚𝑌 (respectively, a 𝐵-valued point of J𝑚𝑋) is an 𝐴[𝑧]/(𝑧𝑚+1)-
valued point of 𝑌 (respectively, 𝐵[𝑧]/(𝑧𝑚+1)-valued point of 𝑋). �

Remark 1.1 Similarly, one can show that if 𝑓 : 𝑋 ! 𝑌 is a formally étale morphism
of affine schemes, then the canonical morphism J𝑚 (𝑋) !J𝑚 (𝑌 ) ×𝑌 𝑋 induced
by J𝑚 ( 𝑓 ) and 𝜋𝑚 : J𝑚 (𝑌 ) ! 𝑌 is an isomorphism. Hence Lemma 1.3 also follows
from this fact applied to the open immersion𝑈 ↩! 𝑋 since 𝜋−1

𝑚 (𝑈) �J𝑚 (𝑋) ×𝑋𝑈.
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1.5 Geometric properties of arc spaces

It is known that the geometry of the jet schemes J𝑚 (𝑋), for 𝑚 > 1, is closely
linked to that of 𝑋 . More precisely, we can transport some geometrical properties
from J𝑚 (𝑋) to 𝑋 .

The following proposition gives examples of such phenomena:

Proposition 1.3 Let 𝑚 ∈ Z>0, and let 𝑋 be an affine scheme of finite type. If J𝑚 (𝑋)
is smooth (respectively, irreducible, reduced, normal, locally a complete intersection)
for some 𝑚, then so is 𝑋 .

For smoothness, the converse is true, even with “every 𝑚” instead of “for some 𝑚”.
In fact, for smooth varieties, we have the following more precise statement, [64,
Corollary 2.11].

Proposition 1.4 If 𝑋 is a smooth variety of dimension 𝑁 , then the truncation mor-
phism 𝜋𝑚,𝑝 , for 𝑝 ∈ {0, . . . , 𝑚}, is a Zariski locally trivial projection with fiber
isomorphic to A(𝑚−𝑝)𝑁 . In particular, J𝑚 (𝑋) is a smooth variety of dimension
(𝑚 + 1)𝑁 .

Proof Around every point in 𝑋 we can find an open subset𝑈 and an étale morphism
𝑈 ! A𝑁 . Using Remark 1.1 the assertion reduced to the case where 𝑋 is the affine
space A𝑁 , in which case the statement is clear by Sections 1.1 and 1.2. �

For the other properties stated in Proposition 1.3, the converse is not true in
general. We refer for instance to [104, §3] for counter-examples. See also [160] for
counter-examples in the setting of nilpotent orbit closures in a simple Lie algebra.

The following lemma gives a necessary and sufficient condition for the converse
of Proposition 1.3 to hold for irreducibility.

Lemma 1.6 Assume that 𝑋 is an irreducible reduced affine scheme of finite type
over C, and let 𝑚 ∈ Z>0. Then the Zariski closure of 𝜋−1

𝑋,𝑚
(𝑋reg) is an irreducible

component of J𝑚 (𝑋), and J𝑚 (𝑋) is irreducible if and only if 𝜋−1
𝑋,𝑚

(𝑋sing) is
contained in the Zariski closure of 𝜋−1

𝑋,𝑚
(𝑋reg). Here, 𝑋reg stands for the smooth part

of 𝑋 , and 𝑋sing for its complement in 𝑋 .

Proof Since 𝑋reg is smooth and irreducible, the Zariski closure 𝜋−1
𝑋,𝑚

(𝑋reg) of
𝜋−1
𝑋,𝑚

(𝑋reg) is an irreducible closed subset of J𝑚 (𝑋) of dimension (𝑚 + 1) dim 𝑋

by Proposition 1.4. Then the lemma easily follows from the fact that we have the
decomposition

J𝑚 (𝑋) = 𝜋−1
𝑋,𝑚 (𝑋sing) ∪ 𝜋−1

𝑋,𝑚
(𝑋reg)

of closed subsets, and that 𝜋−1
𝑋,𝑚

(𝑋sing) ⊅ 𝜋−1
𝑋,𝑚

(𝑋reg). �

There are also subtle connections between the geometry of J𝑚 (𝑋), for 𝑚 > 1,
and the singularities of 𝑋 . In particular, by results of Mustaţă, we have:
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Theorem 1.2 ([161]) Let 𝑋 be an irreducible affine variety over C.

i). If 𝑋 is a complete intersection, then J𝑚 (𝑋) is irreducible for every 𝑚 > 1 if and
only if 𝑋 has rational singularities.

ii). If 𝑋 is a complete intersection and if J𝑚 (𝑋) is irreducible for some 𝑚 > 1, then
J𝑚 (𝑋) is also reduced.

We have seen that jet schemes and arc spaces share several functorial properties.
For topological properties, they behave rather differently. The main reason is that
C[[𝑧]] is a domain, contrary to C[𝑧]/(𝑧𝑚+1). Thereby, although J∞ (𝑋) is not of
finite type in general, its geometric properties are somehow simpler than those of
the finite jet schemes J𝑚 (𝑋).

Let us now turn to topological properties of the arc spaces.

Lemma 1.7 The natural morphism 𝑋red ! 𝑋 induces an isomorphism

J∞𝑋red
'
−!J∞𝑋

of topological spaces. Here 𝑋red stands for the reduced scheme associated with 𝑋 .

Proof We may assume that 𝑋 = Spec 𝑅, with 𝑅 a ring. An arc 𝛼 of 𝑋 corresponds
to a ring homomorphism 𝛼∗ : 𝑅 ! C[[𝑧]]. Since C[[𝑧]] is an integral domain, it
decomposes as 𝛼∗ : 𝑅 ! 𝑅/

√
0! C[[𝑧]]. Thus, 𝛼 is an arc of 𝑋red. �

Note that Lemma 1.7 is false for the schemes J𝑚 (𝑋).

•! Warning

If J∞𝑋 is reduced, then 𝑋 is reduced, but J∞𝑋 no need to be reduced if 𝑋 is
reduced.

The following example was discovered by Julien Sebag [172]: let 𝑋 be the hy-
persurface of A2 defined by equation 𝑥3 − 𝑦2 = 0. Then 𝑋 is reduced, and one can
verify that 3𝑦 (−1)𝑥 (−2) −2𝑥 (−1) 𝑦 (−2) is a nilpotent element of C[J∞𝑋], where 𝑥 (−1)
and 𝑦 (−1) identify with 𝑥 and 𝑦, respectively, and 𝑥 (−2) = 𝜕𝑥 (−1) , 𝑦 (−2) = 𝜕𝑦 (−1) .

Mustaţă’s result (Theorem 1.2) furnishes a converse to the above “warning” in
the case where 𝑋 is a locally complete intersection with rational singularities:

Theorem 1.3 ([161]) If 𝑋 is a locally complete intersection with rational singulari-
ties, then J∞ is reduced (and irreducible).

If 𝑋 is a point (as topological space), then J∞ (𝑋) is also a point (as topological
space), because Hom(𝐷, 𝑋) = Hom(C,C[[𝑧]]) consists of only one element. Thus,
Lemma 1.7 implies the following.

Corollary 1.2 If 𝑋 is zero-dimensional, then J∞ (𝑋) is also zero-dimensional.

In contrast to jet schemes, the irreducibility property is preserved for the space of
arcs.
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Theorem 1.4 (Kolchin) The arc scheme J∞ (𝑋) is irreducible if and only if 𝑋 is
irreducible.

Proof Since J∞𝑋 � J∞𝑋red as topological spaces, we may assume that 𝑋 is
reduced. Assume first that 𝑋 is smooth. In this case, the result is easy. Indeed, by
Proposition 1.4, the jet schemes J𝑚𝑋 are smooth for any 𝑚 and the canonical
projections J∞𝑋 !J𝑚𝑋 are all surjective. Therefore J∞𝑋 = lim −𝑚J𝑚𝑋 with
the projective limit topology is irreducible, too.

Consider now the general case. We argue by induction on 𝑑 = dim 𝑋 , the 𝑑 = 0
case being trivial. By Hironaka’s Theorem, there is a resolution of singularities
𝑓 : 𝑋 ′ ! 𝑋 . In particular, 𝑓 is a proper morphism and 𝑋 ′ is smooth. Suppose that
𝑍 is a proper closed subset of 𝑋 such that 𝑓 is an isomorphism over𝑈 = 𝑋 \ 𝑍 .

We claim that

J∞ (𝑋) = J∞ (𝑍) ∪ Im(J∞ 𝑓 ). (1.16)

Indeed, since 𝑓 is proper, the Valuative Criterion for properness implies that an arc
𝛾 : SpecC[[𝑧]] ! 𝑋 lies in the image of J∞ ( 𝑓 ) if and only if the induced morphism
𝛾 : SpecC((𝑧)) ! 𝑋 can be lifted to 𝑋 ′ (moreover, if the lifting of 𝛾 is unique, then
the lifting of 𝛾 is also unique). On the other hand, 𝛾 does not lie in J∞ (𝑍) if and
only if 𝛾 factors through 𝑈 ↩! 𝑋 . In this case, the lifting of 𝛾 exists and is unique
since 𝑓 is an isomorphism over𝑈. This proves (1.16).

The smooth case implies that J∞ (𝑋 ′) is irreducible and so is Im(J∞ 𝑓 ). Hence
by (1.16) it only remains to prove that J∞ (𝑍) is contained in the closure of
Im(J∞ 𝑓 ).

Consider the irreducible decomposition 𝑍 = 𝑍1∪ . . .∪𝑍𝑟 , inducing by J∞ (𝑍) =
J∞ (𝑍1) ∪ . . . ∪ J∞ (𝑍𝑟 ). Since 𝑓 is surjective and proper, for any 𝑖, there is
an irreducible component 𝑍 ′

𝑖
of 𝑓 −1 (𝑍𝑖) such that the induced map 𝑍 ′

𝑖
! 𝑍𝑖 is

surjective. By the Generic Smoothness Theorem ([134, Corollary 10.7]), one can
find open subsets𝑈 ′

𝑖
and𝑈𝑖 in 𝑍 ′

𝑖
and 𝑍𝑖 , respectively, such that induced morphisms

𝑔𝑖 : 𝑈 ′
𝑖
! 𝑈𝑖 are smooth and surjective. In particular, we get

J∞ (𝑈𝑖) = Im(J∞ (𝑔𝑖)) ⊆ Im(J∞ 𝑓 ).

On the other hand, by induction, every J∞ (𝑍𝑖) are irreducible. Since J∞ (𝑈𝑖) is a
nonempty open subset of J∞ (𝑍𝑖), it follows that

J∞ (𝑍𝑖) ⊆ Im(J∞ 𝑓 )

for every 𝑖. This completes the proof of the theorem. �

This result is classically referred to as the Kolchin irreducibility theorem, and is an
analogue for arc schemes of a theorem in differential algebra [130, IV.17, Prop. 10].

As a consequence of Kolchin’s Irreducibility Theorem, if 𝑋1, . . . , 𝑋𝑟 are the
irreducible components of 𝑋 , then J∞ (𝑋1), . . . ,J∞ (𝑋𝑟 ) are the irreducible com-
ponents of J∞𝑋 .
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Lemma 1.8 Let𝑌 be an irreducible affine scheme, and let 𝑓 : 𝑋 ! 𝑌 be a morphism
that restricts to a bijection between some open subsets 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 . Then
J∞ 𝑓 : J∞ (𝑋) !J∞ (𝑌 ) is dominant.

Proof The map J∞ 𝑓 restricts to the isomorphism J∞ (𝑈) '
−! J∞ (𝑉), and the

open subset J∞ (𝑉) is dense in J∞ (𝑌 ) since J∞ (𝑌 ) is irreducible. �

Remark 1.2 Note that all results of Sections 1.4 and 1.5 hold for any scheme of finite
type (not necessarily affine).

1.6 Loop spaces

In the context of vertex algebras one needs also to consider the loop space L 𝑋 of an
affine scheme 𝑋 . One of the reasons is that an O (J∞𝑋)-module as a vertex algebra
is the same as a smooth module over the topological ring O (L 𝑋) (see Section 2.14).

Assume that 𝑋 = Spec 𝑅 is an affine scheme of finite type over C.

Proposition 1.5 i). There exists a unique, up to isomorphism, ind-scheme L 𝑋 which
is the inductive limit of affine schemes L𝑛𝑋 of infinite type such that for any
commutative C-algebra 𝐴,

HomAlg (O (𝑋), 𝐴((𝑧))) � HomAlg (O (L 𝑋), 𝐴),

where 𝐴((𝑧)) = lim−!𝑛
𝑧−𝑛𝐴[[𝑧]].

ii). If 𝑋 is smooth, then L 𝑋 is formally smooth.

For a commutative C-algebra 𝐴, by

HomAlg (O (L 𝑋), 𝐴)

we always mean the set of continuous morphisms, that is, the morphisms from
O (L 𝑋) to 𝐴 which factorize through one of the quotients of the projective limit,

𝜌∞,𝑛 : O (L 𝑋) −� O (L𝑛𝑋).

Proof The unicity of the ind-scheme L 𝑋 follows from Yoneda’s lemma.
(i) Assume first that 𝑋 = A𝑁 = SpecC[𝑥𝑖]𝑖=1,...,𝑁 . Then set

L 𝑋 = lim−!
𝑛

SpecC[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑛,

where the coordinate 𝑥𝑖(− 𝑗−1) is defined by sending a morphism 𝛾 : C[𝑥𝑖]𝑖 ! C((𝑧))
giving by 𝛾(𝑥𝑖) = ∑

𝑗�−∞
𝛾𝑖(− 𝑗−1) 𝑧

𝑗 to the scalar 𝛾𝑖(− 𝑗−1) . We have

O (L 𝑋) = lim −
𝑛

C[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑛, (1.17)
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with respect to the surjective homomorphisms

𝜌𝑚,𝑛 : C[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑚 −� C[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑛, 𝑚 > 𝑛.

A continuous algebra morphism from O (L 𝑋) to a C-algebra 𝐴 is the same as a
morphism from O (L 𝑋) to 𝐴 which factorizes through one the quotient morphisms

𝜌∞,𝑛 : O (L 𝑋) −� C[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑛.

Hence we get that for every commutative C-algebra 𝐴,

HomAlg (O (L 𝑋), 𝐴) � lim−!
𝑛

HomAlg (C[𝑥𝑖(− 𝑗−1) ]𝑖, 𝑗>−𝑛, 𝐴)

� HomAlg (O (𝑋), lim−!
𝑛

𝑧−𝑛𝐴[[𝑧]])

� HomAlg (O (𝑋), 𝐴((𝑧))),

and L 𝑋 satisfies the required condition.
Suppose now that 𝑋 = Spec 𝑅 if an affine subscheme of A𝑁 defined by equations

𝑓1, . . . , 𝑓𝑟 . Any polynomial 𝑓 ∈ C[𝑥𝑖]𝑖=1,...,𝑁 induces a morphism of ind-schemes
𝑓 : LA𝑁 ! LA via base extension. Hence one may realize the loop space L 𝑋 as
the sub-ind-scheme of LA𝑁 defined by the equations 𝑓1, . . . , 𝑓𝑟 . More concretely,
replacing 𝑥𝑖 by 𝑥𝑖 (𝑧) = ∑

𝑗>−𝑛
𝑥𝑖(− 𝑗−1) 𝑧

𝑗 in the equations 𝑓𝑘 , we get, for each𝑚, a system

of equations in C[𝑥𝑖(− 𝑗−1) : 𝑖 = 1, . . . , 𝑁, 𝑗 > −𝑚] which defines a subscheme in
LA𝑁 . Our desired ind-scheme L 𝑋 is the inductive limit of these schemes as
𝑛! ∞.

(ii) Assume that 𝑋 = Spec 𝑅 is smooth. We need to prove that for any surjection
of C-algebras 𝐵 ! 𝐴 whose kernel 𝐽 satisfies 𝐼𝑛 = 0 for some 𝑛, the map of sets
HomAlg (𝑅, 𝐵((𝑧))) ! Hom𝑎𝑙𝑔 (𝑅, 𝐴((𝑧))) is surjective. But the kernel of 𝐵((𝑧)) !
𝐴((𝑧)) is 𝐽 ((𝑧)) which is also nilpotent of order 𝑛. So the smoothness of 𝑅 implies
that any morphism 𝑅 ! 𝐴((𝑧)) can be lifted to a morphism 𝑅 ! 𝐵((𝑧)). �

Since 𝑋 is separated, the valuative criterion for separated morphisms gives an
inclusion of the arc space J∞𝑋 into the loop space L 𝑋 . One could extend the
definition to any scheme, and the inclusion

J∞𝑋 ⊂ L 𝑋

would still hold. The valuative criterion for properness guarantees that this inclusion
is a bijection if and only if 𝑋 is proper. In fact, if 𝑋 is proper, let’s say projective,
then there is no difference between 𝐴[[𝑧]]-points and 𝐴((𝑧))-points of 𝑋 . However,
the category of O (J 𝑋) is different than the category of O (L 𝑋). In this book, we
only need to consider the case of affine schemes. We refer the reader to [121] for an
appropriate construction in a more general setting.
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1.7 Arc spaces of group schemes acting on an algebraic variety

A proalgebraic group is an inverse limit of algebraic groups. As a consequence of
Lemma 1.4 we get the following result.

Lemma 1.9 Let 𝑚 ∈ Z>0 (respectively, 𝑚 = ∞). If 𝐺 is a group scheme over C, then
J𝑚 (𝐺) is also a group scheme (respectively, a proalgebraic group scheme) over C.
Moreover, if 𝐺 acts on 𝑋 , then J𝑚 (𝐺) acts on J𝑚 (𝑋).

Proof According to Lemma 1.4, the multiplication morphism 𝜇 : 𝐺 × 𝐺 ! 𝐺

induces a morphism J𝑚𝜇 : J𝑚 (𝐺 × 𝐺) � J𝑚𝐺 × J𝑚𝐺 ! J𝑚𝐺 for any 𝑚.
Moreover, since the jet of a point is a point, the restrictions to {𝑒} × 𝐺 ! 𝐺 and
𝐺 × {𝑒} ! 𝐺 of 𝜇 induces morphisms {𝑒} × J𝑚𝐺 !J𝑚𝐺 and J𝑚𝐺 × {𝑒} !
J𝑚𝐺 and, so, the neutral element 𝑒 of 𝐺 is still a neutral element for the operation
J𝑚𝜇. From this, it is easy to verify that the operation J𝑚𝜇 gives to J𝑚𝐺 a group
scheme (respectively, a proalgebraic group scheme) structure.

Suppose now that 𝐺 acts on 𝑋 . The above group scheme (respectively, a proal-
gebraic group scheme) structure shows that J𝑚𝐺 acts on J𝑚𝑋 using the map
J𝑚 (𝐺×𝑋) �J𝑚𝐺×J𝑚𝑋 !J𝑚𝑋 induces from the action map𝐺×𝑋 ! 𝑋 .�

Remark 1.3 As a consequence of Lemma 1.9, if 𝐺 is an affine group scheme over C
acting on an affine scheme 𝑋 , the action comorphism,

O (J∞𝑋) ! O (J∞𝐺) ⊗ O (J∞𝑋),

is a morphism of differential algebras.

Example 1.2 Let 𝐺 be an linear algebraic group, 𝔤 = Lie(𝐺). By Lemma 1.9, J∞𝐺
is an affine proalgebraic group, whoseC-points are theC[[𝑡]]-points of𝐺. We denote
by 𝐺 [[𝑡]] the set of C-points of 𝐺. We have

Lie(J∞𝐺) = J∞𝔤 = 𝔤[[𝑡]], Lie(J𝑟𝐺) = J𝑟𝔤 = 𝔤[𝑡]/(𝑡𝑟+1),

with Lie bracket:

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛, 𝑥, 𝑦 ∈ 𝔤, 𝑚, 𝑛 ∈ Z>0. (1.18)

Indeed, by definition, for 𝑟 ∈ Z>0 t {∞}, Lie(J𝑟𝐺) is the Lie algebra of the left
invariant vector fields on J𝑟𝐺, that is,

Lie(J𝑟𝐺) = {𝐷 ∈ Der(O (J𝑟𝐺)) : Δ ◦ 𝐷 = (1 ⊗ 𝐷) ◦ Δ}

(see Appendix B, Section B.3), where Δ : O (J𝑟𝐺) ! O (J𝑟𝐺) ⊗ O (J𝑟𝐺) is
the coproduct induced by the coproduct of O (𝐺), see Corollary 1.1. Note that if
Δ( 𝑓 ) = ∑

𝑖 𝑢𝑖 ⊗ 𝑣𝑖 for 𝑓 ∈ O (𝐺), we have

Δ( 𝑓(−𝑛−1) ) =
∑︁
𝑖

𝑛∑︁
𝑘=0

(𝑢𝑖) (𝑘−𝑛−1) ⊗ (𝑣𝑖) (−𝑘−1) , (1.19)
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where 𝑓(−𝑛−1) = 𝜕𝑛 𝑓 /𝑛!. This is clear for 𝑟 = ∞ since Δ is the homomorphism
of differential algebras, and the coproduct of O (J𝑟𝐺) is obtained by restricting
the coproduct of O (J∞𝐺) to O (J𝑟𝐺). Let 𝑟 ∈ Z>0 and consider the Lie algebra
homomorphism 𝜙 : 𝔤[𝑡]/(𝑡𝑟+1) ! Der(O (J𝑟𝐺)) defined by

𝜙(𝑥𝑡𝑚) 𝑓(−𝑛−1) = (𝑥𝐿 𝑓 ) (𝑚−𝑛−1) , (1.20)

where 𝑥𝐿 is the left invariant vector field on 𝐺 corresponding to 𝑥 ∈ 𝔤 and we have
put 𝑓(𝑛) = 0 for 𝑛 > 0. We find from (1.19) that the image of 𝜙 is contained in
Lie(J𝑟𝐺), and thus, we have the Lie algebra homomorphism

𝜓 : 𝔤[𝑡]/(𝑡𝑟+1) −! Lie(J𝑟𝐺).

The map 𝜓 is injective since 𝔤 = Lie(𝐺), and therefore, 𝜙 must be isomorphism
since dim 𝔤[𝑡]/(𝑡𝑟+1) = dim Lie(J𝑟𝐺). As this is true for all 𝑚 > 0, we find that
𝔤[[𝑡]] � Lie(J∞𝐺), and that the action of 𝔤[[𝑡]] on O (J∞𝐺) as left invariant
vector fields is given by the formula (1.20).

By Lemma 1.9, note that the adjoint action of𝐺 on 𝔤 induces an action of J∞ (𝐺)
on J∞ (𝔤), and the coadjoint action of 𝐺 on 𝔤∗ induces an action of J∞ (𝐺) on
J∞ (𝔤∗).

We conclude this section with an application of Theorem 1.3 to the nilpotent cone
N of a simple Lie algebra 𝔤.

Example 1.3 Assume that 𝔤 is simple, and let N be the nilpotent cone of 𝔤 that
is, the set of nilpotent elements of 𝔤. (The reader is referred to Appendix A for
basics on semisimple Lie algebras, and to Appendix D for properties of the nilpotent
cone and nilpotent elements.). It is well-known that N is the reduced scheme of 𝔤
defined by the equations 𝑝1, . . . , 𝑝𝑟 , where 𝑝1, . . . , 𝑝𝑟 are homogeneous generators
of O (𝔤)𝐺 . Hence, J∞ (N ) is the subscheme of 𝔤[[𝑡]] defined by the equations 𝜕 𝑗 𝑝𝑖 ,
𝑖 = 1 . . . , 𝑟 and 𝑗 > 0.

Furthermore, according to Kostant [133], the nilpotent cone is a complete in-
tersection, which is irreducible and reduced. Moreover, it was proved by Hesselink
[101] that it has rational (hence canonical) singularities. Using Mustaţă’s result
(Theorem 1.3), it was shown that Eisenbud-Frenkel [65] that1:

J∞ (𝔤//𝐺) �J∞𝔤//J∞𝐺,

where 𝔤//𝐺 = Spec O (𝔤)𝐺 and J∞𝔤//J∞𝐺 = Spec O ( [J∞𝔤)J∞𝐺 . In other
words, the invariant ring O (J∞𝔤)J∞𝐺 is the polynomial ring

O (J∞ (𝔤//𝐺)) = C[𝜕 𝑗 𝑝𝑖 : 𝑖 = 1, . . . , 𝑟, 𝑗 > 0],

since O (𝔤//𝐺) = C[𝑝1, . . . , 𝑝𝑟 ]. In particular,

1 This result was obtained independently by Raïs-Tauvel [169] and Beilinson-Drinfeld [37] by other
methods.
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J∞ (N ) = Spec O (J∞𝔤)/O (J∞𝔤)J∞𝐺
+ ,

where O (J∞𝔤)J∞𝐺
+ is the augmentation ideal of O (J∞𝔤)𝐽∞𝐺 .





Chapter 2
Operator product expansion and vertex algebras

In this chapter, we collect the basic definitions and standard properties of vertex
algebras (see Section 2.7). We give several equivalent caracterisation of the locality
axiom, which is the most important axiom of a vertex algebra, and derive from this
the Borcherds identities (see Section 2.3 and 2.8). The easiest examples of vertex
algebras are the commutatives vertex algebras which are discussed in Section 2.9.
First interesting examples of non-commutative vertex algebras are given in the next
chapter (Chap. 3). Other important examples of non-commutative vertex algebras
will occur in the rest of this book.

The best general references for this chapter are [77, 112].

2.1 Notation

For 𝑅 a C-algebra and 𝑛 ∈ Z>0, we denote by 𝑅[[𝑧±1 , . . . , 𝑧
±
𝑛]] the vector space of all

𝑅-valued formal power series (or formal Laurent series) in the variables 𝑧1, . . . , 𝑧𝑛,
that is, the elements of the form∑︁

𝑖1∈Z
· · ·

∑︁
𝑖𝑛∈Z

𝑎𝑖1 ,...,𝑖𝑛 𝑧
𝑖1
1 . . . 𝑧

𝑖𝑛
𝑛 , (2.1)

where each 𝑎𝑖1 ,...,𝑖𝑛 is in 𝑅. If 𝑎 ∈ 𝑅[[𝑧±1 , . . . , 𝑧
±
𝑛]] and 𝑏 ∈ 𝑅[[𝑤±

1 , . . . , 𝑤
±
𝑚]],

𝑚, 𝑛 > 0, then the product 𝑎𝑏 is well-defined in 𝑅[[𝑧±1 , . . . , 𝑧
±
𝑛 , 𝑤

±
1 , . . . , 𝑤

±
𝑚]]. But if

𝑎, 𝑏 are two elements of 𝑅[[𝑧±1 , . . . , 𝑧
±
𝑛]], then their product does not make sense in

general since the coefficient in a given 𝑧 𝑗
𝑖
, for 𝑖 = 1, . . . , 𝑛 and 𝑗 ∈ Z, of the product

may be an infinite sum. However, the product of 𝑎 ∈ 𝑅[[𝑧±1 , . . . , 𝑧
±
𝑛]] by a Laurent

polynomial, that is, a series as in (2.1) such that 𝑎𝑖1 ,...,𝑖𝑛 = 0 for all but finitely many
𝑛-tuples 𝑖1, . . . , 𝑖𝑛, is well-defined.

Given a formal power series in one variable 𝑎(𝑧) = ∑
𝑛∈Z

𝑎𝑛𝑧
𝑛 ∈ 𝑅[[𝑧±]], we define

its residue at 𝑧 = 0 as:
Res𝑧=0 𝑎(𝑧) := 𝑎−1.

27
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If 𝑅 = C and if 𝑎(𝑧) is the Laurent series of a meromorphic function defined on a
punctured disc at 0, having pole only at 0, then

Res𝑧=0 𝑎(𝑧) =
1

2𝜋
√
−1

∫
𝛾

𝑎(𝑧)𝑑𝑧,

where the integral is taken over any closed curve 𝛾 winding once around 0.

2.2 Formal delta function

Define the formal delta-function by

𝛿(𝑧 − 𝑤) = 1
𝑧

∑︁
𝑛∈Z

(
𝑤

𝑧

)𝑛
∈ C[[𝑧±, 𝑤±]] .

We have

𝛿(𝑧 − 𝑤) = 𝜏𝑧,𝑤
(

1
𝑧 − 𝑤

)
− 𝜏𝑤,𝑧

(
1

𝑧 − 𝑤

)
, (2.2)

where the two maps 𝜏𝑧,𝑤 and 𝜏𝑤,𝑧 are the embeddings of algebras defined by:

𝜏𝑧,𝑤 : C[𝑧, 𝑤, 𝑧−1, 𝑤−1,
1

𝑧 − 𝑤 ] −! C((𝑧)) ((𝑤)), 1
𝑧 − 𝑤 7−!

1
𝑧

∑︁
𝑛>0

(
𝑤

𝑧

)𝑛
,

𝜏𝑤,𝑧 : C[𝑧, 𝑤, 𝑧−1, 𝑤−1,
1

𝑧 − 𝑤 ] −! C((𝑤)) ((𝑧)), 1
𝑧 − 𝑤 7−! −1

𝑧

∑︁
𝑛>0

( 𝑧
𝑤

)𝑛
.

Thus the map 𝜏𝑧,𝑤 ( 𝑓 ) is the expansion of 𝑓 in |𝑧 | > |𝑤 | and 𝜏𝑤,𝑧 ( 𝑓 ) is the expansion
of 𝑓 in |𝑤 | > |𝑧 |.
Lemma 2.1 For any C-algebra 𝑅 and any 𝑓 ∈ 𝑅[𝑧, 𝑧−1], where 𝑅[𝑧, 𝑧−1] is the set
of all Laurent polynomials in the variable 𝑧 with coefficients in 𝑅, we have

𝑓 (𝑧)𝛿(𝑧 − 𝑤) = 𝑓 (𝑤)𝛿(𝑧 − 𝑤). (2.3)

Proof Note that 𝑓 (𝑧) − 𝑓 (𝑤) is divisible by 𝑧 − 𝑤. We have

(𝑧 − 𝑤)𝛿(𝑧 − 𝑤) = (𝑧 − 𝑤)
(
𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤)

)
− 𝜏𝑤,𝑧

(
1

(𝑧 − 𝑤)

))
= 𝜏𝑧,𝑤 (1) − 𝜏𝑤,𝑧 (1) = 0,

whence the assertion. �

Remark 2.1 In fact, for any formal series 𝑓 ∈ 𝑅[[𝑧, 𝑧−1]], the multiplication 𝑓 (𝑧)𝛿(𝑧−
𝑤) makes sense and the equality (2.3) holds.
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Both homomorphisms 𝜏𝑧,𝑤 and 𝜏𝑤,𝑧 commute with 𝜕𝑤 and 𝜕𝑧 . Therefore, it follows
in the same way as above that

(𝑧 − 𝑤)𝑛+1 1
𝑛!
𝜕𝑛𝑤𝛿(𝑧 − 𝑤) = 0 (2.4)

for 𝑛 > 0.

Lemma 2.2 For 𝑚, 𝑛 > 0 we have

Res𝑧=0

(
(𝑧 − 𝑤)𝑚 1

𝑛!
𝜕𝑛𝑤𝛿(𝑧 − 𝑤)

)
= 𝛿𝑚,𝑛

Proof Observe that

(𝑧 − 𝑤)𝑚 1
𝑛!
𝜕𝑛𝑤𝛿(𝑧 − 𝑤) = 𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

)
− 𝜏𝑤,𝑧

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

)
.

The meromorphic function 𝑓 (𝑧) = 1
(𝑧−𝑤)𝑛−𝑚+1 , for fixed 𝑤 ∈ C, has poles con-

tained in {𝑤, 0,∞}. It admits the following Laurent series expansions:

𝑓 (𝑧) =


𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

)
=

∑
𝑚∈Z 𝑎𝑚 (𝑤)𝑧𝑚 if |𝑧 | > |𝑤 |

𝜏𝑤,𝑧

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

)
=

∑
𝑛∈Z 𝑏𝑛 (𝑤)𝑧𝑛 if |𝑤 | > |𝑧 |,

with 𝑎𝑚 (𝑤), 𝑏𝑛 (𝑤) ∈ C[[𝑤±]],
Now we have

Res𝑧=0

(
𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

))
= 𝑎−1 (𝑤) =

1
2𝜋

√
−1

∫
𝐶1,𝑤

𝑑𝑧

(𝑧 − 𝑤)𝑛−𝑚+1 , (2.5)

where 𝐶1,𝑤 is the contour described in Figure 2.1 (a circle centred at 0 with radius
𝑟1 > |𝑤 | = 𝑟), while

Res𝑧=0

(
𝜏𝑤,𝑧

(
1

(𝑧 − 𝑤)𝑛−𝑚+1

))
= 𝑏−1 (𝑤) =

1
2𝜋

√
−1

∫
𝐶2,𝑤

𝑑𝑧

(𝑧 − 𝑤)𝑛−𝑚+1 , (2.6)

where 𝐶2,𝑤 is the contour described in Figure 2.2 (a circle centred at 0 with radius
𝑟2 < |𝑤 | = 𝑟).

Clearly, by the residue theorem applied to the meromorphic function 𝑓 (𝑧) defined
on the domain C \ {𝑤, 0}, we get

(2.5) − (2.6) =
1

2𝜋
√
−1

∫
𝐶𝑤

𝑑𝑧

(𝑧 − 𝑤)𝑛−𝑚+1 = 𝛿𝑚,𝑛,

where 𝐶𝑤 is the contour described in Figure 2.3 (a circle with center 𝑤 and radius
< min(𝑟 − 𝑟2, 𝑟1 − 𝑟)). This concludes the proof.
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•

•𝑤

𝑟

𝑟1

𝐶1,𝑤

Fig. 2.1 The contour 𝐶1,𝑤

•

•𝑤

𝑟

𝑟2

𝐶2,𝑤

Fig. 2.2 The contour 𝐶2,𝑤

•

•𝑤
𝐶𝑤

𝑟2

𝐶2,𝑤

𝑟1

𝐶1,𝑤

Fig. 2.3 The contour 𝐶𝑤

2.3 Locality and Operator product expansion (OPE)

Let 𝑉 be a vector space over C. We denote by (End𝑉) [[𝑧, 𝑧−1]] the set of all formal
Laurent series in the variable 𝑧 with coefficients in the space End𝑉 . We call elements
𝑎(𝑧) of (End𝑉) [[𝑧, 𝑧−1]] a series on 𝑉 . For a series 𝑎(𝑧) on 𝑉 , we set

𝑎 (𝑛) = Res𝑧=0𝑎(𝑧)𝑧𝑛

so that the expansion of 𝑎(𝑧) is

𝑎(𝑧) =
∑︁
𝑛∈Z

𝑎 (𝑛) 𝑧
−𝑛−1. (2.7)

The coefficient 𝑎 (𝑛) is called a Fourier mode of 𝑎(𝑧). We write
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𝑎(𝑧)𝑏 =
∑︁
𝑛∈Z

𝑎 (𝑛)𝑏𝑧
−𝑛−1

for 𝑏 ∈ 𝑉 .

Definition 2.1 A series 𝑎(𝑧) ∈ (End𝑉) [[𝑧, 𝑧−1]] is called a field on 𝑉 if for any
𝑏 ∈ 𝑉 , 𝑎(𝑧)𝑏 ∈ 𝑉 ((𝑧)), that is, for any 𝑏 ∈ 𝑉 , 𝑎 (𝑛)𝑏 = 0 for large enough 𝑛.

In the sequel, the space of all fields on 𝑉 will be denoted by F 𝑖𝑒𝑙𝑑𝑠(𝑉).
For 𝑎(𝑧), 𝑏(𝑧) ∈ F 𝑖𝑒𝑙𝑑𝑠(𝑉), the product 𝑎(𝑧)𝑏(𝑧) does not make sense in gen-

eral. However, the normally ordered product

◦
◦ 𝑎(𝑧)𝑏(𝑧) ◦

◦ = 𝑎(𝑧)+𝑏(𝑧) + 𝑏(𝑧)𝑎(𝑧)−,

where
𝑎(𝑧)+ =

∑︁
𝑛<0

𝑎 (𝑛) 𝑧
−𝑛−1, 𝑎(𝑧)− =

∑︁
𝑛>0

𝑎 (𝑛) 𝑧
−𝑛−1,

does make sense and belongs to F 𝑖𝑒𝑙𝑑𝑠(𝑉). However, the normally ordered product
is neither commutative nor associative. By definition, ◦

◦ 𝑎(𝑧)𝑏(𝑧)𝑐(𝑧) ◦
◦ stands for

◦
◦ 𝑎(𝑧) ◦

◦ 𝑏(𝑧)𝑐(𝑧) ◦
◦

◦
◦ .

Although 𝑎(𝑧)𝑏(𝑤) makes sense, we also consider the following normally ordered
product in End(𝑉) [[𝑧±, 𝑤±]]:

◦
◦ 𝑎(𝑧)𝑏(𝑤) ◦

◦ = 𝑎(𝑧)+𝑏(𝑤) + 𝑏(𝑤)𝑎(𝑧)−.

Note that ◦
◦ 𝑎(𝑧)𝑏(𝑤) ◦

◦𝑣 ∈ 𝑉 [[𝑧, 𝑤]] [𝑧−1, 𝑤−1], while 𝑎(𝑧)𝑏(𝑤)𝑣 ∈ 𝑉 ((𝑧)) ((𝑤)), for
𝑎(𝑧), 𝑏(𝑧) ∈ F 𝑖𝑒𝑙𝑑𝑠(𝑉), 𝑣 ∈ 𝑉 .

Definition 2.2 We say two fields 𝑎(𝑧), 𝑏(𝑧) on 𝑉 are mutually local if

(𝑧 − 𝑤)𝑁 [𝑎(𝑧), 𝑏(𝑤)] = 0

in (End𝑉) [[𝑧±, 𝑤±]] for a sufficiently large 𝑁 .

We note that a field 𝑎(𝑧) needs not be local to itself.

Proposition 2.1 ([112], see also [156]) Fix two fields 𝑎(𝑧), 𝑏(𝑧) on a vector space
𝑉 . The following assertions are equivalent:

i). 𝑎(𝑧) and 𝑏(𝑧) are mutually local, that is, (𝑧 − 𝑤)𝑁 [𝑎(𝑧), 𝑏(𝑤)] = 0 for some
𝑁 ∈ Z>0 in (End𝑉) [[𝑧±, 𝑤±]];

ii). There exist 𝑐0 (𝑤), 𝑐1 (𝑤), . . . , 𝑐𝑁−1 (𝑤) ∈ F 𝑖𝑒𝑙𝑑𝑠(𝑉) such that

[𝑎(𝑧), 𝑏(𝑤)] =
𝑁−1∑︁
𝑛=0

𝑐𝑛 (𝑤)
1
𝑛!
𝜕𝑛𝑤𝛿(𝑧 − 𝑤).

in (End𝑉) [[𝑧±1, 𝑤±1]];
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iii). There exist 𝑐0 (𝑤), 𝑐1 (𝑤), . . . , 𝑐𝑁−1 (𝑤) ∈ F 𝑖𝑒𝑙𝑑𝑠(𝑉) such that

𝑎(𝑧)𝑏(𝑤) =
𝑁−1∑︁
𝑛=0

𝑐𝑛 (𝑤)𝜏𝑧,𝑤
(

1
(𝑧 − 𝑤)𝑛+1

)
+ ◦

◦ 𝑎(𝑧)𝑏(𝑤) ◦
◦

and

𝑏(𝑤)𝑎(𝑧) =
𝑁−1∑︁
𝑛=0

𝑐𝑛 (𝑤)𝜏𝑤,𝑧
(

1
(𝑧 − 𝑤)𝑛+1

)
+ ◦

◦ 𝑎(𝑧)𝑏(𝑤) ◦
◦

in (End𝑉) [[𝑧±1, 𝑤±1]].
Proof The direction (iii) ⇒ (ii) is obvious and (ii) ⇒ (i) follows from (2.4). We
shall show that (i) ⇒ (iii). We have

𝑎(𝑧)𝑏(𝑤) − ◦
◦ 𝑎(𝑧)𝑏(𝑤) ◦

◦ = [𝑎(𝑧)−, 𝑏(𝑤)],
𝑏(𝑤)𝑎(𝑧) − ◦

◦ 𝑎(𝑧)𝑏(𝑤) ◦
◦ = [𝑏(𝑤), 𝑎(𝑧)+] .

By the locality assumption,

(𝑧 − 𝑤)𝑁 [𝑎(𝑧)−, 𝑏(𝑤)] = (𝑧 − 𝑤)𝑁 [𝑏(𝑤), 𝑎(𝑧)+] . (2.8)

Observe that the left-hand-side of (2.8) does not have terms greater than 𝑁 − 1
in 𝑧 whereas the right does not have terms of negative degree in 𝑧. Hence, they
are polynomials of degree at most 𝑁 − 1 in 𝑧. It follows that there exists 𝑐 𝑗 (𝑤) ∈
(End𝑉) [[𝑤, 𝑤−1]], 𝑗 = 0, . . . , 𝑁 − 1, such that

(𝑧 − 𝑤)𝑁 [𝑎(𝑧)−, 𝑏(𝑤)] =
𝑁−1∑︁
𝑗=0

𝑐 𝑗 (𝑤) (𝑧 − 𝑤)𝑁− 𝑗−1.

For 𝑣 ∈ 𝑉 , the element [𝑎(𝑧)−, 𝑏(𝑤)]𝑣 = (𝑎(𝑧)𝑏(𝑤) − ◦
◦ 𝑎(𝑧)𝑏(𝑤) ◦

◦ )𝑣 belongs to
𝑉 ((𝑧)) ((𝑤)), which is a vector space over C((𝑧)) ((𝑤)). We have

[𝑎(𝑧)−, 𝑏(𝑤)]𝑣 = 𝜏𝑧,𝑤
(

1
(𝑧 − 𝑤)𝑁

)
(𝑧 − 𝑤)𝑁 [𝑎(𝑧)−, 𝑏(𝑤)]𝑣

= 𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤)𝑁

) 𝑁−1∑︁
𝑗=0

(𝑧 − 𝑤)𝑁− 𝑗−1𝑐 𝑗 (𝑤)𝑣

=

𝑁−1∑︁
𝑗=0

𝜏𝑧,𝑤

(
1

(𝑧 − 𝑤) 𝑗+1

)
𝑐 𝑗 (𝑤)𝑣.

Since 𝑣 ∈ 𝑉 is an arbitrary, we have obtained the first formula of (iii). The second
formula is similarly shown. Finally, we need to show that each 𝑐 𝑗 (𝑤) is a field.
Since we have shown that [𝑎(𝑧), 𝑏(𝑤)] = ∑𝑁−1

𝑗=0 𝑐 𝑗 (𝑤) 1
𝑗!𝜕

𝑗
𝑤𝛿(𝑧−𝑤), it follows from

Lemma 2.2 that



2.3 Locality and Operator product expansion (OPE) 33

𝑐 𝑗 (𝑤) = Res𝑧=0 ((𝑧 − 𝑤) 𝑗 [𝑎(𝑧), 𝑏(𝑤)]). (2.9)

As both 𝑎(𝑧) and 𝑏(𝑤) are fields, 𝑐 𝑗 (𝑤) is a field as well. �

By abuse of notation we often just write

𝑎(𝑧)𝑏(𝑤) ∼
𝑁−1∑︁
𝑛=0

𝑐𝑛 (𝑤)
(𝑧 − 𝑤)𝑛+1 (2.10)

for the relations of Proposition 2.1 (iii).

Definition 2.3 Formula (2.10) is called the operator product expansion (OPE) of
𝑎(𝑧) and 𝑏(𝑤).

Proposition 2.2 The OPE (2.10), or the relations of Proposition 2.1 (iii), is equiva-
lent to the relation,

[𝑎 (𝑚) , 𝑏 (𝑛) ] =
𝑁−1∑︁
𝑗=0

(
𝑚

𝑗

)
(𝑐 𝑗 ) (𝑚+𝑛− 𝑗) (𝑚, 𝑛 ∈ Z)

for 𝑎, 𝑏 ∈ 𝑉 , 𝑚, 𝑛 ∈ Z, in End𝑉 .

In the above formulas, the notation
(
𝑚

𝑗

)
for 𝑗 > 0 and 𝑚 ∈ Z means(

𝑚

𝑗

)
=
𝑚(𝑚 − 1) × · · · × (𝑚 − 𝑗 + 1)

𝑗 ( 𝑗 − 1) × · · · × 1
,

with the convention
(
𝑚

0

)
= 1.

Proof We only show that (2.10) implies that the above relation. The other direction
is easy to see. We have

[𝑎 (𝑚) , 𝑏 (𝑛) ] = Res𝑤=0 (𝑤𝑛 Res𝑧=0 (𝑧𝑚 [𝑎(𝑧), 𝑏(𝑤)])) .

As in the same manner as in the proof of Lemma 2.2, we get

Res𝑧=0 (𝑧𝑚 [𝑎(𝑧), 𝑏(𝑤)]) =
𝑁−1∑︁
𝑗=0

Res𝑧=𝑤
(

𝑧𝑚

(𝑧 − 𝑤) 𝑗+1

)
𝑐 𝑗 (𝑤) =

𝑁−1∑︁
𝑗=0

(
𝑚

𝑗

)
𝑐 𝑗 (𝑤)𝑤𝑚− 𝑗 .

This completes the proof. �

Proposition 2.2 says that the right-hand-side of the OPE encodes all the brackets
between all the coefficients of mutually local fields 𝑎(𝑧) and 𝑏(𝑧).
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2.4 Example

Let B be the unital associative algebra generated by elements 𝑏𝑛, for 𝑛 ∈ Z, with
relations

[𝑏𝑚, 𝑏𝑛] = 𝑚𝛿𝑚+𝑛,0, 𝑚, 𝑛 ∈ Z.

A B-module 𝑀 is called smooth if for each 𝑚 ∈ 𝑀 there exits an integer 𝑁 such that
𝑏𝑛𝑚 = 0 for 𝑛 > 𝑁 . If 𝑀 is a smooth B-module,

𝑏(𝑧) =
∑︁
𝑛∈Z

𝑏𝑛𝑧
−𝑛−1

is a field on 𝑀 . We have

[𝑏(𝑧), 𝑏(𝑤)] =
∑︁
𝑚,𝑛∈Z

[𝑏𝑚, 𝑏𝑛]𝑧−𝑚−1𝑤−𝑛−1 =
∑︁
𝑚∈Z

𝑚𝑧−𝑚−1𝑤𝑚−1 = 𝜕𝑤𝛿(𝑧 − 𝑤).

Hence, 𝑏(𝑧) is local to itself and

𝑏(𝑧)𝑏(𝑤) ∼ 1
(𝑧 − 𝑤)2 .

2.5 𝒏-th product of fields

Let 𝑎(𝑧), 𝑏(𝑧) be mutually local fields on 𝑉 , so that (𝑧 − 𝑤)𝑁 [𝑎(𝑧), 𝑏(𝑤)] = 0 for
some 𝑁 . For 𝑛 > 0, define the field 𝑎(𝑧) (𝑛)𝑏(𝑧) by

𝑎(𝑧) (𝑛)𝑏(𝑧) : = Res𝑤=0 ((𝑤 − 𝑧)𝑛 [𝑎(𝑤), 𝑏(𝑧)]).

Then, the OPE of 𝑎(𝑧) and 𝑏(𝑧) is expressed as

𝑎(𝑧)𝑏(𝑤) ∼
∑︁
𝑗>0

𝑎(𝑤) ( 𝑗)𝑏(𝑤)
(𝑧 − 𝑤) 𝑗+1 , (2.11)

see (2.9). (Note that 𝑎(𝑧) ( 𝑗)𝑏(𝑧) = 0 for 𝑗 > 𝑁 .)
In fact, the field 𝑎(𝑧) (𝑛)𝑏(𝑧) makes sense for all 𝑛 ∈ Z, where we undestand

Res𝑤=0 ((𝑤 − 𝑧)𝑛 [𝑎(𝑤), 𝑏(𝑧)]) as

Res𝑤=0
(
𝜏𝑤,𝑧 ((𝑤 − 𝑧)𝑛)𝑎(𝑤)𝑏(𝑧)

)
− Res𝑤=0

(
𝜏𝑧,𝑤 ((𝑤 − 𝑧)𝑛)𝑏(𝑧)𝑎(𝑤)

)
.

Explicitely, we have

𝑎(𝑧) (𝑛)𝑏(𝑧) =
∑︁
𝑘∈Z

(∑︁
𝑖>0

(
𝑛

𝑖

) (
𝑎 (𝑛−𝑖)𝑏 (𝑘+𝑖) − (−1)𝑛𝑏 (𝑛+𝑘−𝑖)𝑎 (𝑖)

))
𝑧−𝑘−1. (2.12)
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Definition 2.4 The field 𝑎(𝑧) (𝑛)𝑏(𝑧) is called the 𝑛-th product of 𝑎(𝑧) and 𝑏(𝑧).

Note that

𝑎(𝑧) (−1)𝑏(𝑧) = ◦
◦ 𝑎(𝑧)𝑏(𝑧) ◦

◦ , (2.13)

𝑎(𝑧) (−𝑛) id𝑉 =

{
1

(𝑛−1)!𝜕
(𝑛−1)
𝑧 𝑎(𝑧) if 𝑛 > 0,

0 if 𝑛 6 0.
(2.14)

The last formula follows from the fact that

𝑎(𝑧) (−𝑛) id𝑉 = Res𝑤=𝑧

(
𝑎(𝑤)

(𝑤 − 𝑧)𝑛

)
(recall the proof of Lemma 2.2), where

Res𝑤=𝑧

(
𝑎(𝑤)

(𝑤 − 𝑧)𝑛

)
:=

∑︁
𝑛∈Z

𝑎 (𝑛) Res𝑤=𝑧

(
𝑤−𝑛−1

(𝑤 − 𝑧)𝑛

)
.

Similarly, we have

(id𝑉 ) (𝑛)𝑎(𝑧) = 𝛿𝑛,−1𝑎(𝑧). (2.15)

Also, we have

𝜕𝑧 (𝑎(𝑧) (𝑛)𝑏(𝑧)) = (𝜕𝑧𝑎(𝑧)) (𝑛) 𝑏(𝑧) + 𝑎(𝑧) (𝑛) (𝜕𝑧𝑏(𝑧)) . (2.16)

This is clear from the fact that Res𝑧=0 𝜕𝑧 (. . .) = 0.
The 𝑛-th product is not associative. By definition, 𝑎(𝑧) (𝑚)𝑏(𝑧) (𝑛)𝑐(𝑧) stands for

𝑎(𝑧) (𝑚) (𝑏(𝑧) (𝑛)𝑐(𝑧)) as in the case of the normally ordered product.

Lemma 2.3 ([141]) If 𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧) are three mutually local fields on a vector
space 𝑉 , then the fields 𝑎(𝑧) (𝑛)𝑏(𝑧) and 𝑐(𝑧) are also mutually local for all 𝑛 ∈ Z.

Lemma 2.3 is usually referred to as Dong’s Lemma.

Proof By assumption there exists 𝑁 > 0 such that

(𝑧 − 𝑤)𝑁 𝑎(𝑧)𝑏(𝑤) = (𝑧 − 𝑤)𝑁 𝑏(𝑤)𝑎(𝑧), (2.17)
(𝑧 − 𝑢)𝑁 𝑎(𝑧)𝑐(𝑢) = (𝑧 − 𝑢)𝑁 𝑐(𝑢)𝑎(𝑧), (2.18)
(𝑤 − 𝑢)𝑁 𝑏(𝑤)𝑐(𝑢) = (𝑤 − 𝑢)𝑁 𝑐(𝑢)𝑏(𝑤). (2.19)

We may assume that 𝑁 + 𝑛 > 0. We claim that

(𝑤 − 𝑢)4𝑁 (
𝜏𝑧,𝑤 ((𝑧 − 𝑤)𝑛)𝑎(𝑧)𝑏(𝑤) − 𝜏𝑤,𝑧 ((𝑧 − 𝑤)𝑛)𝑏(𝑤)𝑎(𝑧)

)
𝑐(𝑢)

= (𝑤 − 𝑢)4𝑁 𝑐(𝑢)
(
𝜏𝑧,𝑤 ((𝑧 − 𝑤)𝑛)𝑎(𝑧)𝑏(𝑤) − 𝜏𝑤,𝑧 ((𝑧 − 𝑤)𝑛)𝑏(𝑤)𝑎(𝑧)

)
. (2.20)

Indeed, we have



36 2 Operator product expansion and vertex algebras

(𝑤 − 𝑢)4𝑁 = (𝑤 − 𝑢)𝑁
3𝑁∑︁
𝑠=0

(
3𝑁
𝑠

)
(𝑧 − 𝑢)𝑠 (𝑤 − 𝑧)3𝑁−𝑠 .

If 0 6 𝑠 6 𝑁 , (𝑤− 𝑧)3𝑁−𝑠𝜏𝑧,𝑤 ((𝑧−𝑤)𝑛) = (−1)3𝑁−𝑠𝜏𝑧,𝑤 ((𝑧−𝑤)3𝑁−𝑠+𝑛) and 3𝑁−
𝑠+𝑛 > 𝑁 . Thus, (𝑤−𝑧)3𝑁−𝑠 (𝜏𝑧,𝑤 ((𝑧−𝑤)𝑛)𝑎(𝑧)𝑏(𝑤)−𝜏𝑤,𝑧 ((𝑧−𝑤)𝑛)𝑏(𝑤)𝑎(𝑧)) = 0
by (2.17), and so the left-hand-side of (2.20) is equal to

3𝑁∑︁
𝑠=𝑁+1

(𝑤 − 𝑢)𝑁 (𝑧 − 𝑢)𝑠 (𝑤 − 𝑧)3𝑁−𝑠 (
𝜏𝑧,𝑤 ((𝑧 − 𝑤)𝑛)𝑎(𝑧)𝑏(𝑤) − 𝜏𝑤,𝑧 ((𝑧 − 𝑤)𝑛)𝑏(𝑤)𝑎(𝑧)

)
𝑐(𝑢).

Similarly, the right-hand-side of (2.20) is equal to

3𝑁∑︁
𝑠=𝑁+1

(𝑤 − 𝑢)𝑁 (𝑧 − 𝑢)𝑠 (𝑤 − 𝑧)3𝑁−𝑠𝑐(𝑢)
(
𝜏𝑧,𝑤 ((𝑧 − 𝑤)𝑛)𝑎(𝑧)𝑏(𝑤) − 𝜏𝑤,𝑧 ((𝑧 − 𝑤)𝑛)𝑏(𝑤)𝑎(𝑧)

)
.

But these two are equal thanks to (2.18) and (2.19).
The assertion follows by taking Res𝑧=0 of both sides of (2.20). �

The following assertion should be compared with Proposition 2.2.

Proposition 2.3 Let 𝑎(𝑧), 𝑏(𝑧), 𝑐(𝑧) be three mutually local fields on a vector space
𝑉 . Then,

𝑎(𝑧) (𝑚)𝑏(𝑧) (𝑛)𝑐(𝑧) − 𝑏(𝑧) (𝑛)𝑎(𝑧) (𝑚)𝑐(𝑧) =
∑︁
𝑗>0

(
𝑚

𝑗

)
(𝑎(𝑧) ( 𝑗)𝑏(𝑧)) (𝑚+𝑛− 𝑗)𝑐(𝑧)

(2.21)

for 𝑚, 𝑛 ∈ Z.

Proof The left-hand-side is equal to the sum of the following two terms:

Res𝑤=0 Res𝑢=0
(
𝜏𝑤,𝑧 ((𝑤 − 𝑧)𝑚)𝜏𝑢,𝑧 ((𝑢 − 𝑧)𝑛)𝑎(𝑤)𝑏(𝑢)𝑐(𝑧)

)
− Res𝑤=0 Res𝑢=0

(
𝜏𝑤,𝑧 ((𝑤 − 𝑧)𝑚)𝜏𝑢,𝑧 ((𝑢 − 𝑧)𝑛)𝑏(𝑢)𝑎(𝑤)𝑐(𝑧)

)
, (2.22)

− Res𝑤=0 Res𝑢=0
(
𝜏𝑧,𝑤 ((𝑤 − 𝑧)𝑚)𝜏𝑧,𝑢 ((𝑢 − 𝑧)𝑛)𝑐(𝑧)𝑎(𝑤)𝑏(𝑢)

)
+ Res𝑤=0 Res𝑢=0

(
𝜏𝑧,𝑤 ((𝑤 − 𝑧)𝑚)𝜏𝑧,𝑢 ((𝑢 − 𝑧)𝑛)𝑐(𝑧)𝑏(𝑢)𝑎(𝑤)

)
. (2.23)

By using the formula

(𝑤 − 𝑧)𝑚 =
∑︁
𝑗>0

(
𝑚

𝑗

)
(𝑤 − 𝑢) 𝑗 (𝑢 − 𝑧)𝑚− 𝑗 ,

and the fact that
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𝜏𝑤,𝑧 ((𝑤 − 𝑢) 𝑗 (𝑢 − 𝑧)𝑚− 𝑗 ) =
{
𝜏𝑤,𝑢 ((𝑤 − 𝑢) 𝑗 )𝜏𝑢,𝑧 ((𝑢 − 𝑧)𝑚− 𝑗 ) in C((𝑤)) ((𝑢)) ((𝑧)),
𝜏𝑢,𝑤 ((𝑤 − 𝑢) 𝑗 )𝜏𝑢,𝑧 ((𝑢 − 𝑧)𝑚− 𝑗 ) in C((𝑢)) ((𝑤)) ((𝑧)),

we find that (2.22) is equal to∑︁
𝑗>0

(
𝑚

𝑗

)
Res𝑢=0

(
𝜏𝑢,𝑧 ((𝑢 − 𝑧)𝑚+𝑛− 𝑗 )

(
𝑎(𝑢) ( 𝑗)𝑏(𝑢)

)
𝑐(𝑧)

)
.

Similarly, we find (2.23) is equal to

−
∑︁
𝑗>0

(
𝑚

𝑗

)
Res𝑢=0

(
𝜏𝑧,𝑢 ((𝑢 − 𝑧)𝑚+𝑛− 𝑗 )

(
𝑎(𝑢) ( 𝑗)𝑏(𝑢)

)
𝑐(𝑧)

)
.

This completes the proof. �

Exercise 2.1 Show that

𝑎(𝑧) (−𝑛−1)𝑏(𝑧) =
1
𝑛!

◦
◦ (𝜕𝑛𝑧 𝑎(𝑧))𝑏(𝑧) ◦

◦ for 𝑛 > 0.

2.6 Wick formula and an example (continued from Section 2.4)

Wick’s formula that we shall present below is very useful to compute OPE’s between
mutually local fields.

Recall that the normally ordered product of fields 𝑎1 (𝑧), . . . , 𝑎𝑘 (𝑧) over a vector
spaces 𝑉 is defined inductively from right to left:

◦
◦ 𝑎

1 (𝑧) . . . 𝑎𝑘 (𝑧) ◦
◦ = ◦

◦ 𝑎
1 (𝑧) . . . ◦

◦ 𝑎
𝑘−1 (𝑧)𝑎𝑘 (𝑧) ◦

◦ . . .
◦
◦ .

It is a sum of 2𝑘 terms of the form

𝑎𝑖1 (𝑧)+𝑎𝑖2 (𝑧)+ . . . 𝑎 𝑗1 (𝑧)−𝑎 𝑗2 (𝑧)− . . . , (2.24)

where 𝑖1 < 𝑖2 · · · , 𝑗1 > 𝑗2 > · · · is a permutation of the index set {1, . . . , 𝑘}.

Remark 2.2 It is clear from (2.24) that if [𝑎𝑖 (𝑧)±, 𝑎 𝑗 (𝑧)±] = 0 for all 𝑖, 𝑗 , then
◦
◦ 𝑎

1 (𝑧) . . . 𝑎𝑘 (𝑧) ◦
◦ = ◦

◦ 𝑎
𝑖1 (𝑧) . . . 𝑎𝑖𝑘 (𝑧) ◦

◦ for any permutation {𝑖1, . . . , 𝑖𝑘 }. It follows
that in this case the normally ordered products is commutative and associative.

We write 〈𝑎𝑖 , 𝑎 𝑗〉 = [𝑎𝑖 (𝑧)−, 𝑎 𝑗 (𝑤)] for the contraction of 𝑎𝑖 (𝑧) and 𝑎 𝑗 (𝑤). As
already observed in the proof of Proposition 2.1, we have

〈𝑎𝑖 , 𝑎 𝑗〉 = 𝑎𝑖 (𝑧)𝑎 𝑗 (𝑤) − ◦
◦ 𝑎
𝑖 (𝑧)𝑎 𝑗 (𝑤) ◦

◦

so that 〈𝑎𝑖 , 𝑎 𝑗〉 represents the “singular part” of 𝑎𝑖 (𝑧)𝑎 𝑗 (𝑤).
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Theorem 2.1 (Wick’s formula) Let 𝑎1 (𝑧), . . . , 𝑎𝑚 (𝑧) and 𝑏1 (𝑧), . . . , 𝑏𝑛 (𝑧) be two
collections of fields such that the following properties hold:

i). [〈𝑎𝑖 , 𝑏 𝑗〉, 𝑎𝑘 (𝑧)±] = 0 and [〈𝑎𝑖 , 𝑏 𝑗〉, 𝑏𝑘 (𝑧)±] = 0 for all 𝑖, 𝑗 , 𝑘;
ii). [𝑎𝑖 (𝑧)±, 𝑏 𝑗 (𝑤)±] = 0 for all 𝑖 and 𝑗 .

Then one has the following OPE:

◦
◦ 𝑎

1 (𝑧) . . . 𝑎𝑚 (𝑧) ◦
◦

◦
◦ 𝑏

1 (𝑤) . . . 𝑏𝑛 (𝑤) ◦
◦ (2.25)

=

min(𝑚,𝑛)∑︁
𝑠=0

∑︁
𝑖1<···<𝑖𝑠
𝑗1≠···≠ 𝑗𝑠

(
〈𝑎𝑖1 , 𝑏 𝑗1〉 · · · 〈𝑎𝑖𝑠 , 𝑏 𝑗𝑠 〉 ◦

◦ 𝑎
1 (𝑧) . . . 𝑎𝑚 (𝑧)𝑏1 (𝑤) . . . 𝑏𝑛 (𝑤) ◦

◦(𝑖1 ,...,𝑖𝑠 ; 𝑗1 ,..., 𝑗𝑠)
)
,

where the subscript (𝑖1, . . . , 𝑖𝑠; 𝑗1, . . . , 𝑗𝑠) means that the fields 𝑎𝑖1 (𝑧) . . . 𝑎𝑖𝑠 (𝑧)𝑏 𝑗1 (𝑤) . . . 𝑏 𝑗𝑠 (𝑤)
are removed.

Proof The typical term of the left-hand-side of (2.25) is(
𝑎 𝑗1 (𝑧)+𝑎 𝑗2 (𝑧)+ . . . 𝑎𝑖1 (𝑧)−𝑎𝑖2 (𝑧)− . . .

) (
𝑏𝑘1 (𝑤)+𝑏𝑘2 (𝑤)+ . . . 𝑏𝑙1 (𝑤)−𝑏𝑙2 (𝑤)−. . . .

)
Then we have to move the 𝑎𝑖 (𝑧)− across the 𝑏 𝑗 (𝑤)+ in order to bring this product to
the normally ordered product as in (2.24). Due to the condition (ii) of the theorem,
we have

𝑎𝑖 (𝑧)−𝑏 𝑗 (𝑤)+ = 𝑏 𝑗 (𝑤)+𝑎𝑖 (𝑧)− + 〈𝑎𝑖 , 𝑏 𝑗〉.

But due to condition (i), the contractions commute with all fields 𝑏𝑘 (𝑤)±, hence can
be moved to the left. This proves the theorem. �

Using Proposition 2.3 for 𝑛 = −1 we obtain the non-commutative Wick formula :

𝑎(𝑧) (𝑚)
◦
◦ 𝑏(𝑧)𝑐(𝑧) ◦

◦ (2.26)

= ◦
◦
(
𝑎(𝑧) (𝑚)𝑏(𝑧)

)
𝑐(𝑧) ◦

◦ + ◦
◦ 𝑏(𝑧)

(
𝑎(𝑧) (𝑚)𝑐(𝑧)

)
◦
◦ +

𝑚−1∑︁
𝑗=0

(
𝑚

𝑗

) (
𝑎(𝑧) ( 𝑗)𝑏(𝑧)

)
(𝑚−1− 𝑗) 𝑐(𝑧).

Formulas (2.25) and (2.26) allow to compute OPE of arbitrary normally ordered
product of pairwise local fields from the knowledge of the OPE of these fields if they
form a closed system under 𝑛-th products for 𝑛 ∈ Z>0.

Remark 2.3 There is a Mathematica package [177] which provides a computer pro-
gram for these OPE calculations.

Remark 2.4 It is not difficult to adapt Wick’s formulas (2.25) and (2.26) in the case
where 𝑉 is a superspace, see [112, Section 3.3].

Keep the notation of Section 2.4. For 𝛼 ∈ C, set

𝐿 (𝑧) = 1
2

◦
◦ 𝑏(𝑧)2 ◦

◦ + 𝛼𝜕𝑧𝑏(𝑧).
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By Lemma 2.3, 𝐿 (𝑧) is local to 𝑏(𝑧) and itself. To compute the OPE’s between them,
we use Wick’s formula.

Exercise 2.2 Using Wick’s formula, show that

◦
◦ 𝑏(𝑧)2 ◦

◦
◦
◦ 𝑏(𝑤)2 ◦

◦ ∼ 2
(𝑧 − 𝑤)4 + 4

(𝑧 − 𝑤)2
◦
◦ 𝑏(𝑤)2 ◦

◦ + 4
(𝑧 − 𝑤)

◦
◦ (𝜕𝑤𝑏(𝑤))𝑏(𝑤) ◦

◦ ,

𝜕𝑧𝑏(𝑧) ( ◦
◦ 𝑏(𝑤)2 ◦

◦ ) ∼ − 4
(𝑧 − 𝑤)3 𝑏(𝑤),

( ◦
◦ 𝑏(𝑧)2 ◦

◦ )𝜕𝑤𝑏(𝑤) ∼
4

(𝑧 − 𝑤)3 𝑏(𝑤) +
4

(𝑧 − 𝑤)2 𝜕𝑤𝑏(𝑤) +
2

(𝑧 − 𝑤) 𝜕
2
𝑤𝑏(𝑤),

𝜕𝑧𝑏(𝑧)𝜕𝑤𝑏(𝑤) ∼ − 6
(𝑧 − 𝑤)4 ,

𝐿 (𝑧)𝑏(𝑤) ∼ − 2𝛼
(𝑧 − 𝑤)3 + 𝑏(𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑤𝑏(𝑤)(𝑧 − 𝑤) ,

𝐿 (𝑧)𝐿 (𝑤) ∼ (1 − 12𝛼2)/2
(𝑧 − 𝑤)4 + 2𝐿 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑤𝐿 (𝑤)(𝑧 − 𝑤) . (2.27)

2.7 Definition of vertex algebras

Definition 2.5 A vertex algebra is a vector space𝑉 equipped with the following data:

• (the vacuum vector) a vector |0〉 ∈ 𝑉 ,
• (the vertex operator) a linear map

𝑌 : 𝑉 ! F 𝑖𝑒𝑙𝑑𝑠(𝑉), 𝑎 7! 𝑌 (𝑎, 𝑧) = 𝑎(𝑧) =
∑︁
𝑛∈Z

𝑎 (𝑛) 𝑧
−𝑛−1,

• (the translation operator) a linear map 𝑇 : 𝑉 ! 𝑉 .

These data are subject to the following axioms:

• (the vacuum axiom) 𝑌 ( |0〉, 𝑧) = Id𝑉 . Furthermore, for all 𝑎 ∈ 𝑉 ,

𝑌 (𝑎, 𝑧) |0〉 ∈ 𝑉 [[𝑧]]

and lim
𝑧!0

𝑌 (𝑎, 𝑧) |0〉 = 𝑎. In other words, 𝑎 (𝑛) |0〉 = 0 for 𝑛 > 0 and 𝑎 (−1) |0〉 = 𝑎,
• (the translation axiom) we have 𝑇 |0〉 = 0 and for any 𝑎 ∈ 𝑉 ,

[𝑇,𝑌 (𝑎, 𝑧)] = 𝜕𝑧𝑌 (𝑎, 𝑧),

• (the locality axiom) for all 𝑎, 𝑏 ∈ 𝑉 , the fields 𝑌 (𝑎, 𝑧) and 𝑌 (𝑏, 𝑤) are mutually
local, that is,

(𝑧 − 𝑤)𝑁 [𝑌 (𝑎, 𝑧), 𝑌 (𝑏, 𝑤)] = 0 (2.28)
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for some 𝑁 = 𝑁𝑎,𝑏 ∈ Z>0.

Let 𝑉 , 𝑊 be vertex algebras. The tensor product 𝑉 ⊗𝑊 is a vertex algebra with
the vacuum vector |0〉 ⊗ |0〉, the translation operator 𝑇 ⊗ 1 + 1 ⊗ 𝑇 , and the vertex
operator 𝑌 (𝑎 ⊗ 𝑏, 𝑧) = 𝑌 (𝑎, 𝑧) ⊗ 𝑌 (𝑏, 𝑧). A vertex algebra homomorphism from 𝑉

to 𝑊 is a linear map 𝜙 : 𝑉 ! 𝑊 such that 𝜙( |0〉) = |0〉, 𝜙(𝑇𝑎) = 𝑇𝜙(𝑎), and
𝜙(𝑎 (𝑛)𝑏) = 𝜙(𝑎) (𝑛)𝜙(𝑏) for all 𝑎, 𝑏 ∈ 𝑉 , 𝑛 ∈ 𝑉 .

2.8 Goddard’s uniqueness theorem and Borcherds identities

Theorem 2.2 (Goddard’s uniqueness theorem) Let 𝑉 be a vertex algebra, and
𝐴(𝑧) a field on 𝑉 . Suppose there exists a vector 𝑎 ∈ 𝑉 such that

𝐴(𝑧) |0〉 = 𝑌 (𝑎, 𝑧) |0〉

and 𝐴(𝑧) is local with 𝑌 (𝑏, 𝑧) for all 𝑏 ∈ 𝑉 . Then 𝐴(𝑧) = 𝑌 (𝑎, 𝑧).
Proof Let 𝑐 ∈ 𝑉 . By the hypothesis and the locality axiom, we obtain that for 𝑁
large enough, the following equalities hold in 𝑉 [[𝑧±1, 𝑤±1]]:

(𝑧 − 𝑤)𝑁 𝐴(𝑧)𝑌 (𝑐, 𝑤) |0〉 = (𝑧 − 𝑤)𝑁𝑌 (𝑐, 𝑤)𝐴(𝑧) |0〉
= (𝑧 − 𝑤)𝑁𝑌 (𝑐, 𝑤)𝑌 (𝑎, 𝑧) |0〉 = (𝑧 − 𝑤)𝑁𝑌 (𝑎, 𝑧)𝑌 (𝑐, 𝑤) |0〉.

Using the vacuum axiom, we deduce evaluating at 𝑤 = 0 the above equalities, that
for every 𝑐 ∈ 𝑉 ,

𝐴(𝑧)𝑐 = 𝑌 (𝑎, 𝑧)𝑐,

that is, 𝐴(𝑧) = 𝑌 (𝑎, 𝑧) as expected. �

Remark 2.5 We notice that in the proof of Goddard’s uniqueness theorem, only the
vacuum and the locality axioms are used, but not the translation axiom.

Corollary 2.1 For 𝑎 ∈ 𝑉 , we have 𝑌 (𝑇𝑎, 𝑧) = 𝜕𝑧𝑌 (𝑎, 𝑧).
Proof First, we have

𝑌 (𝑎, 𝑧) |0〉 = 𝑒𝑧𝑇 𝑎 =
∑︁
𝑛>0

1
𝑛!

(𝑇𝑛𝑎)𝑧𝑛. (2.29)

Indeed, 𝜕𝑧𝑌 (𝑎, 𝑧) |0〉 = [𝑇,𝑌 (𝑎, 𝑧))] |0〉 = 𝑇𝑌 (𝑎, 𝑧) |0〉. Using this repeatedly, we
obtain 𝜕𝑛𝑧 𝑌 (𝑎, 𝑧) |0〉 = 𝑇𝑛𝑌 (𝑎, 𝑧) |0〉 since (𝜕𝑧𝑌 (𝑎, 𝑧)) |0〉 = 𝜕𝑧 (𝑌 (𝑎, 𝑧) |0〉) which
can checked directly. In particular, we have

lim
𝑧!0

𝜕𝑛𝑧 𝑌 (𝑎, 𝑧) |0〉 = 𝑇𝑛𝑎,

which proves (2.29). Therefore, 𝜕𝑧𝑌 (𝑎, 𝑧) |0〉 = 𝜕𝑧 (𝑒𝑧𝑇 𝑎) = 𝑒𝑧𝑇 (𝑇𝑎) = 𝑌 (𝑇𝑎, 𝑧) |0〉
and the assertion follows from Theorem 2.2. �
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By Corollary 2.1 and its proof, we have

(𝑇𝑎) (𝑛) = −𝑛𝑎 (𝑛−1)

for all 𝑎 ∈ 𝑉, 𝑛 ∈ Z, and

𝑎 (−𝑛−1) |0〉 =
1
𝑛!
𝑇𝑛𝑎, for all 𝑛 > 0. (2.30)

Proposition 2.4 (skew-symmetry) Let V be a vertex algebra. Then the identity

𝑌 (𝑎, 𝑧)𝑏 = 𝑒𝑧𝑇𝑌 (𝑏,−𝑧)𝑎.

holds in V((z)).

Proof By (2.29) and locality,

(𝑧 − 𝑤)𝑁𝑌 (𝑎, 𝑧)𝑒𝑤𝑇 𝑏 = (𝑧 − 𝑤)𝑁𝑌 (𝑎, 𝑧)𝑌 (𝑏, 𝑤) |0〉 = (𝑧 − 𝑤)𝑁𝑌 (𝑏, 𝑤)𝑌 (𝑎, 𝑧) |0〉
= (𝑧 − 𝑤)𝑁𝑌 (𝑏, 𝑤)𝑒𝑧𝑇 𝑎

for a sufficiently large 𝑁 . Now we have

𝑒𝑧𝑇𝑌 (𝑏, 𝑤)𝑒−𝑧𝑇 =
∑︁
𝑛>0

1
𝑛!

ad(𝑧𝑇)𝑛 (𝑌 (𝑏, 𝑤)) =
∑︁
𝑛>0

𝑧𝑛

𝑛!
𝜕𝑛𝑤𝑌 (𝑏, 𝑤) = 𝑌 (𝑏, 𝑧 + 𝑤)

in (End𝑉) [[𝑧±, 𝑤±]], where by (𝑧+𝑤)−1 we understand its expansion 𝜏𝑧,𝑤 (1/(𝑧+𝑤)).
(The formal variable version of the Taylor formula.) Hence,

(𝑧 − 𝑤)𝑁𝑌 (𝑎, 𝑧)𝑒𝑤𝑇 𝑏 = (𝑧 − 𝑤)𝑁 𝑒𝑧𝑇𝑌 (𝑏, 𝑤 − 𝑧)𝑎,

where by (𝑤 − 𝑧)−1 we understand its expansion 𝜏𝑧,𝑤 (1/(𝑤 − 𝑧)). Since there is no
negative power of 𝑤 on the left-hand-side, we can set 𝑤 = 0 on both sides to get the
desired formula. �

Lemma 2.4 Let 𝑉 be a vertex alegbra, 𝑎, 𝑏 ∈ 𝑉 , 𝑛 ∈ Z. Then,

𝑌 (𝑎 (𝑛)𝑏, 𝑧) = 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧).

Proof By Lemma 2.3, the field 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) is mutually local to all 𝑌 (𝑣, 𝑧),
𝑣 ∈ 𝑉 . Hence it is sufficient to show that 𝑌 (𝑎 (𝑛)𝑏, 𝑧) |0〉 = 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) |0〉 by
Theorem 2.2.

We have 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) |0〉 ∈ 𝑉 [[𝑧]] and

lim
𝑧!0

𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) |0〉 = 𝑎 (𝑛)𝑏 (−1) |0〉 = 𝑎 (𝑛)𝑏,

see (2.12). Also, we have

(𝑇𝑎) (𝑛)𝑏 = −𝑛𝑎 (𝑛−1)𝑏 + 𝑎 (𝑛) (𝑇𝑏),
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while (2.16), we have,

𝜕𝑧
(
𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧)

)
= −𝑛𝑌 (𝑎, 𝑧) (𝑛−1)𝑌 (𝑏, 𝑧) + 𝑌 (𝑎, 𝑧) (𝑛) (𝜕𝑧𝑌 (𝑏, 𝑧)).

Hence, we obtain

lim
𝑧!0

𝑌 (𝑇 𝑘𝑎 (𝑛)𝑏, 𝑧) |0〉 = lim
𝑧!0

𝜕𝑘𝑧 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) |0〉 (2.31)

inductively for all 𝑘 > 0. By Corollary 2.1, this is equivalent to the required formula
𝑌 (𝑎 (𝑛)𝑏, 𝑧) |0〉 = 𝑌 (𝑎, 𝑧) (𝑛)𝑌 (𝑏, 𝑧) |0〉. �

Theorem 2.3 (Borcherds identities) Let 𝑉 be a vertex algebra, 𝑎, 𝑏 ∈ 𝑉 . We have

[𝑎 (𝑚) , 𝑏 (𝑛) ] =
∑︁
𝑖>0

(
𝑚

𝑖

)
(𝑎 (𝑖)𝑏) (𝑚+𝑛−𝑖) , (2.32)

(𝑎 (𝑚)𝑏) (𝑛) =
∑︁
𝑗>0

(−1) 𝑗
(
𝑚

𝑗

)
(𝑎 (𝑚− 𝑗)𝑏 (𝑛+ 𝑗) − (−1)𝑚𝑏 (𝑚+𝑛− 𝑗)𝑎 ( 𝑗) ), (2.33)

for 𝑚, 𝑛 ∈ Z.

Proof By (2.11) and lemma 2.4, we have

𝑌 (𝑎, 𝑧)𝑌 (𝑏, 𝑤) ∼
∑︁
𝑖>0

𝑌 (𝑎 (𝑖)𝑏, 𝑤)
(𝑧 − 𝑤)𝑖+1 .

Hence, (2.32) follows from Proposition 2.1. As for (2.33), it is equivalent to the
statement of Lemma 2.4 and formula (2.12). �

The relations (2.32) and (2.33) are called Borcherds identities.

Remark 2.6 The two identifies (2.32) and (2.33) are equivalent to the following single
identity, for 𝑝, 𝑞, 𝑟 ∈ Z:∑︁
𝑖>0

(
𝑝

𝑖

)
(𝑎 (𝑟+𝑖)𝑏) (𝑝+𝑞−𝑖) =

∑︁
𝑖>0

(−1)𝑖
(
𝑟

𝑖

) (
𝑎 (𝑝+𝑟−𝑖)𝑏 (𝑞+𝑖) − (−1)𝑟𝑏 (𝑞+𝑟−𝑖)𝑎 (𝑝+𝑖)

)
,

(2.34)

which is equivalent to the Jacobi identity in [139], see [156]. Note that (2.34) is also
equivalent to the following identity:

Res𝑧−𝑤 𝑌 (𝑌 (𝑎, 𝑧 − 𝑤)𝑏, 𝑤)𝜏𝑤,𝑧−𝑤𝐹 (𝑧, 𝑤) (2.35)
= Res𝑧 𝑌 (𝑎, 𝑧)𝑌 (𝑏, 𝑤)𝜏𝑧,𝑤𝐹 (𝑧, 𝑤) − Res𝑧 𝑌 (𝑏, 𝑤)𝑌 (𝑎, 𝑧)𝜏𝑤,𝑧𝐹 (𝑧, 𝑤),

where 𝐹 (𝑧, 𝑤) = 𝑧𝑝𝑤𝑞 (𝑧 − 𝑤)𝑟 .

Remark 2.7 It is easy to adapt the definition of a vertex algebra to the supercase.
To be more specific, if 𝑉 = 𝑉0̄ ⊕ 𝑉1̄ is a superspace, then the data and axioms
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shoud be modified as follows: if 𝑎 ∈ 𝑉𝑖 , then all Fourier modes of 𝑌 (𝑎, 𝑧) should be
endomorphisms of 𝑉 of parity 𝑖, |0〉 should be an element of 𝑉0̄, 𝑇 should have even
parity and the locality axiom should be:

(𝑧 − 𝑤)𝑁𝑌 (𝑎, 𝑧)𝑌 (𝑏, 𝑤) = (−1) |𝑎 | |𝑏 | (𝑧 − 𝑤)𝑁𝑌 (𝑏, 𝑤)𝑌 (𝑎, 𝑧)

for 𝑁 sufficiently large, where |𝑎 | denotes the parity of 𝑎 ∈ 𝑉 . The Borcherds
identities have to be understood in the supercase as follows:

[𝑎 (𝑚) , 𝑏 (𝑛) ] = 𝑎 (𝑚)𝑏 (𝑛) − (−1) |𝑎 | |𝑏 |𝑏 (𝑛)𝑎 (𝑚) =
∑︁
𝑖>0

(
𝑚

𝑖

)
(𝑎 (𝑖)𝑏) (𝑚+𝑛−𝑖) , (2.36)

(𝑎 (𝑚)𝑏) (𝑛) =
∑︁
𝑗>0

(−1) 𝑗
(
𝑚

𝑗

)
(𝑎 (𝑚− 𝑗)𝑏 (𝑛+ 𝑗) − (−1) |𝑎 | |𝑏 | (−1)𝑚𝑏 (𝑚+𝑛− 𝑗)𝑎 ( 𝑗) ).

(2.37)

2.9 Commutative vertex algebras

A vertex algebra 𝑉 is called commutative if all vertex operators 𝑌 (𝑎, 𝑧), 𝑎 ∈ 𝑉 ,
commute each other (i.e., we have 𝑁𝑎,𝑏 = 0 in the locality axiom (2.28)). This
condition is equivalent to that

[𝑎 (𝑚) , 𝑏 (𝑛) ] = 0 for all 𝑎, 𝑏 ∈ 𝑉, 𝑚, 𝑛 ∈ Z.

This condition is also equivalent to that 𝑎 (𝑛)𝑏 = 0 for all 𝑛 > 0, 𝑎, 𝑏 ∈ 𝑉 , that
is, 𝑌 (𝑎, 𝑧) ∈ End𝑉 [[𝑧]] for all 𝑎 ∈ 𝑉 . Indeed, if 𝑌 (𝑎, 𝑧) ∈ End𝑉 [[𝑧]] for all
𝑎 ∈ 𝑉 then 𝑉 is commutative by (2.32). Conversely, if 𝑉 is commutative, then
𝑎 (𝑛)𝑏 = 𝑎 (𝑛)𝑏 (−1) |0〉 = 𝑏 (−1)𝑎 (𝑛) |0〉 = 0 for 𝑛 > 0.

Suppose that𝑉 is commutative. Then, the relation (2.33) for𝑚 = 𝑛 = −1 simplifies
to (𝑎 (−1)𝑏) (−1) = 𝑎 (−1)𝑏 (−1) , that is,

(𝑎 (−1)𝑏) (−1)𝑐 = 𝑎 (−1) (𝑏 (−1)𝑐).

for all 𝑎, 𝑏, 𝑐 ∈ 𝑉 . It follows that a commutative vertex algebra has a structure of a
unital commutative algebra with the product:

𝑎 · 𝑏 = 𝑎 (−1)𝑏,

where the unit is given by the vacuum vector |0〉. The translation operator 𝑇 of 𝑉
acts on 𝑉 as a derivation with respect to this product:

𝑇 (𝑎 · 𝑏) = (𝑇𝑎) · 𝑏 + 𝑎 · (𝑇𝑏).

Therefore a commutative vertex algebra has the structure of a differential algebra,
see Definition 1.1.
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The converse holds according to the following exercice.

Exercise 2.3 Show that a differential algebra 𝑅with a derivation 𝜕 carries a canonical
commutative vertex algebra structure such that the vacuum vector is the unit, and

𝑌 (𝑎, 𝑧)𝑏 =

(
𝑒𝑧𝜕𝑎

)
𝑏 =

∑︁
𝑛>0

𝑧𝑛

𝑛!
(𝜕𝑛𝑎)𝑏 for all 𝑎, 𝑏 ∈ 𝑅.

This correspondence gives the following result.

Theorem 2.4 ([39]) The category of commutative vertex algebras is the same as that
of differential algebras.

Example 2.1 If 𝑋 = Spec 𝑅 is an affine scheme, then (O (J∞𝑅), 𝑇) is a differential
algebra (see Section 1.1 and Section 1.2, ) hence a commutative vertex algebra
by Theorem 2.4, where 𝑇 = 𝜕 is the derivation defined by (1.2). More generally,
(𝜋∞)∗OJ∞𝑋 is a sheaf of commutative vertex algebras on a scheme 𝑋 .

2.10 Vertex subalgebra, commutant and center

Definition 2.6 A subspace 𝑊 of a vertex algebra 𝑉 is called a vertex subalgebra if
|0〉 ∈ 𝑊 , 𝑇𝑊 ⊂ 𝑊 , and 𝑎 (𝑛)𝑏 ∈ 𝑊 for all 𝑎, 𝑛 ∈ 𝑊 , 𝑛 ∈ Z.

Let𝑊 be a vertex subalgebra of 𝑉 . We set

Com(𝑊,𝑉) = {𝑣 ∈ 𝑉 : [𝑤 (𝑚) , 𝑣 (𝑛) ] = 0 for all 𝑤 ∈ 𝑊, 𝑚, 𝑛 ∈ Z}. (2.38)

Then,

Com(𝑊,𝑉) = {𝑣 ∈ 𝑉 : 𝑤 (𝑛)𝑣 = 0 for all 𝑤 ∈ 𝑊, 𝑛 > 0}. (2.39)

Indeed, if 𝑤 (𝑛)𝑣 = 0 for all 𝑤 ∈ 𝑊 , 𝑛 > 0, then 𝑣 ∈ Com(𝑊,𝑉) by (2.32).
Conversely, if 𝑣 ∈ Com(𝑊,𝑉) then 𝑤 (𝑛)𝑣 = 𝑤 (𝑛)𝑣 (−1) |0〉 = 𝑣 (−1)𝑤 (𝑛) |0〉 = 0 for
𝑛 > 0. It is straightforward to see that Com(𝑊,𝑉) is a vertex subalgebra of 𝑉 .
Com(𝑊,𝑉) is called the commutant of𝑊 in 𝑉 , or the coset of 𝑉 by𝑊 .

The same line of arguments shows that we also have

Com(𝑊,𝑉) = {𝑣 ∈ 𝑉 : 𝑣 (𝑛)𝑤 = 0 for all 𝑤 ∈ 𝑊, 𝑛 > 0}. (2.40)

Vertex sualgebras𝑊1,𝑊2 of 𝑉 are said to form a dual pair of𝑊1 = Com(𝑊2, 𝑉)
and𝑊2 = Com(𝑊1, 𝑉).

The commutant Com(𝑉,𝑉) of 𝑉 in 𝑉 is called the center of 𝑉 is denoted also
by 𝑍 (𝑉).
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2.11 Vertex algebra of local fields and reconstruction theorem

Theorem 2.5 ([141]) Let 𝑀 be a vector space, and let V be a subspace of
F 𝑖𝑒𝑙𝑑𝑠(𝑀) that satisfies the following properties.

i). 𝑎(𝑧) and 𝑏(𝑧) are mutually local for all 𝑎(𝑧), 𝑏(𝑧) ∈ V,
ii). id𝑀 ∈ V,
iii). 𝑎(𝑧) (𝑛)𝑏(𝑧) ∈ V for all 𝑎(𝑧), 𝑏(𝑧) ∈ V, 𝑛 ∈ Z.

Then V has the structure of a vertex algebra with the vacuum vector id𝑀 , the
translation operator 𝜕𝑧 , and

𝑌 (𝑎(𝑧), 𝜉) =
∑︁
𝑛∈Z

𝑎(𝑧) (𝑛)𝜉−𝑛−1,

where 𝑎(𝑧) (𝑛) denotes the linear map 𝑏(𝑧) 7! 𝑎(𝑧) (𝑛)𝑏(𝑧) on V.

Proof By (2.14) for 𝑛 = 2, V is stable under the translation operator 𝑇 = 𝜕𝑧 . The
vaccum axiom is satisfied by (2.14) and (2.15). By definition and (2.16), we have
[𝜕𝑧 , 𝑌 (𝑎(𝑧), 𝜉)] = 𝑌 (𝜕𝑧𝑎(𝑧), 𝜉). Since Res𝑤=0 𝜕𝑤 ((𝑤 − 𝑧)𝑛 [𝑎(𝑤), 𝑏(𝑧)]) = 0, we
get that (𝜕𝑧𝑎(𝑧)) (𝑛) = −𝑛𝑎(𝑧) (𝑛−1) , and hence the translation axiom holds. The
locality axiom holds by Proposition 2.3, in view of Proposition 2.1. �

Let S be a set of pairwise mutually local fields on a vector space 𝑀 . Denote by
〈S〉𝑀 the subspace of F 𝑖𝑒𝑙𝑑𝑠(𝑀) spanned by the fields constructed by successive
application of the 𝑛-th products to the fields in S as well as the identify field id𝑀 . By
Lemma 2.3 and Theorem 2.5, 〈S〉𝑀 has a structure of a vertex algebra. The vertex
algebra 〈S〉𝑀 is called the vertex algebra of the local fields generated by S.

Lemma 2.5 (State-field correspondence) Let𝑉 be a vertex algebra,S = {𝑌 (𝑎, 𝑧) : 𝑎 ∈
𝑉} ⊂ F 𝑖𝑒𝑙𝑑𝑠(𝑉). Then the linear map

𝑉 ! 〈S〉𝑉 , 𝑎 7! 𝑌 (𝑎, 𝑧), (2.41)

is an isomorphism of vertex algebras.

Proof It is a vertex algebra homomorphism by Corollary 2.1 and Lemma 2.4. It is
an isomorphism since we have the inverse map 𝑌 (𝑎, 𝑧) 7! lim

𝑧!0
𝑌 (𝑎, 𝑧) |0〉. �

Theorem 2.6 (Reconstruction theorem [78]) Let𝑉 be a vector space, |0〉 a nonzero
vector, and 𝑇 an endomorphism of 𝑉 . Let 𝐼 be a set and {𝑎𝑖}𝑖∈𝐼 be a collection of
vectors in 𝑉 . Suppose also that we have given fields

𝑎𝑖 (𝑧) =
∑︁
𝑛∈Z

𝑎𝑖(𝑛) 𝑧
−𝑛−1 ∈ (End𝑉) [[𝑧, 𝑧−1]], 𝑖 ∈ 𝐼,

such that the following conditions holds:

(1) For all 𝑖, 𝑎𝑖 (𝑧) |0〉 ∈ 𝑎𝑖 + 𝑧𝑉 [[𝑧]],
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(2) 𝑇 |0〉 = 0 and [𝑇, 𝑎𝑖 (𝑧)] = 𝜕𝑧𝑎𝑖 (𝑧) for all 𝑖,
(3) all fields 𝑎𝑖 (𝑧) are mutually local,
(4) 𝑉 is spanned by the vectors

𝑎
𝑖1
(𝑛1) . . . 𝑎

𝑖𝑚
(𝑛𝑚) |0〉, 𝑛 𝑗 < 0.

Then there exists a unique vertex algebra structure on 𝑉 such that 𝑌 (𝑎𝑖 , 𝑧) = 𝑎𝑖 (𝑧)
for 𝑖 ∈ 𝐼 and |0〉 is the vacuum vector.

Proof Let V = 〈𝑎𝑖 (𝑧) : 𝑖 ∈ 𝐼〉𝑉 , the vertex algebra of local fields on 𝑉 generated by
𝑎𝑖 (𝑧).

By the assumption (1), we deduce by induction and (2.12) that 𝑎(𝑧) |0〉 ∈ 𝑉 [[𝑧]]
for all 𝑎(𝑧) ∈ V. Moreover,

lim
𝑧!0

𝑎𝑖 (𝑧) (𝑛)𝑏(𝑧) |0〉 = 𝑎𝑖(𝑛)𝑏 (−1) |0〉 (2.42)

for 𝑖 ∈ 𝐼, 𝑛 ∈ Z and 𝑏(𝑧) ∈ V. Then by induction,

lim
𝑧!0

𝑎𝑖1 (𝑧) (𝑛1) . . . 𝑎
𝑖𝑟 (𝑧) (𝑛𝑟 )𝑏(𝑧) |0〉 = 𝑎

𝑖1
(𝑛1) . . . 𝑎

𝑖𝑟
(𝑛𝑟 )𝑏 (−1) |0〉 (2.43)

for 𝑖 𝑗 ∈ 𝐼, 𝑛 𝑗 ∈ Z and 𝑏(𝑧) ∈ V.
Since ad𝑇 and 𝜕𝑧 act as derivations on the 𝑚-th product, we deduce by induction

and the assumption (2) that

[𝑇, 𝑎(𝑧)] = 𝜕𝑧𝑎(𝑧)

for all 𝑎(𝑧) ∈ V. It follows that 𝜕𝑛𝑧 𝑎(𝑧) |0〉 = ad(𝑇)𝑛 (𝑎(𝑧)) |0〉 = 𝑇𝑛𝑎(𝑧) |0〉 for all
𝑛 > 0. By setting 𝑧 = 0 on both sides, we get that lim

𝑧!0
𝜕𝑛𝑧 𝑎(𝑧) |0〉 = 𝑇𝑛𝑎 (−1) |0〉, or

equivalently,

𝑎(𝑧) |0〉 = 𝑒𝑧𝑇 𝑎 (−1) |0〉. (2.44)

Consider the linear map

V ! 𝑉, 𝑎(𝑧) 7! lim
𝑧!0

𝑎(𝑧) |0〉 = 𝑎 (−1) |0〉. (2.45)

By the assumption (4) and (2.43) with 𝑎(𝑧) = id𝑉 , this map is surjective. We claim
that this map is injective as well. Indeed, if 𝑎 (−1) |0〉 = 0, then 𝑎(𝑧) |0〉 = 0 by (2.44).
It follows in the same manner as the proof of Theorem 2.2 that 𝑎(𝑧) = 0.

It is now clear that there is a unique algebra structure on𝑉 which makes the linear
isomorphism (2.45) a vertex algebra isomorphism. Namely, we set

𝑌 (𝑎 (−1) |0〉, 𝑧) = 𝑎(𝑧)

for 𝑎(𝑧) ∈ V. �
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A collection {𝑎𝑖 : 𝑖 ∈ 𝐼} of elements of a vertex algebra 𝑉 is called strong
generators of 𝑉 if 𝑉 is spanned by

𝑎
𝑖1
(−𝑛1) . . . 𝑎

𝑖𝑠
(−𝑛𝑠) |0〉

with 𝑠 > 0, 𝑛𝑟 > 1 and 𝑖𝑟 ∈ 𝐼. In view of Theorem 2.6, the structure of 𝑉 is
completely determined by the OPEs among 𝑎𝑖 (𝑧), 𝑖 ∈ 𝐼.

Remark 2.8 By Exercise 2.1, the vertex operator for𝑉 in Theorem 2.6 can be explic-
itly described as

𝑌 (𝑎𝑖1(−𝑛1−1)𝑎
𝑖2
(−𝑛2−1) . . . 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉, 𝑧)

=
1

𝑛1!𝑛2! . . . 𝑛𝑟 !
◦
◦ (𝜕𝑛1

𝑧 𝑎
𝑖1 (𝑧)) (𝜕𝑛2

𝑧 𝑎
𝑖2 (𝑧)) . . . (𝜕𝑛𝑟𝑧 𝑎𝑖𝑟 (𝑧)) ◦

◦

for 𝑛𝑖 > 1.

2.12 Example (continued from Section 2.6)

Let
𝜋 = C[𝑏−1, 𝑏−2, . . . , ] .

Then 𝜋 is a smooth B-module on which 𝑏𝑛, 𝑛 > 0, acts as 𝑛 𝜕
𝜕𝑏−𝑛

, and 𝑏−𝑛, 𝑛 > 0,
acts as multiplication by 𝑏−𝑛. Define

𝑇 =
∑︁
𝑛>0

𝑛𝑏−𝑛−1
𝜕

𝜕𝑏−𝑛
∈ End 𝜋.

Then [𝑇, 𝑏(𝑧)] = 𝜕𝑧𝑏(𝑧) on 𝜋. It follows from Theorem 2.6 that there is a unique
vertex algebra structure on 𝜋 such that 1 is the vacuum vector and 𝑌 (𝑏−1, 𝑧) = 𝑏(𝑧).

Exercise 2.4 Let 𝑀 be a smooth B-module.

i). Show that the following correspondence gives the vertex algebra 〈𝑏(𝑧)〉𝑀 a B-
module structure:

B ! End(〈𝑏(𝑧)〉𝑀 ) 𝑏𝑛 7! 𝑏(𝑧) (𝑛)

ii). Show that there is a surjective homomorphism 𝜋 ! 〈𝑏(𝑧)〉𝑀 of vertex algerbas.

Exercise 2.5 i). Set 𝜔 = 1
2𝑏

2
−1 + 𝛼𝑏−2 ∈ 𝜋, so that 𝐿 (𝑧) = 𝑌 (𝜔, 𝑧). Verify that the

OPE (2.27) is equivalent to the following relations:

𝑏0𝜔 = 0, 𝑏1𝜔 = 𝑏−1, 𝑏2𝜔 = 2𝛼.

ii). Show that 𝐿−1 = 𝑇 on 𝜋.
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2.13 Vertex ideals, vertex algebra modules and quotient vertex
algebras

A representation 𝑀 of a vertex algebra 𝑉 , or a 𝑉-module 𝑀 , is a vertex algebra
homomorphism from 𝑉 to a vertex algebra of the local fields on 𝑀 . We denote by
𝑌𝑀 (𝑎, 𝑧) = 𝑎𝑀 (𝑧) = ∑

𝑛∈Z 𝑎
𝑀
(𝑛) 𝑧

−𝑛−1 the image of 𝑎 ∈ 𝑉 in F 𝑖𝑒𝑙𝑑𝑠(𝑀), or simply
by 𝑌 (𝑎, 𝑧) = 𝑎(𝑧) = ∑

𝑛∈Z 𝑎 (𝑛) 𝑧
−𝑛−1 if no confusion should occur.

The following assertion is clear.

Lemma 2.6 A vector space 𝑀 is a module over a vertex algebra 𝑉 if and only if
there exists a linear map 𝑉 ! F 𝑖𝑒𝑙𝑑𝑠(𝑀), 𝑎 7! 𝑌𝑀 (𝑎, 𝑧), such that

𝑌𝑀 ( |0〉, 𝑧) = id𝑀 , (2.46)

[𝑌𝑀 (𝑎, 𝑧), 𝑌𝑀 (𝑏, 𝑤)] =
∑︁
𝑗>0
𝑌𝑀 (𝑎 ( 𝑗)𝑏, 𝑤)

1
𝑗!
𝜕
𝑗
𝑤𝛿(𝑧 − 𝑤), (2.47)

𝑌𝑀 (𝑎 (𝑛)𝑏, 𝑧) = 𝑌𝑀 (𝑎, 𝑧) (𝑛)𝑌𝑀 (𝑏, 𝑧) (2.48)

for all 𝑎, 𝑏 ∈ 𝑉 , 𝑛 ∈ Z,

A vertex algebra is a module over itself by (2.41), which is called the adjoint
representation.

By definition, a subspace 𝑁 of a 𝑉-module 𝑀 is a submodule if 𝑎 (𝑛)𝑁 ⊂ 𝑁 for
all 𝑎 ∈ 𝑉 , 𝑛 ∈ Z. It is clear that the category 𝑉 -Mod of 𝑉-modules is an abelian
category.

A 𝑇-stable proper submodule of the adjoint representation is called an ideal of
𝑉 . If 𝑓 : 𝑉 ! 𝑉 ′ is a vertex algebra homomorphism, ker 𝑓 is an ideal of 𝑉 . For an
ideal 𝐼 of 𝑉 , the quotient 𝑉/𝐼 inherits the vertex algebra structure from 𝑉 . Indeed,
there are two ways to see this. One is to use Reconstruction Theorem (Theorem 2.6),
since 𝑉/𝐼 is spanned by the images of 𝑎 (−1) |0〉, 𝑎 ∈ 𝑉 . The other one is to use the
skew symmetry (Proposition 2.4), as it shows that 𝑌 (𝑎, 𝑧)𝑏 = 𝑒𝑧𝑇𝑌 (𝑏,−𝑧)𝑎 ∈ 𝐼 for
𝑎 ∈ 𝐼, 𝑏 ∈ 𝑉 .

The category 𝑉/𝐼 -Mod is a full subcategory of 𝑉 -Mod consisting of objects 𝑀
such that 𝑌𝑀 (𝑎, 𝑧) = 0 for all 𝑎 ∈ 𝐼.

Exercise 2.6 Show that the vertex algebra 𝜋 is simple, that is, there is no non-trivial
ideal of 𝜋. This implies that the vertex algebra 〈𝑏(𝑧)〉𝑀 of local fields on any
non-trivial smooth B-module 𝑀 is isomorphic to 𝜋.

2.14 Loop spaces and commutative vertex algebras

Let 𝑉 be a commutative vertex algebra, and let 𝑀 be a 𝑉-module. Then,

[𝑌𝑀 (𝑎, 𝑧), 𝑌𝑀 (𝑏, 𝑤)] = 0
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for all 𝑎, 𝑏 ∈ 𝑉 by (2.47). However, 𝑌𝑀 (𝑎, 𝑧) needs not be in (End𝑀) [[𝑧]]. This
implies that a 𝑉-module as a vertex algebra is not the same as a 𝑉-module as a
differential algebra. In fact, we have the following assertion.

Theorem 2.7 Let 𝑋 be an affine scheme. Then the category of vertex O (J∞𝑋)-
modules is the same as the category of smooth O (L 𝑋)-modules.

Here, by smooth O (L 𝑋)-module we mean an O (L 𝑋)-module 𝑀 such that, in the
notation of §1.6, 𝑓(𝑛) .𝑚 = 0 for sufficiently large 𝑛.

Proof First, let 𝑋 = A𝑁 = SpecC[𝑥1, . . . , 𝑥𝑁 ]. Recall that

O (L 𝑋) = lim −
𝑟

C[𝑥𝑖(𝑛) : 𝑖 = 1, . . . , 𝑁, 𝑛 6 𝑟]

see (1.17). Let 𝑀 be a smooth O (L 𝑋)-module. Then

𝑥𝑖 (𝑧) :=
∑︁
𝑛∈Z

𝑥𝑖(𝑛) 𝑧
−𝑛−1

is a field on 𝑀 , since 𝑥𝑖(𝑛) acts as zero for a sufficiently large 𝑛 because 𝑀 is smooth.
Moreover, 𝑥𝑖 (𝑧) and 𝑥 𝑗 (𝑧) are mutually local as they commute each other. Therefore,
we have a well-defined vertex algebra homomorphism

O (J∞𝑋) ! 〈𝑥𝑖 (𝑧) : 𝑖 = 1, . . . 𝑁〉𝑀 ⊂ (End𝑀) [[𝑧, 𝑧−1]]

that sends 𝑥𝑖 ∈ O (𝑋) ⊂ O (J∞𝑋) to 𝑥𝑖(𝑧). Conversely, let𝑀 be a vertex O (J∞𝑋)-
module. Then the correspondence

O (L 𝑋) ! End(𝑀), 𝑥𝑖(𝑛) 7! Res𝑧=0 𝑧
𝑛𝑌𝑀 (𝑥𝑖 , 𝑧),

defines a smooth O (L 𝑋)-module structure on𝑀 . It is clear that this correspondence
is compatible with the morphisms.

Next, let 𝑋 = Spec 𝑅 with

𝑅 = C[𝑥1, 𝑥2, · · · , 𝑥𝑁 ]/( 𝑓1, 𝑓2, · · · , 𝑓𝑟 ).

Then O (J∞𝑋) = O (J∞A𝑁 )/𝐼, where 𝐼 = 〈𝑇 𝑗 𝑓𝑖 : 𝑖 = 1, . . . , 𝑟, 𝑗 > 0〉. Hence,
O (J∞𝑋) -Mod is the full subcategory of O (J∞A𝑁 ) -Mod consisting of modules
𝑀 such that

𝑌𝑀 ( 𝑓𝑖 , 𝑧) = 0

for all 𝑖 = 1, . . . , 𝑟 . (Here we have used the fact that 𝑌𝑀 (𝑇𝑎, 𝑧) = 𝜕𝑧𝑌𝑀 (𝑎, 𝑧).)
But under the above identification of O (J∞A𝑁 ) -Mod with the category of smooth
O (LA𝑁 )-modules, this is nothing but the category of smooth O (L 𝑋)-modules.�

One of the advantages of vertex algebras to loop spaces is that one can avoid using
completions, which can be sometimes tedious.
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2.15 Conical vertex algebras

A Hamiltonian of a vertex algebra 𝑉 is a semisimple operator 𝐻 on 𝑉 satisfying

[𝐻, 𝑎 (𝑛) ] = −(𝑛 + 1)𝑎 (𝑛) + (𝐻𝑎) (𝑛) (2.49)

for all 𝑎 ∈ 𝑉 , 𝑛 ∈ Z.

Definition 2.7 A vertex algebra equipped with a Hamiltonian 𝐻 is called graded. In
that case, set𝑉Δ = {𝑎 ∈ 𝑉 : 𝐻𝑎 = Δ𝑎} for Δ ∈ C, so that𝑉 =

⊕
Δ∈C𝑉Δ. For 𝑎 ∈ 𝑉Δ,

Δ is called the conformal weight of 𝑎 and it is denoted by Δ𝑎. We have

𝑎 (𝑛)𝑏 ∈ 𝑉Δ𝑎+Δ𝑏−𝑛−1 (2.50)

for homogeneous elements 𝑎, 𝑏 ∈ 𝑉 . A graded vertex algebra is called conical if
there exists a positive integer 𝑚 such that 𝑉 =

⊕
Δ∈ 1

𝑚
Z>0
𝑉Δ and 𝑉0 = C.

We set

𝑎𝑛 = 𝑎 (𝑛+Δ𝑎−1)

for 𝑛 ∈ −Δ𝑎 + Z, so that 𝑎𝑛𝑉Δ ⊂ 𝑉Δ−𝑛. Then we have

𝑎(𝑧) =
∑︁

𝑛∈−Δ𝑎+Z
𝑎𝑛𝑧

−𝑛−Δ𝑎 , (2.51)

which is more standard notation in physics than (2.7).
Any (proper) graded ideal of a conical vertex algebra 𝑉 does not contain the

vacuum vector |0〉, and hence, there is a unique simple graded quotient of 𝑉 .
Let 𝑋 be a conical affine scheme, that is, 𝑋 = Spec 𝑅 with a graded ring

𝑅 =
⊕

Δ∈ 1
𝑚
Z>0

𝑅Δ such that 𝑅0 = C, where 𝑚 is some positive integer. Then the
commutative vertex algebra O (J∞𝑋) = J∞𝑅 is conical, where the Hamiltonian
is defined by

[𝐻, 𝑓(−𝑛) ] = (Δ + 𝑛 − 1) 𝑓(−𝑛) , 𝑓 ∈ 𝑅Δ.

In particular the scheme J∞𝑋 is conical, and we have a contracting C∗-action
on J∞𝑋 corresponding to the comorphism J∞𝑅 ! C[𝑡, 𝑡−1] ⊗ J∞𝑅, 𝑓(−𝑛) 7!
𝑡Δ+𝑛−1 ⊗ 𝑓(−𝑛) ( 𝑓 ∈ 𝑅Δ).



Chapter 3
Examples of non-commutative vertex algebras

We present in this chapter important first examples of non-commutative vertex
algebras: the Heisenberg vertex algebras (see Example 3.1), the universal affine
vertex algebras (cf. Section 3.1) and the Virasoro vertex algebras (cf. Section 3.2).
Heisenberg vertex algebras are particular cases of the affine one, and these three
families of examples are all constructed from infinite-dimensional Lie algebras
(affine Kac-Moody Lie algebras, Virasoro Lie algebras). We will see next chapter
more sophisticated examples using BRST reduction.

By considering quotients of these examples of vertex algebras, that is, quotient
by vertex ideals, we construct many other interesting families of vertex algebras.

3.1 Universal affine vertex algebras

Let 𝔞 be a Lie algebra endowed with a symmetric invariant bilinear form 𝜅. Here, a
bilinear form 𝜅 on 𝔞 is called invariant if 𝜅( [𝑥, 𝑦], 𝑧) = 𝜅(𝑥, [𝑦, 𝑧]) = 0 for 𝑥, 𝑦, 𝑧 ∈ 𝔞.
Let

𝔞̂𝜅 = 𝔞[𝑡, 𝑡−1] ⊕C1

be the Kac-Moody affinization of 𝔞. It is a Lie algebra with commutation relations

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛 + 𝑚𝛿𝑚+𝑛,0𝜅(𝑥, 𝑦)1, [1, 𝔞̂𝜅 ] = 0,

for all 𝑥, 𝑦 ∈ 𝔞 and all 𝑚, 𝑛 ∈ Z, where 𝛿𝑖, 𝑗 is the Kronecker symbol.
An 𝔞̂𝜅 -module 𝑀 is called smooth if for any 𝑚 ∈ 𝑀 there exists 𝑁 ∈ Z>0 such

that 𝑥𝑡𝑛𝑚 = 0 for all 𝑥 ∈ 𝔤, 𝑛 > 𝑁 or, equivalently,

𝑥(𝑧) =
∑︁
𝑛∈Z

(𝑥𝑡𝑛)𝑧−𝑛−1

is a field on 𝑀 for all 𝑥 ∈ 𝔞.
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Lemma 3.1 For any smooth 𝔞̂𝜅 -module𝑀 the fields 𝑥(𝑧), 𝑦(𝑧), 𝑥, 𝑦 ∈ 𝔞, are mutually
local, and we have

𝑥(𝑧)𝑦(𝑤) ∼ 1
𝑧 − 𝑤 [𝑥, 𝑦] (𝑤) + 𝜅(𝑥, 𝑦)

(𝑧 − 𝑤)2 .

Proof The assertion is equivalent to the fact that

[𝑥(𝑧), 𝑦(𝑤)] = [𝑥, 𝑦] (𝑤)𝛿(𝑧 − 𝑤) + 𝜅(𝑥, 𝑦)𝜕𝑤𝛿(𝑧 − 𝑤),

which can be checked directly. �

Let 𝑀 be a smooth 𝔞̂𝜅 -module on which the central element 1 acts as the identity.
By Lemma 3.1, 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 has a structure of vertex algebras (see Section 2.11).
Moreover, the correspondence

𝔞̂𝜅 3 𝑥 ⊗ 𝑡𝑛 7! 𝑥(𝑧) (𝑛) ∈ End(〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 )

gives an 𝔞̂𝜅 -module structure on the vertex algebra 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 , see Proposi-
tion 2.3. By Proposition 2.3, we find that the 𝔞̂𝜅 -module 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 is generated
by the vector id𝑀 , which satisfies the condition

𝔞[𝑡] id𝑀 = 0.

Hence, by the Frobenius reciprocity, there is an 𝔞̂𝜅 -module homomorphism from the
𝔞̂𝜅 -module

𝑉 𝜅 (𝔞) := 𝑈 (𝔞̂𝜅 ) ⊗𝑈 (𝔞[𝑡 ] ⊕C1) C, (3.1)

whereC is a one-dimensional representation of 𝔞[𝑡] ⊕C1 on which 𝔞[𝑡] acts trivially
and 1 acts as the identity, to the 𝔞̂𝜅 -module 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 .

By the Poincaré-Birkhoff-Witt Theorem, the direct sum decomposition (as a
vector space)

𝔞̂𝜅 = (𝔞 ⊗ 𝑡−1C[𝑡−1]) ⊕ (𝔞[𝑡] ⊕ C1)

gives us the isomorphism of vector spaces

𝑈 (𝔞̂𝜅 ) � 𝑈 (𝔞 ⊗ 𝑡−1C[𝑡−1]) ⊗ 𝑈 (𝔞[𝑡] ⊕ C1),

whence
𝑉 𝜅 (𝔞) � 𝑈 (𝔞 ⊗ 𝑡−1C[𝑡−1])

as C-vector spaces.
The space 𝑉 𝜅 (𝔞) is naturally graded,

𝑉 𝜅 (𝔞) =
⊕
Δ∈Z>0

𝑉 𝜅 (𝔞)Δ, (3.2)

where the grading is defined by
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deg(𝑥𝑖1 𝑡−𝑛1 ) . . . (𝑥𝑖𝑚 𝑡−𝑛𝑚 ) |0〉 =
𝑚∑︁
𝑖=1

𝑛𝑖 ,

where |0〉 = 1 ⊗ 1. We have 𝑉 𝜅 (𝔞)0 = C|0〉, and we identify 𝔞 with 𝑉 𝜅 (𝔞)1 via the
linear isomorphism defined by 𝑥 7! 𝑥𝑡−1 |0〉.

Proposition 3.1 ([80, 141]) There is a unique vertex algebra structure on 𝑉 𝜅 (𝔞)
such that |0〉 = 1 ⊗ 1 is the vacuum vector and 𝑌 (𝑥, 𝑧) = 𝑥(𝑧) for 𝑥 ∈ 𝔤. Moreover,
there is a surjective homomorphism𝑉 𝜅 (𝔞) ! 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 of vertex algebras for
any smooth 𝔞̂𝜅 -module 𝑀 on which 1 acts as the identity.

Proof The first assertion is clear from Theorem 2.6. For the second one, first recall
that there is a homomorphism of 𝔞̂𝜅 -modules 𝑉 𝜅 (𝔞) ! 〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 . It is
clearly a homomorphism of vertex algebras by construction. Since both 𝑉 𝜅 (𝔞) and
〈𝑥(𝑧) : 𝑥 ∈ 𝔞〉𝑀 are generated by |0〉, the surjectivity follows. �

The vertex algebra 𝑉 𝜅 (𝔞) is called the universal affine vertex algebra associated
with 𝔞 and 𝜅. It is a conical vertex algebra by the grading (3.2). The unique simple
graded quotient 𝐿𝜅 (𝔞) of 𝑉 𝜅 (𝔞) is called the simple affine vertex algebra associated
with 𝔞 and 𝜅.

Proposition 3.2 The category 𝑉 𝜅 (𝔞) -Mod of 𝑉 𝜅 (𝔞)-modules is the same as that of
smooth representations of 𝔞̂𝜅 on which 1 acts as the identity.

Proof Any 𝑉 𝜅 (𝔞)-modules is a smooth 𝔞̂𝜅 -module by the correspondence 𝑥𝑡𝑛 7!
Res𝑧=0 (𝑧𝑛𝑥(𝑧)). Conversely, we have a vertex algebra homomorphism 𝑉 𝜅 (𝔞) !
〈𝑥(𝑧)〉𝑀 for any smooth 𝔞̂𝜅 -module𝑀 on which 1 acts as the identity, and hence,𝑀 is
a𝑉 𝜅 (𝔞)-module. It is clear that this correspondence is compatible with morphisms.�

By Proposition 3.2, the category 𝐿𝜅 (𝔞) -Mod of 𝐿𝜅 (𝔞)-modules is a full-
subcategory of the category of smooth 𝔞̂𝜅 -module consisting of objects 𝑀 on which
𝑌𝑀 (𝑣, 𝑧) = 0 for any element 𝑣 in the kernel of the natural surjection𝑉 𝜅 (𝔞) ! 𝐿𝜅 (𝔞).

Example 3.1 Let 𝔥 be a vector space viewed as a commutative Lie algebra, and 𝜅 be
any bilinear form on 𝔥. Then𝑉 𝜅 (𝔥) is the Heisenberg vertex algebra associated with
𝔥 and 𝜅. In the case that 𝔥 is one-dimensional and 𝜅 is a nonzero bilinear form, then
𝑉 𝜅 (𝔥) is isomorphic to the vertex algebra 𝜋 in Section 2.12.

Example 3.2 Let us consider another important example. Assume that 𝔞 is a simple
Lie algebra 𝔤, and that

𝜅 =
𝑘

2ℎ∨
× Killing form of 𝔤, for 𝑘 ∈ C,

where ℎ∨ its dual Coxeter number of 𝔤. The reader is referred to Appendix A for
main notations and standard facts about simple Lie algebras (Section A.1), and the
corresponding affine Kac-Moody Lie algebras (Section A.2).

In this case, 𝑉 𝜅 (𝔞) is identical to the 𝔤̂-module
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𝑉 𝑘 (𝔤) = 𝑈 (𝔤̂) ⊗𝑈 (𝔤[𝑡 ] ⊕C𝐾 ) C𝑘 ,

where 𝔤̂ = 𝔤[𝑡, 𝑡−1] ⊕ C𝐾 is the affine Kac-Moody algebra associated with 𝔤 as in
Appendix A, and C𝑘 is the one-dimensional representation of 𝔤[𝑡] ⊕C𝐾 on which
𝔤[𝑡] acts trivially and 𝐾 acts as multiplication by 𝑘 . We will preferably use the
notation 𝑉 𝑘 (𝔤) in this case.

The representation 𝑉 𝑘 (𝔤) is a highest weight representation of 𝔤̂ with highest
weight 𝑘Λ0, whereΛ0 is the highest weight of the basic representation (it corresponds
to 𝑘 = 1)1, and highest weight vector 𝑣𝑘 , where 𝑣𝑘 denotes the image of 1 ⊗ 1 in
𝑉 𝑘 (𝔤). According to the well-known Schur Lemma, any central element of a Lie
algebra acts as a scalar on a simple finite dimensional representation. As the Schur
Lemma extends to a representation with countable dimension2, the result holds for
highest weight 𝔤̂-modules.

A representation 𝑀 is said to be of level 𝑘 if 𝐾 acts as 𝑘Id on 𝑀 (see §A.5.2).
Then 𝑉 𝑘 (𝔤) is by construction of level 𝑘 .

The vertex algebra 𝑉 𝑘 (𝔤) is also called the universal affine vertex algebra asso-
ciated with 𝔤 at level 𝑘 . The simple quotient 𝐿𝜅 (𝔤) is denoted also by 𝐿𝑘 (𝔤) and is
called the simple affine vertex algebra associated with 𝔤 at level 𝑘 .

Exercise 3.1 Let𝑉 be a vertex algebra, and suppose that there exists a vertex algebra
homomorphism 𝜙 : 𝑉 𝜅 (𝔤) ! 𝑉 , so that 𝑉 is a 𝔤̂𝜅 -module. Show that

Com(𝜙(𝑉 𝜅 (𝔤)), 𝑉) = 𝑉𝔤[𝑡 ] ,

where 𝑉𝔤[𝑡 ] = {𝑣 ∈ 𝑉 : 𝔤[𝑡]𝑣 = 0}.

3.2 The Virasoro vertex algebra

Let 𝑉𝑖𝑟 =
⊕

𝑛∈Z C𝐿𝑛 ⊕C𝐶 be the Virasoro Lie algebra, with the commutation
relations

[𝐿𝑛, 𝐿𝑚] = (𝑛 − 𝑚)𝐿𝑛+𝑚 + 𝑛
3 − 𝑛
12

𝛿𝑛+𝑚,0𝐶,

[𝐶,𝑉𝑖𝑟] = 0.

A 𝑉𝑖𝑟-module 𝑀 is called smooth if

𝐿 (𝑧) =
∑︁
𝑛∈Z

𝐿𝑛𝑧
−𝑛−2

is a field on 𝑀 . For any smooth 𝑉𝑖𝑟-module 𝑀 the fields 𝐿 (𝑧) is local to itself, and
we have

1 that is, the dual of 𝐾 in 𝔥̂∗ with respect to a basis of 𝔥̂ adapted to the decomposition 𝔥̂ = 𝔥 ⊕ C𝐾 .
2 i.e., it admits a countable set of generators.
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𝐿 (𝑧)𝐿 (𝑤) ∼ 1
𝑧 − 𝑤 𝜕𝑤𝐿 (𝑤) +

2
(𝑧 − 𝑤)2 𝐿 (𝑤) +

𝐶/2
(𝑧 − 𝑤)4 .

A 𝑉𝑖𝑟-module 𝑀 is said to be of central charge 𝑐 ∈ C if the central element 𝐶
acts as multiplication by 𝑐.

Let 𝑀 be a smooth 𝑉𝑖𝑟-module of central charge 𝑐. Then 〈𝐿 (𝑧)〉𝑀 is a smooth
𝑉𝑖𝑟-module of central charge 𝑐 by the action 𝐿𝑛 7! 𝐿 (𝑧) (𝑛+1) . It is generated by id𝑀
and we have 𝐿 (𝑧) (𝑛) id𝑀 = 0 for 𝑛 > 0. Similarly to the case of 𝑉 𝜅 (𝔞) we obtain
that 〈𝐿 (𝑧)〉𝑀 is a quotient of the induced representation

Vir𝑐 := 𝑈 (𝑉𝑖𝑟) ⊗𝑈 (
⊕

𝑛>−1 C𝐿𝑛⊕C𝐶) C𝑐 ,

where𝐶 acts as multiplication by 𝑐 and 𝐿𝑛, 𝑛 > −1, acts by 0 on the one-dimensional
module C𝑐 .

By the PBW Theorem, Vir𝑐 has a basis of the form

𝐿 𝑗1 . . . 𝐿 𝑗𝑚 |0〉, 𝑗1 6 · · · 6 𝑗𝑚 6 −2,

where |0〉 is the image of 1 ⊗ 1 in Vir𝑐 .

Proposition 3.3 ([80, 141]) There is a unique vertex algebra structure on Vir𝑐 such
that |0〉 = 1 ⊗ 1 is the vacuum vector and 𝑌 (𝜔, 𝑧) = 𝐿 (𝑧), where 𝜔 = 𝐿−2 |0〉.
Moreover, there is a surjective homomorphism Vir𝑐 ! 〈𝐿 (𝑧)〉𝑀 of vertex algebras
for any smooth 𝑉𝑖𝑟-module 𝑀 of central charge 𝑐.

The vertex algebra Vir𝑐 is called the universal Virasoro vertex algebra with central
charge 𝑐.

Note that 𝑇 = 𝐿−1 on Vir𝑐 since 𝐿 (𝑧) (0)𝐿 (𝑧) = 𝜕𝑧𝐿 (𝑧) (or equivalently,
𝐿−1𝐿−2 |0〉 = 𝐿−3 |0〉). Also, Vir𝑐 is conical by the Hamiltonian 𝐻 = 𝐿0:

Vir𝑐 =
⊕
Δ∈Z>0

Vir𝑐Δ, Vir𝑐0 = C|0〉, Vir𝑐1 = 0, Vir𝑐2 = C𝜔. (3.3)

The unique simple quotient of Vir𝑐 is called the simple Virasoro vertex algebra with
central charge 𝑐 and is denoted by Vir𝑐 .

Proposition 3.4 The category Vir𝑐 -Mod of Vir𝑐-modules is the same as that of
smooth representations of 𝑉𝑖𝑟 of central charge 𝑐.

3.3 Conformal vertex algebras

Definition 3.1 A graded vertex algebra 𝑉 =
⊕

Δ𝑉Δ is called conformal if there
exists a vector 𝜔, called the stress tensor, or the conformal vector, such that the
corresponding field

𝑌 (𝜔, 𝑧) = 𝑇 (𝑧) =
∑︁
𝑛∈Z

𝐿𝑛𝑧
−𝑛−2
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satisfies the following conditions:

(1) [𝐿𝑛, 𝐿𝑚] = (𝑛 − 𝑚)𝐿𝑛+𝑚 + 𝑛
3 − 𝑛
12

𝛿𝑛+𝑚,0𝑐, where 𝑐 is a constant called the
central charge of 𝑉 ,

(2) 𝜔 (0) = 𝐿−1 = 𝑇 ,
(3) 𝜔 (1) = 𝐿0 = 𝐻, that is, 𝐿0 |𝑉Δ = ΔId𝑉Δ for all Δ ∈ Z.

A Z-graded conformal vertex algebra such that dim𝑉Δ < ∞ for all Δ ∈ Z and𝑉Δ = 0
for sufficiently small Δ is also called a vertex operator algebra.

For a conformal vertex algebra of central charge 𝑐, we have a homomorphism
Vir𝑐 ! 𝑉 , 𝜔 7! 𝜔, of vertex algebras.

Let 𝑀 be a module over a conformal vertex algebra 𝑉 of central charge 𝑐. Then
the Virasoro algebra acts on 𝑀 via the vertex algebra homomorphism Vir𝑐 ! 𝑉 .
The module 𝑀 is called a positive energy representation if 𝐿0 acts semisimply with
spectrum bounded below, that is, 𝑀 =

⊕
𝑑>ℎ 𝑀𝑑 where

𝑀𝑑 = {𝑚 ∈ 𝑀 : 𝐿0𝑚 = 𝑑𝑚}.

A positive energy representation 𝑀 is called an ordinary representation if each 𝑀𝑑
is finite-dimensional. For an ordinary representation 𝑀 the normalized character

𝜒𝑀 (𝑞) = tr𝑀 (𝑞𝐿0−𝑐/24) = 𝑞−𝑐/24
∑︁
𝑑

(dim𝑀𝑑)𝑞𝑑 (3.4)

is well-defined.

Example 3.3 The Virasoro vertex algebra Vir𝑐 is clearly conformal with central
charge 𝑐 and conformal vector 𝜔 = 𝐿−2 |0〉.

Example 3.4 The universal affine vertex algebra 𝑉 𝑘 (𝔤), with 𝔤 simple, is conformal
by Sugawara construction provided with 𝑘 ≠ −ℎ∨ (here ℎ∨ is the dual Coxeter
number): Set

𝑆 =
1
2

dim 𝔤∑︁
𝑖=1

𝑥𝑖, (−1)𝑥
𝑖
(−1) |0〉,

where {𝑥𝑖 ; 𝑖 = 1, . . . , dim 𝔤} is the dual basis of {𝑥𝑖 ; 𝑖 = 1, . . . , dim 𝔤} with respect

to the bilinear form ( | ). Then for 𝑘 ≠ −ℎ∨, 𝐿 =
𝑆

𝑘 + ℎ∨ is a stress tensor of 𝑉 𝑘 (𝔤)
with central charge

𝑐(𝑘) = 𝑘 dim 𝔤

𝑘 + ℎ∨ .

We refer to [77, §3.4.8] or to [76, 3.1.1] for a proof of this nontrivial statement; see
also [112, Theorem 5.7] and its proof. We have

[𝐿𝑚, 𝑥 (𝑛) ] = −𝑛𝑥 (𝑚+𝑛) 𝑥 ∈ 𝔤, 𝑚, 𝑛 ∈ Z. (3.5)
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Exercise 3.2 Let 𝑉 𝜅 (𝔥) be the Heisenberg vertex algebra associated with the com-
mutative Lie algebra 𝔥 of dimension 𝑟 . Assume that 𝜅 is nondegenerate. Show that
𝑇 (𝑧) = 1

2

𝑟∑
𝑖=1

◦
◦ 𝑥𝑖 (𝑧)𝑥𝑖 (𝑧) ◦

◦ is a conformal field with central charge 𝑟 , where {𝑥𝑖}16𝑖6𝑟

and {𝑥𝑖}16𝑖6𝑟 are dual basis of 𝔥 with respect to 𝜅 (see also Exercise 2.5).

It follows from Exercise 3.1 that 𝑍 (𝑉 𝑘 (𝔤)) = 𝑉 𝑘 (𝔤)𝔤[𝑡 ] , where

𝑉 𝑘 (𝔤)𝔤[𝑡 ] := {𝑎 ∈ 𝑉 𝑘 (𝔤) : 𝑥 (𝑚)𝑎 = 0 for all 𝑥 ∈ 𝔤, 𝑚 ∈ Z>0}.

The following exercise gives a description of the vertex center of 𝑉 𝑘 (𝔤) which
has a priori nothing to do the vertex algebra structure.

Exercise 3.3 Show that we have the following isomorphism of commutative C-
algebras (the product on the commutative vertex algebra 𝑍 (𝑉 𝑘 (𝔤)) is the normally
ordered product):

𝑍 (𝑉 𝑘 (𝔤)) � End𝔤̂ (𝑉 𝑘 (𝔤)).

Remark 3.1 It is easily seen that 𝑍 (𝑉 𝑘 (𝔤)) = C|0〉 for 𝑘 ≠ −ℎ∨ using the stress
tensor 𝐿. For 𝑘 = −ℎ∨, the center

𝑍 (𝑉−ℎ∨ (𝔤)) =: 𝔷(𝔤̂)

is “huge”, and it is usually referred as the Feigin-Frenkel center [73]3: we have
gr 𝔷(𝔤̂) � O (J∞ (𝔤//𝐺)), with 𝔤//𝐺 = Spec O (𝔤)𝐺 .

3.4 Chiral differential operators on a group

Let 𝐺 be a affine algebraic group, 𝔤 = Lie(𝐺), 𝜅 an invariant bilinear form on 𝔤, and
set

A𝐺 = 𝑈 (𝔤̂𝜅 ) ⊗ O (L𝐺),

where L𝐺 is the loop space of 𝐺 (see Section 1.6), and consider A𝐺 as an algebra
such that the natural embeddings𝑈 (𝔤̂𝜅 ) ↩! A𝐺 , O (L𝐺) ↩! A𝐺 , are embeddings
of algebras and

[𝑥𝑡𝑚, 𝑓(𝑛) ] = (𝑥𝐿 𝑓 ) (𝑚+𝑛) for 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺), 𝑚, 𝑛 ∈ Z. (3.6)

We regard O (J∞𝐺) as a module over the subalgebra A𝐺,+ = 𝑈 (𝔤[𝑡] ⊕C1) ⊗
O (L𝐺) ⊂ A𝐺 on which O (L𝐺) acts via the natural surjection O (L𝐺) !
O (J∞𝐺), an element of 𝔤[𝑡] ⊂ 𝔤[[𝑡]] acts as a left invariant vector field on
O (J∞𝐺) (see Example 1.2), and 1 acts as the identity. Define

3 See Example 1.3 for more details about the scheme J∞ (𝔤//𝐺) .
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D𝑐ℎ
𝐺,𝜅 = A𝐺 ⊗A𝐺,+ O (J∞𝐺). (3.7)

Note that

D𝑐ℎ
𝐺,𝜅 � 𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[𝑡 ] ⊕C1) O (J∞𝐺) (3.8)

as 𝔤̂-modules. We have the mutually local fields

𝑥(𝑧) =
∑︁
𝑛∈Z

(𝑥𝑡𝑛)𝑧−𝑛−1 (𝑥 ∈ 𝔤), 𝑓 (𝑧) =
∑︁
𝑛∈Z

𝑓(𝑛) 𝑧
−𝑛−1 ( 𝑓 ∈ O (𝐺))

on D𝑐ℎ
𝐺,𝜅

satisfying the OPEs

𝑥(𝑧)𝑦(𝑤) ∼ 1
𝑧 − 𝑤 [𝑥, 𝑦] (𝑤) + 𝜅(𝑥, 𝑦)

(𝑧 − 𝑤)2 , 𝑓 (𝑧)𝑔(𝑤) ∼ 0, (3.9)

𝑥(𝑧) 𝑓 (𝑤) ∼ 1
𝑧 − 𝑤 (𝑥𝐿 𝑓 ) (𝑤) (3.10)

for 𝑥, 𝑦 ∈ 𝔤, 𝑓 , 𝑔 ∈ O (𝐺).
The following assertion is clear from Theorem 2.6.

Theorem 3.1 There is a unique vertex algebra structure on D𝑐ℎ
𝐺,𝜅

such that the
embeddings

𝜋𝐿 : 𝑉 𝜅 (𝔤) ↩−! D𝑐ℎ
𝐺,𝜅 , 𝑢 |0〉 7! 𝑢 ⊗ 1,

𝑗 : O (J∞𝐺) ↩−! D𝑐ℎ
𝐺,𝜅 , 𝑓 7! 1 ⊗ 𝑓 ,

are homomorphisms of vertex algebras, and

𝑥(𝑧) 𝑓 (𝑤) ∼ 1
𝑧 − 𝑤 (𝑥𝐿 𝑓 ) (𝑤) (3.11)

for 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺).
The vertex algebra D𝑐ℎ

𝐺,𝜅
is called the algebra of (global) chiral differential operators

(cdo) on 𝐺. It is naturally Z>0-graded by the following conditions:

• elements of 𝔤, embedded in D𝑐ℎ
𝐺,𝜅

through 𝜋𝐿 , have weight 1,
• elements of O (𝐺), embedded in D𝑐ℎ

𝐺,𝜅
through 𝑗 , have weight 0.

Let Ω be the subspace of (D𝑐ℎ
𝐺,𝜅

)1 spanned by vectors 𝑓 𝜕𝑔, with 𝑓 , 𝑔 ∈ O (𝐺),
where 𝜕 = 𝑇 is the translation operator on O (J∞𝐺). Recall that the embedding
𝔤 ↩! DerC (O (𝐺)), 𝑥 7! 𝑥𝐿 , induces an isomorphism of left O (𝐺)-modules

O (𝐺) ⊗C 𝔤
'
−! DerC (O (𝐺)). (3.12)

It is easy to see that

(D𝑐ℎ
𝐺,𝜅 )1 = Ω ⊕ DerC (O (𝐺)) (3.13)
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as vector spaces. Let Ω1 (𝐺) be the space of global differential forms on 𝐺 as in
Appendix B. Recall that Ω1 (𝐺) is generated as a O (𝐺)-module by the elements 𝑑𝑓 ,
for 𝑓 ∈ O (𝐺), where 𝑑 is the de Rham differential (see Appendix B), and that

Ω1 (𝐺) � HomC (𝔤,O (𝐺))

through the map 𝑑𝑓 7! (𝑥 7! 𝑥𝐿 𝑓 ) (see Lemma B.2).

Lemma 3.2 The C-linear map sending 𝑓 𝜕𝑔 ∈ Ω to the element ℎ ⊗ 𝑥 7!
(ℎ𝑥) (1) ( 𝑓 𝜕𝑔) of HomO (𝐺) (DerC (O (𝐺)),O (𝐺)), with ℎ ∈ O (𝐺) and 𝑥 ∈ 𝔤, is
an isomorphism of vector spaces. Therefore Ω � Ω1 (𝐺) as vector spaces.

Proof First of all, note that for 𝑥 ∈ 𝔤 and 𝑓 , 𝑔, ℎ ∈ O (𝐺),

(ℎ𝑥) (1) ( 𝑓 𝜕𝑔) = ℎ 𝑓 (𝑥𝐿𝑔) ∈ O (𝐺)

and, clearly, the map sending ℎ ⊗ 𝑥 ∈ O (𝐺) ⊗ 𝔤 to (ℎ𝑥) (1) ( 𝑓 𝜕𝑔) = ℎ 𝑓 (𝑥𝐿𝑔) is a
morphism of O (𝐺)-modules. Hence the map of the lemma is well-defined. Let is
denote it by Γ.

By the Frobenius reciprocity,

HomO (𝐺) (DerC (O (𝐺)),O (𝐺)) � HomC (𝔤,O (𝐺)),

and through this isomorphism, the map Γ( 𝑓 𝜕𝑔) sends 𝑥 ∈ 𝔤 to 𝑓 (𝑥𝐿𝑔). Hence it
suffices to show that the O (𝐺)-linear map sending 𝜕𝑔 ∈ Ω to the element (𝑥 7! 𝑥𝐿𝑔)
of HomC (𝔤,O (𝐺)) is an isomorphism of O (𝐺)-modules. By Lemma B.2, this is
equivalent to showing that the O (𝐺)-linear map sending 𝜕𝑔 ∈ Ω to 𝑑𝑔 ∈ Ω1 (𝐺) is
an isomorphism.

But 𝜕𝑔 = 𝑔(−2) |0〉 is by construction a regular function on J1 (𝐺) � 𝑇𝐺, where
𝑇𝐺 is the tangent bundle of 𝐺, and through this identification, 𝜕𝑔 is nothing but 𝑑𝑔,
so the statement is obvious. �

We denote by 〈 , 〉 : DerC (O (𝐺)) × Ω ! O (𝐺) the canonical O (𝐺)-bilinear
pairing. The Lie algebra DerC (O (𝐺)) acts on Ω by the Lie derivative given by (B.6).

Lemma 3.3 Let 𝑥 ∈ 𝔤 and 𝜔 ∈ Ω. Then 𝑥 (1)𝜔 = 〈𝑥, 𝜔〉 and 𝑥 (0)𝜔 = (Lie 𝑥).𝜔

Proof The identity 𝑥 (1)𝜔 = 〈𝑥, 𝜔〉 is clear by Lemma 3.2. Let us prove the second
one using it. The Lie derivative action can be written as:

𝑦 (1) ((Lie 𝑥).𝜔) = 𝑥𝐿 (𝑦 (1)𝜔) − [𝑥, 𝑦] (1)𝜔 = 𝑥 (0) 𝑦 (1)𝜔 − [𝑥, 𝑦] (1)𝜔,

for all 𝑦 ∈ 𝔤. But
𝑦 (1) (𝑥 (0)𝜔) = 𝑥 (0) 𝑦 (1)𝜔 − [𝑥, 𝑦] (1)𝜔

for all 𝑦 ∈ 𝔤, whence 𝑥 (0)𝜔 = (Lie 𝑥).𝜔. �

Let
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𝜅∗ = −𝜅 − 𝜅𝔤, (3.14)

where 𝜅𝔤 is the Killing form of 𝔤.

Theorem 3.2 i). There is a vertex algebra embedding

𝜋𝑅 : 𝑉 𝜅
∗ (𝔤) ↩−! Com(𝑉 𝜅 (𝔤),D𝑐ℎ

𝐺,𝜅 ) ⊂ D𝑐ℎ
𝐺,𝜅

such that

[𝜋𝑅 (𝑥) (𝑚) , 𝑓(𝑛) ] = (𝑥𝑅 𝑓 ) (𝑚+𝑛) for 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺), 𝑚, 𝑛 ∈ Z,

where 𝑥𝑅 denotes the right invariant vector field corresponding to 𝑥 ∈ 𝔤.
ii). There is a vertex algebra isomorphism

D𝑐ℎ
𝐺,𝜅 � D𝑐ℎ

𝐺,𝜅∗

that sends 𝑓 ∈ O (𝐺) to 𝑆( 𝑓 ) ∈ O (𝐺), where 𝑆 : O (𝐺) ! O (𝐺) is the antipode.

Proof i) From now, we identify 𝑥 ∈ 𝔤 with its image in D𝑐ℎ
𝐺,𝜅

through 𝜋𝐿 .
∗ Analysis. We assume that such a morphism 𝜋𝑅 does exist. Then in particular

𝜋𝑅 (𝑥𝑖) (1)𝑥 𝑗 = 0 for all 𝑖, 𝑗 = 1, . . . , 𝑗 .

Fix 𝑖, 𝑗 ∈ {1, . . . , 𝑗}.
Let {𝑥1, . . . , 𝑥𝑑} be a basis of 𝔤, and {𝜔1, . . . , 𝜔𝑑} the dual O (𝐺)-basis of

Ω � Ω1 (𝐺). The isomorphism (B.2) tells that {𝑥1, . . . , 𝑥𝑑} forms an O (𝐺)-basis of
DerC (O (𝐺)). In particular,

𝑥𝑖𝑅 =
∑︁
𝑝

𝑓 𝑖, 𝑝𝑥𝑝 , 𝑖 = 1, . . . , 𝑑,

for some invertible matrix ( 𝑓 𝑖, 𝑝)16𝑖, 𝑝6𝑑 over O (𝐺). We will repeatidily make use
of the identities of Lemma B.2 and Lemma B.3.

We set for all 𝑖 ∈ {1, . . . , 𝑑},

𝜋𝑅 (𝑥𝑖) = 𝑥𝑖𝑅 +
∑︁
𝑞,𝑝

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝𝜔𝑞 . (3.15)

We first verify that for all 𝑖, 𝑗 ,

(𝑥𝑖) (𝑛)𝜋𝑅 (𝑥 𝑗 ) = 0 (3.16)

for all 𝑖, 𝑗 and 𝑛 > 0. By (3.9), (3.10), the condition (3.16) is clearly satisfied for
𝑛 > 2.

Fix 𝑖, 𝑗 . We first verify that (𝑥𝑖) (1)𝜋𝑅 (𝑥 𝑗 ) = 0. First, by (B.3), (3.9), (3.10) and
Borcherds identity (2.33), we have
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(𝑥𝑖𝑅) (1)𝑥 𝑗 =
∑︁
𝑝

( 𝑓 𝑖, 𝑝(−1)𝑥
𝑝) (1)𝑥 𝑗 =

∑︁
𝑗

( 𝑓 𝑖, 𝑝(−1)𝑥
𝑝

(1)𝑥
𝑗 + 𝑥𝑝(0) 𝑓

𝑖, 𝑝

(0) 𝑥
𝑗 )

=
∑︁
𝑝

( 𝑓 𝑖, 𝑝𝜅(𝑥𝑝 , 𝑥 𝑗 ) − 𝑥𝑝
𝐿
(𝑥 𝑗
𝐿
𝑓 𝑖, 𝑝)) (3.17)

Using Lemma B.2 (i) twice, we get

−𝑥𝑝
𝐿
(𝑥 𝑗
𝐿
𝑓 𝑖, 𝑝) =

∑︁
𝑠

𝑥
𝑝

𝐿
(𝑐 𝑗 ,𝑠𝑝 𝑓 𝑖,𝑠) = −

∑︁
𝑠,𝑢

𝑐
𝑝,𝑢
𝑠 𝑐

𝑗 ,𝑠
𝑝 𝑓 𝑖,𝑢 =

∑︁
𝑠,𝑢

𝑐
𝑢,𝑝
𝑠 𝑐

𝑗 ,𝑠
𝑝 𝑓 𝑖,𝑢 .

Since

𝜅𝔤 (𝑥𝑖 , 𝑥 𝑗 ) =
∑︁
𝑝,𝑞

𝑐
𝑖,𝑞
𝑝 𝑐

𝑗 , 𝑝
𝑞 , 𝑖, 𝑗 = 1, . . . , 𝑑,

we deduce that

−
∑︁
𝑝

𝑥
𝑝

𝐿
(𝑥 𝑗
𝐿
𝑓 𝑖, 𝑝) =

∑︁
𝑢

𝜅𝔤 (𝑥𝑢 , 𝑥 𝑗 ) 𝑓 𝑖,𝑢 . (3.18)

Combining (3.17), (3.18) and (3.14), we obtain that for 𝑖, 𝑗 = 1, . . . , 𝑑,

(𝑥𝑖𝑅) (1)𝑥 𝑗 = −
∑︁
𝑝

𝜅∗ (𝑥𝑝 , 𝑥 𝑗 ) 𝑓 𝑖, 𝑝 .

On the other hand, by Lemma 3.3, we have for any 𝑝, 𝑞 ∈ {1, . . . , 𝑑},

(𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝𝜔𝑞) (1)𝑥 𝑗 = 𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝 〈𝜔𝑞 , 𝑥 𝑗〉 = 𝜅∗ (𝑥𝑝 , 𝑥 𝑗 ) 𝑓 𝑖, 𝑝 ,

whence (𝑥𝑖) (1)𝜋𝑅 (𝑥 𝑗 ) = 0.
We now wish to prove that (𝑥𝑖) (0)𝜋𝑅 (𝑥 𝑗 ) = 0. We have

(𝑥𝑖) (0)𝜋𝑅 (𝑥 𝑗 ) = (𝑥𝑖) (0) (𝑥 𝑗𝑅 +
∑︁
𝑝,𝑞

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑗 , 𝑝𝜔𝑞).

One one hand, using Lemma B.2 (i),

𝑥𝑖(0)𝑥
𝑗

𝑅
=

∑︁
𝑞

𝑥𝑖(0) ( 𝑓
𝑗 ,𝑞𝑥𝑞) =

∑︁
𝑞

𝑥𝑖(0) 𝑓
𝑗 ,𝑞

(−1)𝑥
𝑞 =

∑︁
𝑞

((𝑥𝑖𝐿 𝑓 𝑗 ,𝑞) (−1)𝑥
𝑞 + 𝑓

𝑗 ,𝑞

(−1) [𝑥
𝑖 , 𝑥𝑞]) = 0.

On the other hand, using Lemma B.2 (i) and Lemma 3.3, we get

𝑥𝑖(0) (𝜅
∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑗 , 𝑝𝜔𝑞) = 𝜅∗ (𝑥𝑝 , 𝑥𝑞)

(
(𝑥𝑖𝐿 𝑓 𝑗 , 𝑝)𝜔𝑞 + 𝑓 𝑗 , 𝑝 (Lie 𝑥 𝑗 ).𝜔𝑞

)
= −

∑︁
𝑠,𝑟

(
𝜅∗ (𝑥𝑝 , 𝑥𝑟 )𝑐𝑖,𝑠𝑝 𝑓 𝑗 ,𝑠𝜔𝑟 + 𝜅∗ (𝑥𝑝 , 𝑥𝑞)𝑐𝑖,𝑟𝑞 𝑓 𝑗 , 𝑝𝜔𝑟

)
= −

∑︁
𝑠,𝑟

(
𝜅∗ ( [𝑥𝑖 , 𝑥𝑠], 𝑥𝑟 ) 𝑓 𝑗 ,𝑠𝜔𝑟 − 𝜅∗ (𝑥𝑝 , [𝑥𝑖 , 𝑥𝑟 ]) 𝑓 𝑗 , 𝑝𝜔𝑟

)
= 0
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due to the invariance of 𝜅∗. This proves that (𝑥𝑖) (0)𝜋𝑅 (𝑥 𝑗 ) = 0.
In conclusion, (3.16) holds for any 𝑖, 𝑗 = 1, . . . , 𝑑 and 𝑛 > 0 as desired.
It remains to verify that 𝜋𝑅 defines a vertex algebra homomorphism that is

injective. Due to the decomposition (3.13), we see that the map 𝜋𝑅 defined by (3.15)
is injective since the map 𝔤! DerC (O (𝐺)), 𝑥 7! 𝑥𝐿 , is.

For the vertex algebra homomorphism part, we have to show that

(𝜋𝑅 (𝑥)) (𝑧) (𝜋𝑅 (𝑦)) (𝑤) ∼
1

𝑧 − 𝑤 𝜋𝑅 ( [𝑥, 𝑦]) (𝑤) +
𝜅∗ (𝑥, 𝑦)
(𝑧 − 𝑤)2 (3.19)

for all 𝑥, 𝑦 ∈ 𝑉 𝜅∗ (𝔤), that is,

𝜋𝑅 (𝑥) (1)𝜋𝑅 (𝑦) = 𝜅∗ (𝑥, 𝑦), (3.20)
𝜋𝑅 (𝑥) (0)𝜋𝑅 (𝑦) = 𝜋𝑅 ( [𝑥, 𝑦]). (3.21)

for all 𝑥, 𝑦 ∈ 𝑉 𝜅∗ (𝔤).
To compute 𝜋𝑅 (𝑥) (1)𝜋𝑅 (𝑦) we notice that for 𝑖, 𝑗 ∈ {1, . . . , 𝑑},

𝜋𝑅 (𝑥𝑖) (1)𝜋𝑅 (𝑥 𝑗 ) =
(
𝑥𝑖𝑅 +

∑︁
𝑞,𝑝

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝𝜔𝑞
)
(1)

(
𝑥
𝑗

𝑅
+

∑︁
𝑞,𝑝

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑗 , 𝑝𝜔𝑞
)

is a sum of four terms. We have

(𝑥𝑖𝑅) (1)𝑥
𝑗

𝑅
=

∑︁
𝑝,𝑠

( 𝑓 𝑖, 𝑝𝑥𝑝) (1) ( 𝑓 𝑗 ,𝑠𝑥𝑠)

=
∑︁
𝑝,𝑠

( 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑠𝜅(𝑥𝑝 , 𝑥𝑠) − 𝑓 𝑖, 𝑝𝑥𝑠𝐿 (𝑥
𝑝

𝐿
𝑓 𝑗 ,𝑠) − 𝑓 𝑗 ,𝑠𝑥

𝑝

𝐿
(𝑥𝑠𝐿 𝑓

𝑖, 𝑝) − (𝑥𝑝
𝐿
𝑓 𝑗 ,𝑠) (𝑥𝑠𝐿 𝑓

𝑖, 𝑝))

Using (3.14) and Lemma B.2 we see that

− 𝑓 𝑖, 𝑝𝑥𝑠𝐿 (𝑥
𝑝

𝐿
𝑓 𝑗 ,𝑠) = − 𝑓 𝑗 ,𝑠𝑥𝑝

𝐿
(𝑥𝑠𝐿 𝑓

𝑖, 𝑝) = (𝑥𝑝
𝐿
𝑓 𝑗 ,𝑠) (𝑥𝑠𝐿 𝑓

𝑖, 𝑝) = 𝜅𝔤 (𝑥𝑝 , 𝑥𝑠) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑠 ,

for all 𝑖, 𝑗 , 𝑠, 𝑝, whence

(𝑥𝑖𝑅) (1)𝑥
𝑗

𝑅
= −

∑︁
𝑝,𝑠

𝜅∗ (𝑥𝑝 , 𝑥𝑠) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑠 .

Next, using Lemma 3.3, we get for all 𝑖, 𝑗 , 𝑝, 𝑞,(
𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝𝜔𝑞

)
(1) 𝑥

𝑗

𝑅
= 𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑞 .

Similarly,

(𝑥𝑖𝑅) (1)
(
𝜅∗ (𝑥𝑠 , 𝑥𝑢) 𝑓 𝑗 ,𝑠𝜔𝑢

)
(1) 𝑥

𝑗

𝑅
= 𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑞 ,

and evidently,
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𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝𝜔𝑞

)
(1)

(
𝜅∗ (𝑥𝑠 , 𝑥𝑢) 𝑓 𝑗 ,𝑠𝜔𝑢

)
= 0

Adding up, we get

𝜋𝑅 (𝑥𝑖) (1)𝜋𝑅 (𝑥 𝑗 ) =
∑︁
𝑝,𝑞

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑞 . (3.22)

We differentiate the above relation. By Lemma B.2, we have for 𝑖, 𝑗 , 𝑝, 𝑞, 𝑠,

𝑥𝑠𝐿

(∑︁
𝑝,𝑞

𝜅∗ (𝑥𝑝 , 𝑥𝑞) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑞
)
=

∑︁
𝑝,𝑞

𝜅∗ (𝑥𝑝 , 𝑥𝑞)
(
(𝑥𝑠𝐿 𝑓

𝑖, 𝑝) 𝑓 𝑗 ,𝑞 + 𝑓 𝑖, 𝑝 (𝑥𝑠𝐿 𝑓
𝑗 ,𝑞)

)
=

∑︁
𝑝,𝑞,𝑢,𝑣

𝜅∗ (𝑥𝑝 , 𝑥𝑞)
(
−𝑐𝑠,𝑢𝑝 𝑓 𝑖,𝑢 𝑓 𝑗 ,𝑞 − 𝑐𝑠,𝑣𝑞 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑣

)
=

∑︁
𝑝,𝑞,𝑢,𝑣

(
−𝜅∗ ( [𝑥𝑠 , 𝑥𝑢], 𝑥𝑞) 𝑓 𝑖,𝑢 𝑓 𝑗 ,𝑞 − 𝜅∗ (𝑥𝑝 , [𝑥𝑠], 𝑥𝑣 ]) 𝑓 𝑖, 𝑝 𝑓 𝑗 ,𝑣

)
= 0.

Therefore, (3.22) is constant. This constant can be computed by observing that the
matrix ( 𝑓 𝑖, 𝑗 ), considered as a function on the group 𝐺, is equal to the identity at
the neutral element of 𝐺 by the identity (B.3). Hence, (3.22) is equal to 𝜅∗ (𝑥𝑖 , 𝑥 𝑗 ),
which proves (3.20).

We now compute 𝜋𝑅 (𝑥) (0)𝜋𝑅 (𝑦). For 𝑖, 𝑗 ∈ {1, . . . , 𝑑} we have

𝜋𝑅 (𝑥𝑖) (0)𝜋𝑅 (𝑥 𝑗 ) = 𝜋𝑅 (𝑥𝑖) (0)

(∑︁
𝑞

𝑓 𝑗 ,𝑞𝑥𝑞 +
∑︁
𝑠,𝑢

𝜅∗ (𝑥𝑠 , 𝑥𝑢) 𝑓 𝑗 ,𝑠𝜔𝑢
)
.

Using (3.16) with 𝑛 = 0, we have

𝜋𝑅 (𝑥𝑖) (0) ( 𝑓 𝑗 ,𝑞𝑥𝑞) = (𝜋𝑅 (𝑥𝑖) (0) 𝑓 𝑗 ,𝑞)𝑥𝑞

=
∑︁
𝑝

𝑓 𝑖, 𝑝 (𝑥𝑝
𝐿
𝑓 𝑗 ,𝑞)𝑥𝑞 = [𝑥𝑖𝑅, 𝑥

𝑗

𝑅
] = [𝑥𝑖 , 𝑥 𝑗 ]𝑅, (3.23)

by Lemma 3.3, Lemma B.2 (ii), Lemma B.3.
On the other hand,

𝜋𝑅 (𝑥𝑖) (0) (𝜅∗ (𝑥𝑠 , 𝑥𝑢) 𝑓 𝑗 ,𝑠𝜔𝑢) = (𝑥𝑖𝑅) (0) (𝜅∗ (𝑥𝑠 , 𝑥𝑢 𝑓 𝑗 ,𝑠𝜔𝑢)
= 𝜅∗ (𝑥𝑠 , 𝑥𝑢)𝑥𝑖𝑅 ( 𝑓 𝑗 ,𝑠𝜔𝑢) (3.24)

= 𝜅∗ (𝑥𝑠 , 𝑥𝑢) 𝑓 𝑗 , 𝑝𝑥𝑝
𝐿
( 𝑓 𝑗 ,𝑠)𝜔𝑢) = 𝜅∗ (𝑥𝑠 , 𝑥𝑢)𝑐𝑖, 𝑗𝑞 𝑓 𝑞,𝑠𝜔𝑢)

by Lemma 3.3, Lemma B.2 (ii), and Lemma B.3. Adding up (3.23) and (3.24) we
obtain that

𝜋𝑅 (𝑥𝑖) (0)𝜋𝑅 (𝑥 𝑗 ) = 𝜋𝑅 ( [𝑥𝑖 , 𝑥 𝑗 ])

for all 𝑖, 𝑗 = 1, . . . , 𝑑, which proves (3.21).
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To sum up, we have proven that 𝜋𝑅 is an injective vertex algebra homomorphism.
Complete the proof about the bracket [𝜋𝑅 (𝑥) (𝑚) , 𝑓(𝑛) ] = (𝑥𝑅 𝑓 ) (𝑚+𝑛) ...
ii) Consider the unique vertex algebra homomorphism

Φ : D𝑐ℎ
𝐺,𝜅 −! D𝑐ℎ

𝐺,𝜅∗

whose restriction to O (𝐺) is given by the antipode 𝑆, and restriction to 𝑉 𝜅 (𝔤) is
the map 𝜋𝐿 (𝑥) 7! 𝜋𝑅 (𝑥). It is easy to verify that Φ is indeed a vertex algebra
homomorphism by (3.19), since

(Φ(𝑥)) (𝑧) (Φ( 𝑓 )) (𝑤) ∼ 1
𝑧 − 𝑤 (Φ(𝑥)𝐿Φ( 𝑓 )) (𝑤)

for 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺) which holds by

𝑥𝑅𝑆( 𝑓 ) = 𝑆(𝑥𝐿 𝑓 )

for 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺).
It remains to show that Φ is an isomorphism. Consider the vertex algebra ho-

momorphism from D𝑐ℎ
𝐺,𝜅∗ to D𝑐ℎ

𝐺, (𝜅∗)∗ whose restriction to O (𝐺) is given by the
antipode, and restriction to 𝑉 𝜅∗ (𝔤) is the map 𝜋𝑅 (𝑥) ! 𝜋𝐿 (𝑥). Note that (𝜅∗)∗ = 𝜅.
Similarly to Φ, we verify that Ψ is indeed a vertex algebra homomorphism. More-
over, we have Ψ ◦ Φ = idD𝑐ℎ

𝐺,𝜅
and Φ ◦ Ψ = idD𝑐ℎ

𝐺,𝜅∗
This concludes the proof of

(ii). �

Theorem 3.3 Suppose that 𝐺 is connected. The vertex algebras 𝑉 𝜅 (𝔤) and 𝑉 𝜅∗ (𝔤)
form a dual pair in D𝑐ℎ

𝐺,𝜅
.

Proof We have to show that

𝑉 𝜅 (𝔤) = (D𝑐ℎ
𝐺,𝜅 )

𝜋𝑅 (𝔤[[𝑡 ]]) and 𝑉 𝜅
∗ (𝔤) = (D𝑐ℎ

𝐺,𝜅 )
𝜋𝐿 (𝔤[[𝑡 ]]) .

By Theorem 3.2, we have already established the inclusions𝑉 𝜅 (𝔤) ⊂ (D𝑐ℎ
𝐺,𝜅

) 𝜋𝑅 (𝔤[[𝑡 ]])

and 𝑉 𝜅∗ (𝔤) ⊂ (D𝑐ℎ
𝐺,𝜅

) 𝜋𝐿 (𝔤[[𝑡 ]]) . To show the other inclusions, observe that

(D𝑐ℎ
𝐺,𝜅 )

𝜋𝑅 (𝔤[[𝑡 ]]) =
(
𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[𝑡 ] ⊕C1) O (J∞𝐺)

) 𝜋𝑅 (𝔤[[𝑡 ]])

= 𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[𝑡 ] ⊕C1) O (J∞𝐺) 𝜋𝑅 (𝔤[[𝑡 ]])

since the image by 𝜋𝑅 of 𝑉 𝜅∗ (𝔤) commutes with 𝑈 (𝔤̂𝜅 ). But since 𝐺 is connected,
we get that

C � O (J∞𝐺)J∞ (𝐺) = O (J∞𝐺)𝔤[[𝑡 ]] = O (J∞𝐺) 𝜋𝑅 (𝔤[[𝑡 ]]) .

As a result,
(D𝑐ℎ

𝐺,𝜅 )
𝜋𝑅 (𝔤[[𝑡 ]]) � 𝑉 𝜅 (𝔤).

Using the isomorphism D𝑐ℎ
𝐺,𝜅
� D𝑐ℎ

𝐺,𝜅∗ of Theorem 3.2, we obtain that
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(D𝑐ℎ
𝐺,𝜅 )

𝜋𝐿 (𝔤[[𝑡 ]]) � 𝑉 𝜅
∗ (𝔤).

This concludes the proof of the theorem. �

Suppose that 𝐺 is reductive. The algebraic Peter-Weyl theorem states that

O (𝐺) �
⊕
𝜒∈𝐺̂

𝑉𝜆 ⊗ 𝑉𝜆∗ (3.25)

as 𝐺 ×𝐺-modules, where 𝐺̂ is the set of isomorphism classes of finite-dimensional
simple rational𝐺-modules,𝑉𝜆 denotes a representation of𝜆 ∈ 𝐺̂ and𝜆∗ is an element
of 𝐺̂ such that 𝑉𝜆∗ is the dual 𝐺-module to 𝑉𝜆 (see e.g. [176, Theorem 27.3.9]). The
Lie algebra 𝔤 = Lie(𝐺) is reductive, so that

[𝔤, 𝔤] =
𝑟⊕
𝑖=1

𝔤𝑖 ,

where each 𝔤𝑖 is a simple Lie subalgebra of 𝔤. Then 𝜅 |𝔤𝑖 is a constant multiplication
of the Killing form 𝜅𝔤𝑖 of 𝔤𝑖 . We say 𝜅 is irrational if and 𝜅 |𝔤𝑖/𝜅𝔤𝑖 ∉ Q for all 𝑖.

Proposition 3.5 ([29]) Let 𝐺 be reductive, and suppose that 𝜅 | [𝔤,𝔤] is irrational and
that 𝜅 |𝔷(𝔤) is non-degenerate, where 𝔷(𝔤) is the center of 𝔤. Then we have

D𝑐ℎ
𝐺,𝜅 �

⊕
𝜆∈𝐺̂

V𝜆,𝜅 ⊗ V𝜆∗ ,𝜅∗ ,

where V𝜆,𝜅 = 𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[𝑡 ] ⊕C1) 𝑉𝜆 and 𝑉𝜆 is considered to be a 𝔤[𝑡] ⊕C1-module
on which 𝔤[𝑡] acts by the projection 𝔤[𝑡] ! 𝔤 and 1 as the identity.

Proof By the assumption on 𝜅, V𝜆,𝜅 and V𝜆∗ ,𝜅∗ for 𝜆 ∈ 𝐺̂ are irreducible 𝔤̂𝜅 -
module and 𝔤̂𝜅∗ -module, respectively ([123]). Moreover, D𝑐ℎ

𝐺,𝜅
is completely re-

ducible as 𝔤̂𝜅 ⊕ 𝔤̂𝜅∗ -modules and a direct sum of V𝜆,𝜅 ⊗ V𝜇∗ ,𝜅∗ with 𝜆, 𝜇 ∈ 𝐺̂.
Because 𝜅 is generic (and so is 𝜅∗), the category of integrable 𝔤̂𝜅∗ -modules is
equivalent to the category of integrable 𝔤-modules and the equivalence is given
by 𝑀 ! 𝑀 𝑡𝔤[[𝑡 ]] , see [123] and [124, Section 30]. Since V𝑡𝔤[[𝑡 ]]

𝜇∗ ,𝜅∗ = 𝑉𝜇∗ , it is suf-
ficient to show that (D𝑐ℎ

𝐺,𝜅
) 𝜋𝑅 (𝑡𝔤[[𝑡 ]]) �

⊕
𝜆∈𝐺̂ V𝜆,𝜅 ⊗ 𝑉𝜆∗ as 𝔤̂𝜅 × 𝔤-modules.

But we have (D𝑐ℎ
𝐺,𝜅

) 𝜋𝑅 (𝑡𝔤[[𝑡 ]]) = 𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[[𝑡 ]] ⊕C1)
(
O (J∞𝐺) 𝜋𝑅 (𝑡𝔤[[𝑡 ]]) ) =

𝑈 (𝔤̂𝜅 )⊗𝑈 (𝔤[[𝑡 ]] ⊕C1)O (𝐺). Hence the assertion follows from the algebraic Peter-Weyl
theorem. �

Example 3.5 Let 𝐺 be a torus 𝑇 , {ℎ1, . . . , ℎ𝑟 } a basis of the abelian Lie algebra
𝔤 = Lie(𝑇). Then O (𝐺) = C[𝑃], where 𝑃 =

⊕𝑟

𝑖=1 Z𝜛𝑖 is the weight lattice of 𝔤.
The subalgebra 𝑉 𝜅 (𝔤) ⊂ D𝑐ℎ

𝑇 ,𝜅
is the Heisenberg vertex algebra generated by the

field ℎ𝐿 (𝑧), ℎ ∈ 𝔤, satisfying the OPE

ℎ𝐿 (𝑧)ℎ′𝐿 (𝑤) ∼
𝜅(ℎ, ℎ′)
(𝑧 − 𝑤)2 .
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The OPE (3.11) reads as

ℎ𝐿 (𝑧)𝑒𝛼 (𝑤) ∼
𝛼(ℎ)
𝑧 − 𝑤 𝑒

𝛼 (𝑤) (ℎ ∈ 𝔤, 𝛼 ∈ 𝑃).

Since the Killing form of 𝔤 is zero, we have 𝜅∗ = −𝜅. The subalgebra 𝜋𝑅 (𝑉 𝜅
∗ (𝔤)) ⊂

D𝑐ℎ
𝑇 ,𝜅

is generated the fields ℎ𝑅 (𝑧), ℎ ∈ 𝔤, defined by

ℎ𝑅 (𝑧) := ℎ𝐿 (𝑧) −
𝑟∑︁
𝑖=1

𝜅(ℎ, ℎ𝑖)𝑒−𝜛𝑖 (𝑧)𝜕𝑒𝜛𝑖 (𝑧) (3.26)

(Note that 𝑒−𝜛𝑖 (𝑧)𝜕𝑒𝜛𝑖 (𝑧) = ◦
◦ 𝑒

−𝜛𝑖 (𝑧)𝜕𝑒𝜛𝑖 (𝑧) ◦
◦ = (𝑒−𝜛𝑖𝜕𝑒𝜛𝑖 ) (𝑧) sinceO (J∞𝐺)

is commutative.) We have

ℎ𝐿 (𝑧)ℎ′𝑅 (𝑤) ∼ 0, ℎ𝑅 (𝑧)ℎ′𝑅 (𝑤) ∼
𝜅∗ (ℎ, ℎ′)
(𝑧 − 𝑤)2 .

The stress tensor vector of D𝑐ℎ
𝐺,𝜅

is given by

𝑇 (𝑧)

=

𝑟∑︁
𝑖=1

◦
◦ ℎ𝑖 (𝑧) (𝑒−𝜛𝑖𝜕𝑒𝜛𝑖 ) (𝑧) ◦

◦ − 1
2

𝑟∑︁
𝑖, 𝑗=1

𝜅(ℎ𝑖 , ℎ 𝑗 ) ◦
◦ (𝑒−𝜛𝑖𝜕𝑒𝜛𝑖 ) (𝑧) (𝑒−𝜛 𝑗 𝜕𝑒𝜛 𝑗 ) (𝑧) ◦

◦ ,

which has central charge 2𝑟 .
Now suppose that 𝜅 is non-degenerate. Then we have the embedding of vertex

algebras

𝑉 𝜅 (𝔤) ⊗ 𝑉 𝜅∗ (𝔤) ↩−! D𝑐ℎ
𝐺,𝜅 ,

and we have

𝑇 (𝑧) = 𝑇𝐿 (𝑧) + 𝑇𝑅 (𝑧),

where 𝑇𝐿 (𝑧) =
1
2

𝑟∑︁
𝑖=1

◦
◦ ℎ𝑖,𝐿 (𝑧)ℎ𝑖𝐿 (𝑧) ◦

◦ and 𝑇𝑅 (𝑧) = −1
2

𝑟∑︁
𝑖=1

◦
◦ ℎ𝑖,𝑅 (𝑧)ℎ𝑖𝑅 (𝑧) ◦

◦ are

the stress tensors of the vertex subalgebra 𝑉 𝜅 (𝔤) and 𝑉 𝜅∗ (𝔤), respectively. As a
𝑉 𝜅 (𝔤) ⊗ 𝑉 𝜅∗ (𝔤)-module we have

D𝑐ℎ
𝐺,𝜅 �

⊕
𝜆∈𝑃+
V𝜆,𝜅 ⊗ V𝜆,𝜅∗ , (3.27)

Here V𝜆,𝜅 is the highest weight representation of the Heisenberg algebra 𝔤̂𝜅 with
highest weight 𝜆.

In the case that 𝜅 is non-degenerate it is possible to give the vertex algebra
structure using the decomposition (3.27) ([79]). Note that the vector |𝜆〉 = 𝑣𝜆 ⊗ 𝑣𝜆 ∈
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V𝜆,𝜅 ⊗V𝜆,𝜅∗ , where 𝑣𝜆 is the highest weight vector of V𝜆,𝜅 or V𝜆,𝜅∗ , corresponds to
the vector 𝑒𝜆 ∈ O (𝐺) on the left-hand-side. Observe from (3.26) that

𝜕𝑧𝑌 ( |𝜆〉, 𝑧) = ◦
◦ (𝜆𝐿 (𝑧) − 𝜆𝑅 (𝑧))𝑌 ( |𝜆〉, 𝑧) ◦

◦ , (3.28)

where we identified 𝑃+ as a subspace of 𝔤 via the form 𝜅. In view of Theorem 2.2,
(3.28) together with the relation 𝑌 ( |𝜆〉, 𝑧) |0〉|𝑧=0 = |𝜆〉 completely determines the
field 𝑌 ( |𝜆〉, 𝑧). As a result, we find that

𝑌 ( |𝜆〉, 𝑧) = 𝑒𝜆 exp (
∑︁

𝑛∈Z\{0}

(𝜆𝐿) (𝑛) − (𝜆𝑅) (𝑛)
−𝑛 𝑧−𝑛) for 𝜆 ∈ 𝑃+,

where 𝑒𝜆 is the operator on
⊕

𝜆∈Z V𝜆,𝜅 ⊗ V𝜆,𝜅∗ defined by 𝑒𝜆 |𝜇〉 = |𝜆 + 𝜇〉,
[(ℎ𝐿) (𝑛) , 𝑒𝜆] = [(ℎ𝑅) (𝑛) , 𝑒𝜆] = 0. Here note that 𝜆𝐿 (𝑧) − 𝜆𝑅 (𝑧) generates a com-
mutative vertex subalgebra and (𝜆𝐿) (0) − (𝜆𝑅) (0) acts as zero on the whole space
(compare with (3.31) below). It is straightforward to check that

𝑌 (𝜆, 𝑧)𝑌 (𝜇, 𝑤) ∼ 0, 𝑌 (𝜆, 𝑧)𝑌 (𝜇, 𝑧) = 𝑌 (𝜆 + 𝜇, 𝑧), (3.29)

ℎ𝐿 (𝑧)𝑌 ( |𝜆〉, 𝑤) ∼
𝜆(ℎ)
𝑧 − 𝑤𝑌 ( |𝜆〉, 𝑤), ℎ𝑅 (𝑧)𝑌 ( |𝜆〉, 𝑤) ∼

𝜆(ℎ)
𝑧 − 𝑤𝑌 ( |𝜆〉, 𝑤). (3.30)

This construction is useful to construct D𝑐ℎ
𝐺,𝜅

-modules for a non-degenerate 𝜅.
For 𝜆 ∈ 𝑃+ = 𝐺̂, set

𝑀𝜆,𝜅 =
⊕
𝜇∈𝑃+
V𝜆+𝜇,𝜅 ⊗ V𝜇,𝜅∗ ,

which is naturally a𝑉 𝜅 (𝔤) ⊗𝑉 𝜅∗ (𝔤)-modules. The𝑉 𝜅 (𝔤) ⊗𝑉 𝜅∗ (𝔤)-module structure
extends to the D𝑐ℎ

𝐺,𝜅
-module structure by setting

𝑌𝑀𝜆,𝜅
(𝛼, 𝑧) = 𝑒𝛼 exp (

∑︁
𝑛∈Z\{0}

(𝛼𝐿) (𝑛) − (𝛼𝑅) (𝑛)
−𝑛 𝑧−𝑛)𝑧 (𝛼𝐿 ) (0)−(𝛼𝑅) (0) (3.31)

for 𝛼 ∈ 𝑃+, where 𝑒𝛼 is defined by 𝑒𝛼 (𝑣𝜆+𝜇 ⊗ 𝑣𝜇) = 𝑣𝜆+𝜇+𝛼 ⊗ 𝑣𝜇+𝛼, [(ℎ𝐿) (𝑛) , 𝑒𝜆] =
[(ℎ𝑅) (𝑛) , 𝑒𝜆] = 0. (Note that 𝑧 (𝛼𝐿 ) (0)−(𝛼𝑅) (0) = 𝑧𝜅 (𝜆,𝛼) on 𝑀𝜆,𝜅 .)

Exercise 3.4 Show that 𝑀𝜆,𝜅 is a simple D𝑐ℎ
𝐺,𝜅

-module for all 𝜆 ∈ 𝑃+.





Part II
Poisson vertex algebras, Li filtration and

associated varieties



In this part, we introduce important objects related to vertex algebras and discuss
interesting relations between them.

Chapter 4 gives a concise presentation of Poisson vertex algebras (a particular
class of commutative vertex algebras). It will be observed that any vertex algebra
is naturally filtered and that the corresponding graded space has a structure of a
Poisson vertex algebra. The Zhu 𝐶2-functor 𝑉 7! 𝑅𝑉 associates with any vertex
algebra 𝑉 a certain quotient that has a Poisson algebra structure and that generates
the Poisson vertex algebra gr𝑉 as a differential algebra. The spectrum of the Zhu
𝐶2-algebra 𝑅𝑉 is called the associated scheme. Its maximal spectrum is called the
associated variety. Associated schemes and associated varieties, as well as their
spaces of arcs, will occupy a central place in the rest of this book. Chapter 5 is
about the Zhu functor 𝑉 7! Zhu(𝑉). It gives a correspondence between the theory
of modules over a vertex algebra and the representation theory of its Zhu’s algebra.
This correspondence is particularly well-understood in the case of the universal affine
vertex algebras, where Zhu’s algebras are enveloping algebras of the corresponding
finite-dimensional simple Lie algebras. In Chapter 6, we develop the theory of
Poisson vertex modules and Frenkel-Zhu’s bimodules. These notions generalize all
above constructions to the setting of modules over a vertex algebras.

We summarize in the following diagram the main objects that we will encounter
in this part:

Note that we do not claim that this diagram commutes. In general, only the upper
right triangle does. We will see, however, many interesting examples where the
above diagram commutes, that is, gr Zhu(𝑉) � 𝑅𝑉 . We will also discuss relations
between the Poisson vertex algebra gr𝑉 and the coordinate ring over the arc space
of the associated scheme Spec 𝑅𝑉 .



Chapter 4
Poisson vertex algebras

We refer the reader to Appendix C for basics on Poisson algebras and Poisson
varieties. Just as the graded space of an almost-commutative filtered associative
algebra with unit have naturally a structure of a Poisson algebra, we will see in
this chapter that any vertex algebra is naturally filtered and that the corresponding
graded space is naturally a Poisson vertex algebra (Definition 4.1). A nice way to
construct Poisson vertex algebras is to consider the coordinate ring of the arc space
of an affine Poisson variety (see Section 4.2). Actually, strong relations exists, at
least conjecturally, between the arc space of the associated variety and the singular
support of a vertex algebra, that is, the spectrum of the corresponding graded algebra.

In this Chapter, we also introduce the Zhu 𝐶2-algebra 𝑅𝑉 of a vertex algebra
𝑉 . The corresponding scheme and the corresponding reduced scheme, called the
associated scheme and the associated variety, respectively, are crucial invariants of
the vertex algebra 𝑉 which capture important information about 𝑉 . The singular
support of 𝑉 is deeply related to the arc spaces of these schemes. Not surprisingly,
the associated variety is usually easier to describe than the associated scheme as we
will observe in many examples in the following parts. It already contains meaningful
information. One can, for example, detect from it the lisse condition.

In Section 4.3, we define the Zhu 𝐶2-algebra 𝑅𝑉 of a vertex algebra. The notion
of associated scheme and associated variety are introduced in Section 4.4. We will
also discuss in this section connections between the singular support and the arc
spaces of these schemes. Section 4.7 deals with the lisse condition.

4.1 Definition

Recall that a vertex algebra 𝑉 is a commutative vertex algebra (cf. Section 2.9), that
is, a unital commutative algebra equipped with a derivation, if and only if 𝑎 (𝑛) = 0
in End(𝑉) for all 𝑛 > 0.
Definition 4.1 A commutative vertex algebra 𝑉 is called a Poisson vertex algebra if
there exists a linear map
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𝑉 ⊗ 𝑉 ! 𝑉 [𝜆], 𝑎 ⊗ 𝑏 7! {𝑎𝜆𝑏} =
∑︁
𝑛>0

𝜆𝑛

𝑛!
𝑎 (𝑛)𝑏, (4.1)

called the 𝜆-bracket, such that

{(𝜕𝑎)𝜆𝑏} = −𝜆{𝑎𝜆𝑏}, {𝑎𝜆𝜕𝑏} = (𝜆 + 𝜕){𝑎𝜆𝑏}, (sesquilinearity) (4.2)
{𝑎𝜆𝑏} = −{𝑏−𝜆−𝜕𝑎}, (skewsymmetry ) (4.3)

{𝑎𝜆{𝑏𝜇𝑐}} − {𝑏𝜇{𝑎𝜆𝑐}} = {{𝑎𝜆𝑏}𝜇𝑐}, (the Jacobi identity) (4.4)
{𝑎𝜆 (𝑏𝑐)} = {𝑎𝜆𝑏}𝑐 + 𝑏{𝑎𝜆𝑐}, (left Leibniz rule). (4.5)

Here, in (4.1), 𝑎 (𝑛) , for 𝑛 > 0, are “new" operators. (The “old" ones given by the
field 𝑎(𝑧) being zero for 𝑛 > 0 since 𝑉 is commutative.)

In terms of operators 𝑎 (𝑛) , “sesquilinearity", “skewsymmetry”, the “Jacobi identity”
and the “left Leibniz rule” are equivalent to the following properties, respectively:

(𝜕𝑎) (𝑛) = [𝜕, 𝑎 (𝑛) ] = −𝑛𝑎 (𝑛−1) , (4.6)

𝑎 (𝑛)𝑏 =
∑︁
𝑗>0

(−1)𝑛+ 𝑗+1 1
𝑗!
𝜕 𝑗 (𝑏 (𝑛+ 𝑗)𝑎), (4.7)

[𝑎 (𝑚) , 𝑏 (𝑛) ] =
∑︁
𝑗>0

(
𝑚

𝑗

)
(𝑎 ( 𝑗)𝑏) (𝑚+𝑛− 𝑗) , (4.8)

𝑎 (𝑛) (𝑏 · 𝑐) = (𝑎 (𝑛)𝑏) · 𝑐 + 𝑏 · (𝑎 (𝑛)𝑐) (4.9)

for all 𝑎, 𝑏, 𝑐 ∈ 𝑉 and all 𝑛, 𝑚 > 0.
The equation (4.9) says that 𝑎 (𝑛) , for 𝑛 > 0, is a derivation of the ring 𝑉 . (Do not

confuse 𝑎 (𝑛) ∈ Der(𝑉), for 𝑛 > 0, with the multiplication 𝑎 (𝑛) as a vertex algebra,
which should be zero for a commutative vertex algebra.)

It follows from the definition that we also have the “right Leibniz rule” ([113,
Exercise 4.2])

{(𝑎𝑏)𝜆𝑐} = {𝑏𝜆+𝜕𝑐}!𝑎 + {𝑎𝜆+𝜕𝑐}!𝑏, (4.10)

where {𝑏𝜆+𝜕𝑐}! means that 𝜕 is moved to the right, that is,

{𝑏𝜆+𝜕𝑐}!𝑎 =
∑︁
𝑛>0

𝑛∑︁
𝑗=0

1
𝑗!(𝑛 − 𝑗)!𝜆

𝑗 (𝑏 (𝑛)𝑐) (𝜕𝑛− 𝑗𝑎).

One finds that (4.10) is equivalent to

(𝑎 · 𝑏) (𝑛)𝑐 =
∑︁
𝑖>0

(𝑎 (−𝑖−1)𝑏 (𝑛+𝑖)𝑐 + 𝑏 (−𝑖−1)𝑎 (𝑛+𝑖)𝑐),

for all 𝑎, 𝑏, 𝑐 ∈ 𝑉 , and 𝑛 ∈ Z>0 (compare with (2.33), cf. Section 4.3).
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4.2 Poisson vertex structure on arc spaces

Arc spaces over an affine Poisson scheme naturally give rise to a Poisson vertex
algebras, as shows the following result.

Theorem 4.1 ([6, Proposition 2.3.1]) Given an affine Poisson scheme 𝑋 , that is,
𝑋 = Spec 𝑅 for some Poisson algebra 𝑅, there is a unique Poisson vertex algebra
structure on J∞ (𝑅) = O (J∞ (𝑋)) such that

{𝑎𝜆𝑏} = {𝑎, 𝑏}

for all 𝑎, 𝑏 ∈ 𝑅, that is,

𝑎 (𝑛)𝑏 =

{
{𝑎, 𝑏} if 𝑛 = 0,
0 if 𝑛 > 0,

for all 𝑎, 𝑏 ∈ 𝑅.

Proof The bilinear map

𝑅 ⊗ 𝑅 ! 𝑅[𝜆], 𝑎 ⊗ 𝑏 7! {𝑎𝜆𝑏} = {𝑎, 𝑏}, (4.11)

clearly satisfies {𝑎𝜆𝑏} = −{𝑏−𝜆−𝜕𝑎}, {𝑎𝜆{𝑏𝜇𝑐}} − {𝑏𝜇{𝑎𝜆𝑐}} = {{𝑎𝜆𝑏}𝜇𝑐}. This
extends uniquely to the linear map

J∞𝑅 ⊗ J∞ (𝑅) !J∞ (𝑅){𝜆}, 𝑎 ⊗ 𝑏 7! {𝑎𝜆𝑏}, (4.12)

satisfying (4.2), (4.3) and (4.5). Here, the well-defindness of this map follows from
the fact that the relations in J∞𝑅 is spanned by the relations of the form 𝜕𝑛𝑎, where
𝑎 is a relation in 𝑅, and that (4.11) is well-defined.

Finally we need to show that the Jacobi identify (4.4) is satisfied. By the Leibniz
rule it is sufficient to show this for the generators 𝜕𝑛𝑎, for 𝑎 ∈ 𝑅, 𝑛 ∈ Z, but this is
easily done. �

Remark 4.1 More generally, given a Poisson scheme 𝑋 , not necessarily affine, the
structure sheaf OJ∞ (𝑋 ) carries a unique Poisson vertex algebra structure such that

𝑓(𝑛)𝑔 = 𝛿𝑛,0{ 𝑓 , 𝑔}

for all 𝑓 , 𝑔 ∈ O𝑋 ⊂ OJ∞ (𝑋 ) , see [18, Lemma 2.1.3.1].

Example 4.1 Recall that C[𝔤∗] has naturally a Poisson structure induced from the
Kirillov-Kostant-Souriau Poisson structure on 𝔤∗ (see Example C.2). Namely, for all
𝑓 , 𝑔 ∈ O (𝔤∗) and all 𝑥 ∈ 𝔤∗,

{ 𝑓 , 𝑔}(𝑥) = 〈𝑥, [𝑑𝑥 𝑓 , 𝑑𝑥𝑔]〉,

where 𝑑𝑥 𝑓 , 𝑑𝑥𝑔 are the differentials of 𝑓 , 𝑔, respectively, at 𝑥 ∈ 𝔤∗ viewed as elements
of (𝔤∗)∗ � 𝔤. In particular, for 𝑓 , 𝑔 ∈ 𝔤 = (𝔤∗)∗ ⊂ O (𝔤∗),
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{ 𝑓 , 𝑔} = [ 𝑓 , 𝑔] .

Since

J∞ (𝔤∗) = SpecC[𝑥𝑖(−𝑛) ; 𝑖 = 1, . . . , 𝑑, 𝑛 > 1],

where {𝑥1, . . . , 𝑥𝑑} is a basis of 𝔤, it follows from Theorem 4.1 that O (J∞ (𝔤∗))
inherits a Poisson vertex algebra from that of O (𝔤∗).

We may identify O (J∞ (𝔤∗)) with the symmetric algebra 𝑆(𝑡−1𝔤[𝑡−1]) via

𝑥 (−𝑛) 7−! 𝑥𝑡−𝑛, 𝑥 ∈ 𝔤, 𝑛 > 1.

For 𝑥 ∈ 𝔤, identify 𝑥 with 𝑥 (−1) |0〉 = (𝑥𝑡−1) |0〉, where |0〉 stands for the unit element
in 𝑆(𝑡−1𝔤[𝑡−1]). Then (4.8) gives that

[𝑥 (𝑚) , 𝑦 (𝑛) ] = (𝑥 (0) 𝑦)𝑚+𝑛 = {𝑥, 𝑦} (𝑚+𝑛) = [𝑥, 𝑦] (𝑚+𝑛) ,

for all 𝑥, 𝑦 ∈ 𝔤 and all 𝑚, 𝑛 ∈ Z>0. So the Lie algebra J∞ (𝔤) = 𝔤[[𝑡]] acts on
O (J∞ (𝔤∗)) by:

𝔤[[𝑡]] ! End(O (J∞ (𝔤∗))), 𝑥𝑡𝑛 7! 𝑥 (𝑛) , 𝑛 > 0,

where 𝑥 (𝑛) , for 𝑛 > 0, is the endomorphism of O (J∞ (𝔤∗)) given by the Poisson
vertex structure on O (J∞ (𝔤∗)). This action coincides with that obtained by dif-
ferentiating the action of J∞ (𝐺) = 𝐺 [[𝑡]] on J∞ (𝔤∗) induced by the coadjoint
action of 𝐺 (see Example 1.2). In other words, the Poisson vertex algebra structure
of O (J∞ (𝔤∗)) comes from the J∞ (𝐺)-action on J∞ (𝔤∗).

Example 4.2 Consider the cotangent bundle 𝑇∗𝐺 to an affine algebraic group 𝐺,
which is a smooth affine symplectic variety. In particular, O (𝑇∗𝐺) is a Poisson
algebra. Since 𝑇∗𝐺 = 𝐺 × 𝔤∗, we have

O (𝑇∗𝐺) = O (𝔤∗) ⊗ O (𝐺).

The Poisson algebra structure of O (𝑇∗𝐺) is described as follows. The natural em-
beddings

O (𝔤∗) ↩! O (𝑇∗𝐺), O (𝐺) ↩! O (𝑇∗𝐺),

are homomorphisms of Poisson algebras, where O (𝔤∗) is equipped with the Kirillov-
Kostant-Souriau Poisson structure and O (𝐺) is equipped with the trivial Poisson
structure. Finally, the Poisson bracket between O (𝔤∗) and O (𝐺) is described by the
following formula:

{𝑥, 𝑓 } = 𝑥𝐿 𝑓 ,

for 𝑥 ∈ 𝔤 ⊂ O (𝔤∗), 𝑓 ∈ O (𝐺).
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By Theorem 4.1, O (J∞𝑇∗𝐺) is naturally a Poisson vertex algebra. Since
J∞𝑇∗𝐺 = J∞𝐺 × J∞𝔤∗ by Lemma 1.4, we have

O (J∞𝑇
∗𝐺) = O (J∞𝔤

∗) ⊗ O (J∞𝐺),

and the Poisson vertex algebra structure is given by the following formulas:

{𝑥𝜆𝑦} = [𝑥, 𝑦], 𝑥, 𝑦 ∈ 𝔤 ⊂ O (𝔤∗) ⊂ O (J∞𝔤
∗),

{ 𝑓𝜆𝑔} = 0, 𝑓 , 𝑔 ∈ O (𝐺) ⊂ O (J∞𝐺),
{𝑥𝜆 𝑓 } = 𝑥𝐿 𝑓 𝑥 ∈ 𝔤, 𝑓 ∈ O (𝐺).

4.3 The Li filtration and the corresponding Poisson vertex
structure

Our second basic example of Poisson vertex algebras comes from the graded vertex
algebra associated with the canonical filtration, that is, the Li filtration.

Definition 4.2 Let 𝑉 be a vertex algebra. A set {𝑎𝑖 : 𝑖 ∈ 𝐼} of vectors in 𝑉 is called
a set of strong generators if 𝑉 is spanned by |0〉 and the elements of the form

𝑎
𝑖1
(−𝑛1−1) , . . . , 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉

with 𝑟 > 0, 𝑖 𝑗 ∈ 𝐼, 𝑛 𝑗 > 0. A vertex algebra 𝑉 is called finitely strongly generated if
there exist a finite set of strong generators.

Note that {𝑎 : 𝑎 ∈ 𝑉} is a set of strong generators.
The universal affine vertex algebra 𝑉 𝜅 (𝔞), the vertex algebra of cdo D𝑐ℎ

𝐺,𝜅
on an

affine algebraic group 𝐺, the Virasoro vertex algebra Vir𝑐 and their quotient vertex
algebra are strongly finitely generated.

Haisheng Li [143] has shown that every vertex algebra is canonically filtered. For
a vertex algebra 𝑉 , choose a set {𝑎𝑖 : 𝑖 ∈ 𝐼} of strong generators of 𝑉 . Let 𝐹 𝑝𝑉 be
the subspace of 𝑉 spanned by the elements

𝑎
𝑖1
(−𝑛1−1)𝑎

𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉, (4.13)

with 𝑖 𝑗 ∈ 𝐼, 𝑛 𝑗 > 0, 𝑛1 + 𝑛2 + · · · + 𝑛𝑟 > 𝑝. Then

𝑉 = 𝐹0𝑉 ⊃ 𝐹1𝑉 ⊃ . . . .

It is clear from the definition that𝑇𝐹 𝑝𝑉 ⊂ 𝐹 𝑝+1𝑉 , where𝑇 is the translation operator
of 𝑉 .

Definition 4.3 The decreasing filtration (𝐹 𝑝𝑉)𝑝 is called the Li filtration.

Set for 𝑛 ∈ Z,
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(𝐹 𝑝𝑉) (𝑛)𝐹𝑞𝑉 := spanC{𝑎 (𝑛)𝑏 ; 𝑎 ∈ 𝐹 𝑝𝑉, 𝑏 ∈ 𝐹𝑞𝑉}.

Lemma 4.1 For 𝑝 > 1 we have

𝐹 𝑝𝑉 =

𝑝∑︁
𝑗=1

(𝐹0𝑉) (− 𝑗−1)𝐹
𝑝− 𝑗𝑉.

In particular, the Li filtration 𝐹•𝑉 is independent of the choice of the strong gener-
ators of 𝑉 .

Proof Let 𝑣 ∈ (𝐹0𝑉) (− 𝑗−1)𝐹
𝑝− 𝑗𝑉 , for 𝑗 ∈ {1, . . . , 𝑝}. Since {𝑎𝑖 : 𝑖 ∈ 𝐼} is a set of

strong generators of 𝐹0𝑉 , one can write

𝑣 = (𝑎𝑖1(−𝑛1−1)𝑎
𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉) (− 𝑗−1)𝑏,

with 𝑖 𝑗 ∈ 𝐼, 𝑛𝑖 > 0, 𝑏 ∈ 𝐹 𝑝− 𝑗𝑉 . Then it follows from Borcherds identity (2.33) and
induction that 𝑣 is a linear combination of elements of the form

𝑎
𝑖1
(−𝑚1−1)𝑎

𝑖2
(−𝑚2−1) · · · 𝑎

𝑖𝑟
(−𝑚𝑟−1)𝑏, (4.14)

with 𝑚 𝑗 > 0 such that 𝑚1 + · · · + 𝑚𝑟 =
𝑟∑
𝑗=1
𝑛 𝑗 + 𝑗 > 𝑗 . From this, it is now easy to

see that 𝑣 ∈ 𝐹 𝑝𝑉 because 𝑏 is in 𝐹 𝑝− 𝑗𝑉 . This shows the inclusion
𝑝∑︁
𝑗=1

(𝐹0𝑉) (− 𝑗−1)𝐹
𝑝− 𝑗𝑉 ⊂ 𝐹 𝑝𝑉.

To show the other inclusion, set

𝐹̃𝑝𝑉 =

𝑝∑︁
𝑗=1

(𝐹0𝑉) (− 𝑗−1)𝐹
𝑝− 𝑗𝑉.

It is enough to prove that any monomial of 𝐹 𝑝𝑉 of the form (4.13) is contained in
𝐹̃𝑝𝑉 . We argue by induction on 𝑟 , the length of a monomial (4.13). Let 𝑣 ∈ 𝐹 𝑝𝑉
be a monomial as in (4.13). Then 𝑣 = 𝑎

𝑖1
(−𝑛1−1)𝑏, with 𝑏 ∈ 𝐹 𝑝−𝑛1𝑉 . If 𝑛1 > 1, we

clearly get 𝑣 ∈ 𝐹̃𝑝𝑉 since 𝐹0𝑉 = 𝑉 .
Assume that 𝑛1 = 0. Then 𝑏 ∈ 𝐹 𝑝𝑉 is a monomial of length 𝑟 − 1. By the

induction hypothesis, it is a sum of elements of the form 𝑤 (− 𝑗−1)𝑐, with 𝑤 ∈ 𝐹0𝑉 ,
𝑗 ∈ {1, . . . , 𝑝}, 𝑐 ∈ 𝐹 𝑝− 𝑗𝑉 . By Borcherds identity (2.32), we have

𝑎
𝑖1
(−1)𝑤 (− 𝑗−1)𝑐 = 𝑤 (− 𝑗−1)𝑎

𝑖1
(−1)𝑐 +

∑︁
𝑖>0

(
−1
𝑖

)
(𝑎 (𝑖)𝑤) (− 𝑗−𝑖−2)𝑐.



4.3 The Li filtration and the corresponding Poisson vertex structure 77

Since 𝑎𝑖1(−1)𝑐 ∈ 𝐹 𝑝− 𝑗𝑉 and 𝑤 ∈ 𝐹0𝑉 , we see that 𝑤 (− 𝑗−1)𝑎
𝑖1
(−1)𝑐 ∈ 𝐹̃ 𝑝𝑉 . Next,

𝑎 (𝑖)𝑤 ∈ 𝐹0𝑉 and 𝑐 ∈ 𝐹 𝑝− 𝑗𝑉 ⊂ 𝐹 𝑝− 𝑗−𝑖−1𝑉 . Therefore (𝑎 (𝑖)𝑤) (− 𝑗−𝑖−2)𝑐 ∈ 𝐹̃𝑝𝑉 .
This shows that 𝑣 ∈ 𝐹̃𝑝𝑉 , whence the expected inclusion. �

Proposition 4.1 Let 𝑝, 𝑞 ∈ Z. We have (𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) ⊂ 𝐹 𝑝+𝑞−𝑛−1𝑉 for all 𝑛 ∈ Z.
Moreover, if 𝑛 > 0, then (𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) ⊂ 𝐹 𝑝+𝑞−𝑛𝑉 . Here we have set 𝐹 𝑝𝑉 = 𝑉

for 𝑝 < 0.

Proof ∗ First case. 𝑛 6 −1, that is, 𝑛 = − 𝑗 − 1 with 𝑗 > 0. Any element of
(𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) is a linear combination of elements of the form

(𝑎𝑖1(−𝑛1−1)𝑎
𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉) (− 𝑗−1)𝑏,

with 𝑖 𝑗 ∈ 𝐼, 𝑛𝑖 > 0, 𝑛1 + · · · + 𝑛𝑟 > 𝑝, 𝑏 ∈ 𝐹𝑞𝑉 . So, arguing as in the proof of
Lemma 4.1 by using Borcherds identity (2.33) and induction, we easily obtain that
any element of (𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) is a linear combination of elements of the form

𝑎
𝑖1
(−𝑚1−1)𝑎

𝑖2
(−𝑚2−1) · · · 𝑎

𝑖𝑟
(−𝑚𝑟−1)𝑏,

with 𝑚 𝑗 > 0, 𝑚1 + · · · + 𝑚𝑟 =
𝑟∑
𝑗=1
𝑛 𝑗 + 𝑗 > 𝑝 + 𝑗 = 𝑝 − 𝑛 − 1, 𝑏 ∈ 𝐹𝑞𝑉 , whence the

inclusion (𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) ⊂ 𝐹 𝑝+𝑞−𝑛−1𝑉 .
∗ Second case. 𝑛 > 0. Since 𝐹 𝑝+𝑞−𝑛𝑉 ⊂ 𝐹 𝑝+𝑞−𝑛−1𝑉 , it suffices to show that
(𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) ⊂ 𝐹 𝑝+𝑞−𝑛𝑉 . We prove the statement by induction on 𝑞, observing
that for 𝑞 6 𝑛 − 𝑝, the inclusion is clear because 𝐹 𝑝+𝑞−𝑛𝑉 = 𝑉 .

Assume 𝑞 > 𝑛− 𝑝. The space (𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) is generated by vectors 𝑎 (𝑛)𝑏, with
𝑎 ∈ 𝐹 𝑝𝑉 , 𝑏 ∈ 𝐹𝑞𝑉 . By Lemma 4.1, a vector 𝑏 ∈ 𝐹𝑞𝑉 is a sum of vectors 𝑢 (− 𝑗−1)𝑐,
with 𝑢 ∈ 𝑉 , 𝑗 ∈ {1, . . . , 𝑞}, 𝑐 ∈ 𝐹𝑞− 𝑗𝑉 . By Borcherds identity (2.32), we have

𝑎 (𝑛)𝑢 (− 𝑗−1)𝑐 = 𝑢 (− 𝑗−1)𝑎 (𝑛)𝑐 +
∑︁
𝑖>0

(
𝑛

𝑖

)
(𝑎 (𝑖)𝑢) (𝑛−𝑖− 𝑗−1)𝑐.

By the induction hypothesis, 𝑎 (𝑛)𝑐 ∈ 𝐹 𝑝+𝑞− 𝑗−𝑛𝑉 since 𝑞 − 𝑗 < 𝑞 and, hence,
𝑢 (− 𝑗−1)𝑎 (𝑛)𝑐 ∈ 𝐹 𝑝+𝑞−𝑛𝑉 . Next, assume for awhile that 𝑎 (𝑖)𝑢 ∈ 𝐹 𝑝−𝑖𝑉 . Then by
the first case, (𝑎 (𝑖)𝑢) (𝑛−𝑖− 𝑗−1)𝑐 ∈ 𝐹 𝑝−𝑖+𝑞− 𝑗−(𝑛−𝑖− 𝑗−1)−1𝑉 = 𝐹 𝑝+𝑞−𝑛𝑉 and, therefore,
𝑎 (𝑛)𝑢 (− 𝑗−1)𝑐 ∈ 𝐹 𝑝+𝑞−𝑛𝑉 , which shows the expected conclusion.

So, it remains to show that for 𝑝 ∈ Z and 𝑛 > 0, we have (𝐹 𝑝𝑉) (𝑛)𝑉 ⊂ 𝐹 𝑝−𝑛𝑉 .
We prove this fact by induction on 𝑝, observing that the statement is obvious for
𝑝 6 0 since then 𝑝−𝑛 6 0 and 𝐹 𝑝−𝑛𝑉 = 𝑉 . Assume 𝑝 > 0. By Lemma 4.1, a vector
𝑎 ∈ 𝐹 𝑝𝑉 is a sum of vectors 𝑢 (− 𝑗−1)𝑏, with 𝑢 ∈ 𝑉 , 𝑗 ∈ {1, . . . , 𝑝}, 𝑏 ∈ 𝐹 𝑝− 𝑗𝑉 . By
Borcherds identity (2.33), we have for 𝑐 ∈ 𝑉 ,

(𝑢 (− 𝑗−1)𝑏) (𝑛)𝑐 =
∑︁
𝑖>0

(−1)𝑖
(
− 𝑗 − 1
𝑖

)
(𝑢 (− 𝑗−𝑖−1)𝑏 (𝑛+𝑖)𝑐 − (−1) 𝑗+1𝑏 (− 𝑗−1+𝑛−𝑖)𝑢 (𝑖)𝑐).
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By the induction hypothesis, 𝑏 (𝑛+𝑖)𝑐 ∈ 𝐹 𝑝− 𝑗−𝑛−𝑖𝑉 because 𝑝 − 𝑗 < 𝑝. Hence
𝑢 (− 𝑗−𝑖−1)𝑏 (𝑛+𝑖)𝑐 ∈ 𝐹 𝑝−𝑛𝑉 . On the other hand, by the first case or the induction
hypothesis if− 𝑗−1+𝑛−𝑖 > 0, 𝑏 (− 𝑗−1+𝑛−𝑖)𝑢 (𝑖)𝑐 ∈ 𝐹 𝑝− 𝑗−(− 𝑗−1+𝑛−𝑖)−1𝑉 = 𝐹 𝑝−𝑛+𝑖𝑉 ⊂
𝐹 𝑝−𝑛𝑉 because 𝑖 > 0. In conclusion, we have shown the inclusion (𝐹 𝑝𝑉) (𝑛)𝑉 ⊂
𝐹 𝑝−𝑛𝑉 for 𝑛 > 0, as desired.

This concludes the proof of the lemma. �

Definition 4.4 A vertex algebra 𝑉 is called good if the filtration 𝐹•𝑉 is separated,
that is,

⋂
𝑝>0 𝐹

𝑝𝑉 = {0}.

In Corollary 4.2 below we show that any positively graded vertex algebra is good.
Set

gr𝐹𝑉 =
⊕
𝑝>0

𝐹 𝑝𝑉/𝐹 𝑝+1𝑉.

We denote by 𝜎𝑝 : 𝐹 𝑝𝑉 7! 𝐹 𝑝𝑉/𝐹 𝑝+1𝑉 , for 𝑝 > 0, the canonical quotient map.
When the filtration 𝐹 is obvious, we often briefly write gr𝑉 for the space gr𝐹𝑉 .

We have 𝑉 � gr𝑉 as vector space for a good vertex algebra 𝑉 .

Proposition 4.2 ([143]) The space gr𝐹𝑉 is a Poisson vertex algebra by

𝜎𝑝 (𝑎) · 𝜎𝑞 (𝑏) := 𝜎𝑝+𝑞 (𝑎 (−1)𝑏), (4.15)
𝜕𝜎𝑝 (𝑎) := 𝜎𝑝+1 (𝑇𝑎), (4.16)

𝜎𝑝 (𝑎) (𝑛)𝜎𝑞 (𝑏) := 𝜎𝑝+𝑞−𝑛 (𝑎 (𝑛)𝑏), (4.17)

for all 𝑎 ∈ 𝐹 𝑝𝑉 \ 𝐹 𝑝+1𝑉 , 𝑏 ∈ 𝐹𝑞𝑉 , 𝑛 > 0.

Proof First of all, the space gr𝐹𝑉 naturally inherits a graded vertex algebra structure
from the vertex algebra structure on 𝑉 . The vertex operator is given by

𝑌 (𝜎𝑝 (𝑎), 𝑧)𝑏 :=
∑︁
𝑛∈Z

𝜎𝑝+𝑞−𝑛−1 (𝑎 (𝑛)𝑏)𝑧−𝑛−1,

for 𝑎 ∈ 𝐹 𝑝𝑉 \ 𝐹 𝑝+1𝑉 , 𝑏 ∈ 𝐹𝑞𝑉 , 𝑛 ∈ Z, the vacuum is |0〉 = 𝜎0 ( |0〉) and the
translation operator is the linear map sending 𝑎 ∈ 𝐹 𝑝𝑉 \ 𝐹 𝑝+1𝑉 to 𝜎𝑝 (𝑎) (−2) |0〉 =
𝜎𝑝+1 (𝑇𝑎), since 𝑇𝑎 = 𝑎 (−2) |0〉. The axioms are easy to check. The verifications are
left to the reader.

Furthermore, by Proposition 4.1, 𝑌 (𝜎𝑝 (𝑎), 𝑧) (𝑛)𝑌 (𝜎𝑞 (𝑏), 𝑧) = 0 for 𝑎 ∈ 𝐹 𝑝𝑉 \
𝐹 𝑝+1𝑉 , 𝑏 ∈ 𝐹𝑞𝑉 , 𝑛 > 0 and, hence, gr𝐹𝑉 is a commutative vertex algebra whose
product is given by (4.15), and derivation is given by (4.16).

It remains to show that (4.17) defines a Poisson vertex algebra on gr𝐹𝑉 . It is easy
to check that the axioms (4.6), (4.7) and (4.8) are satisfied. We prove only (4.9). Let
𝑎 ∈ 𝐹 𝑝𝑉 \𝐹 𝑝−1𝑉 , 𝑏 ∈ 𝐹𝑞𝑉 , 𝑐 ∈ 𝐹𝑟𝑉 , 𝑛 > 0. By Borcherds identity (2.33), we have
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𝑎 (𝑛) (𝑏 (−1)𝑐) = 𝑏 (−1)𝑎 (𝑛)𝑐 +
∑︁
𝑖>0

(
𝑛

𝑖

)
(𝑎 (𝑖)𝑏) (𝑛−1−𝑖)𝑐

= 𝑏 (−1)𝑎 (𝑛)𝑐 + (𝑎 (𝑛)𝑏) (−1)𝑐 +
𝑛−1∑︁
𝑖=0

(
𝑚

𝑖

)
(𝑎 (𝑖)𝑏) (𝑛−1−𝑖)𝑐.

For 𝑖 ∈ {0, . . . , 𝑛 − 1}, (𝑎 (𝑖)𝑏) (𝑛−1−𝑖)𝑐 ∈ 𝐹 𝑝+𝑞+𝑟−𝑛+1𝑉 since 𝑛 − 1 − 𝑖 > 0, while
𝑎 (𝑛) (𝑏 (−1)𝑐), 𝑏 (−1)𝑎 (𝑛)𝑐 and (𝑎 (𝑛)𝑏) (−1)𝑐 are in 𝐹 𝑝+𝑞+𝑟−𝑛𝑉 . Hence,

𝜎𝑝 (𝑎) (𝑛) (𝜎𝑞 (𝑏).𝜎𝑟 (𝑐)) = 𝜎𝑞 (𝑏).(𝜎𝑝 (𝑎) (𝑛)𝜎𝑟 (𝑐)) + (𝜎𝑝 (𝑎) (𝑛)𝜎𝑞 (𝑏)).𝜎𝑟 (𝑐),
(4.18)

whence the expected statement. �

Define

𝑅𝑉 := 𝑉/𝐹1𝑉 = 𝐹0𝑉/𝐹1𝑉 ⊂ gr𝐹𝑉. (4.19)

Note that

𝐹1𝑉 = spanC{𝑎 (−2)𝑏 : 𝑎, 𝑏 ∈ 𝑉} (4.20)

by Lemma 4.1. We also write 𝐶2 (𝑉) for the space 𝐹1𝑉 by historical reason.

Proposition 4.3 ([184]) 𝑅𝑉 is a Poisson algebra by

𝑎̄ · 𝑏̄ = 𝑎 (−1)𝑏, {𝑎̄, 𝑏̄} = 𝑎 (0)𝑏

for 𝑎, 𝑏 ∈ 𝑉 , where 𝑎̄ = 𝜎0 (𝑎).

Proof First, by (4.15) with 𝑝 = 𝑞 = 0, the product 𝑎̄ · 𝑏̄ = 𝑎 (−1)𝑏, for 𝑎, 𝑏 ∈ 𝑉 , gives
to 𝑅𝑉 a ommutative associative algebra structure, with unit |0〉.

Let us prove that the bracket {𝑎̄, 𝑏̄} = 𝑎 (0)𝑏, for 𝑎, 𝑏 ∈ 𝑉 , is Poisson for the
commutative algebra 𝑅𝑉 . It verifies the skew-symmetry property by (4.7) with 𝑛 = 0
and 𝑎, 𝑏 ∈ 𝐹0𝑉 so that 𝜕 𝑗 (𝑏̄ ( 𝑗) 𝑎̄) ∈ 𝐹1𝑉 for 𝑗 > 0, and the left Leibniz rule by
(4.18) with 𝑝 = 𝑞 = 0 and 𝑛 = 0. Then it also verifies the right Leibniz rule by the
skew-symmetry. As for the Jacobi identity, it follows from (4.8) with 𝑚 = 𝑛 = 0. �

Definition 4.5 The Poisson algebra 𝑅𝑉 is called the Zhu 𝐶2-algebra of 𝑉 .

Proposition 4.4 ([143]) As a differential algebra, gr𝐹𝑉 is generated by 𝑅𝑉 .

Proof Set 𝐴 =
⊕
𝑝>0

𝐴𝑝 = gr𝐹𝑉 , 𝐴𝑝 = 𝐹 𝑝𝑉/𝐹 𝑝+1𝑉 . We wish to show that the graded

differential algebra 𝐴 is generated by 𝐴0 = 𝑅𝑉 as a differential algebra.
First, note that we have

𝐴+ :=
⊕
𝑝>0

𝐴𝑝 = 𝐴𝜕𝐴. (4.21)
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Indeed, it is clear that 𝐴𝜕𝐴 ⊂ 𝐴+.
Conversely, let us show that 𝐴+ ⊂ 𝐴𝜕𝐴. Let 𝑣 ∈ 𝐹 𝑝𝑉 . By Lemma 4.1, 𝑣 is a sum

of terms of the form 𝑎 (− 𝑗−1)𝑏, with 𝑗 ∈ {1, . . . , 𝑝}, 𝑎 ∈ 𝐹0𝑉 and 𝑏 ∈ 𝐹 𝑝− 𝑗𝑉 . By
Borcherds identity (2.32) and (2.30), we have

𝑎 (− 𝑗−1)𝑏 = 𝑎 (− 𝑗−1)𝑏 (−1) |0〉 = 𝑏 (−1)𝑎 (− 𝑗−1) |0〉 +
∑︁
𝑙>0

(
− 𝑗 − 1
𝑙

)
(𝑎 (𝑙)𝑏) (− 𝑗−2−𝑙) |0〉

= 𝑏 (−1)

(
𝑇 𝑗𝑎

𝑗!

)
+

∑︁
𝑙>0

(
− 𝑗 − 1
𝑙

)
𝑇 𝑗+𝑙+1 (𝑎 (𝑙)𝑏)
( 𝑗 + 𝑙 + 1)! .

Hence,

𝜎(𝑎 (− 𝑗−1)𝑏) = 𝜎𝑝− 𝑗 (𝑏).𝜕 𝑗
(
𝜎0 (𝑎)
𝑗!

)
+

∑︁
𝑙>0

(
− 𝑗 − 1
𝑙

)
𝜕 𝑗+𝑙+1

(
𝜎𝑝− 𝑗−𝑙−1 (𝑎 (𝑙)𝑏)

( 𝑗 + 𝑙 + 1)!

)
.

This shows that 𝐴𝑝 is contained in 𝐴𝜕𝐴 for all 𝑝 > 0, whence 𝐴+ ⊂ 𝐴𝜕𝐴.
Let 𝐴′ be the differential subalgebra of 𝐴 generated by 𝐴0. We will show by

induction on 𝑝 that 𝐴𝑝 ⊂ 𝐴′.

Clearly, 𝐴0 ⊂ 𝐴′. So let 𝑝 > 0. By (4.21), 𝐴𝑝 =

𝑝−1∑︁
𝑖=0

𝐴𝑖𝜕𝐴𝑝−𝑖−1, which is con-

tained in 𝐴′ by the induction hypothesis. �

Corollary 4.1 Let {𝑎𝑖 : 𝑖 ∈ 𝐼} be a set of vectors of a good vertex algebra 𝑉 . The
following are equivalent.

i). {𝑎𝑖 : 𝑖 ∈ 𝐼} are strong generators of 𝑉;
ii). the image of {𝑎𝑖 : 𝑖 ∈ 𝐼} generates 𝑅𝑉 .

In particular, a vertex algebra 𝑉 is finitely strongly generated if and only if 𝑅𝑉 is
finitely generated.

In this book we will always assume that a vertex algebra 𝑉 is finitely strongly
generated.

Definition 4.6 Let 𝜙 : 𝑉 ! 𝑊 be a map between two Poisson vertex algebras. We
say that 𝜙 is a Poisson vertex algebra homomorphism if 𝜙 is a homomorphism of
differential algebras such that

𝜙(𝑎 (𝑛)𝑏) = 𝜙(𝑎) (𝑛)𝜙(𝑏),

for all 𝑎, 𝑏 ∈ 𝑉 , 𝑛 > 0.

The following assertion is clear.
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Lemma 4.2 If 𝜙 : 𝑉 ! 𝑊 is a homomorphism of vertex algebras, then 𝜙 respects
the canonical filtration, that is, 𝜙(𝐹 𝑝𝑉) ⊂ 𝐹 𝑝𝑊 . Hence it induces a homomorphism
gr𝐹𝑉 ! gr𝐹𝑊 of Poisson vertex algebra homomorphism which we denote by gr𝐹𝜙.
The map gr𝐹𝜙 restricts to a Poisson algebra homomorphism 𝑅𝑉 ! 𝑅𝑊 , which
we denote by 𝜙. If in addition 𝜙 is surjective, then 𝜙(𝐹 𝑝𝑉) = 𝐹 𝑝𝑊 . In particular,
gr 𝜙 : gr𝐹𝑉 ! gr𝐹𝑊 and 𝜙 : 𝑅𝑉 ! 𝑅𝑊 are surjective homomorphisms of Poisson
vertex algebras and Poisson algebras, respectively.

4.4 Associated variety and singular support

We now focus on geometrical objects associated with 𝑅𝑉 and gr𝐹𝑉 .

Definition 4.7 Define the associated scheme 𝑋̃𝑉 and the associated variety 𝑋𝑉 of a
vertex algebra 𝑉 as

𝑋̃𝑉 := Spec 𝑅𝑉 , 𝑋𝑉 := Specm 𝑅𝑉 = ( 𝑋̃𝑉 )red.

Definition 4.8 Let 𝑋 be an affine Poisson variety. A vertex algebra 𝑉 is called a
chiral quantization of 𝑋 if 𝑋𝑉 � 𝑋 as Poisson varieties.

By Proposition 4.4, gr𝐹𝑉 is generated by the subring 𝑅𝑉 as a differential algebra.
Thus, we have a surjection J∞ (𝑅𝑉 ) ! gr𝐹𝑉 of differential algebras by Lemma 1.1
since 𝑅𝑉 generates J∞ (𝑅𝑉 ) as a differential algebra, too.

This is in fact a homomorphism of Poisson vertex algebras.

Proposition 4.5 ([6, Proposition 2.5.1]) The identity map 𝑅𝑉 ! 𝑅𝑉 induces a
surjective Poisson vertex algebra homomorphism

J∞ (𝑅𝑉 ) = O (J∞ ( 𝑋̃𝑉 )) � gr𝐹𝑉.

Proof As noticed just above, the identity map 𝑅𝑉 ! 𝑅𝑉 induces a surjective
homomorphism of differential algebras 𝑓 : J∞ (𝑅𝑉 ) ! gr𝐹𝑉 . Let us show that 𝑓
is a Poisson vertex algebra homomorphism. It suffices to verify that 𝑓 (𝑎 (𝑛)𝑏) =

𝑓 (𝑎) (𝑛) 𝑓 (𝑏), for all 𝑎, 𝑏 ∈ J∞ (𝑅𝑉 ) and all 𝑛 > 0.
By construction, this is true for all 𝑎, 𝑏 ∈ 𝑅𝑉 and 𝑛 > 0, since the restriction of

𝑓 to 𝑅𝑉 is the identity map, and 𝑎 (𝑛)𝑏 = 𝛿𝑛,0{𝑎, 𝑏} for 𝑎, 𝑏 ∈ 𝑅𝑉 . The statement is
then a direct consequence of Lemma 4.3 below. �

Remark 4.2 Suppose that the Poisson structure of 𝑅𝑉 is trivial. Then the Poisson ver-
tex algebra structure of J∞ (𝑅𝑉 ) is trivial, and so is that of gr𝐹𝑉 by Proposition 4.5.
This happens if and only if

(𝐹 𝑝𝑉) (𝑛) (𝐹𝑞𝑉) ⊂ 𝐹 𝑝+𝑞−𝑛+1𝑉 for all 𝑛 > 0.

If this is the case, one can give gr𝐹𝑉 yet another Poisson vertex algebra structure by
setting
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𝜎𝑝 (𝑎) (𝑛)𝜎𝑞 (𝑏) := 𝜎𝑝+𝑞−𝑛+1 (𝑎 (𝑛)𝑏) for all 𝑛 > 0.

(We can repeat this procedure if this Poisson vertex algebra structure is again trivial.)

Lemma 4.3 ([142, Lemma 3.3]) Let 𝑉,𝑊 be two Poisson vertex algebras, and
𝜙 : 𝑉 ! 𝑊 an algebra homomorphism such that 𝜙𝜕 = 𝜕𝜙. Suppose that

𝜙(𝑎 (𝑛)𝑏) = 𝜙(𝑎) (𝑛)𝜙(𝑏) for all 𝑎, 𝑏 ∈ 𝑅 and 𝑛 > 0,

where 𝑅 is a generating subset of 𝑉 as a differential algebra. Then 𝜙 is a vertex
Poisson algebra homomorphism.

Proof Let 𝑎, 𝑏 ∈ 𝑉 be such that

𝜙(𝑎 (𝑛)𝑏) = 𝜙(𝑎) (𝑛)𝜙(𝑏) for all 𝑛 > 0. (4.22)

Using (4.6) for both 𝑉 and𝑊 , the assumption 𝜙𝜕 = 𝜕𝜙 and (4.22), we obtain for all
𝑛 > 0:

𝜙(𝑎 (𝑛)𝜕𝑏) = 𝜙(𝜕𝑎 (𝑛)𝑏) + 𝑛𝜙(𝑎 (𝑛−1)𝑏)
= 𝜕𝜙(𝑎) (𝑛)𝜙(𝑏) + 𝑛𝜙(𝑎) (𝑛−1)𝜙(𝑏)
= 𝜙(𝑎) (𝑛) (𝜕𝜙(𝑏)).

By the left Leibniz rule (4.9) and induction we deduce that (4.22) holds for all 𝑎 ∈ 𝑅
and 𝑏 ∈ 𝑉 .

Next, using the skew-symmetry (4.7) and 𝜙𝜕 = 𝜕𝜙 we get that 𝜙(𝜕𝑎 (𝑛)𝑏) =

𝜙(𝜕𝑎) (𝑛)𝜙(𝑏) for all 𝑎 ∈ 𝑅, 𝑏 ∈ 𝑉 and 𝑛 > 0. Again by the left Leibniz rule (4.9)
and induction, we deduce that (4.22) holds for all 𝑎, 𝑏 ∈ 𝑉 .

This concludes the proof of the lemma. �

Definition 4.9 Define the singular support 𝑆𝑆(𝑉) of a vertex algebra 𝑉 as

𝑆𝑆(𝑉) = Spec(𝑔𝑟𝐹𝑉) ⊂ J∞ 𝑋̃𝑉 .

Definition 4.10 We say that a vertex algebra 𝑉 admits a PBW basis if there exists a
collection {𝑎𝑖 : 𝑖 = 1, . . . , 𝑛} of vectors of 𝑉 such that the set of monomials

𝑎
𝑖1
(−𝑛1)𝑎

𝑖2
(−𝑛2) . . . 𝑎

𝑖𝑟
(−𝑛𝑟 ) |0〉, 𝑖1 6 𝑖2 6 . . . 6 𝑖𝑟 , 𝑛𝑠 6 𝑛𝑠+1 if 𝑖𝑠 = 𝑖𝑠+1,

form a basis of 𝑉 .

Lemma 4.4 The following conditions are equivalent.

i). 𝑉 admits a PBW basis.
ii). 𝑅𝑉 is isomorphic to a polynomial ring and 𝑆𝑆(𝑉) = J∞ 𝑋̃𝑉 .

Proof Should we provide a proof? �
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4.5 Examples

The following assertion is easily seen from definition, Lemma 4.1 and Borcherds
identity (2.32).

Lemma 4.5 Let {𝑎𝑖 : 𝑖 ∈ 𝐼} be a set of strong generators of a vertex algebra 𝑉 such
that for all 𝑖1, 𝑖2 ∈ 𝐼 and all 𝑛 > 0, 𝑎𝑖1(𝑛)𝑎

𝑖2 is a linear combination of |0〉 and the
𝑎𝑖’s, 𝑖 ∈ 𝐼. Then

𝐹1𝑉 = spanC{𝑎𝑖(−𝑛𝑖−2)𝑣 : 𝑖 ∈ 𝐼, 𝑛𝑖 > 0, 𝑣 ∈ 𝑉}.

Proof Writing 𝑣 as a linear combination of elements of the form (4.13), we see that
𝑎𝑖(−𝑛𝑖−2)𝑣, 𝑖 ∈ 𝐼, 𝑛𝑖 > 0, 𝑣 ∈ 𝑉 belongs to 𝐹1𝑉 , whence one inclusion.

Conversely, show by induction on the length 𝑟 of monomials 𝑣 of the form (4.13)
that𝐹1𝑉 is contained in the right-hand-side. Let 𝑣 = 𝑎𝑖1(−𝑛1−1)𝑎

𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉 ∈

𝐹1𝑉 . At least one of the 𝑛 𝑗 ’s is greater than 1. If 𝑛1 > 1, then the statement
is clear. In particular, the statement is clear if 𝑟 = 1. Assume 𝑛1 = 0. Then
𝑣′ = 𝑎𝑖2(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉 ∈ 𝐹

1𝑉 and by the induction hypothesis, there is 𝑗 ∈ 𝐼,
𝑚 > 0, 𝑤 ∈ 𝑉 such that

𝑣 = 𝑎
𝑖1
(−1)𝑎

𝑗

(−𝑚−2)𝑤 = 𝑎
𝑗

(−𝑚−2)𝑎
𝑖1
(−1)𝑤 +

∑︁
𝑙>0

(
−1
𝑙

)
(𝑎𝑖1(𝑙)𝑎

𝑗 ) (−𝑚−3−𝑙)𝑤.

The element 𝑎 𝑗(−𝑚−2)𝑎
𝑖1
(−1)𝑤 lies in the right-hand-side set of the lemma. Moreover, by

the hypothesis of the lemma, (𝑎𝑖1(𝑙)𝑎
𝑗 ) (−𝑚−3−𝑙)𝑤 is a linear combination of elements

𝑎𝑖(−𝑚−3−𝑙)𝑤, 𝑖 ∈ 𝐼. Note that |0〉 (−𝑚−3−𝑙)𝑤 = 0 because −𝑚 − 3 − 𝑙 cannot be equal
to −1. Since 𝑚, 𝑙 > 0, we get that 𝑣 ∈ spanC{𝑎𝑖(−𝑛𝑖−2)𝑣 : 𝑖 ∈ 𝐼, 𝑛𝑖 > 0, 𝑣 ∈ 𝑉}, as
desired. �

Example 4.3 Consider the universal affine vertex algebra 𝑉 𝜅 (𝔞) as defined in Sec-
tion 3.1. Since 𝑉 𝜅 (𝔞) is strongly generated by 𝑥 ∈ 𝔞 ⊂ 𝑉 𝜅 (𝔞), we have

𝐹1𝑉 𝜅 (𝔞) = 𝑡−2𝔞[𝑡−1]𝑉 𝜅 (𝔞)

by Lemma 4.5. Therefore,

𝑅𝑉 𝜅 (𝔞) = 𝑉
𝜅 (𝔞)/𝑡−2𝔞[𝑡−1]𝑉 𝜅 (𝔞).

By the PBW theorem we have an isomorphism linear map

O (𝔞∗) = 𝑆(𝔞) '
−! 𝑅𝑉 𝜅 (𝔞) (4.23)

that sends the monomial 𝑥1𝑥2 . . . 𝑥𝑟 ∈ 𝑆(𝔞), for 𝑥𝑖 ∈ 𝔞, to the image of
𝑥1
(−1) . . . 𝑥

𝑟
(−1) |0〉 in 𝑅𝑉 𝜅 (𝔞) . This is in fact an homomorphism of Poisson algebras.

Therefore,
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𝑋̃𝑉 𝜅 (𝔞) = 𝑋𝑉 𝜅 (𝔞) = 𝔞∗.

In particular, 𝑉 𝜅 (𝔞) is a chiral quantization of 𝔞∗. Moreover, the surjection

O (J∞𝔞
∗) ! gr𝐹𝑉 𝜅 (𝔞)

is an isomorphism since both sides have the same graded dimension with respect to

deg 𝑥𝑡−𝑛 = 𝑛, 𝑛 ∈ Z>0.

(Here we have used the fact that 𝑉 𝜅 (𝔞) is good, see also Example 4.4 below.) Hence

𝑆𝑆(𝑉 𝜅 (𝔞)) = J∞𝔞
∗.

For the simple quotient 𝐿𝜅 (𝔞) of 𝑉 𝜅 (𝔞), the surjection 𝑉 𝜅 (𝔞) � 𝐿𝜅 (𝔞) induces a
surjection O (𝔞∗) = 𝑅𝑉 𝜅 (𝔞) � 𝑅𝐿𝜅 (𝔞) . Thus,

𝑅𝐿𝜅 (𝔞) � O (𝔞∗)/𝐼

for some graded Poisson ideal 𝐼 of O (𝔞∗), and 𝑋𝐿𝜅 (𝔞) is the zero locus of 𝐼 in 𝔞∗,
which is a conic Poisson subvariety. Similarly, 𝑆𝑆(𝐿𝜅 (𝔞)) is a C∗-invariant closed
subscheme of J∞𝔞∗.

Exercise 4.1 Let Vir𝑐 be the universal Virasoro vertex algebra of central charge
𝑐 ∈ C.

i). Show that gr𝐹Vir𝑐 � C[𝐿−2, 𝐿−3, . . .].
ii). Deduce from (i) that 𝑅Vir𝑐 � C[𝑥], where 𝑥 is the image of 𝐿 := 𝐿−2 |0〉 in 𝑅Vir𝑐 ,

with the trivial Poisson structure.
iii). Show that one can endow gr𝐹Vir𝑐 with a non-trivial Poisson vertex algebra

structure such that
{𝐿𝜆𝐿} = 𝑇𝐿 + 2𝜆𝐿.

4.6 The conformal weight filtration and comparison with the Li
filtration

Suppose that 𝑉 is positively graded:

𝑉 =
⊕

Δ∈ 1
𝑟0
Z>0

𝑉Δ,

where 𝑟0 is some positive integer. (In most cases we assume that 𝑟0 = 1 or 2.) There
is another natural filtration of 𝑉 defined as follows [142].

Choose a set {𝑎𝑖 : 𝑖 ∈ 𝐼} of homogeneous strong generators of 𝑉 . Let 𝐺 𝑝𝑉 ,
𝑝 ∈ 1

𝑟0
Z>0, be the subspace of 𝑉 spanned by the vectors
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𝑎
𝑖1
(−𝑛1−1)𝑎

𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉 (4.24)

with 𝑖 𝑗 ∈ 𝐼, 𝑛 𝑗 > 0, Δ𝑎𝑖1 + · · · +Δ𝑎𝑖𝑟 6 𝑝. Then 𝐺•𝑉 defines an increasing filtration
of 𝑉 :

0 = 𝐺−1𝑉 ⊂ 𝐺0𝑉 ⊂ . . . 𝐺1𝑉 ⊂ . . . , 𝑉 =
⋃
𝑝

𝐺 𝑝𝑉.

Definition 4.11 The increasing filtration 𝐺•𝑉 is called the conformal weight filtra-
tion.

Lemma 4.6 We have

𝑇𝐺 𝑝𝑉 ⊂ 𝐺 𝑝𝑉, (4.25)
(𝐺 𝑝𝑉) (𝑛)𝐺𝑞𝑉 ⊂ 𝐺 𝑝+𝑞𝑉 for 𝑛 ∈ Z, (4.26)
(𝐺 𝑝𝑉) (𝑛)𝐺𝑞𝑉 ⊂ 𝐺 𝑝+𝑞−1𝑉 for 𝑛 ∈ Z>0. (4.27)

Proof Since [𝑇, 𝑎𝑖(−𝑛) ] = 𝑛𝑎𝑖(−𝑛−1) , for any 𝑖 ∈ 𝐼, 𝑛 > 0, and 𝑇 |0〉 = 0, (4.25) is
easily seen.

For 𝑛 < 0, we establish (4.26) exactly as for the proof of Proposition 4.1, using
Borcherds identity (2.33).

Assume 𝑛 > 0. Since 𝐺 𝑝+𝑞−1𝑉 ⊂ 𝐺 𝑝+𝑞𝑉 it suffices to establish (4.27). In
addition, it suffices to prove that 𝑎 (𝑛)𝑏 ⊂ 𝐺 𝑝+𝑞−1𝑉 for all 𝑎 ∈ 𝐺 𝑝𝑉 , 𝑏 ∈ 𝐺𝑞𝑉 that
are homogeneous.

Recall that by (12.7), we have for 𝑛 > 0,

(𝑉Δ) (𝑛)𝑉Δ′ ⊂ 𝑉Δ+Δ′−𝑛−1. (4.28)

Therefore, (4.27) will be a consequence of the equality (4.29) in Lemma 4.7 below.
Indeed, setting 𝐹𝑖𝑉Δ := 𝐹𝑖𝑉 ∩𝑉Δ, 𝐺𝑖𝑉Δ := 𝐺𝑖𝑉 ∩𝑉Δ for 𝑖 > 0, we obtain by (4.29)
and Proposition 4.1,

𝑎 (𝑛)𝑏 ∈ (𝐹Δ𝑎−𝑝𝑉Δ𝑎
) (𝑛)𝐹Δ𝑏−𝑞𝑉Δ𝑏

⊂ 𝐹Δ𝑎−𝑝+Δ𝑏−𝑞−𝑛𝑉Δ𝑎+Δ𝑏−𝑛−1

= 𝐺 𝑝+𝑞−1𝑉Δ𝑎+Δ𝑏−𝑛−1 ⊂ 𝐺 𝑝+𝑞−1𝑉

for homogenous elements 𝑎 ∈ 𝐺 𝑝𝑉 , 𝑏 ∈ 𝐺𝑞𝑉 and 𝑛 > 0.
Notice that the proof of Lemma 4.7 uses (4.26) for 𝑛 < 0, but does not use (4.27)

or (4.26) for 𝑛 > 0. �

It follows that gr𝐺 𝑉 =
⊕

𝑝 𝐺 𝑝𝑉/𝐺 𝑝−1𝑉 is naturally a Poisson vertex algebras.

Lemma 4.7 ([6, Proposition 2.6.1]) We have

𝐹 𝑝𝑉Δ = 𝐺Δ−𝑝𝑉Δ, (4.29)

where 𝐹 𝑝𝑉Δ = 𝑉Δ ∩ 𝐹 𝑝𝑉 , 𝐺 𝑝𝑉Δ = 𝑉Δ ∩ 𝐺 𝑝𝑉 . Therefore
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gr𝐹𝑉 � gr𝐺𝑉

as Poisson vertex algebras.

Proof The second assertion easily deduces from the first one. Let us prove the first
assertion. Clearly, 𝑉Δ ⊂ 𝐺Δ𝑉Δ since for 𝑎 ∈ 𝑉Δ, one can write 𝑎 = 𝑎 (−1) |0〉 ∈ 𝐺Δ𝑉 .
The other inclusion is obvious and, hence, 𝑉Δ = 𝐺Δ𝑉Δ, that is,

𝐹0𝑉Δ = 𝐺Δ𝑉Δ.

We now show the inclusion 𝐹 𝑝𝑉Δ ⊂ 𝐺Δ−𝑝𝑉Δ by induction on 𝑝 > 0. Let 𝑝 >

0. By Lemma 4.1, 𝐹 𝑝𝑉Δ is generated by elements 𝑣 = 𝑎 (−𝑖−1)𝑏, with 𝑎 ∈ 𝑉Δ𝑎
,

𝑏 ∈ 𝐹 𝑝−𝑖𝑉Δ𝑏
, 𝑖 > 1, Δ𝑎 + Δ𝑏 + 𝑖 = Δ. Hence it suffices to show that for such

elements, 𝑣 ∈ 𝐺Δ−𝑝𝑉Δ. By the induction hypothesis, 𝐹 𝑝−𝑖𝑉Δ𝑏
⊂ 𝐺Δ𝑏−𝑝+𝑖𝑉Δ𝑏

.
Because 𝑎 ∈ 𝑉Δ𝑎

⊂ 𝐺Δ𝑎
𝑉 , we have by (4.26) with 𝑛 = −𝑖 − 1 < 0,

𝑣 = 𝑎 (−𝑖−1)𝑏 ∈ (𝐺Δ𝑎
𝑉Δ𝑎

) (−𝑖−1)𝐺Δ𝑏−𝑝+𝑖𝑉Δ𝑏
⊂ 𝐺Δ𝑎+Δ𝑏−𝑝+𝑖𝑉Δ = 𝐺Δ−𝑝𝑉Δ.

Hence 𝐹 𝑝𝑉Δ ⊂ 𝐺Δ−𝑝𝑉Δ.
It remains to show the opposite inclusion 𝐺Δ−𝑝𝑉Δ ⊂ 𝐹 𝑝𝑉Δ. We prove that

any element 𝑣 of the form (4.24) belongs to 𝐹 𝑝𝑉Δ by induction on 𝑟 > 0. For
𝑟 = 0, the statement is obvious. Assume 𝑟 > 0. Then 𝑣 = 𝑎

𝑖1
(−𝑛1−1)𝑤, with 𝑤 =

𝑎
𝑖2
(−𝑛2−1) · · · 𝑎

𝑖𝑟
(−𝑛𝑟−1) |0〉, 𝑛 𝑗 > 0,

∑
𝑗

Δ
𝑎
𝑖 𝑗 6 𝑝, Δ𝑎𝑖1 + Δ𝑤 + 𝑛1 = Δ, where each 𝑎𝑖 𝑗

is homogeneous. Because 𝑤 ∈ 𝐺 𝑝−Δ
𝑎𝑖1
𝑉Δ𝑤

, the induction hypothesis gives that
𝑤 ∈ 𝐹Δ

𝑎𝑖1 +Δ𝑤−𝑝
𝑉Δ𝑤

. Hence

𝑣 = 𝑎
𝑖1
(−𝑛1−1)𝑤 ∈ 𝐹Δ

𝑎𝑖1 +Δ𝑤−𝑝+𝑛1𝑉Δ
𝑎𝑖1 +Δ𝑤+𝑛1 = 𝐹

Δ−𝑝𝑉Δ

since 𝑎 ∈ 𝐹0𝑉Δ
𝑎𝑖1

. �

By Lemma 4.7, it follows in particular that the conformal weight filtration is
independent of the choice of the set of strong generators.

Corollary 4.2 A vertex algebra is good if it is positively graded.

Proof This is clear from Lemma 4.7 since 𝐹 𝑝𝑉Δ = 𝐺Δ−𝑝𝑉Δ = 0 if 𝑝 > Δ for each
Δ. �

Example 4.4 Consider the universal affine vertex algebra 𝑉 𝜅 (𝔞). Since 𝑉 𝜅 (𝔞) is
strongly generated by 𝑥 ∈ 𝔞 ⊂ 𝑉 𝜅 (𝔞), which has conformal weight one, it follows
that

𝐺 𝑝𝑉
𝜅 (𝔞) = 𝑈𝑝 (𝔞[𝑡−1]𝑡−1) |0〉,

where 𝑈• (𝔞[𝑡−1]𝑡−1) is the PBW filtration of 𝑈 (𝔞[𝑡−1]𝑡−1) (see Example C.2). On
the other hand, we have the isomorphisms (cf. Example 4.1)
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gr𝑈 (𝔞[𝑡−1]𝑡−1) � 𝑆(𝔞[𝑡−1]𝑡−1) � C[J∞ (𝔞∗)] .

Hence, as a consequence of Lemma 4.7, we reconfirm the fact that

gr𝐹𝑉 𝜅 (𝔞) � gr𝐺𝑉
𝜅 (𝔞) � C[J∞ (𝔞∗)]

as Poisson vertex algebras.

Example 4.5 Consider the cdo D𝑐ℎ
𝐺,𝜅

on 𝐺 at level 𝜅. We have

𝐺 𝑝D𝑐ℎ
𝐺,𝜅 = 𝑈𝑝 (𝔤[𝑡

−1]𝑡−1) ⊗ O (𝐽∞𝐺).

Thus

gr𝐹 D𝑐ℎ
𝐺,𝜅 � gr𝐺 D𝑐ℎ

𝐺,𝜅 � C[J∞ (𝔤∗)] ⊗ O (𝐽∞𝐺) = O (J∞ (𝑇∗𝐺)),

which restricts to the isomorphism

𝑅D𝑐ℎ
𝐺,𝜅
� O (𝑇∗𝐺). (4.30)

In parcticular, we have

𝑋̃D𝑐ℎ
𝐺,𝜅
� 𝑇∗𝐺, 𝑆𝑆(D𝑐ℎ

𝐺,𝜅 ) �J∞𝑇
∗𝐺. (4.31)

4.7 The lisse condition

Geometrical properties of the associated variety 𝑋𝑉 should reflect important infor-
mation about the vertex algebra 𝑉 . It is natural to first consider the simplest case
where 𝑋𝑉 has dimension 0.

Recall that we are assuming that a vertex algebra 𝑉 is finitely strongly generated
so that 𝑋̃𝑉 is a scheme of finite type.

Lemma 4.8 ([30, Exercise 8.3]) Let 𝑋 = Spec 𝑅 be an affine scheme of finite type
over a field 𝐾 . Then the following assertion are equivalent:

i). dim 𝑋 = 0,
ii). 𝑅 is a finite dimensional 𝐾-algebra.

If so, then 𝑋 is a finite discrete topological space.

Proof To prove the equivalence (i) ⇐⇒ (ii), recall that a Noetherian ring has
dimension zero if and only if it is Artinian [152, Theorem 3.2 and Example 2 in §5].
So the converse implication (ii)⇒(i) is clear because a finite dimensional algebra
is an Artinian ring. Indeed, if 𝑅 is a finite dimensional 𝐾-vector space, then it is
Artinian as 𝐾-vector space. But every ideal of 𝑅 is a 𝐾-vector space and thus they
satisfy the descending chain condition, which proves that 𝑅 is Artinian as ring.
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Conversely, assume that dim 𝑋 = 0, that is, 𝑅 is Artinian. Then 𝑅 is a finite
product of Artinian local rings (cf. [30, Theorems 8.7]). So one may assume that 𝑅
is an Artinian local ring, with maximal ideal 𝔪. Then 𝑅/𝔪 if a finite extension of 𝐾
by Zariski lemma. Since 𝑅 is Artinian, 𝔪 is the radical of 𝐴 ([152, proof of Theorem
3.2]) and thus 𝔪𝑛 = 0 for some 𝑛. Thus we have a chain

𝑅 ⊇ 𝔪 ⊇ 𝔪2 ⊇ · · · ⊇ 𝔪𝑛 = 0.

Since 𝑅 is Noetherian, 𝔪 is finitely generated and each 𝔪𝑖/𝔪𝑖+1 is a finite di-
mensional 𝑅/𝔪-vector space, hence 𝔪 is a finite dimensional vector space. This
completes the proof. �

Definition 4.12 A vertex algebra 𝑉 is called lisse (or 𝐶2-cofinite) if dim 𝑋𝑉 = 0 or,
equivalently, if 𝑅𝑉 = 𝑉/𝐹1 (𝑉) is finite dimensional.

As a consequence of Proposition 4.5, we have the following result.

Theorem 4.2 We have dim 𝑆𝑆(𝑉) = 0 if and only if dim 𝑋𝑉 = 0.

Proof The “only if” part is obvious since 𝜋∞ (𝑆𝑆(𝑉)) = 𝑋̃𝑉 . The “if” part follows
from Corollary 1.2 and Proposition 4.5. �

By Theorem 4.2 we get:

Lemma 4.9 The vertex algebra 𝑉 is lisse if and only if dim 𝑆𝑆(𝑉) = 0.

The 𝐶2-cofiniteness condition, dim𝑉/𝐶2 (𝑉) < ∞, was introduced by Zhu [184],
while the term lisse has been borrowed from Beilinson, Feigin and Mazur who
considered the finiteness condition dim 𝑆𝑆(𝑉) = 0 in the case of Virasoro vertex
algebras. The equivalence between these two notions was established in [6]. In this
book, we will be rather using the name lisse.

Lemma 4.10 Suppose that 𝑉 is conical, so that 𝑉 =
⊕

Δ>0𝑉Δ and 𝑉0 = C|0〉. The
algebras gr𝐹𝑉 and 𝑅𝑉 are equipped with the induced grading:

gr𝐹𝑉 =
⊕
Δ>0

(gr𝐹𝑉)Δ, (gr𝐹𝑉)0 = C,

𝑅𝑉 =
⊕
Δ>0

(𝑅𝑉 )Δ, (𝑅𝑉 )0 = C.

Then the following conditions are equivalent:

i). 𝑉 is lisse,
ii). 𝑋𝑉 = {point},
iii). the image of any vector 𝑎 ∈ 𝑉Δ for Δ > 0 in 𝑅𝑉 is nilpotent,
iv). the image of any vector 𝑎 ∈ 𝑉Δ for Δ > 0 in gr𝐹𝑉 is nilpotent.

Thus, lisse vertex algebras can be regarded as a generalization of finite-dimensional
algebras.
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Proof The equivalence (i) ⇐⇒ (ii) follows from Lemma 4.8. Let us prove the
equivalence (i) ⇐⇒ (iii). One can assume that 𝑅𝑉 = C[𝑥1, . . . , 𝑥𝑁 ]/𝐼 for some
ideal 𝐼. If 𝑋𝑉 = {point}, then 𝑅𝑉 /

√
0 = C. So

√
𝐼 is the argumentation ideal

of C[𝑥1, . . . , 𝑥𝑁 ] or, equivalently, each 𝑥𝑖 is nilpotent. Conversely, if each 𝑥𝑖 is
nilpotent,

√
𝐼 is the argumentation ideal of C[𝑥1, . . . , 𝑥𝑁 ], that is, 𝑅𝑉 /

√
0 = C and

so dim 𝑋𝑉 = 0.
To prove the equivalence (i) ⇐⇒ (iv), write

gr𝐹𝑉 = C[𝑥1
(− 𝑗) , . . . , 𝑥

𝑁
(− 𝑗) , 𝑗 > 1]/𝐽

for some ideal 𝐽, which is possible by Proposition 4.5. Part (i) is equivalent to
that dim 𝑆𝑆(𝑉) = 0 by Lemma 4.9. Hence one can argue as for the equivalence
(i) ⇐⇒ (iii). Namely, if 𝑆𝑆(𝑉) = {point}, then gr𝐹𝑉/

√
0 = C. So

√
𝐽 is the

argumentation ideal of C[𝑥1
(− 𝑗) , . . . , 𝑥

𝑁
(− 𝑗) , 𝑗 > 1] or, equivalently, each 𝑥𝑖(− 𝑗) is

nilpotent. Conversely, if each 𝑥𝑖(− 𝑗) is nilpotent,
√
𝐽 is the argumentation ideal of

C[𝑥1
(− 𝑗) , . . . , 𝑥

𝑁
(− 𝑗) , 𝑗 > 1], that is, gr𝐹𝑉/

√
0 = C and so dim 𝑆𝑆(𝑉) = 0.

Lemma 4.11 Let 𝑉 be a conical vertex algebra, {𝑎𝑖 : 𝑖 ∈ 𝐼} a set of homogenous
strong generators, so that O (L 𝑋̃𝑉 ) is a topological ring generated by the image
𝑎̄𝑖(𝑛) , 𝑖 ∈ 𝐼, where 𝑎̄𝑖 is the the image of 𝑎𝑖 in 𝑅𝑉 . If 𝑉 is lisse, then each 𝑎̄𝑖(𝑛) is
nilpotent in O (L 𝑋̃𝑉 ).

Proof Recall that the ind-schemes L 𝑋̃𝑉 is the direct limit of schemes L𝑛 𝑋̃𝑉 ,
with L0 𝑋̃𝑉 = J∞ 𝑋̃𝑉 . The canonical morphism ( 𝑋̃𝑉 )red = 𝑋𝑉 ! 𝑋̃𝑉 induces
morphisms L𝑛𝑋𝑉 ! L𝑛 𝑋̃𝑉 for each 𝑛 and, hence, a morphism of ind-schemes
L 𝑋𝑉 ! L 𝑋̃𝑉 . Since C((𝑧)) is a field, similarly to Lemma 1.7 we establish that

L 𝑋𝑉
'
−! L 𝑋̃𝑉 ,

whence L𝑛𝑋𝑉
'
−! L𝑛 𝑋̃𝑉 for each 𝑛 as well.

Moreover, if 𝑋𝑉 is a point as topological space, then L 𝑋𝑉 is also a point since
Hom𝐴𝑙𝑔 (C,C((𝑧))) � Hom𝑆𝑐ℎ (SpecC((𝑧)), 𝑋𝑉 ) � Hom𝑆𝑐ℎ (SpecC,L 𝑋𝑉 )) �
Hom𝐴𝑙𝑔 (O (L 𝑋𝑉 ),C) consists of only one point. It follows that if 𝑋̃𝑉 is zero-
dimensional, then each L𝑛 𝑋̃𝑉 is zero-dimensional too.

Hence, if𝑉 is lisse, then O (L𝑛 𝑋̃𝑉 )/
√

0 = C, that is,C[𝑎̄𝑖(− 𝑗−1) : 𝑖 ∈ 𝐼] 𝑗>−𝑛/
√

0 =

C. So the augmentation ideal of C[𝑎̄𝑖(− 𝑗−1) : 𝑖 ∈ 𝐼] 𝑗>−𝑛 is generated by the 𝑎̄𝑖(− 𝑗−1) ’s.
In particular each 𝑎̄𝑖(− 𝑗−1) , for 𝑖 ∈ 𝐼 and 𝑗 > −𝑛, is nilpotent in O (L𝑛 𝑋̃𝑉 ). Since
this is true for each 𝑛 we get the statement. �

Proposition 4.6 Let 𝑉 be a conformal, finitely strongly generated conical vertex
algebra. If 𝑉 is lisse, then any simple 𝑉-module is 𝐿0-graded.

Proof Let {𝑎𝑖 : 𝑖 ∈ 𝐼} be a finite set of strong generators of𝑉 , 𝑀 a simple𝑉-module,
and 𝑚0 ∈ 𝑀 \ {0}. Let us first show that the 𝐿0-module spanC{𝐿𝑛0𝑚 : 𝑛 ∈ Z>0}
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generated by 𝑚0 is finite-dimensional. Define an increasing filtration 𝐺•𝑀 on 𝑀 as
follows. Set 𝐺−1𝑀 = {0}, 𝐺0𝑀 = C𝑚𝑑1 , and

𝐺 𝑝𝑀 = spanC{𝑎
𝑖1
(𝑛1) . . . 𝑎

𝑖𝑟
(𝑛𝑟 )𝑚0 : 𝑖 𝑗 ∈ 𝐼, 𝑛 𝑗 ∈ Z, Δ𝑎𝑖1 + · · · + Δ𝑎𝑖𝑟 6 𝑝},

for 𝑝 > 0. Then 𝑀 =
⋃
𝑝 𝐺 𝑝𝑀 and for any 𝑝, 𝑞, 𝑛 ∈ Z, (𝐺 𝑝𝑉) (𝑛)𝐺𝑞𝑀 ⊂ 𝐺 𝑝+𝑞𝑀;

this follows from Borcherds identity (2.33). Set gr𝐺 𝑀 :=
⊕

𝑝>0𝐺 𝑝𝑀/𝐺 𝑝−1𝑀 .
The commutative vertex algebra gr𝐺 𝑉 acts on 𝑀̄ := gr𝐺 𝑀 by setting

(𝜎𝑝𝑎) (𝑛)𝜎𝑞 (𝑚) = 𝜎𝑝+𝑞 (𝑎 (𝑛)𝑚)

for 𝑎 ∈ 𝐺 𝑝𝑉 \ 𝐺 𝑝−1𝑉 and 𝑚 ∈ 𝐺𝑞𝑀 . Here 𝜎𝑝 denotes the symbol map for both
gr𝑝 𝑉 and gr𝑝 𝑀 . By the correspondence between commutative J∞𝑅𝑉 -modules
and O (L 𝑋̃𝑉 )-modules (see Theorem 2.7), this induces an action of O (L 𝑋̃𝑉 ) on
𝑀̄ by 𝑎̄𝑖(𝑛) .𝜎𝑞 (𝑚) = 𝜎𝑝+𝑞 (𝑎𝑖(𝑛)𝑚) for 𝑎𝑖 ∈ 𝐺 𝑝𝑉 \ 𝐺 𝑝−1𝑉 and 𝑚 ∈ 𝐺𝑞𝑀 , where
𝑎̄ denote the image of 𝑎 ∈ 𝑉 in 𝑅𝑉 . Since the image of 𝐿0 in 𝑅𝑉 is nilpotent in
O (L 𝑋̃𝑉 ), we deduce 𝐿̄𝑛0𝜎0 (𝑚0) = 𝜎𝑝𝑛 (𝐿𝑛0𝑚0) = 0 for sufficiently large 𝑛, where
𝑝 such that 𝐿0𝑚0 ∈ 𝐺 𝑝𝑉 \ 𝐺 𝑝−1𝑉 . Hence 𝐿𝑛0𝑚0 = 0 for sufficiently large 𝑛.

As a consequence, spanC{𝐿𝑛0𝑚 : 𝑛 ∈ Z>0} is finite-dimensional. This proves that
the action of 𝐿0 on 𝑀 is locally finite. Hence, 𝑀 is a direct sum of generalized
eigenspaces,

𝑀 =
⊕
𝜆∈C

ker(𝐿0 − 𝜆 Id)𝑛𝜆 ⊃
⊕
𝜆∈C

ker(𝐿0 − 𝜆 Id) =: 𝑀 ′.

Using (12.7) for 𝐻 = 𝐿0, we easily verify that 𝑀 ′ is a vertex submodule of 𝑀 which
is nonzero since the action of 𝐿0 is locally finite. Hence, 𝑀 = 𝑀 ′ which concludes
the proof. �

In the notation of the above proof, note that if 𝑚 ∈ 𝑀 has 𝐿0-eigenvalue 𝜆, then
by (12.7), 𝑎 (𝑛)𝑚 has eigenvalue 𝜆 + Δ𝑎 − 𝑛 − 1 for homogeneous 𝑎.

Definition 4.13 Call a 𝑉-module a positive energy representation if there is 𝜆 ∈ C
such that 𝑀 =

⊕
𝑛∈Z>0

𝑀𝜆+𝑛, where 𝑀𝑑 = {𝑚 ∈ 𝑀 : 𝐿𝑀0 𝑚 = 𝑑𝑚}.

Note that any (nonzero) simple 𝐿0-graded 𝑉-module is Z-graded. Indeed, given
such a module 𝑀 , choose 𝜆 such 𝑀𝜆 ≠ 0. Then

𝑀 ′ :=
⊕
𝑛∈Z

𝑀𝜆+𝑛

is a nonzero submodule of 𝑀: the element 𝐿𝑀0 .(𝑎 (𝑟 )𝑚) has conformal weight

Δ𝑎 + 𝜆 + 𝑛 − 𝑟 − 1 ∈ 𝜆 + Z

for any homogenous 𝑎 ∈ 𝑉 , 𝑛, 𝑟 ∈ Z and 𝑚 ∈ 𝑀𝜆+𝑛. Hence 𝑀 ′ = 𝑀 , the module 𝑀
being simple.
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As a result, the following proposition implies that any simple module of a con-
formal, finitely strongly generated conical vertex algebra is an irreducible positive
energy representation.

Proposition 4.7 Let 𝑉 be a conformal, finitely strongly generated conical vertex
algebra. If 𝑉 is lisse, then any Z-graded simple 𝑉-module is positively graded. Add
that each component is finite-dimensional!

Proof We keep the notation of the proof of Proposition 4.6. We may assume that 𝑚0
is an 𝐿0-eigenvector of weight 𝜆 ∈ C. Notice that the 𝐿0-weight of 𝑎𝑖1(𝑛1) . . . 𝑎

𝑖𝑟
(𝑛𝑟 )𝑚0

is

𝜆 + Δ𝑎𝑖1 + · · · + Δ𝑎𝑖𝑟 − 𝑛1 − · · · − 𝑛𝑟 − 𝑟. (4.32)

Since 𝑀 is smooth, there is 𝑁 > 0 such that for all 𝑛 > 𝑁 and all 𝑖 ∈ 𝐼,
𝑎𝑖(𝑛)𝑚0 = 0. Furthermore since 𝑎̄𝑖(𝑛) is nilpotent in O (L 𝑋̃𝑉 ) for any 𝑛, we deduce
that (𝑎̄𝑖1(𝑛1) )

𝑙1 . . . (𝑎̄𝑖𝑟(𝑛𝑟 ) )
𝑙𝑟 .𝑚0 = 0 in 𝑀̄ if 𝑛 𝑗 > 𝑁 and 𝑙 𝑗 large enough for 𝑗 = 1, . . . , 𝑟 ,

whence the statement by (5.14). �

4.8 Remarks on the Poisson center of the Zhu 𝑪2-algebra.

Let Z(𝑅𝑉 ) be the Poisson center of 𝑅𝑉 , that is,

Z(𝑅𝑉 ) = {𝑎̄ ∈ 𝑅𝑉 | {𝑎̄, 𝑏̄} = 0 ∀𝑏 ∈ 𝑉}.

If 𝑉 is conformal with conformal vector 𝜔, then 𝜔̄ belongs to Z(𝑅𝑉 ).

Lemma 4.12 Let 𝑎 ∈ 𝑉 such that 𝑎̄ ∈ Z(𝑅𝑉 ). Then

𝐷𝑎 : 𝑅𝑉 ! 𝑅𝑉 , 𝑏̄ 7! 𝑎 (1)𝑏,

defines a derivation of 𝑅𝑉 .

Proof Since 𝑎̄ ∈ Z(𝑅𝑉 ), we have 𝑎 (𝑛)𝐹 𝑝𝑉 ⊂ 𝐹 𝑝−𝑛+1𝑉 . In particular, 𝑎 (1)𝐹1𝑉 ⊂
𝐹1𝑉 . Thus, the linear map 𝐷𝑎 : 𝑅𝑉 ! 𝑅𝑉 is well-defined. We have

𝑎 (1) (𝑏 (−1)𝑐) = [𝑎 (1) , 𝑏 (−1) ]𝑐 + 𝑏 (−1)𝑎 (1)𝑐 = (𝑎 (0)𝑏) (0)𝑐 + (𝑎 (1)𝑏) (1)𝑐 + 𝑏 (−1)𝑎 (1)𝑐.

Since 𝑎 ∈ Z(𝑅𝑉 ), 𝑎 (0)𝑏 ∈ 𝐹1𝑉 . Hence (𝑎 (0)𝑏) (0)𝑐 ∈ 𝐹1𝑉 , Therefore 𝐷𝑎 is a
derivation as required. �

Note that 𝐷𝜔 (𝑎̄) = Δ𝑎 𝑎̄ for a homogenous element 𝑎 of 𝑉 of conformal weight Δ𝑎.

Theorem 4.3 Let𝑉 be a conical conformal vertex algebra. The following conditions
are equivalent.

i). 𝜔̄ is nilpotent in 𝑅𝑉 .
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ii). the argumentation ideal of Z(𝑅𝑉 ) is contained in the radical of 𝑅𝑉 .

Proof The direction ii) ⇒ i) is obvious. So let us show that i) ⇒ ii). Let 𝑎 be a
homogenous element 𝑎 of 𝑉 of conformal weight Δ𝑎 > 0 such that 𝑎̄ ∈ Z(𝑅𝑉 ).
Since 𝜔̄ ∈

√︁
(0), we have 𝐷𝑎 (𝜔̄) ∈

√︁
(0). However,

𝑎 (1)𝜔 = [𝑎 (1) , 𝜔 (−1) ] |0〉 = −[𝜔 (−1) , 𝑎 (1) ] |0〉 = −
∑︁
𝑗>0

(−1) 𝑗 (𝜔 ( 𝑗)𝑎) (− 𝑗) |0〉

= −
∑︁
𝑗>1

(−1) 𝑗 (𝜔 ( 𝑗)𝑎) (− 𝑗) |0〉 ≡ −(𝜔 (1)𝑎) (−1) |0〉 = −Δ𝑎𝑎 (mod 𝐹1𝑉).

Therefore, 𝑎 ∈
√︁
(0). �

Corollary 4.3 Let 𝑉 be a conical conformal vertex algebra such that 𝑅𝑉 is Poisson
commutative. Then the following conditions are equivalent.

i). 𝑉 is lisse.
ii). 𝜔̄ is nilpotent in 𝑅𝑉 .



Chapter 5
Modules over vertex algebras and Zhu’s functor

We introduce in this chapter the Zhu algebra Zhu(𝑉) and the Zhu functor 𝑉 7!
Zhu(𝑉) assigning to a vertex operator algebra an associative algebra. Zhu established
that the equivalence classes of the irreducible representations of 𝑉 are in one-to-one
correspondence with the equivalence classes of the irreducible representations of
Zhu(𝑉) (see Theorem 5.2). The Zhu algebra Zhu(𝑉) has a much simpler structure
than 𝑉 , for example, the one-to-one correspondence theorem implies that if 𝑉 is
rational then Zhu(𝑉) is semisimple. The associative algebra Zhu(𝑉) also plays a
crucial role in the proof of the modular invariance; see, for example, [184, 157, 15].

Section 5.1 is about the Zhu algebra of a vertex algebra, the Zhu functor and
consequences for the modules over the vertex algebra. In Section 5.4, we discuss the
connexion between the Zhu algebra and the Zhu𝐶2-algebra. Using this, we explicitly
compute in Section 5.6 the Zhu algebra in some examples.

We continue to assume that a vertex algebra 𝑉 is finitely strongly generated.

5.1 Zhu’s algebra and Zhu’s functor

We assume in this chapter that 𝑉 be a Z-graded vertex algebra (see Definition 2.7).

Definition 5.1 For homogeneous elements 𝑎, 𝑏 of 𝑉 , set

𝑎 ◦ 𝑏 := Res𝑧
(
𝑌 (𝑎, 𝑧)𝑏 (𝑧 + 1)Δ𝑎

𝑧2

)
=

∑︁
𝑖>0

(
Δ𝑎

𝑖

)
𝑎 (𝑖−2)𝑏,

and extend the products ◦ linearly. The expression (𝑧 + 1)𝑘 , for 𝑘 ∈ Z, means∑
𝑗>0

(𝑘
𝑗

)
𝑧 𝑗 . We set

Zhu(𝑉) := 𝑉/𝑉 ◦𝑉,

where 𝑉 ◦𝑉 := span{𝑎 ◦ 𝑏 ; 𝑎, 𝑏 ∈ 𝑉}.

93
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Theorem 5.1 ([80, 184]) The quotient Zhu(𝑉) is an associative algebra, called the
Zhu algebra of 𝑉 , with multiplication defined as

𝑎 ∗ 𝑏 := Res𝑧
(
𝑌 (𝑎, 𝑧)𝑏 (𝑧 + 1)Δ𝑎

𝑧

)
=

∑︁
𝑖>0

(
Δ𝑎

𝑖

)
𝑎 (𝑖−1)𝑏

for homogeneous elements 𝑎, 𝑏 ∈ 𝑉 . Its unit is the image of the vacuum |0〉 in the
quotient Zhu(𝑉).

A vertex algebra 𝑉 is called a chiralization of an algebra 𝐴 if Zhu(𝑉) � 𝐴.
Before proving the theorem, we need some lemmas.

Lemma 5.1 For a homogenous element 𝑎 and 𝑛 ∈ Z>0, we have

𝑇𝑛𝑎 = 𝑛!
(
−Δ𝑎
𝑛

)
𝑎 (mod 𝑉 ◦𝑉).

Proof From 𝑎 ◦ |0〉 = 𝑎 (−2) |0〉 + Δ𝑎𝑎 = 𝑇𝑎 + Δ𝑎𝑎, we deduce that 𝑇𝑎 = −Δ𝑎𝑎
(mod 𝑉 ◦ 𝑉). Using this relation and Δ𝑇 𝑎 = Δ𝑎 + 1, the identities follows from an
easy induction on 𝑛. �

Lemma 5.2 For 𝑎, 𝑏 homogeneous elements,

𝑏 ∗ 𝑎 = Res𝑧
(
𝑌 (𝑎, 𝑧)𝑏 (𝑧 + 1)Δ𝑎−1

𝑧

)
=

∑︁
𝑖>0

(
Δ𝑎 − 1
𝑖

)
𝑎 (𝑖−1)𝑏 (mod 𝑉 ◦𝑉).

Proof By skew-symmetry (Proposition 2.4) and Lemma 5.1, we have

𝑌 (𝑏, 𝑧)𝑎 = 𝑒𝑧𝑇𝑌 (𝑎,−𝑧)𝑏 =
∑︁
𝑛∈Z

𝑒𝑧𝑇 𝑎 (𝑛)𝑏(−𝑧)−𝑛−1

=
∑︁
𝑛∈Z

∑︁
𝑗>0

𝑇 𝑗 (𝑎 (𝑛)𝑏)
𝑗!

𝑧 𝑗 (−𝑧)−𝑛−1

=
∑︁
𝑛∈Z

∑︁
𝑗>0

(
−Δ𝑎 − Δ𝑏 + 𝑛 + 1

𝑗

)
𝑧 𝑗𝑎 (𝑛)𝑏(−𝑧)−𝑛−1

=
∑︁
𝑛∈Z

(−𝑧)−𝑛−1 (𝑧 + 1)−Δ𝑎−Δ𝑏+𝑛+1𝑎 (𝑛)𝑏

= (𝑧 + 1)−Δ𝑎−Δ𝑏𝑌 (𝑎,− 𝑧

𝑧 + 1
)𝑏.

Therefore, we get

𝑏 ∗ 𝑎 = Res𝑧
(
𝑌 (𝑏, 𝑧)𝑎 (𝑧 + 1)Δ𝑏

𝑧

)
= Res𝑧

(
𝑌 (𝑎,− 𝑧

𝑧 + 1
)𝑏 (𝑧 + 1)Δ𝑏

𝑧
(𝑧 + 1)−Δ𝑎−Δ𝑏

)
.

Recall the formula for change of variable for residue. For 𝑔(𝑤) = ∑
𝑚>𝑀 𝑣𝑚𝑤

𝑚 ∈
𝑉 ((𝑤)) and 𝑓 (𝑧) =

∑∞
𝑛=1 𝑎𝑛𝑧

𝑛 ∈ 𝑧C[[𝑧]] with 𝑎1 ≠ 0, the power series 𝑔( 𝑓 (𝑧)) ∈
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𝑉 ((𝑧)) is defined as

𝑔( 𝑓 (𝑧)) =
∑︁
𝑚>𝑀

𝑣𝑚 𝑓 (𝑧)𝑚 =
∑︁
𝑚>𝑀

∞∑︁
𝑗=1
𝑣𝑚 (𝑎1𝑧)𝑚

(
𝑚

𝑗

)
𝑓 𝑗 ,

where 𝑓 =
∑∞
𝑖=2

𝑎𝑖
𝑎1
𝑧𝑖−1. Then we have the following formula:

Res𝑤 𝑔(𝑤) = Res𝑧 (𝑔( 𝑓 (𝑧)))
𝑑

𝑑𝑧
𝑓 (𝑧). (5.1)

Using the formula of change of variable (5.1) with 𝑤 = − 𝑧
𝑧+1 we deduce that

𝑏 ∗ 𝑎 = Res𝑤
(
𝑌 (𝑎, 𝑤)𝑏 (𝑤 + 1)Δ𝑎−1

𝑤

)
,

whence the expected result. �

Lemma 5.3 For homogeneous elements 𝑎, 𝑏, we have

𝑎 ∗ 𝑏 − 𝑏 ∗ 𝑎 =
∑︁
𝑖>0

(
Δ𝑎 − 1
𝑖

)
𝑎 (𝑖)𝑏 (mod 𝑉 ◦𝑉)

In particular, the image of the conformal vector belongs to the center of Zhu(𝑉).

Proof The first assertion is an easy consequence of Lemma 5.2. The last assertion
follows from the fact that 𝜔 ∗ 𝑎 − 𝑎 ∗ 𝜔 ≡ ∑

𝑖>0
(1
𝑖

)
𝜔 (𝑖)𝑎 ≡ 𝑇𝑎 + 𝐻𝑎 = 𝑎 ◦ |0〉. �

Lemma 5.4 For every homogeneous element 𝑎 ∈ 𝑉 , and 𝑚 > 𝑛 > 0,

Res𝑧
(
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎+𝑛

𝑧2+𝑚
𝑏

)
∈ 𝑉 ◦𝑉.

Proof Since
(𝑧 + 1)Δ𝑎+𝑛

𝑧2+𝑚
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
(𝑧 + 1)Δ𝑎

𝑧2+𝑚−𝑖 ,

we only need to prove the lemma for the case 𝑛 = 0 and 𝑚 > 0. We prove the
statement by induction on 𝑚, the case 𝑚 = 0 being clear from the definition of𝑉 ◦𝑉 .
Assume the statement true for any 𝑚 6 𝑘 , and prove it for 𝑚 = 𝑘 + 1. By induction,
we have

Res𝑧
(
𝑌 (𝑇𝑎, 𝑧) (𝑧 + 1)Δ𝑎+1

𝑧2+𝑘
𝑏

)
∈ 𝑉 ◦𝑉.

On the other hand,
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Res𝑧
(
𝑌 (𝑇𝑎, 𝑧) (𝑧 + 1)Δ𝑎+1

𝑧2+𝑘
𝑏

)
= Res𝑧

(
𝜕

𝜕𝑧
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎+1

𝑧2+𝑘
𝑏

)
= −Res𝑧

(
𝑌 (𝑎, 𝑧) 𝜕

𝜕𝑧

(𝑧 + 1)Δ𝑎+1

𝑧2+𝑘
𝑏

)
= −(Δ𝑎 + 1) Res𝑧

(
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎

𝑧2+𝑘
𝑏

)
+ (2 + 𝑘) Res𝑧

(
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎

𝑧2+𝑘+1 𝑏

)
,

whence the statement for 𝑚 = 𝑘 + 1 since the first term of the right-hand-side is in
𝑉 ◦𝑉 by induction. �

Proof (Proof of Theorem 5.1) First, for homogenous 𝑎,

𝑎 ∗ |0〉 = 𝑎 (−1) |0〉 = 𝑎 and |0〉 ∗ 𝑎 = |0〉 (−1)𝑎 = 𝑎. (5.2)

To prove the theorem, we have to show that 𝑉 ◦𝑉 is a two-sided ideal of Zhu(𝑉), so
that ∗ is well-defined on Zhu(𝑉), and that Zhu(𝑉) is an associative algebra for ∗. It
suffices to show that the following relations hold for homogeneous elements 𝑎, 𝑏, 𝑐:

𝑎 ∗ (𝑉 ◦𝑉) ⊂ 𝑉 ◦𝑉, (5.3)
(𝑉 ◦𝑉) ∗ 𝑎 ⊂ 𝑉 ◦𝑉, (5.4)
(𝑎 ∗ 𝑏) ∗ 𝑐 − 𝑎 ∗ (𝑏 ∗ 𝑐) ∈ 𝑉 ◦𝑉, (5.5)

since (5.2) will ensure that the image of |0〉 is a unit for the multiplication ∗ on
Zhu(𝑉).

We only detail the proof of (5.3), the other identities are proven using the same
technics. The idea is to show that for homogeneous elements 𝑎, 𝑏, 𝑐 of 𝑉 , we have
𝑎 ∗ (𝑏 ◦ 𝑐) − 𝑏 ◦ (𝑎 ∗ 𝑐) ∈ 𝑉 ◦𝑉 so that 𝑎 ∗ (𝑏 ◦ 𝑐) ∈ 𝑉 ◦𝑉 . Using (2.35), we get

𝑎 ∗ (𝑏 ◦ 𝑐) − 𝑏 ◦ (𝑎 ∗ 𝑐) = Res𝑧
(
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎

𝑧

)
Res𝑤

(
𝑌 (𝑏, 𝑤) (𝑤 + 1)Δ𝑏

𝑤2 𝑐

)
− Res𝑤

(
𝑌 (𝑏, 𝑤) (𝑤 + 1)Δ𝑏

𝑤2

)
Res𝑧

(
𝑌 (𝑎, 𝑧) (𝑧 + 1)Δ𝑎

𝑧
𝑐

)
= Res𝑤

(
Res𝑧−𝑤

(
𝑌 (𝑌 (𝑎, 𝑧 − 𝑤)𝑏, 𝑤) (𝑧 + 1)Δ𝑎

𝑧

(𝑤 + 1)Δ𝑏

𝑤2 𝑐

))
=

Δ𝑎∑︁
𝑖=0

∑︁
𝑗>0

(
Δ𝑎

𝑖

)
Res𝑤

(
𝑌 (𝑎 (𝑖+ 𝑗)𝑏, 𝑤) (−1) 𝑗 (𝑤 + 1)Δ𝑎+Δ𝑏−𝑖

𝑤 𝑗+3 𝑐

)
.

Since Δ𝑎(𝑖+ 𝑗)𝑏 = Δ𝑎 + Δ𝑏 − 𝑖 − 𝑗 − 1, the right hand side of the last equality belongs
to 𝑉 ◦𝑉 in virtue of Lemma 5.4. �

For a simple positive energy representation 𝑀 =
⊕

𝑛∈Z>0
𝑀𝜆+𝑛, 𝑀𝜆 ≠ 0, of 𝑉 ,

let 𝑀top be the top degree component 𝑀𝜆 of 𝑀 . Using (2.50), we see that for any 𝑑,
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𝑎𝑀(𝑛)𝑀𝑑 ⊂ 𝑀𝑑+Δ𝑎−𝑛−1. (5.6)

For a homogeneous vector 𝑎 ∈ 𝑉 , let 𝑜(𝑎) = 𝑎 (Δ𝑎−1) = 𝑎𝑀(Δ𝑎−1) , so that 𝑜(𝑎)
preserves the homogeneous components of any graded representation of 𝑉 by (5.6).

The importance of Zhu’s algebra in vertex algebra theory comes from the follow-
ing fact that was established by Yonchang Zhu.

Theorem 5.2 ([184]) For any positive energy representation 𝑀 of 𝑉 , [𝑎] 7! 𝑜(𝑎)
gives a well-defined representation of Zhu(𝑉) on 𝑀top, where [𝑎] is the image of 𝑎
in Zhu(𝑉). Moreover, the correspondence 𝑀 7! 𝑀top gives a bijection between the
set of isomorphism classes of irreducible positive energy representations of 𝑉 and
that of simple Zhu(𝑉)-modules.

The proof of this theorem will be given after Theorem 5.3.

5.2 Current algebra and Zhu algebra

Lemma 5.5 For a vertex algebra 𝑉 , 𝑉/𝑇𝑉 is a Lie algebra by

[𝑎 + 𝑇𝑉, 𝑏 + 𝑇𝑉] = 𝑎 (0)𝑏 + 𝑇𝑉, 𝑎, 𝑏 ∈ 𝑉

Proof The skew symmetry property follows from the skew symmetry property of
vertex algebra, which is equivalent to (4.7). The Jacobi identity follows from the
Borcherds identity (2.32). �

Lemma 5.6 ([39]) Let 𝑉 be a vertex algebra, (𝑅, 𝜕) a differential algebra. Then

Lie(𝑉, 𝑅) := (𝑉 ⊗ 𝑅)/(𝑇 ⊗ 1 + 1 ⊗ 𝜕) (𝑉 ⊗ 𝑅)

is a Lie algebra by

[𝑎 ⊗ 𝑟, 𝑏 ⊗ 𝑠] =
∑︁
𝑗>0

𝑎 ( 𝑗)𝑏 ⊗
(

1
𝑗!
𝜕 𝑗𝑟

)
𝑠. (5.7)

Proof Since 𝑅 is a commutative vertex algebra, 𝑉 ⊗ 𝑅 is a vertex algebra with the
translation operator 𝑇 ⊗ 1 + 1 ⊗ 𝜕. The assertion follows by applying Lemma 5.5 to
the vertex algebra 𝑉 ⊗ 𝑅. �

The Borcherds Lie algebra associated with a vertex algebra 𝑉 is by definition the
Lie algebra

Lie(𝑉) := Lie(𝑉,C[𝑡, 𝑡−1]) = 𝑉 ⊗ C[𝑡, 𝑡−1]/(𝑇 ⊗ 1 + 1 ⊗ 𝜕𝑡 ) (𝑉 ⊗ C[𝑡, 𝑡−1]),

where C[𝑡, 𝑡−1] is viewed as a differential algebra with the derivation 𝜕𝑡 . We have
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[𝑎 {𝑚}, 𝑏 {𝑛}] =
∑︁
𝑗>0

(
𝑚

𝑗

)
(𝑎 ( 𝑗)𝑏){𝑚+𝑛− 𝑗 }, (5.8)

where 𝑎 {𝑛} is the image of 𝑎 ⊗ 𝑡𝑛 ∈ 𝑉 ⊗ C[𝑡, 𝑡−1] in Lie(𝑉). By definition, we have
(𝑇𝑎){𝑛} = −𝑛𝑎 {𝑛−1}.

The following is clear from (2.47).

Lemma 5.7 Any𝑉-module 𝑀 is a Lie(𝑉)-module by 𝑎 {𝑛} 7! 𝑎 (𝑛) = 𝑎
𝑀
(𝑛) for 𝑎 ∈ 𝑉 ,

𝑛 ∈ Z.

Note that a Lie(𝑉)-module needs not to be a 𝑉-module since the identities (2.47)
and (2.48) may not be satisfied.

Recall that (2.48) is equivalent to the identity (2.33), which contains an infinite
sum. In order to make sense of (2.33), we shall introduce a completion �𝑈 (Lie(𝑉))
of the the universal enveloping algebra𝑈 (Lie(𝑉)) of Lie(𝑉) as follows.

Assume that 𝑉 is Z-graded by a Hamiltonian 𝐻. Then Lie(𝑉) is a graded Lie
algebra, by defining the action ad𝐻 of 𝐻 on Lie(𝑉) by

ad𝐻 (𝑎 {𝑛}) = −(𝑛 + 1)𝑎 {𝑛} + (𝐻𝑎){𝑛} .

We have

Lie(𝑉) =
⊕
𝑑∈Z

Lie(𝑉)𝑑 , Lie(𝑉)𝑑 = {𝑥 ∈ Lie(𝑉) : (ad𝐻)𝑥 = 𝑑𝑥}.

Let𝑈 (Lie(𝑉)) =
⊕

𝑑∈Z𝑈 (Lie(𝑉))𝑑 be the induced Z-grading on𝑈 (Lie(𝑉)).
Define�𝑈 (Lie(𝑉)) =

⊕
𝑑∈Z

�𝑈 (Lie(𝑉))𝑑 ,

�𝑈 (Lie(𝑉))𝑑 = lim
 −
𝑟

𝑈 (Lie(𝑉))𝑑/
∑︁
𝑝6𝑟

𝑈 (Lie(𝑉))𝑑−𝑝𝑈 (Lie(𝑉))𝑝 .

The space �𝑈 (Lie(𝑉)) is aZ-graded topological ring with each component �𝑈 (Lie(𝑉))𝑑
being complete. Now the identity

(𝑎 (𝑚)𝑏){𝑛} =
∑︁
𝑗>0

(−1) 𝑗
(
𝑚

𝑗

)
(𝑎 {𝑚− 𝑗 }𝑏 {𝑛+ 𝑗 } − (−1)𝑚𝑏 {𝑚+𝑛− 𝑗 }𝑎 { 𝑗 }) (5.9)

makes sense as an element of �𝑈 (Lie(𝑉)). Let 𝐼 =
⊕

𝑑∈Z 𝐼𝑑 be the graded ideal of�𝑈 (Lie(𝑉)) generated by (5.9) and ( |0〉){𝑛} = 𝛿𝑛,−1. Let

U(𝑉) =
⊕
𝑑∈Z

U(𝑉)𝑑 , U(𝑉)𝑑 = �𝑈 (Lie(𝑉))𝑑/𝐼𝑑 ,
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where 𝐼𝑑 is the closure of 𝐼𝑑 in �𝑈 (Lie(𝑉))𝑑 . Then U(𝑉) is again a Z-graded
topological ring with each component U(𝑉)𝑑 being complete, which is called the
universal enveloping algebra [80] , or the current algebra [153] of 𝑉 .

A U(𝑉)-module 𝑀 is called smooth if the action U(𝑉) ×𝑀 ! 𝑀 is continuous,
where 𝑀 is equipped with the discrete topology.

Lemma 5.8 A 𝑉-module is the same as a smooth U(𝑉)-module.

Clearly, U(𝑉)0 is a subalgebra of U(𝑉). Define the algebra 𝐴(𝑉) by

𝐴(𝑉) = U(𝑉)0/
∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 ,

where denotes the closure.

Theorem 5.3 We have the isomorphism of algebras

Zhu(𝑉) � 𝐴(𝑉).

Let U(𝑉)60 =
⊕

𝑑60 U(𝑉)𝑑 ⊂ U(𝑉). For an 𝐴(𝑉)-module 𝐸 , define the
positive energy representation IndU(𝑉 )

𝐴(𝑉 ) (𝐸) of 𝑉 by

IndU(𝑉 )
𝐴(𝑉 ) (𝐸) = U(𝑉) ⊗U(𝑉 )60 𝐸, (5.10)

where U(𝑉)60 acts on 𝐸 by the projection U(𝑉)60 ! 𝐴(𝑉).
Proof (Proof of Theorem 5.2) Let 𝑀 be a simple positive energy representation
𝑉 . Then 𝑀𝑡𝑜𝑝 is a simple U(𝑉)0-module on which U(𝑉)−𝑟 acts trivially for 𝑟 >
0. Hence 𝑀𝑡𝑜𝑝 is a simple module over 𝐴(𝑉) = Zhu(𝑉). Conversely, let 𝐸 be
a simple Zhu(𝑉)-module. Since IndU(𝑉 )

𝐴(𝑉 ) (𝐸) is a positive energy representation
of such that IndU(𝑉 )

𝐴(𝑉 ) (𝐸)𝑡𝑜𝑝 = 𝐸 , any proper graded submodule of IndU(𝑉 )
𝐴(𝑉 ) (𝐸)

intersects 𝐸 trivially. Indeed, if 𝑁 is any such proper graded submodule such that
𝑁𝑡𝑜𝑝 = 𝑁 ∩ 𝐸 ≠ {0}, then for any nonzero element 𝑣 in the intersection, we have
𝐸 = 𝐴(𝑉).𝑣 ⊂ 𝑁 since 𝐸 a simple Zhu(𝑉)-module. But 𝐸 generates IndU(𝑉 )

𝐴(𝑉 ) (𝐸) as
𝑉-modules, because IndU(𝑉 )

𝐴(𝑉 ) (𝐸) � U(𝑉)>0.𝐸 , whence 𝑁 = IndU(𝑉 )
𝐴(𝑉 ) (𝐸). Hence

there exists a unique simple graded quotient 𝐿 (𝐸) of IndU(𝑉 )
𝐴(𝑉 ) (𝐸). Clearly, the maps

𝐸 7! 𝐿 (𝐸) and 𝑀 7! 𝑀𝑡𝑜𝑝 are inverse to each other. �

5.3 Proof of Theorem 5.3

This section is devoted to the proof of Theorem 5.3, following [100]. We use the
following notation, which is defined for any homogeneous element 𝑎 ∈ 𝑉 and extend
linearly to 𝑉 :

𝐽𝑛 (𝑎) := 𝑎 {Δ𝑎−1+𝑛} .
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The advantage of this notation is that 𝐽𝑛 (𝑎) has always degree −𝑛. The proof of the
following combinatorial lemma essentially follows from (5.9):

Lemma 5.9 ([100, Corollary A.2]) For all integers 𝑠, 𝑡, 𝑁 satisfying 𝑁 + 𝑠 > 0, the
following identity holds in the universal enveloping algebra of 𝑉:

𝐽−𝑠 (𝑎)𝐽𝑡 (𝑏) =
𝑁∑︁
𝑗=0

∑︁
𝑖>0

(−1)𝑖
(
𝑁 + Δ𝑎

𝑖

) (
−𝑁 − 𝑠 − 1

𝑗

)
𝐽𝑡−𝑠 (𝑎 (−𝑁−𝑠−𝑖− 𝑗−1)𝑏)

−
∑︁
𝑘>𝑁+1

𝑁∑︁
𝑗=0

(−1) 𝑗
(
𝑁 + 𝑠 + 𝑗

𝑗

) (
𝑁 + 𝑠 − 𝑘
𝑘 − 𝑗

)
𝐽−𝑘−𝑠 (𝑎)𝐽𝑘+𝑡 (𝑏)

+
𝑁∑︁
𝑗=0

∑︁
𝑖>0

(−1)𝑁+𝑠+1
(
𝑁 + 𝑠 + 𝑗

𝑗

) (
𝑁 + 𝑠 + 𝑗 + 𝑖

𝑖

)
𝐽𝑡−𝑁−𝑠−1−𝑖 (𝑏)𝐽𝑁+1+𝑖 (𝑎).

Lemma 5.10 Every element 𝑎 = 𝐽𝑛1 (𝑎1) . . . 𝐽𝑛𝑚 (𝑎𝑚) can be expressed in the quo-
tient 𝐴(𝑉) as 𝐽0 (𝑣) for some 𝑣 = 𝑣(𝑎) in 𝑉 depending on 𝑎.

Proof We prove the statement by induction on the length 𝑚. If 𝑚 = 1, there is
nothing to do. Let 𝑚 > 2, and assume the statement true for every monomial of
length < 𝑚. Apply Lemma 5.9 to 𝐽𝑛𝑚−1 (𝑎𝑚−1)𝐽𝑛𝑚 (𝑎𝑚), where

−𝑠 = 𝑛𝑚−1, 𝑡 = 𝑛𝑚, 𝑎 = 𝑎𝑚−1, 𝑏 = 𝑎𝑚.

In Lemma 5.9, choose 𝑁 big enough so that min{𝑁 + 𝑛𝑚, 𝑁} > 0. Then 𝐽𝑘+𝑛𝑚 (𝑎𝑚)
and 𝐽𝑁+1+𝑖 (𝑎𝑚−1) are both contained in

⊕
𝑗<0 U(𝑉) 𝑗 for 𝑘 > 𝑁 + 1, and so 𝑎 is

congruent to a linear combination of the following terms with length < 𝑚:

𝐽𝑛1 (𝑎1) . . . 𝐽𝑛𝑚−2 (𝑎𝑚−2)𝐽𝑛𝑚−1+𝑛𝑚 ((𝑎𝑚−1) (−𝑁+𝑛𝑚−1−𝑖− 𝑗−1)𝑎𝑚).

By induction, these terms are congruent to monomials of the form 𝐽0 (𝑣′), 𝑣′ ∈ 𝑉 .
So 𝑎 is itself congruent to some monomial 𝐽0 (𝑣). Here, notice that for any 𝑛 ∈ Z,
𝑎, 𝑏 ∈ 𝑉 , we have 𝐽𝑛 (𝑎) + 𝐽𝑛 (𝑏) = 𝐽𝑛 (𝑎 + 𝑏). �

We are now in a position to prove Theorem 5.3. Let 𝜑 be the composition map of the
linear map from 𝑉 to U(𝑉)0 sending homogeneous element 𝑎 to 𝑎 {Δ𝑎−1} with the
canonical quotient map from U(𝑉)0 to 𝐴(𝑉). Lemma 5.10 ensures that this map is
surjective.

Let us show now that 𝜑 factors through Zhu(𝑉), that is,

𝜑(𝑉 ◦𝑉) ⊂
∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 .

Let 𝑎, 𝑏 be homogeneous elements 𝑎, 𝑏 ∈ 𝑉 . We have Δ𝑎(𝑖−2)𝑏 = Δ𝑎 + Δ𝑏 − 𝑖 + 1.
Using the identity (5.9), we get
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𝜑(𝑎 ◦ 𝑏) =
∑︁
𝑖>0

(
Δ𝑎

𝑖

)
(𝑎 (𝑖−2)𝑏){Δ𝑎+Δ𝑏−𝑖 }

=
∑︁
𝑖>0

(−1)𝑖
(
−2
𝑖

)
(𝑎 {Δ𝑎−2−𝑖 }𝑏 {Δ𝑏+𝑖 } − 𝑏 {Δ𝑏−2−𝑖 }𝑎 {Δ𝑎+𝑖 })

=
∑︁
𝑖>0

(−1)𝑖
(
−2
𝑖

)
(𝐽−𝑖−1 (𝑎)𝐽𝑖+1 (𝑏) − 𝐽−𝑖−1 (𝑏)𝐽𝑖+1 (𝑎)).

Since deg 𝐽𝑖+1 (𝑏) = deg 𝐽𝑖+1 (𝑎) = −𝑖 − 1 < 0, we get that

𝜑(𝑎 ◦ 𝑏) ∈
∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 ,

whence the statement. As a result, we get a well-defined map, still denoted by 𝜑,
from Zhu(𝑉) to 𝐴(𝑉) which is surjective.

Next, we prove that 𝜑 is an algebra homomorphism. It is enough to show that
𝜑(𝑎 ∗ 𝑏) = 𝜑(𝑎)𝜑(𝑏) for homogeneous elements 𝑎, 𝑏 ∈ 𝑉 . Again using the identity
(5.9), we get

𝜑(𝑎 ∗ 𝑏) =
∑︁
𝑖>0

(
Δ𝑎

𝑖

)
(𝑎 (𝑖−1)𝑏){Δ𝑎+Δ𝑏−𝑖−1}

=
∑︁
𝑖>0

(−1)𝑖
(
−1
𝑖

)
(𝑎 {Δ𝑎−1−𝑖 }𝑏 {Δ𝑏−1+𝑖 } + 𝑏 {Δ𝑏−2−𝑖 }𝑎 {Δ𝑎+𝑖 })

=
∑︁
𝑖>0

(−1)𝑖
(
−2
𝑖

)
(𝐽−𝑖 (𝑎)𝐽𝑖 (𝑏) + 𝐽−𝑖−1 (𝑏)𝐽𝑖+1 (𝑎))

= 𝐽0 (𝑎)𝐽0 (𝑏) (mod
∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 ).

On the other hand, by letting 𝑠 = 𝑡 = 𝑁 = 0 in Lemma 5.10, we have

𝐽0 (𝑎)𝐽0 (𝑏) =
∑︁
𝑖>0

(−1)𝑖
(
Δ𝑎

𝑖

)
𝐽0 (𝑎 (−𝑖−1)𝑏) (mod

∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 )

=
∑︁
𝑖>0

(−1)𝑖
(
Δ𝑎

𝑖

)
(𝑎 (−𝑖−1)𝑏){Δ𝑎+Δ𝑏+𝑖−1} (mod

∑︁
𝑟>0

U(𝑉)𝑟U(𝑉)−𝑟 ),

whence 𝜑(𝑎 ∗ 𝑏) = 𝜑(𝑎)𝜑(𝑏) in 𝐴(𝑉).
It remains to construct an inverse map for 𝜑. By Lemma 5.10 every element of

𝐴(𝑉) can be expressed as 𝐽0 (𝑎) + (mod
∑
𝑟>0 U(𝑉)𝑟U(𝑉)−𝑟 ). We want to define

a map 𝜓 from 𝐴(𝑉) to Zhu(𝑉) sending 𝐽0 (𝑎) + (mod
∑
𝑟>0 U(𝑉)𝑟U(𝑉)−𝑟 ) to

𝑎 + 𝑉 ◦ 𝑉 . Once we can show this, it is clear that 𝜓 and 𝜑 are inverse to each other.
The well-definedness requires that whenever 𝐽0 (𝑎) ∈ (mod

∑
𝑟>0 U(𝑉)𝑟U(𝑉)−𝑟 ),
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then 𝑎 ∈ 𝑉 ◦𝑉 . This can be shown using the functor 𝐿0 constructed by Dong, Li and
Mason [60]. To be completed...

5.4 Relations between the Zhu algebra and the Zhu 𝑪2-algebra

We define an increasing filtration of the Zhu algebra. For this, we assume that 𝑉
is Z>0-graded, that is, 𝑉 =

⊕
Δ>0𝑉Δ. Then 𝑉6𝑝 :=

⊕𝑝

Δ=0𝑉Δ gives an increasing
filtration of 𝑉 . Define

Zhu𝑝 (𝑉) := im(𝑉6𝑝 ! Zhu(𝑉)).

Obviously, we have

0 = Zhu−1 (𝑉) ⊂ Zhu0 (𝑉) ⊂ Zhu1 (𝑉) ⊂ · · · , and Zhu(𝑉) =
⋃
𝑝>−1

Zhu𝑝 (𝑉).

Also, since 𝑎 (𝑛)𝑏 ∈ 𝑉Δ𝑎+Δ𝑏−𝑛−1 for 𝑎 ∈ 𝑉Δ𝑎
, 𝑏 ∈ 𝑉Δ𝑏

, we have

Zhu𝑝 (𝑉) ∗ Zhu𝑞 (𝑉) ⊂ Zhu𝑝+𝑞 (𝑉). (5.11)

The following assertion follows from the skew symmetry.
By Lemma 5.3, we have

[Zhu𝑝 (𝑉),Zhu𝑞 (𝑉)] ⊂ Zhu𝑝+𝑞−1 (𝑉). (5.12)

This means that the filtered associative algebra Zhu(𝑉) is almost-commutative (see
Section C.3). By (5.11) and (5.12) the associated graded space,

gr Zhu(𝑉) =
⊕
𝑝>0

Zhu𝑝 (𝑉)/Zhu𝑝−1 (𝑉),

is so naturally a graded Poisson algebra (see Section C.3).
Our next focus is to explore the connections between the Zhu algebra and the Zhu

𝐶2-algebra or, equivalently, between the Poisson schemes 𝑋̃𝑉 and Spec gr Zhu(𝑉).
First, note that 𝑎 ◦ 𝑏 ≡ 𝑎 (−2)𝑏 (mod

⊕
Δ6Δ𝑎+Δ𝑏

𝑉Δ) for homogeneous elements
𝑎, 𝑏 in 𝑉 .

Lemma 5.11 (Zhu [57, Proposition 2.17(c)] and [19, Proposition 3.3]) The fol-
lowing map defines a well-defined surjective Poisson algebra homomorphism:

𝜂𝑉 : 𝑅𝑉 −! gr Zhu(𝑉)

𝑎̄ 7−! 𝑎 (mod 𝑉 ◦𝑉 +
⊕
Δ<Δ𝑎

𝑉Δ).
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Proof We have 𝑎 ◦ 𝑏 =
∑
𝑖>0

(
Δ𝑎
𝑖

)
𝑎 (𝑖−2)𝑏 = 𝑎 (−2)𝑏 + ∑

𝑖>1

(
Δ𝑎
𝑖

)
𝑎 (𝑖−2)𝑏. Since the

degree of 𝑎 (𝑖−2)𝑏 is Δ𝑎 + Δ𝑏 + 1 − 𝑖 < deg 𝑎 (−2)𝑏 if 𝑖 > 1, we get that

𝑎 (−2)𝑏 = 𝑎 ◦ 𝑏 (mod
⊕

Δ<Δ𝑎(−2) 𝑏

𝑉Δ).

This shows that 𝐶2 (𝑉) is contained in 𝑉 ◦ 𝑉 +
⊕

Δ<Δ𝑎
𝑉Δ and, hence, 𝜂𝑉 is well-

defined. Clearly, it is surjective. It remains to show that 𝜂𝑉 is an algebra homomor-
phism. But 𝜂𝑉 (𝑎̄.𝑏̄) = 𝜂𝑉 (𝑎 (−1)𝑏) = 𝑎 (−1)𝑏 (mod 𝑉 ◦ 𝑉 +

⊕
Δ<Δ𝑎+Δ𝑏

𝑉Δ) while
the image of 𝑎 ∗ 𝑏 in gr Zhu(𝑉) is 𝑎 (−1)𝑏 (mod 𝑉 ◦ 𝑉 +

⊕
Δ<Δ𝑎+Δ𝑏

𝑉Δ) since the
degree of 𝑎 (𝑖−1)𝑏 is Δ𝑎 + Δ𝑏 − 𝑖 < Δ𝑎 + Δ𝑏 for 𝑖 > 1. �

Remark 5.1 The map 𝜂𝑉 is not an isomorphism in general. For example, let 𝔤 be the
simple Lie algebra of type 𝐸8 and𝑉 = 𝐿1 (𝔤). Then dim 𝑅𝑉 > dim Zhu(𝑉) = 1. This
counter-example was discovered by Gaberdiel and Gannon[83] 1. In other words, the
diagram

𝑉

Zhu
��

Zhu 𝐶2

''Zhu(𝑉) gr
// ?

is not always commutative.

Remark 5.2 It was shown in [71] that 𝑅𝑉 � gr Zhu(𝑉) for 𝑉 = 𝐿𝑘 (𝔤) for any
nonnegative 𝑘 ∈ Z>0, if 𝔤 is the simple Lie algebra 𝔰𝔩𝑛.

By Lemma 5.11, we have Specm(gr Zhu𝑉) ⊂ 𝑋𝑉 .

Conjecture 5.1 ([9]) If 𝑉 is a simple Z>0-graded conformal vertex algebra, then

𝑋𝑉 � Specm(gr Zhu𝑉).

Remark 5.3 One may also ask wether the following diagram is commutative.

𝑉

Zhu
��

gr𝐹
// gr𝐹𝑉

Zhu
��

Zhu(𝑉) gr
// ?

1 The equality dim Zhu(𝑉 ) = 1 follows from the fact that 𝐿1 (𝔤) is holomorphic, that is, the
only simple module is itself, because it is the only integrable affine 𝔤-module of level 1. Because
Zhu’s algebra of any holomorphic vertex operator algebra is one-dimensional ref?, we get that
gr Zhu(𝑉 ) � C. On the other hand, it is easy to check that dim𝑅𝑉 > 1 since the unique proper
maximal submodule of 𝑉 1 (𝔤) is generated by (𝑒𝜃 𝑡−1 |0〉)2: see Section 7.1.
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In other words, one may ask wether one has Zhu(gr𝐹𝑉) � gr Zhu(𝑉). Note that 𝑅𝑉
is not isomorphic to Zhu(gr𝐹𝑉) in general since𝐶2 (𝑉) ≠ 𝑉◦𝑉 even for commutative
vertex algebras.

Although the above diagram is known to be commutative in several examples,
e.g., the universal affine vertex algebra 𝑉 𝑘 (𝔤) (cf. §5.6.2), the fermion Fock space
(cf. §5.6.3), the W-algebra W 𝑘 (𝔤, 𝑓 ), etc., it is not true in general.

Exercise 5.1 Verify that the example 𝑉 = 𝐿1 (𝔤), with 𝔤 simple of type 𝐸8 as in
Remark 5.1, furnishes an example of vertex algebra 𝑉 such that Zhu(gr𝐹𝑉) �
gr Zhu(𝑉).

•? Open problem

Is there an example of a vertex algebra for which 𝑅𝑉 � Zhu(gr𝐹𝑉)?

Corollary 5.1 If 𝑉 is lisse then Zhu(𝑉) is finite dimensional. Hence the number of
isomorphic classes of simple positive energy representations of 𝑉 is finite.

5.5 Filtration of current algebra

We continue to assume that 𝑉 is Z>0-graded.
Recall the increasing, conformal weight filtration𝐺•𝑉 (Section 4.6). This induces

the increasing filtration 𝐺• Lie(𝑉) of Lie(𝑉) such that

[𝐺 𝑝 Lie(𝑉), 𝐺𝑞 Lie(𝑉)] ⊂ 𝐺 𝑝+𝑞−1 Lie(𝑉),

where 𝐺 𝑝 Lie(𝑉) is the image of 𝐺 𝑝𝑉 ⊗ C[𝑡, 𝑡−1] in Lie(𝑉). Hence, gr𝐺 Lie(𝑉) =⊕
𝑝 𝐺 𝑝 Lie(𝑉)/𝐺 𝑝−1 Lie(𝑉) is naturally a commutative Lie algebra. On the other

hand, Lie(gr𝐺 𝑉) is also a commutative Lie algebra since gr𝑉 is commutative.

Lemma 5.12 There is a surjective Lie algebra homomorphism

Lie(gr𝐺 𝑉) −! gr𝐺 Lie(𝑉)

that sends 𝜎𝑝 (𝑎){𝑛} to 𝜎𝑝 (𝑎 {𝑛}).

Proof The map obtained by composing the quotient map 𝑉 ⊗ C[𝑡, 𝑡−1] ! Lie(𝑉)
with the quotient map Lie(𝑉) ! gr𝐺 Lie(𝑉) is clearly surjective, and it factorizes
through the composition map𝑉 ⊗C[𝑡, 𝑡−1] ! gr𝐺 𝑉 ⊗C[𝑡, 𝑡−1] ! Lie(gr𝐺 𝑉) since
any element𝑇𝜎𝑝 (𝑎){𝑛} +𝑛𝜎𝑝 (𝑎){𝑛−1} of (𝑇 ⊗1+1⊗ 𝜕𝑡 ) gr𝐺 𝑉 is mapped to the ele-
ment𝜎𝑝+1 (𝑇𝑎 {𝑛})+𝑛𝜎𝑝 (𝑎 {𝑛−1}) of (𝑇⊗1+1⊗𝜕𝑡 )𝐺 𝑝𝑉 for 𝑎 ∈ 𝐺 𝑝𝑉\𝐺 𝑝−1𝑉 , 𝑛 ∈ Z.
It remains to verify that the resulting surjective map is a Lie algebra homomorphism,
but this is clear from (5.8). (Note that both Lie algebras are commutative.) �
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The filtration 𝐺• Lie(𝑉) induces a filtration 𝐺•𝑈 (Lie(𝑉)) of the universal en-
veloping algebra𝑈 (Lie(𝑉)). This in turn induces a filtration 𝐺•U(𝑉) of the current
algebraU(𝑉), where𝐺 𝑝U(𝑉) is the closure of the image of𝐺 𝑝𝑈 (Lie(𝑉)) inU(𝑉).
Let gr𝐺U(𝑉) =

⊕
𝑝 𝐺 𝑝U(𝑉)/𝐺 𝑝−1U(𝑉) be the associated graded topological

algebra.
Lemma 5.12 immediately gives the following result:

Lemma 5.13 There is a surjective algebra homomorphism

U(gr𝐺 𝑉) −! gr𝐺U(𝑉).

The surjection in Proposition 4.5 induces a surjection O (L 𝑋̃𝑉 ) ! U(gr𝐺 𝑉). Thus
by Lemma 5.13 we have a surjection

O (L 𝑋̃𝑉 ) −� gr𝐺U(𝑉). (5.13)

Theorem 5.4 ([1]) Let 𝑉 be a strongly finitely generated conformal lisse vertex
algebra. Then any simple 𝑉-module is an ordinary positive energy representation.
Therefore the number of isomorphic classes of simple 𝑉-modules is finite.

Proof Let 𝑚 ∈ 𝑀 \ {0}. Then 𝑀 = U(𝑉)𝑚 since 𝑀 is simple. Define an increasing
filtration 𝐺 𝑝𝑀 by setting 𝐺 𝑝𝑀 = 𝐺 𝑝U(𝑉)𝑚. Then gr𝐺 𝑀 =

⊕
𝑝 𝐺 𝑝𝑀/𝐺 𝑝−1𝑀

is naturally a module over gr𝐺U(𝑉), and hence over O (L 𝑋̃𝑉 ). By construction,
we have gr𝐺 𝑀 = O (L 𝑋̃𝑉 )𝑚̄, where 𝑚̄ is the image of 𝑚 in gr𝐺 𝑀 .

Let us first now that the 𝐿0-module spanC{𝐿𝑛0𝑚 : 𝑛 ∈ Z>0} generated by 𝑚 is
finite-dimensional. Let {𝑎𝑖 : 𝑖 ∈ 𝐼} be a finite set of strong generators of 𝑉 .

Since gr𝐺 𝑀 = O (L 𝑋̃𝑉 )𝑚̄, there is 𝐴0 ∈ O (L 𝑋̃𝑉 ) such that 𝐿𝑛0𝑚 = 𝐴𝑛0 𝑚̄.
By Lemma 4.11, the images of the 𝑎𝑖(𝑛) ’s in 𝑅𝑉 are nilpotent in O (L 𝑋̃𝑉 ), whence
𝐴𝑛0 𝑚̄ = 0 for sufficiently large 𝑛. As a result, 𝐿𝑛0 𝑚̄ = 0 for sufficiently large 𝑛 too,
and so spanC{𝐿𝑛0𝑚 : 𝑛 ∈ Z>0} is finite-dimensional. This proves that the action of
𝐿0 on 𝑀 is locally finite. Therefore, 𝑀 is a direct sum of generalized eigenspaces,

𝑀 =
⊕
𝜆∈C

ker(𝐿0 − 𝜆 Id)𝑛𝜆 ⊃
⊕
𝜆∈C

ker(𝐿0 − 𝜆 Id) =: 𝑀 ′.

Using (12.7) for 𝐻 = 𝐿0, we easily verify that 𝑀 ′ is a vertex submodule of 𝑀 which
is nonzero since the action of 𝐿0 is locally finite. Hence, 𝑀 = 𝑀 ′ which proves that
𝑀 is 𝐿0-graded.

Let us now show that 𝑀 is positively graded. We may assume that 𝑚 is an
𝐿0-eigenvector of weight 𝜆 ∈ C. Notice that the 𝐿0-weight of 𝑎𝑖1(𝑛1) . . . 𝑎

𝑖𝑟
(𝑛𝑟 )𝑚0 is

𝜆 + Δ𝑎𝑖1 + · · · + Δ𝑎𝑖𝑟 − 𝑛1 − · · · − 𝑛𝑟 − 𝑟. (5.14)

Since 𝑀 is smooth and 𝐼 is finite, there is 𝑁 > 0 such that for all 𝑛 > 𝑁 and
all 𝑖 ∈ 𝐼, 𝑎𝑖(𝑛)𝑚 = 0. Furthermore using again Lemma 4.11, we deduce that
(𝑎̄𝑖1(𝑛1) )

𝑙1 . . . (𝑎̄𝑖𝑟(𝑛𝑟 ) )
𝑙𝑟 .𝑚 = 0 in gr𝐺 𝑀 if 𝑛 𝑗 > 𝑁 and 𝑙 𝑗 large enough for 𝑗 = 1, . . . , 𝑟 ,

whence the statement by (5.14).



106 5 Modules over vertex algebras and Zhu’s functor

It remains to prove that each graded component 𝑀𝜆+𝑛 is finite-dimensional.
Since 𝑀𝜆 ≠ 0, we may assume that 𝑚 ∈ 𝑀𝜆. A 𝐿0-weight space in gr𝐺 𝑀 is
generated by some (𝑎̄𝑖1(𝑛1) )

𝑡1 . . . (𝑎̄𝑖𝑟(𝑛𝑟 ) )
𝑡𝑟 𝑚̄, with (𝑎̄𝑖1(𝑛1) )

𝑡1 . . . (𝑎̄𝑖𝑟(𝑛𝑟 ) )
𝑡𝑟 ∈ O (L 𝑋̃𝑉 ).

Since each 𝑎̄𝑖(𝑛) is nilpotent in O (L 𝑋̃𝑉 ) and 𝐼 is finite, each 𝐿0-weight space is
finite-dimensional. �

Theorem 5.5 ([59, 153]) Le 𝑉 be lisse. Then the abelian category of 𝑉-modules is
equivalent to the module category of a finite-dimensional associative algebra.

5.6 Computation of Zhu’s algebras

This section describes some technics to compute the Zhu algebra, and contains some
explicit examples.

5.6.1 PBW basis

Recall that a vertex algebra 𝑉 admits a PBW basis if 𝑅𝑉 is a polynomial algebra and
if the map C[J∞ (𝑋𝑉 )] � gr𝐹𝑉 is an isomorphism (cf. Definition 4.10).

Theorem 5.6 If𝑉 admits a 𝑃𝐵𝑊 basis, then 𝜂𝑉 : 𝑅𝑉 � gr Zhu𝑉 is an isomorphism.

Proof We have gr Zhu(𝑉) = 𝑉/gr(𝑉 ◦𝑉), where gr(𝑉 ◦𝑉) is the associated graded
space of 𝑉 ◦𝑉 with respect to the filtration induced by the filtration 𝑉6𝑝 . We wish to
show that gr(𝑉 ◦𝑉) = 𝐹1𝑉 . Since 𝑎 ◦ 𝑏 ≡ 𝑎 (−2)𝑏 (mod 𝑉6Δ𝑎+Δ𝑏

) for homogeneous
𝑎, 𝑏 ∈ 𝑉 , it is sufficient to show that 𝑎 ◦ 𝑏 ≠ 0 implies that 𝑎 (−2)𝑏 ≠ 0.

Suppose that 𝑎 (−2)𝑏 = (𝑇𝑎) (−1)𝑏 = 0 for homogeneous 𝑎, 𝑏 ∈ 𝑉 . Since 𝑉 admits
a PBW basis, gr𝐹 𝑉 has no zero divisors, whence 𝑇𝑎 = 0. Also, from the PBW
property we find that 𝑇𝑎 = 0 implies that 𝑎 = 𝑐 |0〉 for some constant 𝑐 ∈ C. Thus, 𝑎
is a constant multiple of |0〉, in which case 𝑎 ◦ 𝑏 = 0. �

5.6.2 Universal affine vertex algebras

The universal affine vertex algebra 𝑉 𝑘 (𝔤) admits a PBW basis. Therefore

𝜂𝑉 𝑘 (𝔤) : 𝑅𝑉 𝑘 (𝔤) = C[𝔤∗]
'
−! gr Zhu𝑉 𝑘 (𝔤).

On the other hand, from Lemma 5.3 one finds that

𝑈 (𝔤) −! Zhu(𝑉 𝑘 (𝔤))
𝔤 3 𝑥 7−! [𝑥 (−1) |0〉]

(5.15)
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gives a well-defined algebra homomorphism. This map respects the filtration on both
sides, where the filtration in the left side is the PBW filtration. Hence it induces a
map between their associated graded algebras, which is identical to 𝜂𝑉 𝑘 (𝔤) . Therefore
(5.15) is an isomorphism, that is to say, 𝑉 𝑘 (𝔤) is a chiralization of𝑈 (𝔤).

Exercise 5.2 Extend Theorem 5.6 to the case where 𝔤 is a Lie superalgebra.

Theorem 5.2 gives the following in this example. The top degree component of
the irreducible highest weight representation 𝐿 (𝜆) of 𝔤̂ with highest weight 𝜆 is
𝐿𝔤 (𝜆̄), where 𝜆̄ is the restriction of 𝜆 to the Cartan subalgebra 𝔥 of 𝔤.

Let 𝑁𝑘 = 𝑁𝑘 (𝔤) be the maximal ideal of 𝑉 𝑘 (𝔤) as in Example 3.2 so that

𝐿𝑘 (𝔤) = 𝑉 𝑘 (𝔤)/𝑁𝑘 ,

where 𝐿𝑘 (𝔤) is the unique graded quotient of 𝑉 𝑘 (𝔤). We have the exact sequence
𝐽𝑘 ! 𝑈 (𝔤) ! Zhu(𝐿𝑘 (𝔤)) ! 0, where 𝐽𝑘 is the image of 𝑁𝑘 in Zhu(𝑉) = 𝑈 (𝔤)
through the compound map 𝑁𝑘 ↩! 𝑉 � Zhu(𝑉), and thus

Zhu(𝐿𝑘 (𝔤)) = 𝑈 (𝔤)/𝐽𝑘 .

Hence when the homomorphism 𝜂𝐿𝑘 (𝔤) of Lemma 5.11 is an isomorphism, the
associated variety 𝑋𝐿𝑘 (𝔤) can be viewed as an analog of associated varieties of
primitive ideals (see Section D.4). However, there are substantial differences (see
Example 8.1). In general, it is a hard problem to compute 𝑁𝑘 and 𝐼𝑘 .

5.6.3 Free fermions

Let 𝔫 be a finite-dimensional vector space. We refer to Appendix E for basics on
superalgebras and Clifford algebras.

Consider the Clifford algebra 𝐶𝑙 associated with the vector space 𝔫 ⊕ 𝔫∗ and
the non-degenerate bilinear forms 〈 | 〉 defined by 〈𝜙 + 𝑥 |𝜓 + 𝑦〉 = 𝜙(𝑦) + 𝜓(𝑥) for
𝜙, 𝜓 ∈ 𝔫∗, 𝑥, 𝑦 ∈ 𝔫. Specifically, 𝐶𝑙 is the unital C-superalgebra that is isomorphic
to

∧(𝔫) ⊗ ∧(𝔫∗) as C-vector spaces, and

[𝑥, 𝜙] = 𝜙(𝑥), 𝑥 ∈ 𝔫 ⊂ ∧(𝔫), 𝜙 ∈ 𝔫∗ ⊂ ∧(𝔫∗).

(Note that [𝑥, 𝜙] = 𝑥𝜙 + 𝜙𝑥 since 𝑥, 𝜙 are odd.) Define an increasing filtration on 𝐶𝑙
by setting 𝐶𝑙𝑝 :=

∧6𝑝 (𝔫) ⊗ ∧(𝔫∗). We have

0 = 𝐶𝑙−1 ⊂ 𝐶𝑙0 ⊂ 𝐶𝑙1 ⊂ · · · ⊂ 𝐶𝑙𝑁 = 𝐶𝑙,

where 𝑁 = dim 𝔫, and

𝐶𝑙𝑝 .𝐶𝑙𝑞 ⊂ 𝐶𝑙𝑝+𝑞 , [𝐶𝑙𝑝 , 𝐶𝑙𝑞] ⊂ 𝐶𝑙𝑝+𝑞−1.

As a consequence, the associated graded algebra,
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𝐶𝑙 := gr𝐶𝑙 =
⊕
𝑝>0

𝐶𝑙𝑝

𝐶𝑙𝑝+1
,

is naturally a graded Poisson superalgebra. We have 𝐶𝑙 =
∧(𝔫) ⊗ ∧(𝔫∗) as a

commutative superalgebra, and its Poisson (super)bracket is given by:

{𝑥, 𝜙} = 𝜙(𝑥), {𝑥, 𝑦} = 0, {𝜙, 𝜓} = 0, 𝑥, 𝑦 ∈ 𝔫 ⊂ ∧(𝔫), 𝜙, 𝜓 ∈ 𝔫∗ ⊂ ∧(𝔫∗).

The charged fermion Fock space

The Clifford affinization 𝐶𝑙 of 𝔫 is the Clifford algebra associated with 𝔫[𝑡, 𝑡−1] ⊕
𝔫∗ [𝑡, 𝑡−1] and its symmetric bilinear form defined by

〈𝑥𝑡𝑚 | 𝑓 𝑡𝑛〉 = 𝛿𝑚+𝑛,0 𝑓 (𝑥), 〈𝑥𝑡𝑚 |𝑦𝑡𝑛〉 = 0 = 〈 𝑓 𝑡𝑚 |𝑔𝑡𝑛〉

for 𝑥, 𝑦 ∈ 𝔫, 𝑓 , 𝑔 ∈ 𝔫∗, 𝑚, 𝑛 ∈ Z.
Let {𝑥𝑖}16𝑖6𝑠 be a basis of 𝔫, and {𝑥∗

𝑖
}16𝑖6𝑠 its dual basis. We write 𝜓𝑖,𝑚 for

𝑥𝑖𝑡
𝑚 ∈ 𝐶𝑙 and 𝜓∗

𝑖,𝑚
for 𝑥∗

𝑖
𝑡𝑚 ∈ 𝐶𝑙, so that 𝐶𝑙 is the associative superalgebra with

• odd generators: 𝜓𝑖,𝑚, 𝜓∗
𝑖,𝑚

, 𝑚 ∈ Z, 𝑖 = {1, . . . , 𝑠},
• relations: [𝜓𝑖,𝑚, 𝜓 𝑗 ,𝑛] = [𝜓∗

𝑖,𝑚
, 𝜓∗

𝑗 ,𝑛
] = 0, [𝜓𝑖,𝑚, 𝜓∗

𝑗 ,𝑛
] = 𝛿𝑖, 𝑗𝛿𝑚+𝑛,0.

Define the charged fermion Fock space associated with 𝔫 as

F (𝔫) :=
𝐶𝑙∑

𝑚>0
16𝑖6𝑠

𝐶𝑙𝜓𝑖,𝑚 + ∑
𝑘>1

16 𝑗6𝑠

𝐶𝑙𝜓∗
𝑗 ,𝑘

�
∧(
𝜓𝑖,𝑛

)
𝑛<0

16𝑖6𝑠
⊗ ∧(

𝜓∗
𝑗 ,𝑚

)
𝑚60

16 𝑗6𝑠
,

where
∧(𝑎𝑖)𝑖∈𝐼 denotes the exterior algebra with generators 𝑎𝑖 , 𝑖 ∈ 𝐼. It is an

irreducible 𝐶𝑙-module, and as C-vector spaces we have

F (𝔫) � ∧(𝔫∗ [𝑡−1]) ⊗ ∧(𝔫[𝑡−1]𝑡−1).

There is a unique vertex (super)algebra structure on F (𝔫) such that the image of 1
is the vacuum |0〉 and

𝑌 (𝜓𝑖,−1 |0〉, 𝑧) = 𝜓𝑖 (𝑧) :=
∑︁
𝑛∈Z

𝜓𝑖,𝑛𝑧
−𝑛−1, 𝑖 = 1, . . . , 𝑠,

𝑌 (𝜓∗
𝑖,0 |0〉, 𝑧) = 𝜓

∗
𝑖 (𝑧) :=

∑︁
𝑛∈Z

𝜓∗
𝑖,𝑛𝑧

−𝑛, 𝑖 = 1, . . . , 𝑠.

We have 𝐹1F (𝔫) = 𝔫∗ [𝑡−1]𝑡−1F (𝔫) + 𝔫[𝑡−1]𝑡−2F (𝔫), and it follows that there is an
isomorphism
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𝐶𝑙
'
−! 𝑅F(𝔫) ,

𝑥𝑖 7−! 𝜓𝑖,−1 |0〉,
𝑥∗
𝑖
7−! 𝜓∗

𝑖,0 |0〉

as Poisson superalgebras. Thus,

𝑋F(𝔫) = 𝑇
∗ (Π𝔫),

where Π𝔫 is the space 𝔫 considered as a purely odd affine space. Its arc space
J∞ (𝑇∗ (Π𝔫)) is also regarded as a purely odd affine space, such that

C[J∞ (𝑇∗ (Π𝔫))] = ∧(𝔫∗ [𝑡−1]) ⊗ ∧(𝔫[𝑡−1]𝑡−1).

The map C[J∞ (𝑋F(𝔫) )] ! grF (𝔫) is an isomorphism and, hence, F (𝔫) admits a
PBW basis. Therefore we have the isomorphism

𝜂F(𝔫) : 𝑅F(𝔫) = 𝐶𝑙
'
−! gr Zhu(F (𝔫))

by Exercise 5.2. On the other hand the map

𝐶𝑙 −! Zhu(F (𝔫))
𝑥𝑖 7−! 𝜓𝑖,−1 |0〉,
𝑥∗
𝑖
7−! 𝜓∗

𝑖,0 |0〉

gives an algebra homomorphism that respects the filtration. Hence we have

Zhu(F (𝔫)) � 𝐶𝑙.

That is, F (𝔫) is a chiralization of 𝐶𝑙.





Chapter 6
Poisson vertex modules and their associated
variety

In this chapter we give the definition of a Poisson vertex modules over a Poisson
vertex algebra and we study some their properties. This notion will be useful to
construct new Poisson vertex algebras in Chap. ?? applying the BRST reduction.

6.1 Poisson vertex modules

Definition 6.1 A Poisson vertex module over a Poisson vertex algebra 𝑉 is a 𝑉-
module 𝑀 in the usual sense of vertex 𝑉-module, equipped with a linear map

𝑉 7! (End𝑀) [[𝑧−1]]𝑧−1, 𝑎 7! 𝑌𝑀− (𝑎, 𝑧) =
∑︁
𝑛>0

𝑎𝑀(𝑛) 𝑧
−𝑛−1,

satisfying

𝑎𝑀(𝑛)𝑚 = 0 for 𝑛 � 0, (6.1)

(𝑇𝑎)𝑀(𝑛) = −𝑛𝑎𝑀(𝑛−1) , (6.2)

𝑎𝑀(𝑛) (𝑏𝑣) = (𝑎𝑀(𝑛)𝑏)𝑣 + 𝑏(𝑎
𝑀
(𝑛)𝑣), (6.3)

[𝑎𝑀(𝑚) , 𝑏
𝑀
(𝑛) ] =

∑︁
𝑖>0

(
𝑚

𝑖

)
(𝑎 (𝑖)𝑏)𝑀(𝑚+𝑛−𝑖) , (6.4)

(𝑎𝑏)𝑀(𝑛) =
∞∑︁
𝑖=0

(𝑎 (−𝑖−1)𝑏
𝑀
(𝑛+𝑖) + 𝑏 (−𝑖−1)𝑎

𝑀
(𝑛+𝑖) ) (6.5)

for all 𝑎, 𝑏 ∈ 𝑉 , 𝑚, 𝑛 > 0, 𝑣 ∈ 𝑀 .

A Poisson vertex algebra 𝑉 is naturally a Poisson vertex module over itself.

Example 6.1 Let 𝑀 be a Poisson vertex module over C[J∞ (𝔤∗)]. Then by (6.4), the
assignment

111
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𝑥𝑡𝑛 7! 𝑥𝑀(𝑛) , 𝑥 ∈ 𝔤 � (𝔤∗)∗ ⊂ C[𝔤∗] ⊂ C[J∞ (𝔤∗)], 𝑛 > 0,

defines a J∞ (𝔤) = 𝔤[[𝑡]]-module structure on 𝑀 . In fact, a Poisson vertex module
over C[J∞ (𝔤∗)] is the same as a C[J∞ (𝔤∗)]-module 𝑀 in the usual associative
sense equipped with an action of the Lie algebra J∞ (𝔤) such that (𝑥𝑡𝑛)𝑚 = 0 for
𝑛 � 0, 𝑥 ∈ 𝔤, 𝑚 ∈ 𝑀 , and

(𝑥𝑡𝑛) · (𝑎𝑚) = (𝑥 (𝑛)𝑎) · 𝑚 + 𝑎(𝑥𝑡𝑛) · 𝑚

for 𝑥 ∈ 𝔤, 𝑛 > 0, 𝑎 ∈ C[J∞ (𝔤∗)], 𝑚 ∈ 𝑀 .

Below we often write 𝑎 (𝑛) for 𝑎𝑀(𝑛) .
The proofs of the following assertions are straightforward. (We refer to §C.6 for

the definition of Poisson modules.)

Lemma 6.1 Let 𝑅 be a Poisson algebra, 𝐸 a Poisson module over 𝑅. There is a
unique Poisson vertex J∞ (𝑅)-module structure on J∞ (𝑅) ⊗𝑅 𝐸 such that

𝑎 (𝑛) (𝑏 ⊗ 𝑚) = (𝑎 (𝑛)𝑏) ⊗ 𝑚 + 𝛿𝑛,0𝑏 ⊗ {𝑎, 𝑚}

for 𝑛 > 0, 𝑎 ∈ 𝑅 ⊂ J∞ (𝑅), 𝑏 ∈ J∞ (𝑅), 𝑚 ∈ 𝐸 (Recall that J∞ (𝑅) =

C[J∞ (Spec 𝑅)].)

Proof Proof? �

Lemma 6.2 Let 𝑅 be a Poisson algebra, 𝑀 a Poisson vertex module over J∞ (𝑅).
Suppose that there exists a 𝑅-submodule 𝐸 of 𝑀 (in the usual commutative sense)
such that 𝑎 (𝑛)𝐸 = 0 for 𝑛 > 0, 𝑎 ∈ 𝑅, and that 𝑀 is generated by 𝐸 (in the usual
commutative sense). Then there exists a surjective homomorphism

J∞ (𝑅) ⊗𝑅 𝐸 � 𝑀

of Poisson vertex modules.

Proof Proof? �

6.2 Canonical filtration of modules over vertex algebras

Let 𝑉 be a vertex algebra graded by a Hamiltonian 𝐻. A compatible filtration of a
𝑉-module 𝑀 is a decreasing filtration

𝑀 = Γ0𝑀 ⊃ Γ1𝑀 ⊃ · · ·

such that
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𝑎 (𝑛)Γ
𝑞𝑀 ⊂ Γ𝑝+𝑞−𝑛−1𝑀 for 𝑎 ∈ 𝐹 𝑝𝑉, ∀𝑛 ∈ Z,

𝑎 (𝑛)Γ
𝑞𝑀 ⊂ Γ𝑝+𝑞−𝑛𝑀 for 𝑎 ∈ 𝐹 𝑝𝑉, 𝑛 > 0,

𝐻.Γ𝑝𝑀 ⊂ Γ𝑝𝑀 for all 𝑝 > 0,⋂
𝑝

Γ𝑝𝑀 = 0.

For a compatible filtration Γ•𝑀 , the associated graded space

grΓ𝑀 =
⊕
𝑝>0

Γ𝑝𝑀/Γ𝑝+1𝑀

is naturally a graded vertex Poison module over the graded vertex Poisson algebra
gr𝐹𝑉 , and hence, it is a graded vertex Poison module over J∞ (𝑅𝑉 ) = C[𝑋̃𝑉 ] by
Theorem ??.

The vertex Poisson J∞ (𝑅𝑉 )-module structure of grΓ𝑀 restricts to a Poisson
𝑅𝑉 -module structure of 𝑀/Γ1𝑀 = Γ0𝑀/Γ1𝑀 , and 𝑎 (𝑛) (𝑀/Γ1𝑀) = 0 for 𝑎 ∈
𝑅𝑉 ⊂ J∞ (𝑅𝑉 ), 𝑛 > 0. It follows that there is a homomorphism

J∞ (𝑅𝑉 ) ⊗𝑅𝑉
(𝑀/Γ1𝑀) ! grΓ𝑀, 𝑎 ⊗ 𝑚̄ 7! 𝑎𝑚̄,

of vertex Poisson modules by Lemma 6.2.
Let {𝑎𝑖 | 𝑖 ∈ 𝐼} be a set of strong generators of 𝑉 . Set

𝐹 𝑝𝑀 = spanC{𝑎1
(−𝑛1−1) . . . 𝑎

𝑟
(−𝑛𝑟−1)𝑚 | 𝑎𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑛1 + · · · + 𝑛𝑟 > 𝑝}.

Proposition 6.1 ([143]) 𝐹•𝑀 is a compatible filtration of 𝑀 . In fact, it is the finest
compatible filtration of 𝑀 , that is, 𝐹 𝑝𝑀 ⊂ Γ𝑝𝑀 for all 𝑝 for any compatible
filtration Γ•𝑀 of 𝑀 . In particular, 𝐹•𝑀 is independent of the choice of strong
generators.

Proof Proof �

𝐹•𝑀 is called the Li filtration [143] of 𝑀 .
The subspace 𝐹1𝑀 is spanned by the vectors 𝑎 (−2)𝑚 with 𝑎 ∈ 𝑉 , 𝑚 ∈ 𝑀 , which

is often denoted by 𝐶2 (𝑀) in the literature. Set

𝑀 = 𝑀/𝐹1𝑀 (= 𝑀/𝐶2 (𝑀)), (6.6)

which is a Poisson module over 𝑅𝑉 = 𝑉 .

Proposition 6.2 ([143, Proposition 4.12]) By [143, Proposition 4.12], the vertex
Poisson module homomorphism

J∞ (𝑅𝑉 ) ⊗𝑅𝑉
𝑀 ! gr𝐹𝑀

is surjective.
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Proof Proof? �

Let {𝑎𝑖 ; 𝑖 ∈ 𝐼} be elements of 𝑉 such that their images generate 𝑅𝑉 in the usual
commutative sense, and let 𝑈 be a subspace of 𝑀 such that 𝑀 = 𝑈 + 𝐹1𝑀 . The
surjectivity of the above map is equivalent to that

𝐹 𝑝𝑀 (6.7)

= spanC{𝑎
𝑖1
(−𝑛1−1) . . . 𝑎

𝑖𝑟
(−𝑛𝑟−1)𝑚 | 𝑚 ∈ 𝑈, 𝑛𝑖 > 0, 𝑛1 + · · · + 𝑛𝑟 > 𝑝, 𝑖1, . . . , 𝑖𝑟 ∈ 𝐼}.

Lemma 6.3 Let 𝑉 be a vertex algebra, 𝑀 a 𝑉-module. The Poisson vertex algebra
module structure of gr𝐹𝑀 restricts to the Poisson module structure of𝑀 := 𝑀/𝐹1𝑀
over 𝑅𝑉 , that is, 𝑀 is a Poisson 𝑅𝑉 -module by

𝑎̄ · 𝑚̄ = 𝑎 (−1)𝑚, ad(𝑎̄) (𝑚̄) = 𝑎 (0)𝑚, 𝑎̄ ∈ 𝑅𝑉 , 𝑚 ∈ 𝑀.

A 𝑉-module 𝑀 is called finitely strongly generated if 𝑀 is finitely generated as a
𝑅𝑉 -module in the usual associative sense.

Definition 6.2 For a finitely strongly generated 𝑉-module 𝑀 , define its associated
variety 𝑋𝑀 by

𝑋𝑀 = supp𝑅𝑉
(𝑀)

= {𝔭 ∈ Spec 𝑅𝑉 ; 𝔭 ⊃ Ann𝑅𝑉
(𝑀)} ⊂ 𝑋𝑉 ,

equipped with the reduced scheme structure.

A finitely strongly generated 𝑉-module 𝑀 is called lisse, or 𝐶2-cofinite. if
dim 𝑋𝑀 = 0.

Lemma 6.4 ([6, Lem. 3.2.2]) Let 𝑀 be a finitely strongly generated𝑉-module. Then
the following are equivalent:

(i) 𝑀 is lisse.
(ii) 𝑀̄ is finite-dimensional.

Proof Proof? �

6.3 Example: Associated varieties of modules over affine vertex
algebras

For a𝑉 = 𝑉 𝜅 (𝔞)-module 𝑀 , or equivalently (cf. §??), a smooth 𝔞̂𝜅 -module, we have

𝑀 = 𝑀/𝔞[𝑡−1]𝑡−2𝑀,

and the Poisson C[𝔞∗]-module structure is given by
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𝑥 · 𝑚̄ = (𝑥𝑡−1)𝑚, ad(𝑥)𝑚 = 𝑥𝑚, 𝑥 ∈ 𝔞, 𝑚 ∈ 𝑀.

Now suppose that 𝐺 is a connected semisimple group, 𝔤 = Lie(𝐺).
Let KL(𝔤̂𝜅 ) be the full subcateogory of the category of 𝔤̂𝜅 -modules consisting

of modules on which 𝑡𝔤[𝑡] acts locally nilpotently and 𝔤 acts semisimply. Clearly,
KL(𝔤̂𝜅 ) is an abelian category, which can be regarded as full subcategories of the
category of 𝑉 𝜅 (𝔤)-modules.

For a 𝔤-module 𝐸 , let

𝑉𝜅 (𝐸) := 𝑈 (𝔤̂𝜅 ) ⊗𝑈 (𝔤[𝑡 ] ⊕C1) 𝐸,

where 𝐸 is considered as a 𝔤[𝑡] ⊕C1-module on which 𝔤[𝑡] acts trivially and 1
acts as the identity. Then 𝑉𝜅 (𝐸) is an object of KL(𝔤̂𝜅 ) for a finite dimensional
representation 𝐸 of 𝔤. Note that 𝑉 𝑘 (𝔤) = 𝑉𝜅 (C) and its simple quotient 𝐿𝜅 (𝔤) are
also objects of KL(𝔤̂𝜅 ).

Lemma 6.5 For 𝑀 ∈ KL(𝔤̂𝜅 ) the following conditions are equivalent:

(1) 𝑀 is finitely strongly generated as a 𝑉 𝑘 (𝔤)-module,
(2) 𝑀 is finitely generated as a 𝔤[𝑡−1]𝑡−1-module,
(3) 𝑀 is finitely generated as a 𝔤̂𝜅 -module.

Proof Proof? �

Exercise 6.1 We have 𝑉𝜅 (𝐸) � C[𝔤∗] ⊗ 𝐸 and 𝑋𝑉𝜅 (𝐸) = 𝔤∗ for a finite dimensional
representation 𝐸 of 𝔤.

6.4 Frenkel-Zhu’s bimodules

Recall that for a graded vertex algebra 𝑉 , its Zhu’s algebra is defined by Zhu(𝑉) =
𝑉/𝑉 ◦ 𝑉 . There is a similar construction for modules due to Frenkel and Zhu [80].
For a 𝑉-module 𝑀 , set

Zhu(𝑀) = 𝑀/𝑉 ◦ 𝑀,

where 𝑉 ◦ 𝑀 is the subspace of 𝑀 spanned by the vectors

𝑎 ◦ 𝑚 =
∑︁
𝑖>0

(
Δ𝑎
𝑖

)
𝑎 (𝑖−2)𝑚

for 𝑎 ∈ 𝑉Δ𝑎
, Δ𝑎 ∈ Z, and 𝑚 ∈ 𝑀 .

Proposition 6.3 ([80]) Zhu(𝑀) is a bimodule over Zhu(𝑉) by the multiplications

𝑎 ∗ 𝑚 =
∑︁
𝑖>0

(
Δ𝑎
𝑖

)
𝑎 (𝑖−1)𝑚, 𝑚 ∗ 𝑎 =

∑︁
𝑖>0

(
Δ𝑎 − 1
𝑖

)
𝑎 (𝑖−1)𝑚
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for 𝑎 ∈ 𝑉Δ𝑎
, Δ𝑎 ∈ Z, and 𝑚 ∈ 𝑀 .

Proof Proof? �

Thus, we have a right exact functor

𝑉 -Mod! Zhu(𝑉) -biMod, 𝑀 7! Zhu(𝑀),

where Zhu(𝑉) -biMod is the category of bimodules over Zhu(𝑉).

Lemma 6.6 Let 𝑀 =
⊕

𝑑∈ℎ+Z>0
𝑀𝑑 be a positive energy representation of a Z>0-

graded vertex algebra 𝑉 . Define an increasing filtration {Zhu𝑝 (𝑀)}𝑝 on Zhu(𝑉)
by

Zhu𝑝 (𝑀) = im(
ℎ+𝑝⊕
𝑑=ℎ

𝑀𝑝 ! Zhu(𝑀)).

(i) We have

Zhu𝑝 (𝑉) · Zhu𝑞 (𝑀) · Zhu𝑟 (𝑉) ⊂ Zhu𝑝+𝑞+𝑟 (𝑀),
[Zhu𝑝 (𝑉),Zhu𝑞 (𝑀)] ⊂ Zhu𝑝+𝑞−1 (𝑀).

Therefore gr Zhu(𝑀) =
⊕

𝑝 Zhu𝑝 (𝑀)/Zhu𝑝−1 (𝑀) is a Poisson gr Zhu(𝑉)-
module, and hence is a Poisson 𝑅𝑉 -module through the homomorphism 𝜂𝑉 : 𝑅𝑉 �
gr Zhu(𝑉).

(ii) There is a natural surjective homomorphism

𝜂𝑀 : 𝑀̄ (= 𝑀/𝐹1𝑀) ! gr Zhu(𝑀)

of Poisson 𝑅𝑉 -modules. This is an isomorphism if 𝑉 admits a PBW basis and
gr𝑀 is free over gr𝑉 .

Example 6.2 Let 𝑀 = 𝑉 𝑘
𝐸

. Since gr𝑉 𝑘
𝐸

is free over C[J∞ (𝔤∗)], we have the isomor-
phism

𝜂𝑉 𝑘
𝐸

: 𝑉 𝑘
𝐸
= 𝐸 ⊗ C[𝔤∗] '

−! gr Zhu(𝑉 𝑘𝐸 ).

On the other hand, there is a𝑈 (𝔤)-bimodule homomorphism

𝐸 ⊗ 𝑈 (𝔤) ! Zhu(𝑉 𝑘𝐸 ),
𝑣 ⊗ 𝑥1 . . . 𝑥𝑟 7! (1 ⊗ 𝑣) ∗ (𝑥1𝑡

−1) ∗ · · · ∗ (𝑥𝑟 𝑡−1) +𝑉 𝑘 (𝔤) ◦𝑉 𝑘𝐸
(6.8)

which respects the filtration. Here the𝑈 (𝔤)-bimodule structure of𝑈 (𝔤) ⊗ 𝐸 is given
by

𝑥(𝑣 ⊗ 𝑢) = (𝑥𝑣) ⊗ 𝑢 + 𝑣 ⊗ 𝑥𝑢, (𝑣 ⊗ 𝑢)𝑥 = 𝑣 ⊗ (𝑢𝑥),
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and the filtration of 𝑈 (𝔤) ⊗ 𝐸 is given by {𝑈𝑖 (𝔤) ⊗ 𝐸}. Since the induced homo-
morphism between associated graded spaces (6.8) coincides with 𝜂𝑉 𝑘

𝐸
, (6.8) is an

isomorphism.

Let HC be the category of Harish-Chandra bimodules, that is, the full subcate-
gory of the category of𝑈 (𝔤)-bimodules consisting of objects 𝑀 on which the adjoint
action of 𝔤 is integrable, that is, locally finite.

Lemma 6.7 For 𝑀 ∈ KL𝑘 , we have Zhu(𝑀) ∈ HC. If 𝑀 is finitely generated, then
so is Zhu(𝑀).





Part III
Quasi-lisse vertex algebras



As a Poisson variety, the associated variety of a vertex algebra is a finite disjoint
union of smooth analytic Poisson manifolds, and it is stratified by its symplectic
leaves. The case where the associated variety has finitely many symplectic leaves is
particularly interesting. They were first considered by the authors in [24], and then
referred to as quasi-lisse vertex algebras in [15].

Definition 6.3 ([15]) A finitely strongly generated Z>0-graded vertex algebra 𝑉 is
called quasi-lisse if 𝑋𝑉 has only finitely many symplectic leaves.

Lisse vertex algebras appear as special cases quasi-lisse vertex algebras: those
vertex algebras whose associated variety is just a point (remember that all vertex
algebras are assumed to be strongly generated and Z>0-graded).

In this part we give various examples of quasi-lisse vertex algebras, and present
remarkable properties of lisse and quasi-lisse vertex algebras. Most of our examples
are particular cases of (simple) affine vertex algebras. We will see other examples
Part IV in the context of 𝑊-algebras by taking the quantized Drinfeld-Sokolov
reduction of quasi-lisse affine vertex algebras. There are other expected examples
coming from four dimensional N = 2 superconformal field theories.

As a first motivation, let us comment the quasi-lisse condition in the setting of
affine vertex algebras.

We have seen that 𝑉 𝑘 (𝔤) plays a role similar to that of the enveloping algebra of
𝔤 for the representation theory of the affine Kac-Moody algebra 𝔤̂ (cf. §??). Because
of this, it would be nice to have analogs of the associated varieties of primitive ideals
in this context (see Section D.4). Unfortunately, one cannot expect exactly the same
theory. One of the main reasons is that the center of 𝑈 (𝔤̂) is trivial (unless for the
critical level 𝑘 = −ℎ∨), and so we do not have analog of the nilpotent cone (for
the critical level, the analog is played by the arc space of the nilpotent cone, see
Example 1.3 and Exercice 3.3). So we need some replacements. In this context, the
associated variety of the highest weight irreducible representation 𝐿 (𝑘Λ0) = 𝐿𝑘 (𝔤)
of 𝔤̂, 𝑘 ∈ C, viewed as a vertex algebra, is a better analog. More generally, one can
consider the associated variety of any irreducible highest representation 𝐿 (𝜆) of 𝔤̂,
by exploiting the notion of associated variety for any module over a vertex algebra;
see Section 6.3. We will see next chapters some analogies between the associated
variety of 𝐿𝑘 (𝔤) and the associated variety of primitive ideals. However, there are
substantial differences. For example, since 𝐿𝑘 (𝔤) � 𝑉 𝑘 (𝔤) for 𝑘 ∉ Q (cf. [114]), we
see that 𝑋𝐿𝑘 (𝔤) is not always contained in the nilpotent cone N of 𝔤. We observe that
𝑋𝐿𝑘 (𝔤) is contained in the nilpotent cone N if and only if 𝐿𝑘 (𝔤) is quasi-lisse (see
Proposition 8.1). Thus, in this context, the quasi-lisse condition looks very natural.

This part is structured as follows. Chap. 7 is devoted to lisse and rational vertex
algebras. Chap. 8 contains various examples of quasi-lisse (simple) affine vertex alge-
bras. Remarkable properties of quasi-lisses vertex algebras are described in Chap. 9.
We also discussed in this chapter open problems (the irreducibility conjecture and
the Higgs branch conjecture in physics) related to quasi-lisse vertex algebras. In
fact, the vertex algebras constructed from 4d SCFTs are expected to be quasi-lisse,
since their associated varieties conjecturally coincide with the Higgs branches of the
corresponding four dimensional theories ([170]).



Chapter 7
Lisse and rational vertex algebras

Recall that a vertex algebra 𝑉 is called lisse if dim 𝑋𝑉 = 0, or equivalently, if 𝑅𝑉
is finite-dimensional (see Section 4.7). Examples of lisse vertex algebras are given
in Section 7.1 and Section 7.2 below. Close to the lisse condition, we have the
rationality condition:

Definition 7.1 A conformal vertex algebra 𝑉 is called rational if every Z>0-graded
𝑉-modules is completely reducible (that is, isomorphic to a direct sum of simple
𝑉-modules).

Our below examples are actually also examples of rational vertex algebras. In Sec-
tion 7.3 we list a few properties of lisse vertex algebras and rational vertex algebras,
and we discuss the connections between the lisse and the rationality conditions.

7.1 Integrable representations of affine Kac-Moody algebras

Let 𝔤 be a complex simple Lie algebra. Recall that the irreducible 𝔤-representation
𝐿𝔤 (𝜆), with highest weight 𝜆 ∈ 𝔥∗, is finite-dimensional if and only if its associated
variety V (Ann𝑈 (𝔤) (𝐿𝔤 (𝜆))) is zero (Example D.6). Contrary to irreducible highest
weight representations of 𝔤, the irreducible 𝔤̂-representation 𝐿 (𝜆), where 𝜆 ∈ 𝔥̂∗, is
finite-dimensional if and only if 𝜆 = 0, that is, 𝐿 (𝜆) is the trivial representation.

The notion of finite-dimensional representations has to be replaced by the notion
of integrable representations in the category O . (See Section A.4 and Section A.5 for
the category O and the definition of integrable representations for affine Kac-Moody
algebras.)

Let 𝑘 ∈ C. Recall that the simple affine vertex algebra 𝐿𝑘 (𝔤) is isomorphic to the
irreducible highest weight representation 𝐿 (𝑘Λ0) as a 𝔤̂-module.

Theorem 7.1 ([8, 61]) The following are equivalent:

(i) 𝐿𝑘 (𝔤) is rational,

121
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(ii) 𝐿𝑘 (𝔤) is lisse, that is, 𝑋𝐿𝑘 (𝔤) = {0},
(iii) 𝐿𝑘 (𝔤) is integrable as a 𝔤̂-module (which happens if and only if 𝑘 ∈ Z>0).

It should be noted a clear analogy between the equivalence (iii) ⇐⇒ (iii) and the
equivalence mentioned in Example D.6.

The equivalence (i) ⇐⇒ (iii) is well-known ref ?, as well as the last equivalence
in parenthesis of Part (iii). We explain below only the implication (iii) ⇒ (ii).

Lemma 7.1 Let (𝑅, 𝜕) be a differential algebra over Q, and let 𝐼 be a differential
ideal of 𝑅, i.e., 𝐼 is an ideal of 𝑅 such that 𝜕𝐼 ⊂ 𝐼. Then 𝜕

√
𝐼 ⊂

√
𝐼.

Proof Let 𝑎 ∈
√
𝐼, so that 𝑎𝑚 ∈ 𝐼 for some 𝑚 ∈ Z>0. Since 𝐼 is 𝜕-invariant, we have

𝜕𝑚𝑎𝑚 ∈ 𝐼. But
𝜕𝑚𝑎𝑚 ≡ 𝑚!(𝜕𝑎)𝑚 (mod

√
𝐼).

Hence (𝜕𝑎)𝑚 ∈
√
𝐼, and therefore, 𝜕𝑎 ∈

√
𝐼. �

Recall that a singular vector of a 𝔤̂-representation 𝑀 is a vector 𝑣 ∈ 𝑀 such that
𝔫̂.𝑣 = 0, if 𝔤̂ = 𝔫̂−⊕ 𝔥̂⊕ 𝔫̂ is a trianglar decomposition of 𝔤̂ (see §A.4.3). In particular,
regarding 𝑉 𝑘 (𝔤) as a 𝔤̂-representation, a vector 𝑣 ∈ 𝑉 𝑘 (𝔤) is singular if and only if
𝔫̂.𝑣 = 0.

In the case where 𝑘 is a nonnegative integer, the maximal submodule 𝑁𝑘 of
𝑉 𝑘 (𝔤) is generated by the singular vector (𝑒𝜃 𝑡−1)𝑘+1 |0〉 ([111]), where 𝜃 is the
highest positive root and 𝑒𝜃 ∈ 𝔤𝜃 \ {0}.

Proof (Proof of the implication (iii) ⇒ (ii) in Theorem 7.1) Suppose that 𝐿𝑘 (𝔤) is
integrable. This condition is equivalent to that 𝑘 ∈ Z>0 and, if so, the maximal
submodule 𝑁𝑘 (𝔤) of 𝑉 𝑘 (𝔤) is generated by the singular vector (𝑒𝜃 𝑡−1)𝑘+1 |0〉. The
exact sequence 0! 𝑁𝑘 (𝔤) ! 𝑉 𝑘 (𝔤) ! 𝐿𝑘 (𝔤) ! 0 induces the exact sequence

0! 𝐼𝑘 ! 𝑅𝑉 𝑘 (𝔤) ! 𝑅𝐿𝑘 (𝔤) ! 0,

where 𝐼𝑘 is the image of 𝑁𝑘 in 𝑅𝑉 𝑘 (𝔤) = C[𝔤∗], and so, 𝑅𝐿𝑘 (𝔤) = C[𝔤∗]/𝐼𝑘 . The
image of the singular vector in 𝐼𝑘 is given by 𝑒𝑘+1

𝜃
. Therefore, 𝑒𝜃 ∈

√
𝐼𝑘 . On the

other hand, by Lemma 7.1,
√
𝐼𝑘 is preserved by the adjoint action of 𝔤. Since 𝔤 is

simple, 𝔤 ⊂
√
𝐼𝑘 . This proves that 𝑋𝐿𝑘 (𝔤) = {0} as required. �

The proof of the “only if” part follows from [61]. It can also be proven using
W-algebras.

In view of Theorem 7.1, one may regard the lisse condition as a generalization of
the integrability condition to an arbitrary vertex algebra.

7.2 Minimal series representations of the Virasoro algebra

Let 𝑐 ∈ C. Denote by 𝑁𝑐 the unique maximal submodule of the Virasoro vertex
algebra Vir𝑐 , and let Vir𝑐 := Vir𝑐/𝑁𝑐 be the simple quotient.
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Theorem 7.2 The following are equivalent:

(i) Vir𝑐 is rational,
(ii) Vir𝑐 is lisse,

(iii) 𝑐 = 1 − 6(𝑝 − 𝑞)2

𝑝𝑞
for some 𝑝, 𝑞 ∈ Z>2 such that (𝑝, 𝑞) = 1. (These are

precisely the central charge of the minimal series representations of the Virasoro
algebra 𝑉𝑖𝑟 .)

The equivalence (ii) ⇐⇒ (iii) is well-known [181].
We explain below the equivalence (i) ⇐⇒ (iii) (see [6, Prop. 3.4.1]).

Proof (Proof of equivalence (i) ⇐⇒ (iii) in Theorem 7.2) It is known that the im-
age of 𝑁𝑐 in 𝑅Vir𝑐 is nonzero if 𝑁𝑐 ≠ 0 (see e.g., [181, Lem 4.2 and 4.3] or [95,
Prop. 4.3.2]. Therefore 𝑋Vir𝑐 = {0} if and only if Vir𝑐 is not irreducible. This happens
if and only if the central charge is of the form in (iii) ([110, 74, 95]). �

7.2.1

Where to add the results of Heluani-Van Ekeren on arc spaces of Virasoro? Here?

7.3 On the lisse and the rational conditions

It is known ([59]) that the rationality condition implies that 𝑉 has finitely many
simple Z>0-graded modules and that the graded components of each of these Z>0-
graded modules are finite dimensional. In fact lisse vertex algebras also verify this
property. More precisely, we have:

Theorem 7.3 ([1, 184, 157]) Let 𝑉 be a Z>0-graded conformal lisse vertex algebra.

(i) Any simple 𝑉-module is a positive energy representation, that is, a positively
graded 𝑉-module. Therefore the number of isomorphic classes of simple 𝑉-
modules is finite.

(ii) Let 𝑀1, . . . , 𝑀𝑠 be representatives of these classes, and let for 𝑖 = 1, . . . , 𝑠,

𝜒𝑀𝑖
(𝜏) = Tr𝑀𝑖

(𝑞𝐿0− 𝑐
24 ) =

∑︁
𝑛>0

dim(𝑀𝑖)𝑛𝑞𝑛−
𝑐
24 , 𝑞 = 𝑒2𝑖 𝜋𝜏 ,

be the normalized character of 𝑀𝑖 . Then 𝜒𝑀𝑖
(𝜏) converges in the Poincaré half-

plane {𝜏 ∈ C | Im(𝜏) > 0}, and the vector space generated by 𝑆𝐿2 (Z).𝜒𝑀𝑖
(𝜏) is

finite-dimensional.

If𝑉 is as in Theorem 7.3 and also rational, it is known [103] that under some mild
assumptions, the category of𝑉-modules forms a modular tensor category, which for



124 7 Lisse and rational vertex algebras

instance yields an invariant of 3-manifolds, see [31]. It is actually conjectured by
Zhu in [184] that rational vertex algebras must be lisse (this conjecture is still open).

The converse is not true: is there a known counter-example? Conjecturally, we
have𝑊𝑘 (𝔤, 𝑓𝑚𝑖𝑛) with 𝔤 ∈ DES and 𝑘 = −ℎ∨/6 − 1 + 𝑛 such that 𝑘 ∈ Z>0...

There are significant vertex algebras that do not satisfy the lisse condition. For
instance, an admissible affine vertex algebra 𝐿𝑘 (𝔤) (see Section 8.2) has a com-
plete reducibility property ([9]), and the modular invariance property ([117]) in the
category O still holds, although it is not lisse unless it is integrable.

So it is natural to try to relax the lisse condition. This is the purpose of the next
chapters.



Chapter 8
Examples of affine quasi-lisse vertex algebras

We now intend to give various examples of quasi-lisse vertex algebras in the context
of affine vertex algebras. We start in Section 8.1 with general facts on the associated
variety of affine vertex algebras. Then we focus essentially on two interesting families
of quasi-lisse simple affine vertex algebras: those coming from admissible levels
(Section 8.2) and those coming from the Deligne exceptional series (Section 8.3).
So far, they are roughly the only known quasi-lisse simple affine vertex algebras (see
Remark 8.1 for a couple of other known cases) while they are certainly much more
examples.

In what follows, 𝔤 is a complex simple Lie algebra with adjoint group 𝐺, and N
is the nilpotent cone of 𝔤, that is, the set of nilpotent elements of 𝔤. We identify 𝔤

with its dual 𝔤∗ using a non-degenerate bilinear form, for instance the bilinear form

( | ) = 1
ℎ∨

×Killing form of 𝔤. We shall use the notations of Appendix D, particularly
for the nilpotent orbits in 𝔰𝔩𝑛 in correspondence with partition of 𝑛 (Section D.2).

8.1 General facts on associated varieties of affine vertex algebras

Let 𝑉 𝑘 (𝔤) be the universal affine vertex algebra associated with 𝔤 at the level 𝑘 ∈ C.
Recall first that the associated variety of 𝑉 𝑘 (𝔤) is 𝔤∗ � 𝔤 (cf. Example 4.3). In
particular, 𝑉 𝑘 (𝔤) is never quasi-lisse (see Proposition 8.1).

Let us look now at the the associated variety of the simple quotient 𝐿𝑘 (𝔤) =

𝑉 𝑘 (𝔤)/𝑁𝑘 , where 𝑁𝑘 is the maximal proper submodule of 𝑉 𝑘 (𝔤). Contrary to the
associated varieties of primitive ideals of𝑈 (𝔤), the associated variety of 𝐿𝑘 (𝔤) is not
always contained in the nilpotent cone N . Indeed, if 𝑉 𝑘 (𝔤) is simple, for example
if 𝑘 ∉ Q, then 𝐿𝑘 (𝔤) = 𝑉 𝑘 (𝔤) and so 𝑋𝐿𝑘 (𝔤) = 𝔤 ⊄ N . By the main result of [16]
the converse is true:

Theorem 8.1 ([16]) Let 𝑘 ∈ C. Then 𝑋𝐿𝑘 (𝔤) = 𝔤 if and only if 𝐿𝑘 (𝔤) = 𝑉 𝑘 (𝔤), that
is, 𝑉 𝑘 (𝔤) is simple.
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On the other hand, we have a simple criterion to check whether 𝐿𝑘 (𝔤) is quasi-
lisse:

Proposition 8.1 The simple affine vertex algebra 𝐿𝑘 (𝔤) is quasi-lisse if and only if
𝑋𝐿𝑘 (𝔤) ⊂ N .

Proof Recall that the symplectic leaves of 𝔤 are the adjoint 𝐺-orbits of 𝔤, It is
well-known that the nilpotent cone N of the simple Lie algebra is a finite union of
adjoint orbits (see Section D.1). Hence, if 𝑋𝐿𝑘 (𝔤) is contained in N then 𝐿𝑘 (𝔤) is
quasi-lisse.

Conversely, assume that 𝑋𝐿𝑘 (𝔤) contains a non-nilpotent element 𝑥, with Jordan
decomposition 𝑥 = 𝑥𝑠 + 𝑥𝑛. If 𝑥𝑛 = 0, then 𝑋𝐿𝑘 (𝔤) contains 𝐺C∗𝑥 = 𝐺C∗𝑥𝑠 since
𝑋𝐿𝑘 (𝔤) is a closed 𝐺-invariant cone of 𝔤. But 𝐺C∗𝑥𝑠 contains infinitely many sym-
plectic leaves because 𝑥𝑠 is semisimple. So 𝑋𝐿𝑘 (𝔤) is not quasi-lisse. If 𝑥𝑛 ≠ 0,
choose an 𝔰𝔩2-triplet (𝑥𝑛, ℎ, 𝑦𝑛) in 𝔤𝑥𝑠 and consider the one-parameter subgroup
𝜌 : C∗ ! 𝐺 generated by ad ℎ. We have for all 𝑡 ∈ C∗,

𝜌(𝑡)𝑥 = 𝑥𝑠 + 𝑡2𝑥𝑛.

Taking the limit when 𝑡 goes to 0, we deduce that 𝑥𝑠 ∈ 𝑋𝐿𝑘 (𝔤) and, hence, by the first
case, 𝑋𝐿𝑘 (𝔤) is not quasi-lisse. �

Proposition 8.2 If 𝑋𝐿𝑘 (𝔤) ⊂ N , then 𝐿𝑘 (𝔤) has only finitely many simple objects in
the category O .

Proof We know that Zhu(𝐿𝑘 (𝑉)) is a quotient 𝑈 (𝔤)/𝐼 of 𝑈 (𝔤) (see §5.6.2). More-
over, by Zhu’s correspondence (Theorem 5.2), it suffices to show that there are finitely
many simple highest weight 𝔤-modules 𝐿𝔤 (𝜆) annihilated by 𝐼 since 𝐿 (𝜆̂)top = 𝐿𝔤 (𝜆),
where 𝜆 is the restriction to 𝔥 of 𝜆̂ ∈ 𝔥̂∗ since simple objects in the category O are
precisely the simple highest weight modules 𝐿 (𝜆), [110, Proposition 9.3].

Let us denote by 𝜒𝜆 : Z (𝔤) ! C the infinitesimal character associated to 𝐿𝔤 (𝜆).
Recall that for 𝜆, 𝜇 ∈ 𝔥∗, 𝜒𝜆 = 𝜒𝜇 if and only if 𝜆 and 𝜇 are in the same 𝑊-orbit

Include recalls on infinitesimal characters this
in Appendix. with respect to the twisted action of𝑊 , where𝑊 is the Weyl group of (𝔤, 𝔥). Hence,

identifying the maximal spectrum of Z (𝔤) with the set of all homomorphisms
Z (𝔤) ! C, it is enough to show that Specm (Z (𝔤)/Z (𝔤) ∩ 𝐼) is finite, or equiv-
alently, that Z (𝔤)/Z (𝔤) ∩ 𝐼 is finite-dimensional. This will show that the set of
possible infinite characters of simple 𝑈 (𝔤)/𝐼-modules is finite and so is the set of
possible simple𝑈 (𝔤)/𝐼-modules.

Using the surjective Poisson algebra homomorphism (cf. Lemma 5.11),

𝑅𝐿𝑘 (𝔤) −� gr Zhu(𝐿𝑘 (𝔤)) = gr𝑈 (𝔤)/gr 𝐼,

we get that (Spec gr𝑈 (𝔤)/gr 𝐼)red ⊂ 𝑋𝐿𝑘 (𝔤)) ⊂ N , whence the augmentation ideal
(gr Z (𝔤))+ of gr Z (𝔤) is contained in

√
gr 𝐼 because (gr Z (𝔤))+ � C[𝔤]+ is the

defining ideal of N . As a result, gr Z (𝔤)/gr(Z (𝔤) ∩ 𝐼) is finite-dimensional and
so is Z (𝔤)/Z (𝔤) ∩ 𝐼. �
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In view of the above results, it is natural to ask whether there exist pairs (𝔤, 𝑘)
such that 𝑋𝐿𝑘 (𝔤) is neither 𝔤 nor contained in the nilpotent cone N . This is indeed
the case, as the following examples illustrate.

Example 8.1 ([23, Theorem 1.1])

• For 𝑛 > 4,
𝑋𝐿−1 (𝔰𝔩𝑛) = 𝐺C

∗𝜛̌1 ⊄ N ,

where 𝜛̌1 is the fundamental co-weight associated with 𝛼1 if 𝛼1, . . . , 𝛼𝑛−1 are
the simple roots of 𝔰𝔩𝑛. Note that 𝐺C∗𝜛̌1 = S1, where S1 is the unique sheet (see
the footnote 2 of Section 8.4) of 𝔰𝔩𝑛 containing the minimal nilpotent orbit Omin
in its closure.

• For 𝑚 > 2,
𝑋𝐿−𝑚 (𝔰𝔩2𝑚) = 𝐺C∗𝜛̌𝑚 ⊄ N ,

where 𝜛̌𝑚 is the fundamental co-weight associated with 𝛼𝑚. Note that𝐺C∗𝜛̌𝑚 =

S0, where S0 is the unique sheet of 𝔰𝔩2𝑚 containing the nilpotent orbit O(2𝑚)
associated with the partition (2𝑚) in its closure.

As a next step, in the light of Theorem 8.1, one can ask whether there is a pair
(𝔤, 𝑘) such that 𝑋𝐿𝑘 (𝔤) is a maximal proper 𝐺-invariant closed subcone of 𝔤.

• For 𝔤 = 𝔰𝔩2, N is the unique maximal proper𝐺-invariant closed subcone of 𝔤. In
fact the only 𝐺-invariant closed subcones of 𝔰𝔩2 are: {0}, N , 𝔤. All these subsets
can be realized as the associated variety of some 𝐿𝑘 (𝔰𝔩2) (see Section 8.2 and
more specifically Exercice 8.1).

• For 𝔤 = 𝔰𝔩3, one can construct a maximal proper 𝐺-invariant closed subcone of
𝔤 as follows. Let (𝑒, ℎ, 𝑓 ) be a principal 𝔰𝔩2-triple, that is, 𝑓 is regular nilpotent
element of 𝔤. Let X = 𝐺C∗ℎ be the 𝐺-invariant closed cone generated by ℎ.
This set is referred to as the principal cone in [52]. It contains the nilpotent cone
N and has dimension dim N + 1. So, for 𝔤 = 𝔰𝔩3, it is maximal for dimension
reasons (it has dimension 7 while 𝔤 has dimension 8). More generally, for any
regular semisimple element 𝑥 ∈ 𝔤, the set 𝐺C∗𝑥 is a 𝐺-invariant closed subcone
of 𝔤 containing N (see [53, Th. 2.9]). The principal cone X is somehow more
canonical: it is precisely the closure of the set of principal semisimple elements
(that is, the semisimple elements which are central elements of principal 𝔰𝔩2-
triples).

•? Open problem

Assume that 𝔤 = 𝔰𝔩3. Is there a level 𝑘 such that 𝑋𝐿𝑘 (𝔤) = X , where X = 𝐺C∗ℎ is
the principal cone of 𝔰𝔩3?

In the next two sections, we describe families of quasi-lisse simple affine vertex
algebras. In other words, we provide pairs (𝔤, 𝑘) for which 𝑋𝑘 (𝔤) is contained in N .
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8.2 Admissible representations

Recall that the irreducible highest weight representation 𝐿 (𝜆) of 𝔤̂ with highest
weight 𝜆 ∈ 𝔥̂∗ is called admissible if 𝜆 is admissible in the sense of Definition A.6.
For example, an irreducible integrable representation of 𝔤̂ is admissible. More gen-
erally, the simple affine vertex algebra 𝐿𝑘 (𝔤) is called admissible if it is admissible
as a 𝔤̂-module, and the level 𝑘 is called admissible if 𝐿𝑘 (𝔤) is addmisible (see
Definition A.7). This happens if and only if (Proposition A.3):

𝑘 = −ℎ∨ + 𝑝

𝑞
with 𝑝, 𝑞 ∈ Z>1, (𝑝, 𝑞) = 1, 𝑝 >

{
ℎ∨ if (𝑞, 𝑟∨) = 1,
ℎ if (𝑞, 𝑟∨) = 𝑟∨.

Here 𝑟∨ is the lacety of 𝔤 (i.e., 𝑟∨ = 1 for the types 𝐴, 𝐷, 𝐸 , 𝑟∨ = 2 for the types
𝐵,𝐶, 𝐹 and 𝑟∨ = 3 for the type 𝐺2), and ℎ is the Coxeter number.

The fist statement of the following assertion was conjectured by Feigin and Frenkel
and proved for the case that 𝔤 = 𝔰𝔩2 by Feigin and Malikov [75]. The general proof
is achieved in [8].
Theorem 8.2 ([8])
i). If 𝑘 is admissible, then 𝑆𝑆(𝐿𝑘 (𝔤)) ⊂ J∞ (N ) or, equivalently, the associated

variety 𝑋𝐿𝑘 (𝔤) is contained in N .
ii). In fact, a stronger result holds: we have

𝑋𝐿𝑘 (𝔤) = O𝑘 ,

where O𝑘 is a nilpotent orbit which only depends on the denominator 𝑞, with 𝑞
as above.

Example 8.2 Let us describe explicitly the nilpotent orbit O𝑘 of Theorem 8.2 in the
case where 𝔤 = 𝔰𝔩𝑛. Recall that the nilpotent orbits of 𝔰𝔩𝑛 are parameterized by the
partitions of 𝑛. Let 𝑘 be an admissible level for 𝔰𝔩𝑛, that is, 𝑘 = −𝑛 + 𝑝

𝑞
, with 𝑝 ∈ Z,

𝑝 > 𝑛, and (𝑝, 𝑞) = 1. Then

𝑋𝐿𝑘 (𝔤) = {𝑥 ∈ 𝔤 : (ad 𝑥)2𝑞 = 0} = O𝑘 ,

where O𝑘 is the nilpotent orbit corresponding to the partition (𝑛) is 𝑞 > 𝑛, and to
the partition (𝑞, 𝑞, . . . , 𝑞, 𝑠) = (𝑞𝑚, 𝑠), where 𝑚 and 𝑠 are the quotient and the rest
of the Euclidean division of 𝑛 by 𝑞, respectively, if 𝑞 < 𝑛.

Next exercise gives a proof of Theorem 8.2 for 𝔤 = 𝔰𝔩2. It is based on Feigin and
Malikov approach (see also [8, Theorem 5.6]).

Exercise 8.1 Let 𝑁𝑘 be the proper maximal ideal of 𝑉 𝑘 (𝔰𝔩2) so that 𝐿𝑘 (𝔰𝔩2) =

𝑉 𝑘 (𝔰𝔩2)/𝑁𝑘 . Let 𝐼𝑘 be the image of 𝑁𝑘 in 𝑅𝑉 𝑘 (𝔰𝔩2) = C[𝔰𝔩2] so that 𝑅𝐿𝑘 (𝔰𝔩2) =

C[𝔰𝔩2]/𝐼𝑘 . It is known that either 𝑁𝑘 is trivial, that is, 𝑉 𝑘 (𝔰𝔩2) is simple, or 𝑁𝑘 is
generated by a singular vector 𝑣 whose image 𝑣 in 𝐼𝑘 is nonzero ([116, 155]).

We assume in this exercise that 𝑁𝑘 is non trivial. Thus, 𝑁𝑘 = 𝑈 (𝔰𝔩2)𝑣.
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i). Using Kostant’s Separation Theorem show that, up to a nonzero scalar,

𝑣 = Ω𝑚𝑒𝑛,

for some 𝑚, 𝑛 ∈ Z>0, where Ω = 2𝑒 𝑓 + 1
2 ℎ

2 is the Casimir element of the
symmetric algebra of 𝔰𝔩2.

ii). Deduce from this that 𝑋𝐿𝑘 (𝔰𝔩2) is contained in the nilpotent cone of 𝔰𝔩2.

It is known that 𝑁𝑘 is nontrivial if and only 𝑘 is an admissible level for 𝔰𝔩2, or 𝑘 = −2
is critical. Thus we have shown that 𝑋𝐿𝑘 (𝔰𝔩2) is contained in the nilpotent cone of 𝔰𝔩2
if and only if 𝑘 = −2 or 𝑘 is admissible, i.e., 𝑘 = −2 + 𝑝

𝑞
, with (𝑝, 𝑞) = 1 and 𝑝 > 2.

On the other hand, since 𝑋𝐿𝑘 (𝔰𝔩2) = {0} if and only if 𝑘 ∈ Z>0 by Theorem 7.1,
we get that 𝑋𝐿𝑘 (𝔰𝔩2) = N if and only if 𝑘 = −2 or 𝑘 is admissible and 𝑘 ∉ Z>0.

The following exercise explains how to compute the associated variety in a con-
crete example exploiting a singular vector (see §A.4.3). This example is covered by
both Theorem 8.2 and Theorem 8.3.

Exercise 8.2 The aim of this exercice is to compute 𝑋𝐿−3/2 (𝔰𝔩3) . It was shown by Perše
[165] that the proper maximal ideal of 𝑉−3/2 (𝔰𝔩3) is generated by the singular vector
𝑣 given by:

𝑣 :=
1
3

(
(ℎ1𝑡

−1) (𝑒1,3𝑡
−1) |0〉 − (ℎ2𝑡

−1) (𝑒1,3𝑡
−1) |0〉

)
+(𝑒1,2𝑡

−1) (𝑒2,3𝑡
−1) |0〉−1

2
𝑒1,3𝑡

−2 |0〉,

where ℎ1 := 𝑒1,1 − 𝑒2,2, ℎ2 := 𝑒2,2 − 𝑒3,3 and 𝑒𝑖, 𝑗 is the elementary matrix of the
coefficient (𝑖, 𝑗) in 𝔰𝔩3 identified with the set of traceless 3-size square matrices.

i). Verify that 𝑣 is indeed a singular vector for 𝔰𝔩3, that is, 𝑒𝑖,𝑖+1𝑣 = 0 for 𝑖 = 1, 2 and
(𝑒3,1𝑡)𝑣 = 0.

ii). Let 𝔥 := Cℎ1+Cℎ2 be the usual Cartan subalgebra of 𝔰𝔩3. Show that 𝑋𝐿−3/2 (𝔰𝔩3)∩𝔥 =

{0}, and deduce from this that 𝑋𝐿−3/2 (𝔰𝔩3) is contained in the nilpotent cone of 𝔰𝔩3.
iii). Show that the nilpotent cone is not contained in 𝑋𝐿−3/2 (𝔰𝔩3) .
iv). Denoting by O𝑚𝑖𝑛 the minimal nilpotent orbit of 𝔰𝔩3, conclude that

𝑋𝐿−3/2 (𝔰𝔩3) = O𝑚𝑖𝑛.

8.3 Exceptional Deligne series

There was actually a “strong Feigin-Frenkel conjecture” stating that 𝑘 is admissible
if and only if 𝑋𝐿𝑘 (𝔤) ⊂ N (provided that 𝑘 is not critical, that is, 𝑘 ≠ −ℎ∨ in which
case it is known that 𝑋𝐿𝑘 (𝔤) = N ). Such a statement would be interesting because

reference for that?

it would give a geometrical description of the admissible representations 𝐿𝑘 (𝔤).
As seen in Exercise 8.1, the equivalence holds for 𝔤 = 𝔰𝔩2. The stronger conjecture

is wrong in general, as shown the following result.
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Theorem 8.3 ([22]) Assume that 𝔤 belongs to the Deligne exceptional series ([56]),

𝐴1 ⊂ 𝐴2 ⊂ 𝐺2 ⊂ 𝐷4 ⊂ 𝐹4 ⊂ 𝐸6 ⊂ 𝐸7 ⊂ 𝐸8,

and that 𝑘 = − ℎ
∨

6
− 1 + 𝑛, where 𝑛 ∈ Z>0 is such that 𝑘 ∉ Z>0. Then

𝑋𝐿𝑘 (𝔤) = O𝑚𝑖𝑛,

where O𝑚𝑖𝑛 is the minimal nilpotent orbit of 𝔤.

Note that the level 𝑘 = − ℎ
∨

6
− 1 is not admissible for the types 𝐷4, 𝐸6, 𝐸7,

𝐸8 (it equals −2,−3,−4,−6, respectively). Theorem 8.3 provides the first known
examples of associated varieties contained in the nilpotent cone corresponding to
non-admissible levels. We will see that Theorem 8.3 also allows to produce “new"
examples of lisse simple𝑊-algebras (see Chap. ??).

By Proposition 8.2, if (𝔤, 𝑘) is as in Theorem 8.3, then 𝐿𝑘 (𝔤) has finitely many
simple objects in the category O . One can describe them thanks to Joseph’s classi-
fication [109] of irreducible highest weights representation 𝐿𝔤 (𝜆) whose associated
variety is O𝑚𝑖𝑛 (see Theorem 8.4).

We give in the next section a broad sketch of a proof of Theorem 8.3.

Remark 8.1 There are a couple of other examples of simple quasi-lisse affine vertex
algebras 𝐿𝑘 (𝔤), at non-admissible level 𝑘 ([22, 23, 24]). Namely, for (𝔤, 𝑘) as below,
the simple affine vertex algebras 𝐿𝑘 (𝔤) is quasi-lisse:

• if 𝔤 of type 𝐺2 and 𝑘 = −2, then 𝑋𝐿𝑘 (𝔤) = Omin,
• if 𝔤 of type 𝐷𝑟 , 𝑟 > 5 and 𝑘 = −2,−1, then 𝑋𝐿𝑘 (𝔤) = Omin,
• if 𝔤 of type 𝐷𝑟 , with 𝑟 an even integer > 4, and 𝑘 = 2−𝑟, then 𝑋𝐿𝑘 (𝔤) = O(2𝑟−2 ,14) ,
• if 𝔤 of type 𝐵𝑟 , 𝑟 > 3 and 𝑘 = −2, then 𝑋𝐿𝑘 (𝔤) = Oshort, where Oshort is the

nilpotent orbit associated with the 𝔰𝔩2-triple (𝑒𝜃𝑠 , ℎ𝜃𝑠 , 𝑓𝜃𝑠 ), with 𝜃𝑠 the highest
short root 𝜀1 (note that ℎ𝜃𝑠 = 2𝜛∨

1 ). Notice that Oshort = O(3,12𝑟−2) .
• Finally, for any 𝔤, if 𝑘 = −ℎ∨ is critical then 𝑋𝐿𝑘 (𝔤) = N .

Except for 𝔤 = 𝔰𝔩2, the classification problem of quasi-lisse affine vertex algebras is
wide open.

8.4 Joseph ideal and proof of Theorem 8.3

We refer the reader to Section D.4 for standard facts on primitive ideals and their
associated varieties.

If 𝔤 is not of type 𝐴, it is known [107, 86] that there exists a unique completely
prime ideal, that is, the corresponding graded ideal is prime, in𝑈 (𝔤) whose associ-
ated variety is the minimal nilpotent orbit O𝑚𝑖𝑛, which is the unique nilpotent orbit
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of 𝔤 of minimal dimension 2ℎ∨ − 2, with ℎ∨ the dual Coxeter number of 𝔤 (see
Section D.1). See [168] for a more recent review on this topic.

Definition 8.1 If 𝔤 is not of type 𝐴, the unique completely prime ideal whose as-
sociated variety is O𝑚𝑖𝑛 is denoted by J0, and is referred to as the Joseph ideal of
𝑈 (𝔤).

For 𝔤 of type 𝐴, the completely prime primitive ideals 𝐼 of𝑈 (𝔤) with V (𝐼) = O𝑚𝑖𝑛
form a single family parametrized by the elements of C ([107, 168]).

8.4.1 Infinitesimal character

In [107], Joseph has also computed the infinitesimal character of J0, that is, the
algebra homomorphism Z (𝔤) ! C through which the centre Z (𝔤) acts on the
primitive quotient𝑈 (𝔤)/J0. In fact, Joseph has described the set of 𝜆 ∈ 𝔥∗ such that
such that J0 = Ann𝑈 (𝔤) (𝐿𝔤 (𝜆)) (see [107, Tab. p.15] or [22, Tab. 1]).

Do we need of this recall?? Let us briefly recall how to deduce the infinitesimal
character of 𝐿𝔤 (𝜆) (or of Ann𝑈 (𝔤) (𝐿𝔤 (𝜆))) from the knowledge of 𝜆 ∈ 𝔥∗. Identify
Spec Z (𝔤) with the set of all homomorphisms Z (𝔤) ! C. Such morphisms are
called infinitesimal characters. Consider the projection map from 𝑈 (𝔤) to 𝑈 (𝔥) =

𝑆(𝔥) with respect to the decomposition

𝑈 (𝔤) = 𝑆(𝔥) ⊕ (𝔫−𝑈 (𝔤) +𝑈 (𝔤)𝔫+).

It is not a morphism of algebras in general, but its restriction to 𝑈 (𝔤)𝔥 = {𝑢 ∈
𝑈 (𝔤) : (ad 𝑥)𝑢 = 0 for all 𝑥 ∈ 𝔥} is. In particular, we get a morphism

𝑝 : Z (𝔤) ! C[𝔥∗]

since 𝑆(𝔥) � C[𝔥∗], usually called the Harish-Chandra morphism. Its comorphism
gives a map

𝜒 : 𝔥∗ ! Spec(Z (𝔤)), 𝜆 7! 𝜒𝜆,

where 𝜒𝜆 (𝑧) = 𝑝(𝑧) (𝜆 + 𝜌) for 𝑧 ∈ Z (𝔤) with 𝜌 the half-sum of positive roots. An
important consequence of the Harish-Chandra Theorem is that the map 𝜒 induces a
bijection

𝔥∗/𝑊 '
−! Spec(Z (𝔤)).

Here the Weyl group𝑊 acts on 𝔥∗ with respect to the twisted action of𝑊 :

𝑤 ◦ 𝜆 = 𝑤.(𝜆 + 𝜌) − 𝜌, 𝑤 ∈ 𝑊, 𝜆 ∈ 𝔥∗,

where · stands for the usual action of 𝑊 on 𝔥∗. In particular, 𝜒𝜆 = 𝜒𝜇 if and only
if 𝜆 and 𝜇 are in the same 𝑊-orbit with respect to the twisted action of 𝑊 , and
the infinitesimal character associated with the irreducible representation 𝐿𝔤 (𝜆) is
just 𝜒𝜆.
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8.4.2 Gan and Savin’s description of the Joseph ideal

Outside the type 𝐴 the nilpotent orbit O𝑚𝑖𝑛 is rigid1, hence forms a single sheet2
in 𝔤∗ � 𝔤. So, J0 cannot be obtained by parabolic induction from a primitive ideal
of a proper Levi subalgebra of 𝔤. Different realizations of J0 can be found in the
literature for various types of 𝔤. Joseph’s original proof of the uniqueness of J0
was incomplete. This led Gan and Savin [86] to give another description of the
Joseph ideal J0. Their argument relies on some invariant theory and earlier results
of Garfinkle.

Let us outline their description.
Suppose that 𝔤 is not of type 𝐴. According to Kostant, J0 is generated by the

𝔤-submodule 𝐿𝔤 (0) ⊕𝑊 in 𝑆2 (𝔤), where𝑊 is such that, as 𝔤-modules,

𝑆2 (𝔤) = 𝐿𝔤 (2𝜃) ⊕ 𝐿𝔤 (0) ⊕𝑊.

Note that the above decomposition of 𝑆2 (𝔤) still holds in type 𝐴 ([87, Chap. IV,
Prop. 2]). Also, observe that 𝐿𝔤 (0) = CΩ where Ω =

∑
𝑖 𝑥𝑖𝑥

𝑖 is the Casimir element
in 𝑆(𝔤), with {𝑥𝑖}𝑖 is a basis of 𝔤, and {𝑥𝑖}𝑖 its dual basis with respect to ( | ).

Lemma 8.1 Suppose that 𝔤 is not of type 𝐴. The ideal 𝐽𝑊 in 𝑆(𝔤) generated by 𝑊
containsΩ2, and hence,

√
𝐽𝑊 = 𝐽0, where 𝐽0 is the prime ideal of 𝑆(𝔤) corresponding

to the minimal nilpotent orbit closure Omin.

Proof By the proof of [86, Th. 3.1], the ideal J𝑊 of𝑈 (𝔤) generated by𝑊 contains
𝔤 · Ω, and so the assertion follows. �

The structure of 𝑊 was determined by Garfinkle [87]. Consider the 𝔰𝔩2-triple
(𝑒𝜃 , ℎ𝜃 , 𝑓𝜃 ) of 𝔤 where 𝑓𝜃 = 𝑒−𝜃 is a 𝜃-root vector (𝜃 denotes the highest positive
root) so that it lies in O𝑚𝑖𝑛. Set

𝔤 𝑗 = {𝑥 ∈ 𝔤 : [ℎ𝜃 , 𝑥] = 2 𝑗𝑥}.

Then (cf. Remark D.1)

𝔤 = 𝔤−1 ⊕ 𝔤−1/2 ⊕ 𝔤0 ⊕ 𝔤1/2 ⊕ 𝔤1,

𝔤−1 = C 𝑓𝜃 , 𝔤1 = C𝑒𝜃 , 𝔤0 = Cℎ𝜃 ⊕ 𝔤♮, 𝔤♮ = {𝑥 ∈ 𝔤0 : (ℎ𝜃 |𝑥) = 0}.

The subalgebra 𝔤♮ is a reductive subalgebra of 𝔤 whose simple roots are the simple
roots of 𝔤 perpendicular to 𝜃. Write

[𝔤♮, 𝔤♮] =
⊕
𝑖>1

𝔤𝑖

1 Rigid nilpotent orbits are those nilpotent orbits which cannot be properly induced from another
nilpotent orbit in the sense of Lusztig-Spaltenstein [42, 40].
2 The sheets of 𝔤∗ are by definition the irreducible components of the locally closed subsets
𝔤(𝑚) = {𝜉 ∈ 𝔤∗ : dim𝐺.𝜉 = 2𝑚}, 𝑚 ∈ Z>0. A nilpotent orbit is a sheet if and only if it is rigid.
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as a direct sum of simple summands, and let 𝜃𝑖 be the highest root of 𝔤𝑖 .

• If 𝔤 is neither of type 𝐴𝑟 nor 𝐶𝑟 ,

𝑊 =
⊕
𝑖>1

𝐿𝔤 (𝜃 + 𝜃𝑖). (8.1)

• If 𝔤 is of type 𝐶𝑟 , then 𝔤♮ is simple of type 𝐶𝑟−1, so that there is a unique 𝜃1, and
we have

𝑊 = 𝐿𝔤 (𝜃 + 𝜃1) ⊕ 𝐿𝔤 ((𝜃 + 𝜃1)/2) .

By [87, 86], J0 is generated by 𝑊 and Ω − 𝑐0, where 𝑊 is identified with a 𝔤-
submodule of 𝑈 (𝔤) by the 𝔤-module isomorphism 𝑆(𝔤) � 𝑈 (𝔤) given by the sym-
metrization map, and 𝑐0 is the eigenvalue of Ω for the infinitesimal character that
Joseph obtained. We have

gr J0 = 𝐽0 =
√︁
𝐽𝑊

and this shows that J0 is indeed completely prime.
This should arrive before Lemma 8.1.

Let J𝑊 be the two-sided ideal of𝑈 (𝔤) generated by𝑊 .

Proposition 8.3 ([22]) We have the algebra isomorphism

𝑈 (𝔤)/J𝑊 � C ×𝑈 (𝔤)/J0.

Proof By the proof of [86, Th. 3.1], J𝑊 contains (Ω − 𝑐0)𝔤. Hence it contains
(Ω − 𝑐0)Ω. Since 𝑐0 ≠ 0, we have the isomorphism of algebras

𝑈 (𝔤)/J𝑊
'
−! 𝑈 (𝔤)/〈J𝑊 ,Ω〉 ×𝑈 (𝔤)/〈J𝑊 ,Ω − 𝑐0〉.

As we have explained above, 〈J𝑊 ,Ω−𝑐0〉 = J0. Also, since J𝑊 contains (Ω−𝑐0)𝔤,
〈J𝑊 ,Ω〉 contains 𝔤. Therefore𝑈 (𝔤)/〈J𝑊 ,Ω〉 = C as required. �

8.4.3 Proof sketch of Theorem 8.3

We now outline the proof of Theorem 8.3 following [22]. The proof is closely related
to the Joseph ideal and its description by Gan and Savin. The key point is that this
description was successful in constructing singular vectors of 𝑉 𝑘 (𝔤) with 𝔤, 𝑘 as in
Theorem 8.3.

Recall that the vertex algebra 𝑉 𝑘 (𝔤) is naturally graded:

𝑉 𝑘 (𝔤) =
⊕
𝑑∈Z>0

𝑉 𝑘 (𝔤)𝑑 , 𝑉 𝑘 (𝔤)𝑑 = {𝑣 ∈ 𝑉 𝑘 (𝔤) : 𝐷𝑣 = −𝑑𝑣}.

The following lemma, for 𝑑 = 2, will be useful.
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Lemma 8.2 Let 𝑑 ∈ Z>0. We have a 𝔤-module embedding

𝜎𝑑 : 𝑆𝑑 (𝔤) ↩! 𝑉 𝑘 (𝔤)𝑑 , 𝑥1 . . . 𝑥𝑑 7!
1
𝑑!

∑︁
𝜏∈𝔖𝑑

(𝑥𝜏 (1) 𝑡−1) . . . (𝑥𝜏 (𝑑) 𝑡−1) |0〉,

where 𝑆(𝔤) =
⊕

𝑑 𝑆
𝑑 (𝔤) is the usual grading of 𝑆𝑑 (𝔤).

Let 𝑣 be a singular vector for 𝔤 in 𝑆𝑑 (𝔤). Then 𝜎𝑑 (𝑣) is a singular vector of 𝑉 𝑘 (𝔤)
if and only if ( 𝑓𝜃 𝑡)𝜎𝑑 (𝑣) = 0.

For 𝔤 of type 𝐴1, 𝐴2, 𝐺2, 𝐹4, the number 𝑛 − ℎ∨/6 − 1 is admissible for 𝑛 ∈ Z>0,
and Theorem 8.3 is a special case of Theorem 8.2. So there is no loss of generality
in assuming that 𝔤 is of type 𝐷4, 𝐸6, 𝐸7, or 𝐸8.

Recall from §8.4.2 that the Joseph ideal J0 is generated by the 𝔤-submodule
𝐿𝔤 (0) ⊕𝑊 in 𝑆2 (𝔤), where𝑊 is such that, as 𝔤-modules,

𝑆2 (𝔤) = 𝐿𝔤 (2𝜃) ⊕ 𝐿𝔤 (0) ⊕𝑊.

Let𝑊 =
⊕

𝑖𝑊𝑖 be the decomposition of𝑊 into irreducible submodules, and let 𝑤𝑖
be a highest weight vector of𝑊𝑖 . Recall also that by (8.1), we have𝑊𝑖 = 𝐿𝔤 (𝜃 + 𝜃𝑖).
Note that for 𝔤 of type 𝐸6, 𝐸7, 𝐸8, 𝑊 = 𝑊1 is simple. Moreover, according to [87,
Chap. IV, Prop. 11] if 𝔤 is not of type 𝐸8, we have3:

𝑤𝑖 = 𝑒𝜃𝑒𝜃𝑖 −
ℎ∨
6 +1∑︁
𝑗=1

𝑒𝛽 𝑗+𝜃𝑖 𝑒𝛿 𝑗+𝜃𝑖 ,

where (𝛽 𝑗 , 𝛿 𝑗 ) runs through the pairs of positive roots such that

𝛽 𝑗 + 𝛿 𝑗 = 𝜃 − 𝜃𝑖 .

The number of such pairs turns out to be equal to ℎ∨/6+1. Choose a Chevalley basis
{ℎ𝑖}𝑖 ∪ {𝑒𝛼, 𝑓𝛼}𝛼 of 𝔤 so that the conditions of [87, Chap. IV, Def. 6] are fulfilled,
that is

∀ 𝑗 , [𝑒𝛿 𝑗 , [𝑒𝛽 𝑗
, 𝑒𝜃1 ]] = 𝑒𝜃 , [𝑒𝛽 𝑗

, 𝑒𝜃1 ] = 𝑒𝛽 𝑗+𝜃1 , [𝑒𝛿 𝑗 , 𝑒𝜃1 ] = 𝑒𝛿 𝑗+𝜃1 .

Exercise 8.3 Assume that 𝔤 is of type 𝐷4, 𝐸6 or 𝐸7, and let 𝑛 ∈ Z>0. Show that for
each 𝑖, 𝜎2 (𝑤𝑖)𝑛+1 is a singular vector of 𝑉 𝑘 (𝔤) if and only if

𝑘 = 𝑛 − ℎ∨

6
− 1.

(The statement holds for 𝔤 of type 𝐸8 but one needs to consider a slightly different
description of 𝑤1.)

We are now in a position to prove Theorem 8.3.

3 The construction is slightly different if 𝔤 is of type 𝐸8 due to the fact that 𝐸8 is not of depth one
(cf. [87, Chap. IV, Def. 1]), and that (𝜃 − 𝜃1)/2 is not a root: see [22, proof of Th. .4.2].
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Proof (Sketch of proof of Theorem 8.3) Assume that 𝔤 is of type 𝐷4, 𝐸6, 𝐸7, or 𝐸8
and that

𝑘 = 𝑛 − ℎ∨

6
− 1 with 𝑛 ∈ Z>0.

Let 𝑁𝑘 be the submodule of 𝑉 𝑘 (𝔤) generated by 𝜎2 (𝑤𝑖)𝑛+1 for all 𝑖, and set

𝐿̃𝑘 (𝔤) := 𝑉 𝑘 (𝔤)/𝑁𝑘 .

The exact sequence 0! 𝑁𝑘 ! 𝑉 𝑘 (𝔤) ! 𝐿̃𝑘 (𝔤) ! 0 induces an exact sequence

𝑁𝑘/𝔤[𝑡−1]𝑡−2𝑁𝑘 ! 𝑉 𝑘 (𝔤)/𝔤[𝑡−1]𝑡−2𝑉 𝑘 (𝔤) ! 𝐿̃𝑘 (𝔤)/𝔤[𝑡−1]𝑡−2 𝐿̃𝑘 (𝔤) ! 0.

Under the isomorphism𝑉 𝑘 (𝔤)/𝔤[𝑡−1]𝑡−2𝑉 𝑘 (𝔤) � 𝑆(𝔤), the image of𝑁𝑘/𝔤[𝑡−1]𝑡−2𝑁𝑘
in 𝑉 𝑘 (𝔤)/𝔤[𝑡−1]𝑡−2𝑉 𝑘 (𝔤) is identified with the ideal 𝐽𝑘 of 𝑆(𝔤) generated by 𝑤𝑖 for
all 𝑖. Hence 𝐽𝑘 ⊂ 𝐽𝑊 ⊂

√
𝐽𝑘 . Therefore by Lemma 8.1,√︁

𝐽𝑘 =
√︁
𝐽𝑊 = 𝐽0,

where 𝐽0 is the defining ideal of O𝑚𝑖𝑛. Hence 𝑋𝐿̃𝑘 (𝔤) = Omin by Lemma 8.1.
Next, since 𝐿𝑘 (𝔤) is a quotient of 𝐿̃𝑘 (𝔤), we get that

𝑋𝐿𝑘 (𝔤) ⊂ 𝑋𝐿̃𝑘 (𝔤) = Omin = Omin ∪ {0}.

Therefore 𝑋𝐿𝑘 (𝔤) is either {0} and Omin. The theorem follows since 𝑋𝐿𝑘 (𝔤) = {0} if
and only if 𝑘 ∈ Z>0 (cf. Theorem 7.1). �

8.4.4 Consequences of Theorem 8.3 and its proof

First, in the previous notation, we formulate a conjecture.

Conjecture 8.1 Assume that 𝔤 is of type 𝐷4, 𝐸6, 𝐸7, or 𝐸8 and that 𝑘 = 𝑛−ℎ∨/6−1.
Then 𝐿̃𝑘 (𝔤) = 𝐿𝑘 (𝔤), that is, 𝐿̃𝑘 (𝔤) is simple, if 𝑘 < 0.

Conjecture 8.1 was proven in [22, Proof of Theorem 3.1] for 𝑛 = 0. Note that if
𝑘 > 0, 𝐿̃𝑘 (𝔤) is obviously not simple as, if so, the maximal submodule of 𝑉 𝑘 (𝔤) is
generated by (𝑒𝜃 𝑡−1)𝑘+1 |0〉.

As a consequence of Lemma 8.1, Lemma 8.2 and the proof of Conjecture 8.1 for
𝑛 = 0, we obtain the following result. Recall that J𝑊 is the two-sided ideal of 𝑈 (𝔤)
generated by𝑊 .

Theorem 8.4 Assume that 𝔤 belongs to the Deligne exceptional series outside the

type 𝐴 and that 𝑘 = − ℎ
∨

6
− 1. Then 𝐿𝑘 (𝔤) is a chiralization of𝑈 (𝔤)/J𝑊 , that is,

Zhu(𝐿𝑘 (𝔤)) � 𝑈 (𝔤)/J𝑊 = C ×𝑈 (𝔤)/J0.
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In particular since J0 is maximal, the irreducible highest weight representation 𝐿 (𝜆)
of 𝔤̂ is a 𝐿𝑘 (𝔤)-module if and only if

𝜆̄ = 0 or Ann𝑈 (𝔤) 𝐿𝔤 (𝜆̄) = J0,

and such 𝜆 are described by Joseph (see [107, Tab. p.15] or [22, Tab. 1]).



Chapter 9
Properties of quasi-lisse vertex algebras and
irreducibility conjecture

In this chapter, it is assumed that𝑉 is a strongly generated Z>0-graded vertex algebra
such that 𝑉0 � C|0〉. Recall that 𝑋𝑉 is called quasi-lisse is 𝑋𝑉 has only finitely
many symplectic leaves. The quasi-lisse obviously condition generalizes the lisse
condition. We have already noticed that lisse vertex algebras are very nice (see e.g.,
Lemma 4.9 and Theorem 7.3). This chapter explores interesting properties of the
larger class of quasi-lisse vertex algebras.

It is known that Poisson varieties with only finitely many symplectic leaves
have special properties. For example, Brown and Gordon have proved [45] that the
finiteness of the symplectic leaves in a Poisson variety 𝑋 implies that the symplectic
leaf L𝑥 at 𝑥 ∈ 𝑋 coincides with the regular locus of the zero variety of the maximal
Poisson ideal contained in the maximal ideal 𝔪𝑥 corresponding to 𝑥 (see Section 9.2
for more details about this). Thus, each symplectic leaf L𝑥 is a smooth connected
locally-closed algebraic subvariety in 𝑋 . In particular, every irreducible component
of 𝑋 is the closure of a symplectic leaf [90, Cor. 3.3]. On the other hand, it has been
established by Etingof and Schedler [68] that if 𝑅 is a finitely generated Poisson
algebra such that 𝑋 = Specm(𝑅) has finitely many symplectic leaves, then

dim 𝑅/{𝑅, 𝑅} < ∞.

As one can expect, these important facts play an important role in the study of
quasi-lisse vertex algebras. That is what we shall see in this chapter.

Section 9.1 is about the modular invariance properties of quasi-lisse vertex alge-
bras (Theorem 9.1). In Section 9.2, we introduce the notion of chiral symplectic leaf
and exploit them to show that any quasi-lisse vertex algebra 𝑉 is a quantization of
the reduced arc space of its associated variety, in the sense that its reduced singular
support Specm(gr𝑉) coincides with J∞ (𝑋𝑉 ) as topological spaces (Theorem 9.2).
Finally, Section 9.3 concerns the irreducibility conjecture for the associated variety of
quasi-lisse vertex algebras (Conjecture 9.1) and its connection with the Higgs branch
conjecture in four-dimensional N = 2 super-conformal theories (Conjecture??).

137
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9.1 Modular invariance property of quasi-lisse vertex algebras

A 𝑉-module is called ordinary if it is a positive energy representation and each
homogeneous space is finite-dimensional, so that the normalized character

𝜒𝑀 (𝜏) = Tr𝑀 (𝑞𝐿0− 𝑐
24 )

is well-defined.

Theorem 9.1 ([15]) A quasi-lisse conformal Z>0-graded vertex algebra has only
finitely many simple ordinary representations. Moreover, the normalized character
of any ordinary module has a modular invariance property, in the sense that it
satisfies a modular linear differential equation.

Using a modular linear differential equation, the explicit character formulas of
the simple quasi-lisse affine vertex algebras associated with the Deligne exceptional
series at level 𝑘 = −ℎ∨/6 − 1 (cf. Theorem 8.3) are obtained in [15].

It is known that the admissible representations 𝐿𝑘 (𝔤) have only finitely many
simple objects in the category O and that their normalized characters satisfy a
modular invariance property. Note that the above result means different things, and
was new even for an admissible affine vertex algebras.

9.2 Chiral symplectic leaves and applications

Let 𝑋 = Spec 𝑅 be a reduced Poisson scheme. For 𝐼 an ideal of 𝑅, we denote by
P𝑅 (𝐼) the biggest Poisson ideal of 𝑅 contained in 𝐼. The symplectic core C𝑅 (𝑥) of
a point 𝑥 ∈ 𝑋 is the equivalence class of 𝑥 for ∼, with

𝑥 ∼ 𝑦 ⇐⇒ P𝑅 (𝔪𝑥) = P𝑅 (𝔪𝑦).

Here, 𝔪𝑥 stands for the maximal ideal of 𝑅 corresponding to 𝑥. The notion of
symplectic cores, introduced in [45], are expected to be the finest possible algebraic
stratification in which the Hamiltonian vector fields are tangent. Brown and Gordon
showed that the symplectic cores coincide with the symplectic leaves, if there is only
finitely many numbers of symplectic leaves.

9.2.1 Chiral symplectic leaves

It is natural to try to adapt this notion to the context of vertex Poisson algebras.
Assume for awhile that 𝑉 is a vertex Poisson algebra. Let 𝐼 be an ideal of 𝑉 in the
associative sense.
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Definition 9.1 We say that 𝐼 is a chiral Poisson ideal of 𝑉 if 𝑎 (𝑛) 𝐼 ⊂ 𝐼 for all 𝑎 ∈ 𝑉 ,
𝑛 ∈ Z>0.

Thus a vertex Poisson ideal of 𝑉 is a chiral Poisson ideal that is stable under the
action of 𝑇 . The quotient space 𝑉/𝐼 inherits a vertex Poisson algebra structure from
𝑉 if 𝐼 is a vertex Poisson ideal. Note that if 𝐼 is a vertex (resp. chiral) Poisson ideal
of 𝑉 , then so is its radical

√
𝐼 ([58, §3.3.2]).

Denote by P𝑉 (𝐼) the biggest chiral Poisson ideal of 𝑉 contained in 𝐼. It exists
since the sum of two chiral Poisson ideals is chiral Poisson. Set

L := Specm(𝑉),

and define a relation ∼ on L by

𝑥 ∼ 𝑦 ⇐⇒ P𝑉 (𝔪𝑥) = P𝑉 (𝔪𝑦),

where 𝔪𝑥 denotes the maximal ideal corresponding to 𝑥 ∈ L. Clearly ∼ is an
equivalence relation. We will write CL (𝑥) for the equivalence class in L of 𝑥, so
that

L =
⊔
𝑥

CL (𝑥).

We call the set CL (𝑥) the chiral symplectic leaf1 of 𝑥 in L. Chiral symplectic leaves
are expected to be the finest possible algebraic stratification in which the chiral
Hamiltonian vector fields are tangent.

Let us return to the case where 𝑉 is arbitrary (not necessarily a vertex Poison
algebra). Recall that 𝑆𝑆(𝑉) stands for the singular support of𝑉 , that is, the spectrum
of gr𝐹𝑉 (cf. Definition ??).

Theorem 9.2 ([25]) Assume that 𝑉 is a quasi-lisse vertex algebra. Then 𝑆𝑆(𝑉) �
𝐽∞𝑋𝑉 as topological spaces, that is,

𝑆𝑆(𝑉)red � (J∞𝑋𝑉 )red.

Moreover, the reduced singular support 𝑆𝑆(𝑉)red have finitely many irreducible
components, and each of them is the closure of some chiral symplectic leaf.

Let 𝑅𝑉 be the 𝐶2-algebra of 𝑉 (Section ??), and denote by 𝑋̃𝑉 = Spec 𝑅𝑉 the
associated scheme of 𝑉 (cf. Definition 4.7).

Corollary 9.1 ([25, Cor. 9.3]) Suppose that 𝑋̃𝑉 is smooth, reduced and symplectic.
Then gr𝐹𝑉 is simple as a vertex Poisson algebra, and hence, 𝑉 is simple.

Proof If 𝑋𝑉 is a smooth symplectic variety then J∞𝑋𝑉 consists of a single chiral
symplectic leaf. So J∞𝑋𝑉 = CJ∞𝑋𝑉

(𝑥) for any 𝑥 ∈ J∞𝑋𝑉 . It follows that there
is no nonzero proper chiral Poisson subscheme in J∞𝑋𝑉 . From Theorem 9.2, we

1 In [25] we call this set the chiral symplectic core of 𝑥 but in fact we think that that term leaf is
more appealing than the term core.
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conclude that there is no nonzero proper chiral Poisson subscheme in Spec gr𝐹𝑉 , too.
Therefore gr𝐹𝑉 is simple as a vertex Poisson algebra. This shows that 𝑉 is simple,
because any vertex ideal 𝐼 ⊂ 𝑉 yields a vertex Poisson (and so chiral Poisson) ideal
gr𝐹 𝐼 in gr𝐹𝑉 . �

We now derive some applications of the above results.

9.2.2 Chiral differential operators

So far, all our examples of quasi-lisse, non lisse, vertex algebras are all affine vertex
algebras. Here is a different kind of example.

Given a smooth affine variety 𝑋 , the global section of the chiral differential oper-
ators D𝑐ℎ

𝑋
([151, 93, 36]) is quasi-lisse because its associated scheme is canonically

isomorphic to the cotangent bundle 𝑇∗𝑋 . As a consequence of Corollary 9.1 the
vertex algebra D𝑐ℎ

𝑋
is simple, since the associated scheme is smooth, reduced ans

symplectic. In particular, the global section of the chiral differential operators D𝑐ℎ
𝐺,𝑘

on the group 𝐺 ([92, 29]) is simple at any level 𝑘 . This example is important since
D𝑐ℎ
𝐺,−ℎ∨ appears in the 4d/2d duality for the classS theory (cf. [14] or, here, Part. ??).

9.2.3 Vertex Poisson center of the arc spaces of Slodowy slices

Assume that 𝔤 is a complex simple Lie algebra with adjoint group 𝐺. Identify
𝔤 with its dual 𝔤∗ through the bilinear form ( | ) as before. Denote by S 𝑓 the
Slodowy slice 𝑓 + 𝔤𝑒 associated with an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) of 𝔤. The affine variety
S 𝑓 has a Poisson structure obtained from that of 𝔤∗ by Hamiltonian reduction (see
Section 10.2). Consider the adjoint quotient morphism

𝜓 𝑓 : S 𝑓 ! 𝔤∗//𝐺.

It is known [166] that any fiber𝜓−1
𝑓
(𝜉) of this morphism is the closure of a symplectic

leave, which is irreducible and reduced.

Theorem 9.3 ([25, Th. 11.1])

(i) Any fiber of the induced vertex Poisson algebra morphism

J∞𝜓 𝑓 : J∞S 𝑓 !J∞ (𝔤∗//𝐺)

is an irreducible and reduced chiral Poisson subscheme of J∞S 𝑓 .
(ii) The comorphism (J∞𝜓 𝑓 )∗ induces an isomorphism of vertex Poisson al-

gebras between C[J∞𝔤∗]J∞𝐺 and the vertex Poisson center of C[J∞S 𝑓 ].
Moreover, C[J∞S 𝑓 ] is free over its vertex Poisson center.
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Theorem 9.3 is proved similarly to Theorem 10.6, thanks to our results on chiral
symplectic leaves.

Shall we give a proof?
As a consequence of Theorem 9.3, we obtain2 that the center of the affine W-

algebra W −ℎ∨ (𝔤, 𝑓 ) (see Part IV) associated with (𝔤, 𝑓 ) at the critical level is
identified with the Feigin-Frenkel center 𝔷(𝔤̂) (see Exercice 3.3), that is, the center
of the affine vertex algebra 𝑉−ℎ∨ (𝔤) at the critical level.

9.3 Irreducibility conjecture

Taking all these examples of simple quasi-lisse vertex algebras into consideration,
and other ones, particularly, the (generalized) Drinfeld-Sokolov reduction of these
examples of simple quasi-lisse affine vertex algebra provided that it is nonzero
(cf. Part IV), we formulate a conjecture.

Conjecture 9.1 ([23, Conj. 1]) Let 𝑉= ⊕𝑑>0𝑉𝑑 be a simple, finitely strongly gen-
erated, positively graded conformal vertex operator algebra such that 𝑉0 � C|0〉.
Assume that 𝑋𝑉 has finitely many symplectic leaves, that is, 𝑉 is quasi-lisse. Then
𝑋𝑉 is irreducible. In particular, if 𝑋𝐿𝑘 (𝔤) ⊂ N , then 𝑋𝐿𝑘 (𝔤) is the closure of some
nilpotent orbit in 𝔤.

The conjecture is a natural affine analog of the irreducibility theorem (cf. Theo-
rem D.3) for the associated variety of primitive ideals of 𝑈 (𝔤), which has been
generalized to a larger class of Noetherian algebras by Ginzburg [89]:

Theorem 9.4 ([89]) Let 𝐴 be a filtered unital C-algebra. Assume furthermore that
gr 𝐴 � C[𝑋] is the coordinate ring of a reduced irreducible affine algebraic variety
𝑋 , and assume that the Poisson variety Spec(gr 𝐴) has only finitely many symplectic
leaves. Then for any primitive ideal 𝐼 ⊂ 𝐴, the zero locus V(𝐼) of gr 𝐼 in 𝑋 is the
closure of a single symplectic leaf. In particular, it is irreducible.

Ginzburg’s proof of Theorem 9.4 is an adaptation of a more direct proof of
Theorem D.3 discovered subsequently by Vogan [180], combined with the results
by Brown and Gordon [45] on symplectic cores. We hope that Theorem 9.2 can
serve as a first step in proving Conjecture 9.1. The main difficulty is that the algebras
considered in Conjecture 9.1 are not Noetherian.

The reader is referred to Remark 13.1 for more about this conjecture in the context
of𝑊-algebras.

2 This fact was claimed in [7] but the proof was incomplete.
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Appendix A
Simple Lie algebras and affine Kac-Moody
algebras

The ground field is the field C of complex numbers. Recall that a Lie algebra is a
vector space 𝔤 equipped with a bilinear form [ , ] : 𝔤×𝔤! C satisfying the following
conditions:

• (skew-symmetry) [𝑥, 𝑦] = [𝑦, 𝑥], for all 𝑥, 𝑦 ∈ 𝔤,
• (Jacobi identity) [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝔤.

It is assumed that the reader is familiar with the basics on Lie algebras. We review in
this appendix some of the standard facts on the structure of semisimple Lie algebras,
and corresponding affine Kac-Moody algebras. This appendix is also used to fix the
main notations relative to these structures.

Recall that the enveloping algebra of a Lie algebra 𝔤 over C is the quotient

𝑈 (𝔤) := 𝑇 (𝔤)/J (𝔤),

where

𝑇 (𝔤) :=
∞⊕
𝑖=0

𝑇 𝑖 (𝔤), 𝑇 𝑖 (𝔤) = 𝔤 ⊗ · · · ⊗ 𝔤︸       ︷︷       ︸
𝑖 times

,

is the tensor algebra of 𝔤 and J (𝔤) is the two-sided ideal of 𝑇𝔤 generated by
elements 𝑥 ⊗ 𝑦 − 𝑦 ⊗ −[𝑥, 𝑦], for 𝑥, 𝑦 ∈ 𝔤. It is a unital associative C-algebra. The
enveloping algebra 𝑈 (𝔤) is naturally filtered by the PBW filtration 𝑈• (𝔤), where
𝑈𝑖 (𝔤) is the subspace of 𝑈 (𝔤) spanned by the products of at most 𝑖 elements of 𝔤,
for 𝑖 > 0, and𝑈0 (𝔤) = C1. By the PBW theorem, we have

gr𝑈 (𝔤) � 𝑆(𝔤), (A.1)

as graded commutative algebras, where 𝑆(𝔤) � C[𝔤∗] is the symmetric algebra of 𝔤,
that is, the quotient 𝑇 (𝔤)/𝐽 (𝔤), where 𝐽 (𝔤) is the two-sided ideal of 𝑇 (𝔤) generated
by elements 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥, for 𝑥, 𝑦 ∈ 𝔤.

Our main references for this chapter are [50, 136, 137, 176, 158, 110, 114]. See
also [99] for a survey.
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A.1 Quick review on semisimple Lie algebras

Let 𝔤 be a complex finite dimensional semisimple Lie algebra, i.e., {0} is the only
abelian ideal of 𝔤. Its adjoint group 𝐺 is the smallest algebraic subgroup of 𝐺𝐿 (𝔤)
whose Lie algebra contains ad 𝔤. Since 𝔤 is semisimple,𝐺 = Aut𝑒 (𝔤), where Aut𝑒 (𝔤)
is the subgroup of 𝐺𝐿 (𝔤) generated by the elements exp(ad 𝑥) with 𝑥 a nilpotent
element of 𝔤 (i.e., (ad 𝑥)𝑛 = 0 for 𝑛 large enough). Hence

Lie(𝐺) = ad 𝔤 � 𝔤

since the adjoint representation ad: 𝔤! End(𝔤), 𝑥 7! (ad 𝑥) (𝑦) = [𝑥, 𝑦] is faithful,
𝔤 being semisimple.

A.1.1 Main notations

For 𝔞 a subalgebra of 𝔤 and 𝑥 ∈ 𝔤, we shall denote by 𝔞𝑥 the centralizer of 𝑥 in 𝔞,
that is,

𝔞𝑥 = {𝑦 ∈ 𝔞 : [𝑥, 𝑦] = 0},

which is also the intersection of 𝔞 with the kernel of the map

ad 𝑥 : 𝔤 −! 𝔤, 𝑦 7−! [𝑥, 𝑦] .

Let 𝜅𝔤 be the Killing form of 𝔤,

𝜅𝔤 : 𝔤 × 𝔤 −! C, (𝑥, 𝑦) 7−! tr(ad 𝑥 ad 𝑦).

It is a nondegenerate symmetric bilinear form of 𝔤 which is 𝐺-invariant, that is,

𝜅𝔤 (𝑔.𝑥, 𝑔.𝑦) = 𝜅𝔤 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝔤 and 𝑔 ∈ 𝐺,

or else,
𝜅𝔤 ( [𝑥, 𝑦], 𝑧) = 𝜅𝔤 (𝑥, [𝑦, 𝑧]) for all 𝑥, 𝑦, 𝑧 ∈ 𝔤.

Since 𝔤 is semisimple, any other such bilinear form is a nonzero multiple of the
Killing form.

Example A.1 Let 𝔤 be the Lie algebra 𝔰𝔩𝑛, for 𝑛 > 2, which is the set of traceless
complex 𝑛-size square matrices, with bracket [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. The Lie algebra
𝔰𝔩𝑛 is known to be simple , that is, {0} and 𝔤 are the only ideals of 𝔤 and dim 𝔤 > 3.
Its Killing form is given by

(𝐴, 𝐵) 7! 2𝑛 tr(𝐴𝐵).

The bilinear form (𝐴, 𝐵) 7! tr(𝐴𝐵) is more naturally used.
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In fact, mathematicians usually consider a certain normalization ( | ) of the Killing
form which will coincide with this bilinear form for 𝔰𝔩𝑛 (see Section A.2).

A.1.2 Cartan matrix and Chevalley generators

Let 𝔥 be a Cartan subalgebra of 𝔤, and let

𝔤 = 𝔥 ⊕
⊕
𝛼∈Δ

𝔤𝛼, 𝔤𝛼 := {𝑦 ∈ 𝔤 : [𝑥, 𝑦] = 𝛼(𝑥)𝑦 for all 𝑥 ∈ 𝔥},

be the corresponding root decomposition of (𝔤, 𝔥), where Δ is the root system of
(𝔤, 𝔥). Let Π = {𝛼1, . . . , 𝛼𝑟 } be a basis of Δ, with 𝑟 the rank of 𝔤, and let 𝛼∨1 , . . . , 𝛼

∨
𝑟

be the coroots of 𝛼1, . . . , 𝛼𝑟 , respectively. The element 𝛼∨
𝑖
, for 𝑖 = 1, . . . , 𝑟 , viewed

as an element of (𝔥∗)∗ � 𝔥, will be often denoted by ℎ𝑖 .
Recall that the Cartan matrix of Δ is the matrix 𝐶 = (𝐶𝑖, 𝑗 )16𝑖, 𝑗6𝑟 , where 𝐶𝑖, 𝑗 :=

𝛼 𝑗 (ℎ𝑖). The Cartan matrix𝐶 does not depend on the choice of the basis Π. It verifies
the following properties:

𝐶𝑖, 𝑗 ∈ Z for all 𝑖, 𝑗 , (A.2)
𝐶𝑖,𝑖 = 2 for all 𝑖, (A.3)
𝐶𝑖, 𝑗 6 0 if 𝑖 ≠ 𝑗 , (A.4)
𝐶𝑖, 𝑗 = 0 if and only if 𝐶 𝑗 ,𝑖 = 0. (A.5)

Moreover, all principal minors of 𝐶 are strictly positive,

det
(
(𝐶𝑖, 𝑗 )06𝑖, 𝑗6𝑠

)
> 0 for 1 6 𝑠 6 𝑟.

The semisimple Lie algebra 𝔤 has a presentation in term of Chevalley generators.
Namely, consider the generators (𝑒𝑖)16𝑖6𝑟 , ( 𝑓𝑖)16𝑖6𝑟 , (ℎ𝑖)16𝑖6𝑟 with relations

[ℎ𝑖 , ℎ 𝑗 ] = 0, (A.6)
[𝑒𝑖 , 𝑓 𝑗 ] = 𝛿𝑖, 𝑗ℎ𝑖 , (A.7)
[ℎ𝑖 , 𝑒 𝑗 ] = 𝐶𝑖, 𝑗𝑒 𝑗 , (A.8)
[ℎ𝑖 , 𝑓 𝑗 ] = −𝐶𝑖, 𝑗 𝑓 𝑗 , (A.9)

(ad 𝑒𝑖)1−𝐶𝑖, 𝑗 𝑒 𝑗 = 0 for 𝑖 ≠ 𝑗 , (A.10)

(ad 𝑓𝑖)1−𝐶𝑖, 𝑗 𝑓 𝑗 = 0 for 𝑖 ≠ 𝑗 , (A.11)

where 𝛿𝑖, 𝑗 is the Kronecker symbol. The last two relations are called the Serre
relations. By (A.8) and (A.9), 𝑒𝑖 ∈ 𝔤𝛼𝑖 and 𝑓𝑖 ∈ 𝔤−𝛼𝑖 for all 𝑖.

It is well-known that dim 𝔤𝛼 = 1 for any 𝛼 ∈ Δ. One can choose nonzero elements
𝑒𝛼 ∈ 𝔤𝛼, for all 𝛼, such that {ℎ𝑖 : 𝑖 = 1, . . . , 𝑟} ∪ {𝑒𝛼 : 𝛼 ∈ Δ} forms a Chevalley
basis of 𝔤. This means, apart from the above relations, that:
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[𝑒𝛽 , 𝑒𝛾] = ±(𝑝 + 1)𝑒𝛽+𝛾 , (A.12)

for all 𝛽, 𝛾 ∈ Δ, where 𝑝 is the greatest positive integer such that 𝛾 − 𝑝𝛽 is a root.
Here we consider that 𝑒𝛽+𝛾 = 0 if 𝛽 + 𝛾 is not a root, and that 𝑒𝛼𝑖 = 𝑒𝑖 , 𝑒−𝛼𝑖 = 𝑓𝑖 for
𝑖 = 1, . . . , 𝑟 .

Let Δ+ be the positive root system corresponding to Π, and let

𝔤 = 𝔫− ⊕ 𝔥 ⊕ 𝔫+ (A.13)

be the corresponding triangular decomposition. Thus 𝔫+ =
⊕

𝛼∈Δ+
𝔤𝛼 and 𝔫− =⊕

𝛼∈Δ−
𝔤𝛼 are both nilpotent Lie subalgebras of 𝔤.

A.1.3 Verma modules

Let 𝜆 ∈ 𝔥∗ and set

𝐾𝔤 (𝜆) := 𝑈 (𝔤)𝔫+ +
∑︁
𝑥∈𝔥

𝑈 (𝔤) (𝑥 − 𝜆(𝑥)).

Since 𝐾𝔤 (𝜆) is a left𝑈 (𝔤)-module,

𝑀𝔤 (𝜆) := 𝑈 (𝔤)/𝐾𝔤 (𝜆)

is naturally a left𝑈 (𝔤)-module, called a Verma module .

Theorem A.1 ([50, Theorem 10.6])

i). Each element of 𝑀𝔤 (𝜆) is uniquely written in the form 𝑢𝑚𝜆 for some 𝑢 ∈ 𝑈 (𝔤)
where 𝑚𝜆 := 1 + 𝐾𝔤 (𝜆).

ii). The elements 𝑓 𝑛1
𝛽1
. . . 𝑓

𝑛𝑠
𝛽𝑠
𝑚𝜆, for all 𝑛𝑖 > 0, form a basis of 𝑀𝔤 (𝜆).

Note that 𝑀𝔤 (𝜆) can also be described as follows (up to isomorphism of 𝑈 (𝔤)-
modules):

𝑀𝔤 (𝜆) � 𝑈 (𝔤) ⊗𝑈 (𝔟) C𝜆 =: Ind𝔤
𝔟
(C𝜆),

where 𝔟 := 𝔥 ⊕ 𝔫+ and C𝜆 is a one-dimensional 𝔟-module whose 𝔟-action is given
by: (𝑥 + 𝑛).𝑧 = 𝜆(𝑥)𝑧 for 𝑥 ∈ 𝔥, 𝑛 ∈ 𝔫+ and 𝑧 ∈ C𝜆. Then, up to scalars, 𝑚𝜆 = 1 ⊗ 1.

For each 𝜇 ∈ 𝔥∗, set

𝑀𝔤 (𝜆)𝜇 := {𝑚 ∈ 𝑀𝔤 (𝜆) : 𝑥𝑚 = 𝜇(𝑥)𝑚 for all 𝑥 ∈ 𝔥}.

For 𝜆, 𝜇 ∈ 𝔥∗ we write 𝜇 4 𝜆 if 𝜆 − 𝜇 belongs to the root lattice

𝑄 :=
𝑟∑︁
𝑖=1
Z𝛼𝑖 .

This defines a partial order on 𝔥∗.
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Theorem A.2 ([50, Theorem 10.7])

i). 𝑀𝔤 (𝜆) =
⊕

𝜇∈𝔥∗ 𝑀𝔤 (𝜆)𝜇.
ii). 𝑀𝔤 (𝜆)𝜇 ≠ 0 if and only if 𝜇 4 𝜆, and dim𝑀𝔤 (𝜆)𝜇 is the number of ways of

expressing 𝜆 − 𝜇 as a sum of positive roots. In particular, dim𝑀𝔤 (𝜆)𝜆 = 1.

If 𝑀𝔤 (𝜆)𝜇 ≠ 0, then 𝜇 called a weight of 𝑀𝔤 (𝜆), and 𝑀𝔤 (𝜆)𝜇 is called the weight
space of 𝑀𝔤 (𝜆) with weight 𝜇.

Theorem A.2 says that the weights of 𝑀𝔤 (𝜆) are precisely the elements 𝜇 ∈ 𝔥∗

such that 𝜇 4 𝜆. Thus 𝜆 is the highest weight of 𝑀𝔤 (𝜆) with respect to the partial
order 4. We say that 𝑀𝔤 (𝜆) is the Verma module with highest weight 𝜆.

One of the important fact about 𝑀𝔤 (𝜆) is that it has a unique maximal submodule
𝑁𝔤 (𝜆). It is constructed as follows: since 𝑀𝔤 (𝜆)𝜆 = C𝑚𝜆 and that 𝑀𝔤 (𝜆) is generated
by𝑚𝜆, any proper submodule 𝑁 of 𝑀𝔤 (𝜆) satisfy 𝑁𝜆 = 0. In particular the sum 𝑁max
of all proper submodules of 𝑀 satisfies (𝑁max)𝜆 = 0. This proves the existence and
the unicity of the maximal proper submodule of 𝑀𝔤 (𝜆): just set 𝑁𝔤 (𝜆) := 𝑁max.

Since 𝑁𝔤 (𝜆) is a maximal submodule of 𝑀𝔤 (𝜆),

𝐿𝔤 (𝜆) := 𝑀𝔤 (𝜆)/𝑁𝔤 (𝜆)

is a simple 𝑈 (𝔤)-module, that is, an irreducible representation of 𝔤. There is 𝑣𝜆 ∈
𝐿𝔤 (𝜆) \ {0} such that

• ℎ𝑖𝑣 = 𝜆(ℎ𝑖)𝑣 for all 𝑖 = 1, . . . , 𝑟 ,
• 𝑒𝑖𝑣 = 0 for all 𝑖 = 1, . . . , 𝑟 , that is, 𝔫+𝑣 = 0,
• 𝐿𝔤 (𝜆) = 𝑈 (𝔫−)𝑣𝜆,
• 𝜆 is the highest weight of 𝐿𝔤 (𝜆).

Let

𝑃 := {𝜆 ∈ 𝔥∗ : 𝜆(ℎ𝑖) ∈ Z for all 𝑖 = 1, . . . , 𝑟},
𝑃+ := {𝜆 ∈ 𝔥∗ : 𝜆(ℎ𝑖) ∈ Z>0 for all 𝑖 = 1, . . . , 𝑟},

be the weight lattice of 𝔥∗ and the set of dominant integral weights , respectively.
The elements 𝜛𝑖 ∈ 𝔥∗, 𝑖 = 1, . . . , 𝑟 , satisfying 𝜛𝑖 (ℎ 𝑗 ) = 𝛿𝑖, 𝑗 for all 𝑗 are called the
fundamental weights. We denote by 𝜛∨

1 , . . . , 𝜛
∨
𝑟 the fundamental coweights. They

are the elements of 𝔥 such that {𝜛∨
1 , . . . , 𝜛

∨
𝑟 } is the dual basis of {𝛼1, . . . , 𝛼𝑟 }.

We conclude this section by the following crucial result.

Theorem A.3 ([50, Theorem 10.21]) The simple𝑈 (𝔤)-module 𝐿𝔤 (𝜆) is finite dimen-
sional if and only if 𝜆 ∈ 𝑃+. Moreover, all simple finite dimensional 𝑈 (𝔤)-modules
are of the form 𝐿𝔤 (𝜆) for some 𝜆 ∈ 𝑃+. These modules are pairwise non-isomorphic.

The highest weight modules 𝑀𝔤 (𝜆) and 𝐿𝔤 (𝜆) are both elements of the category
O of 𝔤. To avoid repetitions, we will define the category O only for affine Kac-Moody
algebras (see Section A.4); the definition and properties are very similar.

For more about semisimple Lie algebras and their representations, possible ref-
erences are [50, 136, 176]; see [137] about the category O .
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For the category O in the affine Kac-Moody algebras setting, we refer to Moody-
Pianzola’s book [158].

A.2 Affine Kac-Moody algebras

Our basic reference about affine Kac-Moody algebras is [110]. We assume from now
on that 𝔤 is simple, that is, the only ideals of 𝔤 are {0} or 𝔤 and dim 𝔤 > 3.

A.2.1 The loop algebra

Consider the loop algebra of 𝔤 which is the Lie algebra

𝐿𝔤 := 𝔤[𝑡, 𝑡−1] = 𝔤 ⊗ C[𝑡, 𝑡−1],

with commutation relations

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛, 𝑥, 𝑦 ∈ 𝔤, 𝑚, 𝑛 ∈ Z,

where 𝑥𝑡𝑚 stands for 𝑥 ⊗ 𝑡𝑚.

Remark A.1 The Lie algebra 𝐿𝔤 is the Lie algebra of polynomial functions from the
unit circle to 𝔤. This is the reason why it is called the loop algebra.

A.2.2 Definition of affine Kac-Moody algebras

Define the bilinear form ( | ) on 𝔤 by:

( | ) = 1
2ℎ∨

𝜅𝔤,

where ℎ∨ is the dual Coxeter number (see §A.3.3 for the definition). For example, if
𝔤 = 𝔰𝔩𝑛 then ℎ∨ = 𝑛. Thus, with respect to the induced bilinear form on 𝔥∗, (𝜃 |𝜃) = 2,
where 𝜃 is the highest positive root of 𝔤, that is, the unique (positive) root 𝜃 ∈ Δ such
that 𝜃 + 𝛼𝑖 ∉ Δ ∪ {0} for 𝑖 = 1, . . . , 𝑟 .

Definition A.1 We define a bilinear map 𝜈 on 𝐿𝔤 by setting:

𝜈(𝑥 ⊗ 𝑓 , 𝑦 ⊗ 𝑔) := (𝑥 |𝑦)Res𝑡=0 (
𝑑𝑓

𝑑𝑡
𝑔),

for 𝑥, 𝑦 ∈ 𝔤 and 𝑓 , 𝑔 ∈ C[𝑡, 𝑡−1], where the linear map Res𝑡=0 : C[𝑡, 𝑡−1] ! C is
defined by Res𝑡=0 (𝑡𝑚) = 𝛿𝑚,−1 for 𝑚 ∈ Z.



A.2 Affine Kac-Moody algebras 151

The bilinear 𝜈 is a 2-cocycle on 𝐿𝔤, that is, for any 𝑎, 𝑏, 𝑐 ∈ 𝐿𝔤,

𝜈(𝑎, 𝑏) = −𝜈(𝑏, 𝑎), (A.14)
𝜈( [𝑎, 𝑏], 𝑐) + 𝜈( [𝑏, 𝑐], 𝑎) + 𝜈( [𝑐, 𝑎], 𝑏) = 0. (A.15)

Definition A.2 We define the affine Kac-Moody algebra 𝔤̂ as the vector space 𝔤̂ :=
𝐿𝔤⊕C𝐾 , with the commutation relations [𝐾, 𝔤̂] = 0 (so 𝐾 is a central element), and

[𝑥 ⊗ 𝑓 , 𝑦 ⊗ 𝑔] = [𝑥, 𝑦]𝐿𝔤 + 𝜈(𝑥 ⊗ 𝑓 , 𝑦 ⊗ 𝑔)𝐾, 𝑥, 𝑦 ∈ 𝔤, 𝑓 , 𝑔 ∈ C[𝑡, 𝑡−1], (A.16)

where [ , ]𝐿𝔤 is the Lie bracket on 𝐿𝔤. In other words the commutation relations are
given by:

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛 + 𝑚𝛿𝑚+𝑛,0 (𝑥 |𝑦)𝐾,
[𝐾, 𝔤̂] = 0,

for 𝑥, 𝑦 ∈ 𝔤 and 𝑚, 𝑛 ∈ Z.

A.2.3 Chevalley generators

The following result shows that affine Kac-Moody algebras are natural generaliza-
tions of finite dimensional semisimple Lie algebras.

Theorem A.4 The Lie algebra 𝔤̂ can be presented by generators (𝐸𝑖)06𝑖6𝑟 , (𝐹𝑖)06𝑖6𝑟 ,
(𝐻𝑖)06𝑖6𝑟 , and relations

[𝐻𝑖 , 𝐻 𝑗 ] = 0, (A.17)
[𝐸𝑖 , 𝐹𝑗 ] = 𝛿𝑖, 𝑗𝐻𝑖 , (A.18)
[𝐻𝑖 , 𝐸 𝑗 ] = 𝐶𝑖, 𝑗𝐸 𝑗 , (A.19)
[𝐻𝑖 , 𝐹𝑗 ] = −𝐶𝑖, 𝑗𝐹𝑗 , (A.20)

(ad 𝐸𝑖)1−𝐶𝑖, 𝑗𝐸 𝑗 = 0 for 𝑖 ≠ 𝑗 , (A.21)

(ad 𝐹𝑖)1−𝐶𝑖, 𝑗𝐹𝑗 = 0 for 𝑖 ≠ 𝑗 , (A.22)

where 𝐶̂ = (𝐶𝑖, 𝑗 )06𝑖6𝑟 is an affine Cartan matrix, that is, 𝐶̂ satisfies the relations
(A.2)–(A.5) of a Cartan matrix, all proper principal minors are strictly positive,

det
(
(𝐶𝑖, 𝑗 )16𝑖, 𝑗6𝑠

)
> 0 for 0 6 𝑠 6 𝑟 − 1,

and det(𝐶̂) = 0.

Moreover, we can choose the labeling {0, . . . , 𝑟} so that the subalgebra generated by
(𝐸𝑖)16𝑖6𝑟 , (𝐹𝑖)16𝑖6𝑟 , (𝐻𝑖)16𝑖6𝑟 is isomorphic to 𝔤, that is, (𝐶𝑖, 𝑗 )16𝑖6𝑟 is the Cartan
matrix 𝐶 of 𝔤.
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Let us give the general idea of the construction of the Chevalley generators of 𝔤̂
(see [99]1). Set for 𝑖 = 1, . . . , 𝑟 ,

𝐸𝑖 := 𝑒𝑖 = 𝑒𝑖 ⊗ 1, 𝐹𝑖 := 𝑓𝑖 = 𝑓𝑖 ⊗ 1, 𝐻𝑖 := ℎ𝑖 = ℎ𝑖 ⊗ 1.

The point is to define 𝐸0, 𝐹0, 𝐻0. Recall that 𝜃 is the highest root of Δ. Consider
the Chevalley involution 𝜔 which is the linear involution map of 𝔤 defined by
𝜔(𝑒𝑖) = − 𝑓𝑖 , 𝜔( 𝑓𝑖) = −𝑒𝑖 and 𝜔(ℎ𝑖) = −ℎ𝑖 for 𝑖 = 1, . . . , 𝑟 . Then pick 𝑓0 ∈ 𝔤𝜃 such
that

( 𝑓0 |𝜔( 𝑓0)) = − ℎ∨

(𝜃 |𝜃) = − ℎ
∨

2
.

Then we set 𝑒0 := −𝜔( 𝑓0) ∈ 𝔤−𝜃 and,

𝐸0 := 𝑒0𝑡 = 𝑒0 ⊗ 𝑡, 𝐹0 := 𝑓0𝑡
−1 = 𝑓0 ⊗ 𝑡−1, 𝐻0 := [𝐸0, 𝐹0] .

Example A.2 Assume that 𝔤 = 𝔰𝔩2. Then the Cartan matrix 𝐶 is 𝐶 = (2). Let us

check that the affine Cartan matrix of 𝔰𝔩2 is 𝐶̂ =

(
2 −2
−2 2

)
. We have

𝔰𝔩2 = 𝑒 ⊗ C[𝑡, 𝑡−1] ⊕ 𝑓 ⊗ C[𝑡, 𝑡−1] ⊕ ℎ ⊗ C[𝑡, 𝑡−1] ⊕ C𝐾,

where
𝑒 :=

(
0 1
0 0

)
, 𝑓 :=

(
0 0
1 0

)
, ℎ :=

(
1 0
0 1

)
.

We follow the above construction. We set 𝐸1 := 𝑒, 𝐹1 := 𝑓 and 𝐻1 := ℎ. We have
ℎ∨ = 2 and Δ = {𝛼,−𝛼} with 𝛼(ℎ) = 2. The highest root is 𝜃 = 𝛼 and (𝔰𝔩2)𝜃 = C𝑒.
So 𝑓0 is of the form 𝑓0 = 𝜆𝑒, 𝜆 ∈ C∗ and verifies:

−1 = ( 𝑓0, 𝜔( 𝑓0)) = −𝜆2,

whence 𝜆2 = ±1. Let us fix 𝜆 = 1. So we have

𝐸0 = 𝑓 𝑡 and 𝐹0 = 𝑒𝑡−1.

Then
𝐻0 = [𝐸0, 𝐹0] = [ 𝑓 , 𝑒] + ( 𝑓 |𝑒)𝐾 = 𝐾 − 𝐻1.

We can verify the relations of Chevalley generators. In particular, [𝐻1, 𝐸0] = −2𝐸0
and [𝐻0, 𝐸1] = −2𝐸1, whence the expected affine Cartan matrix 𝐶̂.

1 Since our normalization of ( | ) is slightly different, we give the details here.



A.3 Root systems and triangular decomposition 153

A.3 Root systems and triangular decomposition

In order to construct analogs of highest weight representations, we need a triangular
decomposition for 𝔤̂ and the corresponding combinatoric, that is, a system of roots.

A.3.1 Triangular decomposition

Recall the triangular decomposition (A.13) of 𝔤, and consider the following subspaces
of 𝔤̂:

𝔫̂+ := (𝔫− ⊕ 𝔥) ⊗ 𝑡C[𝑡] ⊕ 𝔫+ ⊗ C[𝑡] = 𝔫+ + 𝑡𝔤[𝑡],
𝔫̂− := (𝔫+ ⊕ 𝔥) ⊗ 𝑡−1C[𝑡−1] ⊕ 𝔫− ⊗ C[𝑡−1] = 𝔫− + 𝑡−1𝔤[𝑡−1],
𝔥̂ := (𝔥 ⊗ 1) ⊕ C𝐾 = 𝔥 + C𝐾.

They are Lie subalgebras of 𝔤̂ and we have

𝔤̂ = 𝔫̂− ⊕ 𝔥̂ ⊕ 𝔫̂+. (A.23)

In fact, 𝔫̂+ (resp., 𝔫̂−, 𝔥̂) is generated by the 𝐸𝑖 (resp., 𝐹𝑖 , 𝐻𝑖), for 𝑖 = 0, . . . , 𝑟 . The
verifications are left to the reader.

A.3.2 Extended affine Kac-Moody algebras

We now intend to define a corresponding root system, and simple roots. The simple
roots 𝛼𝑖 ∈ 𝔥̂∗ are defined by 𝛼 𝑗 (𝐻𝑖) = 𝐶𝑖, 𝑗 for 0 6 𝑖, 𝑗 6 𝑟 . As det(𝐶̂) = 0, the
simple roots 𝛼0, . . . , 𝛼𝑟 are not linearly independent. For example, for 𝔰𝔩2, we have
𝛼0 + 𝛼1 = 0.

For the following constructions, we need linearly independent simple roots. This
is the reason why we consider the extended affine Lie algebra :

𝔤̃ := 𝔤̂ ⊕ C𝐷,

with commutation relations (apart from those of 𝔤̂),

[𝐷, 𝑥 ⊗ 𝑓 ] = 𝑥 ⊗ 𝑡 𝑑𝑓
𝑑𝑡
, [𝐷, 𝐾] = 0, 𝑥 ∈ 𝔤, 𝑓 ∈ C[𝑡, 𝑡−1],

that is,
[𝐷, 𝑥𝑡𝑚] = 𝑚𝑥𝑡𝑚, [𝐷, 𝐾] = 0, 𝑥 ∈ 𝔤, 𝑚 ∈ Z.

We have the new Cartan subalgebra
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𝔥̃ := 𝔥̂ ⊕ C𝐷.

It is a commutative Lie subalgebra of 𝔤̃ of dimension 𝑟 + 2, and we have the corre-
sponding triangular decomposition :

𝔤̃ = 𝔫̂− ⊕ 𝔥̃ ⊕ 𝔫̂+.

Let us define the new simple roots 𝛼𝑖 ∈ 𝔥̃∗, for 𝑖 = 0, . . . , 𝑟 . The action of 𝛼𝑖 on 𝔥̂ has
already been defined, and so we only have to specify 𝛼𝑖 (𝐷), for 𝑖 = 0, . . . , 𝑟 . From
the relations

𝛼𝑖 (𝐷)𝐸𝑖 = [𝐷, 𝐸𝑖] = [𝐷, 𝑒𝑖] = 0, 𝑖 = 1, . . . , 𝑟,

we deduce that 𝛼𝑖 (𝐷) = 0 for 𝑖 = 1, . . . , 𝑟 . From the relation

𝛼0 (𝐷)𝐸0 = [𝐷, 𝐸0] = [𝐷, 𝑒0𝑡] = 𝐸0,

we deduce that 𝛼0 (𝐷) = 1.

A.3.3 Root system

The bilinear form ( | ) extends from 𝔤 to a symmetric bilinear form on 𝔤̃ by setting
for 𝑥, 𝑦 ∈ 𝔤, 𝑚, 𝑛 ∈ Z:

(𝑥𝑡𝑚 |𝑦𝑡𝑛) = 𝛿𝑚+𝑛,0 (𝑥 |𝑦), (𝐿𝔤|C𝐾 ⊕ C𝐷) = 0,
(𝐾 |𝐾) = (𝐷 |𝐷) = 0, (𝐾 |𝐷) = 1.

Since the restriction of the bilinear form ( | ) to 𝔥̃ is nondegenerate, we can identify
𝔥̃∗ with 𝔥̃ using this form. Through this identification, 𝛼0 = 𝐾 − 𝜃. For 𝛼 ∈ 𝔥̃∗ such

that (𝛼 |𝛼) ≠ 0, we set 𝛼∨ =
2𝛼

(𝛼 |𝛼) . Note that 𝛼∨ obviously corresponds to 𝛼∨
𝑖
= ℎ𝑖

for 𝛼 = 𝛼𝑖 , 𝑖 = 1, . . . , 𝑟 .
The set of roots Δ̂ of 𝔤̃ with basis Π̂ := {𝛼0, 𝛼1, . . . , 𝛼𝑟 } is

Δ̂ = Δ̂re ∪ Δ̂im,

where the set of real roots is

Δ̂re := {𝛼 + 𝑛𝐾 : 𝛼 ∈ Δ, 𝑛 ∈ Z},

and the set of imaginary roots is

Δ̂im := {𝑛𝐾 : 𝑛 ∈ Z, 𝑛 ≠ 0}.

Then we set Δ̂∨ := Δ̂∨,re ∪ Δ̂∨,im, with
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Δ̂∨,re := {𝛼∨ : 𝛼 ∈ Δ̂re}, Δ̂∨,im := {𝛼∨ : 𝛼 ∈ Δ̂im}.

The positive integers

ℎ := (𝜌∨ |𝜃) + 1 and ℎ∨ = (𝜌 |𝜃∨) + 1

are called the Coxeter number and the dual Coxeter number of 𝔤, respectively, where
𝜌 (resp., 𝜌∨) is the half sum of positive roots (resp., coroots), that is defined by
(𝜌 |𝛼∨

𝑖
) = 1 (resp., (𝜌∨ |𝛼𝑖) = 1), for 𝑖 = 1, . . . , 𝑟 . Defining 𝜌̂ := ℎ∨𝐷 + 𝜌 ∈ 𝔥̃ and

𝜌̂∨ := ℎ𝐷 + 𝜌∨ ∈ 𝔥̃ we have the following formulas: ( 𝜌̂ |𝛼∨
𝑖
) = 1 and ( 𝜌̂∨ |𝛼𝑖) = 1,

for 𝑖 = 0, . . . , 𝑟 .

A.4 Representations of affine Kac-Moody algebras, category O

We extend some notations and definitions of Section A.1 to 𝔤̃. For example, for 𝑀 a
𝔤̃-module and 𝜆 ∈ 𝔥̃∗, we set

𝑀𝜆 := {𝑚 ∈ 𝑀 : 𝑥𝑚 = 𝜆(𝑥)𝑚 for all 𝑥 ∈ 𝔥̃}.

The space 𝑀𝜆 is called the weight space of weight 𝜆 of 𝑀 . The set of weights of 𝑀
is

wt(𝑀) := {𝜆 ∈ 𝔥̃∗ : 𝑀𝜆 ≠ 0}.

The partial order 4 is extended to 𝔥̃∗ as follows: we write 𝜇 4 𝜆 if 𝜆− 𝜇 =
∑𝑟
𝑖=0 𝑚𝑖𝛼𝑖

with 𝑚𝑖 ∈ Z, 𝑚𝑖 > 0. For 𝜆 ∈ 𝔥̃∗, we set 𝐷 (𝜆) := {𝜇 ∈ 𝔥̃∗ : 𝜇 4 𝜆}.

A.4.1 The category O

Let𝑈 (𝔤̃) -Mod be the category of left𝑈 (𝔤̃)-modules.

Definition A.3 The catgeory O is defined to be the full subcategory of 𝑈 (𝔤̃) -Mod
whose objects are the modules 𝑀 satisfying the following conditions:

(O1) 𝑀 is 𝔥̃-diagonalizable, that is, 𝑀 = ⊕𝜆∈𝔥̃∗𝑀𝜆,
(O2) all weight spaces of 𝑀 are finite dimensional,
(O3) there exists a finite number of 𝜆1, . . . , 𝜆𝑠 ∈ 𝔥̃∗ such that

wt(𝑀) ⊂
⋃

16𝑖6𝑠
𝐷 (𝜆𝑖).

The category O is stable by submodules and quotients. For 𝑀1, 𝑀2 two representa-
tions of 𝔤̃ we can define a structure of 𝔤̃-module on 𝑀1 ⊗ 𝑀2 by using the coproduct
𝔤̃! 𝔤̃, 𝑥 7! 𝑥 ⊗ 1 + 1 ⊗ 𝑥 for 𝑥 ∈ 𝔤̃. Then if 𝑀1 and 𝑀2 are objects of O , then so are
𝑀1 ⊕ 𝑀2 and 𝑀1 ⊗ 𝑀2.
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A.4.2 Verma modules

We now give important examples of modules in the category O . For 𝜆 ∈ 𝔥̃∗, set:

𝐾 (𝜆) := 𝑈 (𝔤̃)𝔫̂+ +
∑︁
𝑥∈𝔥̃∗

𝑈 (𝔤̃) (𝑥 − 𝜆(𝑥)).

As it is a left ideal of𝑈 (𝔤̃),

𝑀 (𝜆) := 𝑈 (𝔤̃)/𝐾 (𝜆)

has a natural structure of a left𝑈 (𝔤̃)-module. It is called a Verma module .

Proposition A.1 The 𝑈 (𝔤̃)-module 𝑀 (𝜆) is in the category O and has a unique
proper submodule 𝑁 (𝜆).

We construct 𝑁 (𝜆) in the same way as 𝑁𝔤 (𝜆) for 𝔤 (see §A.1.3).
As a consequence of the proposition, 𝑀 (𝜆) has a unique simple quotient

𝐿 (𝜆) := 𝑀 (𝜆)/𝑁 (𝜆).

Proposition A.2 The simple module 𝐿 (𝜆) is in the category O and all simple mod-
ules of the category O are of the form 𝐿 (𝜆) for some 𝜆 ∈ 𝔥̃∗.

The character of a module 𝑀 in the category O is by definition

ch(𝑀) =
∑︁
𝜆∈𝔥̃∗

(dim𝑀𝜆)𝑒(𝜆),

where the 𝑒(𝜆) are formal elements.
In general a representation 𝑀 in O does not have a finite composition series.

However, the multiplicity [𝑀 : 𝐿 (𝜆)] of 𝐿 (𝜆) in 𝑀 makes sense ([114]). As a
consequence, we have

ch𝑀 =
∑︁
𝜆

[𝑀 : 𝐿 (𝜆)] ch 𝐿 (𝜆), [𝑀 : 𝐿 (𝜆)] ∈ Z>0,

A.4.3 Singular vectors

A singular vector of a 𝔤-representation 𝑀 is a vector 𝑣 ∈ 𝑀 such that 𝔫+.𝑣 = 0, that
is, 𝑒𝑖 .𝑣 = 0 for 𝑖 = 1, . . . , 𝑟 . A singular vector of a 𝔤̂-representation 𝑀 is a vector
𝑣 ∈ 𝑀 such that 𝔫̂+.𝑣 = 0, that is, 𝑒𝑖 .𝑣 = 0 for 𝑖 = 1, . . . , 𝑟 , and ( 𝑓𝜃 𝑡).𝑣 = 0, with
𝑓𝜃 ∈ 𝔤−𝜃 \ {0}.
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A.5 Integrable and admissible representations

A.5.1 Integrable representations

The representation 𝐿 (𝜆), for 𝜆 ∈ 𝔥̃∗, is finite dimensional if and only if 𝜆 = 0, that is,
𝐿 (𝜆) is the trivial representation. The notion of finite dimensional representations
has to be replaced by the notion of in the category O .

Definition A.4 A representation 𝑀 of 𝔤̃ is said to be integrable if

(1) 𝑀 is 𝔥̃-diagonalizable,
(2) for 𝜆 ∈ 𝔥̃∗, 𝑀𝜆 is finite dimensional,
(3) for all 𝜆 ∈ wt(𝑀), for all 𝑖 = 0, . . . , 𝑟 , there is 𝑁 > 0 such that for 𝑚 > 𝑁 ,
𝜆 + 𝑚𝛼𝑖 ∉ wt(𝑀) and 𝜆 − 𝑚𝛼𝑖 ∉ wt(𝑀).

Remark A.2 As an 𝔞𝑖-module, 𝑖 = 0, . . . , 𝑟 , an integrable representation 𝑀 decom-
poses into a direct sum of finite dimensional irreducible 𝔥̂-invariant modules, where
𝔞𝑖 � 𝔰𝔩2 is the Lie algebra generated by the Chevalley generators 𝐸𝑖 , 𝐹𝑖 , 𝐻𝑖 . Hence
the action of 𝔞𝑖 on 𝑀 can be “integrated" to the action of the group 𝑆𝐿2 (C).

The character of the simple integrable representations in the category O satisfy
remarkable combinatorial identities (related to Macdonald identities).

A.5.2 Level of a representation

According to the well-known Schur Lemma, any central element of a Lie algebra
acts as a scalar on a simple finite dimensional representation 𝐿. As the Schur Lemma
extends to a representation with countable dimension, the result holds for highest
weight 𝔤̃-modules. In particular, 𝐾 ∈ 𝔤̃ acts as a scalar 𝑘 ∈ C on the simple
representations of the category O .

Definition A.5 A representation 𝑀 is said to be level 𝑘 if 𝐾 acts as 𝑘Id on 𝑀 .

All simple representations of the category O have a level. Namely, 𝐿 (𝜆) has level
𝑘 = 𝜆(𝐾) ∈ C, and so 𝑘 = 𝜇(𝐾) for all 𝜇 ∈ wt(𝐿 (𝜆)). Note that

𝑘 = 𝜆(𝐾) =
𝑟∑︁
𝑖=0

𝑎𝑖𝜆(𝛼∨𝑖 )

where the 𝑎𝑖 are defined by 𝐾 =
∑𝑟
𝑖=0 𝑎𝑖𝛼

∨
𝑖
.

Lemma A.1 The simple representation 𝐿 (𝜆) is integrable if and only if 𝜆 is dominant
and integrable, that is, 𝜆(𝐻𝑖) ∈ Z>0 for all 𝑖 = 0, . . . , 𝑟 . It has level 0 if and only if
dim 𝐿 (𝜆) = 1.
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Recall that 𝔥̃∗ is identified with 𝔥̃ through ( | ), and that through this identification
the dual of 𝐾 is 𝐷. Then, as a particular case of Lemma A.1, 𝐿 (𝑘𝐷) is integrable if
and only if 𝑘 ∈ Z>0.

The category of modules of the category O of level 𝑘 will be denoted by O𝑘

([110]).
The level 𝑘 = −ℎ∨ is particular since the center of 𝑈̃ (𝔤̂)/𝑈̃ (𝔤̂) (𝐾 − 𝑘) is large

and the representation theory changes drastically at this level. Here, 𝑈̃ (𝔤̂) is the
completion of the enveloping algebra𝑈 (𝔤̂). This level is called the critical level.

Although the category O is stable by tensor product, the category O𝑘 is not stable
by tensor product (except for 𝑘 = 0). Indeed from the coproduct, we get that for
𝑀1, 𝑀2 representations in O𝑘1 , O𝑘2 respectively, the module 𝑀1 ⊗ 𝑀2 is in O𝑘1+𝑘2 .
This is one motivation to study the fusion product; see [31], [99, Section 5] for more
details on this topic.

A.5.3 Admissible representations

We now introduce a class of representations, called admissible representations,
which includes the class of integrable representations. The definition goes back to
Kac and Wakimoto [117]. While the notion of integrable representations has a geo-
metrical meaning, the notion of admissible representations is purely combinatorial.
However, conjecturally, admissible representations are precisely the representations
which satisfy a certain modular invariant property (see below).

Retain the notations of §A.3.3, and recall the definition of the affine and extended
affine Weyl groups (see e.g., [119]). Let 𝑊 be the Weyl group of (𝔤, 𝔥) and extend
it to 𝔥̂ by setting 𝑤(𝐾) = 𝐾 , 𝑤(𝐷) = 𝐷 for all 𝑤 ∈ 𝑊 . Let 𝑄∨ =

∑𝑟
𝑖=1 Z𝛼

∨
𝑖

be the
coroot lattice of 𝔤. For 𝛼 ∈ 𝔥, define the translation ([111]),

𝑡𝛼 (𝑣) = 𝑣 + (𝑣 |𝐾)𝛼 −
(
1
2
|𝛼 |2 (𝑣 |𝐾) + (𝑣 |𝛼)

)
𝐾, 𝑣 ∈ 𝔥̂,

and for a subset 𝐿 ⊂ 𝔥, let
𝑡𝐿 := {𝑡𝛼 : 𝛼 ∈ 𝐿}.

The affine Weyl groups 𝑊̂ and the extended affine Weyl group 𝑊̃ are then defined by:

𝑊̂ := 𝑊 n 𝑡𝑄∨ , 𝑊̃ := 𝑊 n 𝑡𝑃∨ ,

so that 𝑊̂ ⊂ 𝑊̃ . Here 𝑃∨ = {𝜆 ∈ 𝔥 : 〈𝜆, 𝛼〉 ∈ Z for all 𝛼 ∈ 𝑄}, with 𝑄 =
∑𝑟
𝑖=1 Z𝛼𝑖

the root lattice.
The group 𝑊̃+ := {𝑤 ∈ 𝑊̃ : 𝑤(Π̂∨) = Π̂∨} acts transitively on orbits of Aut Π̂∨

and simply transitively acts on the orbit of 𝛼∨0 . Moreover 𝑊̃ = 𝑊̃+ n 𝑊̂ . Here,
Π̂∨ := {𝛼∨ : 𝛼 ∈ Π̂}.

Definition A.6 ([117, 119]) A weight 𝜆 ∈ 𝔥̂∗ is called admissible if
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(1) 𝜆 is regular dominant, that is,

〈𝜆 + 𝜌̂, 𝛼∨〉 ∉ −Z>0 for all 𝛼 ∈ Δ̂re
+ ,

(2) the Q-span of Δ̂𝜆 contains Δ̂re, where Δ̂𝜆 := {𝛼 ∈ Δ̂re : (𝜆 |𝛼∨) ∈ Z}.

The irreducible highest weight representation 𝐿 (𝜆) of 𝔤̂with highest weight 𝜆 ∈ 𝔥̂∗ is
called admissible if𝜆 is admissible. Note that an irreducible integrable representation
of 𝔤̂ is admissible.

Proposition A.3 ([119, Prop. 1.2]) For 𝑘 ∈ C, the weight 𝜆 = 𝑘𝐷 is admissible if
and only if 𝑘 satisfies one of the following conditions:

i). 𝑘 = −ℎ∨ + 𝑝

𝑞
where 𝑝, 𝑞 ∈ Z>0, (𝑝, 𝑞) = 1, and 𝑝 > ℎ∨,

ii). 𝑘 = −ℎ∨ + 𝑝

𝑟∨𝑞
where 𝑝, 𝑞 ∈ Z>0, (𝑝, 𝑞) = 1, (𝑝, 𝑟∨) = 1 and 𝑝 > ℎ.

Here 𝑟∨ is the lacety of 𝔤 (i.e., 𝑟∨ = 1 for the types 𝐴, 𝐷, 𝐸 , 𝑟∨ = 2 for the types
𝐵,𝐶, 𝐹 and 𝑟∨ = 3 for the type 𝐺2), ℎ and ℎ∨ are the Coxeter and dual Coxeter
numbers.

Definition A.7 If 𝑘 satisfies one of the conditions of Proposition A.3, we say that 𝑘
is an admissible level.

For an admissible representation 𝐿 (𝜆) we have [116]

ch(𝐿 (𝜆)) =
∑︁

𝑤 ∈𝑊̂ (𝜆)

(−1)ℓ𝜆 (𝑤)ch(𝑀 (𝑤 ◦ 𝜆)) (A.24)

since 𝜆 is regular dominant, where 𝑊̂ (𝜆) is the integral Weyl group ([129, 158]) of
𝜆, that is, the subgroup of 𝑊̂ generated by the reflections 𝑠𝛼 associated with 𝛼 ∈ Δ̂𝜆,
𝑤 ◦ 𝜆 = 𝑤(𝜆 + 𝜌) − 𝜌, and ℓ𝜆 is the length function of the Coxeter group 𝑊̂ (𝜆).
Further, Condition (ii) of Proposition A.3 implies that ch(𝐿 (𝜆)) is written in terms
of certain theta functions [111, Chap. 13]. Kac and Wakimoto [117] showed that
admissible representations are modular invariant, that is, the characters of admissible
representations form an 𝑆𝐿2 (Z) invariant subspace.

Let 𝜆, 𝜇 be distinct admissible weights. Then Condition (1) of Proposition A.3
implies that

Ext1
𝔤̂
(𝐿 (𝜆), 𝐿(𝜇)) = 0.

Further, the following fact is known by Gorelik and Kac [94].

Theorem A.5 ([94]) Let 𝜆 be admissible. Then

Ext1
𝔤̂
(𝐿 (𝜆), 𝐿(𝜆)) = 0.

Therefore admissible representations form a semisimple full subcategory of the
category of 𝔤̂-modules.





Appendix B
Differential operators

In this chapter, 𝑋 = Spec 𝐴 is an affine algebraic variety over the complex number
field of dimension 𝑛. We are particularly interested in the case where 𝑋 is an affine
algebraic group 𝐺.

Our main references are [102, 152].

B.1 Tangent sheaf and cotangent sheaf

Let O𝑋 be the sheaf of rings of regular functions, that is, the structure sheaf on 𝑋 .
We denote briefly the algebra O𝑋 (𝑋) of global sections by O (𝑋).

We say that a section 𝜃 ∈ (EndCO𝑋 ) (𝑋) is a vector field on 𝑋 if for each open
subset𝑈 ⊂ 𝑋 , 𝜃 (𝑈) := 𝜃 |𝑈 ∈ (EndCO𝑋 ) (𝑈) satisfies the condition

𝜃 (𝑈) ( 𝑓 𝑔) = 𝜃 (𝑈) ( 𝑓 )𝑔 + 𝑓 𝜃 (𝑈) (𝑔), 𝑓 , 𝑔 ∈ O𝑋 (𝑈).

For an open subset 𝑈 of 𝑋 , denote the set of vector fields 𝜃 on 𝑈 by Θ(𝑈). Then
Θ(𝑈) is an O𝑋 (𝑈)-module, and the presheaf 𝑈 7! Θ(𝑈) turns out to be a sheaf of
O𝑋 -modules. We denote this sheaf by Θ𝑋 and call it the tangent sheaf of 𝑋 . Thus

Θ𝑋 = DerC (O𝑋 ).

It is a coherent sheaf of O𝑋 -modules. Indeed, if 𝑋 = Spec 𝐴, with 𝐴 =

C[𝑥1, . . . , 𝑥𝑛]/𝐼, with 𝐼 an ideal of C[𝑥1, . . . , 𝑥𝑛], then

DerC (C[𝑥1, . . . , 𝑥𝑛]) =
𝑛⊕
𝑖=1
C[𝑥1, . . . , 𝑥𝑛]𝜕𝑖 , where 𝜕𝑖 :=

𝜕

𝜕𝑥𝑖
,

is a free C[𝑥1, . . . , 𝑥𝑛]-module of rank 𝑛, and

DerC (𝐴) � {𝜃 ∈ DerC (C[𝑥1, . . . , 𝑥𝑛]) : 𝜃 (𝐼) ⊂ 𝐼}.

161
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Hence DerC (𝐴) is finitely generated over 𝐴.
We define the cotangent sheaf of 𝑋 by Ω1

𝑋
= 𝛿−1 (I/I2), where 𝛿 : 𝑋 ! 𝑋 × 𝑋

is the diagonal embeddings, I is the ideal sheaf of 𝛿(𝑋) in 𝑋 × 𝑋 defined by

I(𝑉) = { 𝑓 ∈ O𝑋×𝑋 (𝑉) : 𝑓 (𝑉 ∩ 𝛿(𝑋)) = 0}

for any open subset 𝑉 of 𝑋 × 𝑋 , and 𝛿−1 stands for the sheaf-theoretical inverse
image functor. (We usually keep the notation Ω𝑋 for the sheaf

∧
𝑛Ω1

𝑋
of differential

forms of top degree.)
Sections of the sheafΩ1

𝑋
are called differential forms. By the canonical morphism

O𝑋 ! 𝛿−1O𝑋×𝑋 of sheaf of C-algebras, Ω1
𝑋

is naturally an O𝑋 -module.
We have a morphism 𝑑 : O𝑋 ! Ω1

𝑋
of O𝑋 -modules defined by

𝑑𝑓 = 𝑓 ⊗ 1 − 1 ⊗ 𝑓 mod 𝛿−1I2.

It satisfies 𝑑 ( 𝑓 𝑔) = 𝑑 ( 𝑓 )𝑔 + 𝑓 (𝑑𝑔) for any 𝑓 , 𝑔 ∈ O𝑋 .
We denote briefly the O (𝑋)-modules Θ𝑋 (𝑋) = DerC (O (𝑋)) and Ω1

𝑋
(𝑋) by

Θ(𝑋) and Ω1 (𝑋), respectively.
Thus Ω1 (𝑋) = I(𝑋)/I(𝑋)2, and I(𝑋) is the kernel of the morphism

𝜀 : O (𝑋) ⊗C O (𝑋) −! O (𝑋), 𝑓 ⊗ 𝑔 7−! 𝑓 𝑔.

The O (𝑋) ⊗C O (𝑋)-modules I(𝑋), I(𝑋)2 and Ω1 (𝑋) are viewed as O (𝑋)-
modules via the homomorphism O (𝑋) ! O (𝑋) ⊗C O (𝑋), 𝑓 7! 𝑓 ⊗ 1.

In O (𝑋) ⊗C O (𝑋) we have

𝑓 ⊗ 𝑔 = 𝑓 𝑔 ⊗ 1 + 𝑓 (1 ⊗ 𝑔 − 𝑔 ⊗ 1) = 𝜀( 𝑓 ⊗ 𝑔) + 𝑓 (𝑑𝑔 mod I(𝑋)2).

Therefore, if
∑
𝑖 𝑓𝑖 ⊗ 𝑔𝑖 ∈ I(𝑋) = ker 𝜀, then∑︁

𝑖

𝑓𝑖 ⊗ 𝑔𝑖 =
∑︁
𝑖

𝑓𝑖𝑑𝑔𝑖 mod I(𝑋)2,

and so any element of Ω1 (𝑋) = I(𝑋)/I(𝑋)2 has the form
∑
𝑖 𝑓𝑖𝑑𝑔𝑖 , for 𝑓𝑖 , 𝑔𝑖 ∈

O (𝑋).
In conclusion, we obtain the following fact.

Lemma B.1 As O (𝑋)-module, Ω1
𝑋

is generated by 𝑑𝑓 , for 𝑓 ∈ O (𝑋).

For 𝛼 ∈ HomO (𝑋 ) (Ω1
𝑋
,O𝑋 ) we have 𝛼 ◦ 𝑑 ∈ Θ𝑋 , which gives an isomorphism

HomO (𝑋 ) (Ω1
𝑋 ,O𝑋 ) � Θ𝑋

as O𝑋 -modules.

Theorem B.1 Assume that 𝑋 is smooth. For each point 𝑥 ∈ 𝑋 , there exist an affine
open neighbourhood 𝑉 of 𝑥, regular functions 𝑥𝑖 ∈ O𝑋 (𝑉), and vector fields 𝜕𝑖 ∈
Θ𝑋 (𝑉), for 𝑖 ∈ {1, . . . , 𝑛}, satisfying the conditions:
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[𝜕𝑖 , 𝜕 𝑗 ] = 0, 𝜕𝑖 (𝑥 𝑗 ) = 𝛿𝑖, 𝑗 , 1 6 𝑖, 𝑗 6 𝑛,

Θ𝑉 =

𝑛⊕
𝑖=1

O𝑉 𝜕𝑖 .

Moreover, one can choose the functions 𝑥1, 𝑥2, . . . , 𝑥𝑛 so that they generate the
maximal ideal 𝔪𝑥 of the local ring O𝑋,𝑥 at 𝑥.

Proof Since the local ring O𝑋,𝑥 is regular, there exist 𝑛 = dim 𝑋 functions
𝑥1, . . . , 𝑥𝑛 ∈ 𝔪𝑥 generating the ideal 𝔪𝑥 . Then 𝑑𝑥1, . . . , 𝑑𝑥𝑛 is a basis of the
free O𝑋,𝑥-module Ω1

𝑋,𝑥
. Hence we can take an affine open neighbourhood 𝑉 of

𝑥 such that Ω1
𝑋
(𝑉) is a free module with basis 𝑑𝑥1, . . . , 𝑑𝑥𝑛 over O𝑋 (𝑉). Tak-

ing the dual basis 𝜕1, . . . , 𝜕𝑛 ∈ Θ𝑋 (𝑉) � HomO𝑋 (𝑉 ) (Ω1
𝑋
(𝑉),O𝑋 (𝑉)) we get

𝜕𝑖 (𝑥 𝑗 ) = 𝛿𝑖, 𝑗 . Write [𝜕𝑖 , 𝜕 𝑗 ] as [𝜕𝑖 , 𝜕 𝑗 ] =
𝑛∑
𝑙=1
𝑔𝑙
𝑖, 𝑗
𝜕𝑙 ∈ O𝑋 (𝑉). Then we have

𝑔𝑙
𝑖, 𝑗

= [𝜕𝑖 , 𝜕 𝑗 ]𝑥𝑙 = 𝜕𝑖𝜕 𝑗𝑥𝑙 − 𝜕 𝑗𝜕𝑖𝑥𝑙 = 0. Hence [𝜕𝑖 , 𝜕 𝑗 ] = 0. �

The set {𝑥𝑖 , 𝜕𝑖 : 1 6 𝑖 6 𝑛} defined over an affine open neighborhood of 𝑥
satisfying the conditions of Theorem B.1 is called a local coordinate system at 𝑥.

B.2 Sheaf of differential operators

Because D𝑋 is a quantization of
𝜋∗O𝑇 ∗𝐺 , I think this section should come
after Poisson algebra section.

It is explained in Example C.3: is it OK?

We define the sheaf D𝑋 as the sheaf of C-subalgebras of EndC (O𝑋 ) generated by
O𝑋 and Θ𝑋 . Here we identify O𝑋 with a subsheaf of EndC (O𝑋 ) by identifying
𝑓 ∈ O𝑋 with the element 𝑔 7! 𝑓 𝑔 of EndC (O𝑋 ).

We call the sheaf D𝑋 the sheaf of differential operators on 𝑋 . For any point
of 𝑋 we can take an affine open neighborhood 𝑈 and a local coordinate system
{𝑥𝑖 , 𝜕𝑖 : 1 6 𝑖 6 𝑛}. Hence we have

D𝑈 := D𝑋 (𝑈) =
⊕
𝛼∈Z𝑛>0

O𝑈𝜕
𝛼
𝑥 , 𝜕𝛼𝑥 := 𝜕𝛼1

1 · · · 𝜕𝛼𝑛𝑛 .

We define the order filtration 𝐹•D𝑈 of D𝑈 by

𝐹𝑙D𝑈 =
∑︁
|𝛼 |6𝑙

O𝑈𝜕
𝛼
𝑥 , 𝑙 ∈ Z>0, |𝛼 | :=

∑︁
𝑖

𝛼𝑖 .

More generally, for an arbitrary open subset 𝑉 of 𝑋 we define the order filtration
𝐹•D𝑋 over 𝑉 by

(𝐹𝑙D𝑋 ) (𝑉)
= {𝑃 ∈ D𝑋 (𝑉) : res𝑉𝑈 𝑃 ∈ (𝐹𝑙D𝑋 ) (𝑈) for any affine open subset𝑈 of 𝑉},

where res𝑉
𝑈

: D𝑋 (𝑉) ! D𝑋 (𝑈) is the restriction map.
For convenience we set 𝐹𝑝D𝑋 = 0 for 𝑝 < 0.
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Proposition B.1

i). 𝐹•D𝑋 is an increasing filtration of D𝑋 such that D𝑋 =
⋃
𝑙>0 𝐹𝑙D𝑋 and each

𝐹𝑙D𝑋 is a locally free module over O𝑋 .
ii). 𝐹0D𝑋 := O𝑋 and (𝐹𝑙D𝑋 ) (𝐹𝑚D𝑋 ) = 𝐹𝑙+𝑚D𝑋 .
iii). [𝐹𝑙D𝑋 , 𝐹𝑚D𝑋 ] ⊂ 𝐹𝑙+𝑚−1D𝑋 .

Remark B.1 One can alternatively define 𝐹•D𝑋 by the recursive formula:

𝐹𝑙D𝑋 = {𝑃 ∈ EndC (O𝑋 ) : [𝑃, 𝑓 ] ∈ 𝐹𝑙−1D𝑋 for all 𝑓 ∈ O𝑋 }, 𝑙 ∈ Z>0.

Let us consider the sheaf of graded rings

grD𝑋 = gr𝐹D𝑋 =
⊕
𝑙>0

gr𝑙 D𝑋 ,

where gr𝑙 D𝑋 := 𝐹𝑙D𝑋/𝐹𝑙−1D𝑋 , 𝐹−1D𝑋 = 0. By Proposition B.1, grD𝑋 is a sheaf
of commutative algebras finitely generated over O𝑋 . Take an affine chart 𝑈 with a
coordinate system {𝑥𝑖 , 𝜕𝑖} and set

𝜉𝑖 := (𝜕𝑖 mod 𝐹0D𝑈 = O𝑈 ) ∈ gr1 D𝑈 .

Then we have

gr𝑙 D𝑈 =
⊕
|𝛼 |=𝑙

O𝑈 𝜉
𝛼,

grD𝑈 = O𝑈 [𝜉1, . . . , 𝜉𝑛] .

We can globalize this notion as follows. Let𝑇∗𝑋 be the cotangent bundle of 𝑋 and let
𝜋 : 𝑇∗𝑋 ! 𝑋 be the projection. We may regard 𝜉1, . . . , 𝜉𝑛 as the coordinate system of
the cotangent space

⊕𝑛

𝑖=1 C𝑑𝑥𝑖 and hence O𝑈 [𝜉1, . . . , 𝜉𝑛] is canonically identified
with the sheaf 𝜋∗O𝑇 ∗𝑋 of algebras. Thus we obtain a canonical identification

grD𝑋 � 𝜋∗O𝑇 ∗𝑋 . (B.1)

The algebra D(𝑋) := D𝑋 (𝑋) is called the algebra of differential operators on 𝑋 .

B.3 Derivations and differential forms on a group

Let 𝐺 be an affine algebraic group. By definition, the Lie algebra of 𝐺 is the Lie
algebra of left invariant vector fields on 𝐺, that is,

Lie(𝐺) = {𝜃 ∈ DerC (O (𝐺)) : Δ ◦ 𝜃 = (1 ⊗ 𝜃) ◦ Δ},
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(see e.g. [173, Proposition 10.29]), where Δ : O (𝐺) ! O (𝐺) ⊗O (𝐺) is the coprod-
uct induced by the multiplication𝐺. Thus, 𝜃 ∈ DerC (O (𝐺)) is in Lie(𝐺) if and only
if for all 𝑔 ∈ 𝐺, 𝜆𝑔𝜃 = 𝜃𝜆𝑔, where (𝜆𝑔 𝑓 ) (𝑦) = 𝑓 (𝑔−1𝑦) for 𝑓 ∈ O (𝐺) and 𝑦 ∈ 𝐺.

The Lie algebra of 𝐺 is canonically isomorphic, as a Lie algebra, to the Lie
algebra Lie𝑟 (𝐺) of right invariant vector fields 𝜃, that is, the Lie algebra consisted of
𝜃 ∈ DerC (O (𝐺)) such that 𝜌𝑔𝜃 = 𝜃𝜌𝑔, where (𝜌𝑔 𝑓 ) (𝑦) = 𝑓 (𝑦𝑔) for 𝑓 ∈ O (𝐺) and
𝑦 ∈ 𝐺. It is also canonically isomorphic to 𝑇𝑒 (𝐺), the tangent space at the identity
to 𝐺, via the isomorphism,

Lie(𝐺) −! 𝑇𝑒 (𝐺),

sending 𝜃 ∈ Lie(𝐺) to ev𝑒 ◦𝜃,where ev𝑒 is the evaluation map at the neutral element
𝑒, in which we have identified Θ(𝐺) = DerC (O (𝐺)) with the tangent bundle 𝑇𝐺.
We denote by 𝔤 this Lie algebra.

Thus, we have
𝑇𝐺 � 𝐺 × 𝔤 and 𝑇∗𝐺 � 𝐺 × 𝔤∗.

For 𝑥 ∈ 𝔤, we write 𝑥𝐿 (resp., 𝑥𝑅) the corresponding left (resp., right) invariant
vector field on 𝐺. Note that (𝑥𝐿 𝑓 ) (𝑎) = 𝑥(𝜆𝑎−1 𝑓 ) for 𝑓 ∈ O (𝐺) and 𝑎 ∈ 𝐺.

Remark B.2 Concretely, viewing 𝐺 as a complex analytic space, we have for 𝑥 ∈ 𝔤

and 𝑓 ∈ O (𝐺),

(𝑥𝐿 𝑓 ) (𝑎) =
𝑑

𝑑𝑡

����
𝑡=0

𝑓 (𝑎 exp(𝑡𝑥)), 𝑎 ∈ 𝐺,

(𝑥𝑅 𝑓 ) (𝑎) =
𝑑

𝑑𝑡

����
𝑡=0

𝑓 (exp(𝑡𝑥)𝑎), 𝑎 ∈ 𝐺,

where exp: 𝔤! 𝐺 is the exponential map.

The embedding 𝔤 ↩! DerC (O (𝐺)), 𝑥 7! 𝑥𝐿 , induces an isomorphism of left
O (𝐺)-modules

O (𝐺) ⊗C 𝔤
'
−! DerC (O (𝐺)). (B.2)

Indeed, both sides are free O (𝐺)-modules of rank the dimension of 𝔤 since 𝐺 is
smooth.

We denote by 〈 , 〉 : DerC (O (𝐺))×Ω1 (𝐺) ! O (𝐺) the canonical O (𝐺)-bilinear
pairing.

Let us collect some useful identities. Let {𝑥1, . . . , 𝑥𝑑} be a basis of 𝔤, and
{𝜔1, . . . , 𝜔𝑑} the dual O (𝐺)-basis of Ω1 (𝐺). Write

[𝑥𝑖 , 𝑥 𝑗 ] =
∑︁
𝑝

𝑐
𝑖, 𝑗
𝑝 𝑥

𝑝 , for 𝑖, 𝑗 = 1, . . . , 𝑑,

with (𝑐𝑖, 𝑗𝑝 ) ∈ C. The isomorphism (B.2) tells that {𝑥1, . . . , 𝑥𝑑} forms an O (𝐺)-basis
of DerC (O (𝐺)). In particular,
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𝑥𝑖𝑅 =
∑︁
𝑝

𝑓 𝑖, 𝑝𝑥𝑝 , 𝑖 = 1, . . . , 𝑑, (B.3)

for some invertible matrix ( 𝑓 𝑖, 𝑝)16𝑖, 𝑝6𝑑 over O (𝐺).

Lemma B.2 The following identities hold:

i). for all 𝑖, 𝑗 , 𝑠 ∈ {1, . . . , 𝑑},

𝑥𝑖𝐿 𝑓
𝑗 ,𝑠 +

∑︁
𝑝

𝑐
𝑖, 𝑝
𝑠 𝑓 𝑗 , 𝑝 = 0,

ii). for all 𝑖, 𝑗 , 𝑠 ∈ {1, . . . , 𝑑},∑︁
𝑝

𝑓 𝑖, 𝑝 (𝑥𝑝
𝐿
𝑓 𝑗 ,𝑠) =

∑︁
𝑞

𝑐
𝑖, 𝑗
𝑞 𝑓 𝑞,𝑠 .

Proof The identities of (i) hold because they are equivalent to the commutation
relations

[𝑥𝑖𝐿 , 𝑥
𝑗

𝑅
] = 0 (B.4)

for all 𝑖, 𝑗 , 𝑠.
To prove (ii), we write down the relations

[𝑥𝑖𝑅, 𝑥
𝑗

𝑅
] = [𝑥𝑖 , 𝑥 𝑗 ]𝑅, (B.5)

for 𝑖, 𝑗 = 1, . . . , 𝑑, in coordinates. We have

[𝑥𝑖𝑅, 𝑥
𝑗

𝑅
] =

∑︁
𝑠

[𝑥𝑖𝑅, 𝑓 𝑗 ,𝑠𝑥𝑠] =
∑︁
𝑠

(𝑥𝑖𝑅 𝑓 𝑗 ,𝑠)𝑥𝑠 =
∑︁
𝑠, 𝑝

𝑓 𝑖, 𝑝 (𝑥𝑝
𝐿
𝑓 𝑗 ,𝑠)𝑥𝑠

by (B.4) and (B.3). Plugging this into (B.5), we get the identities of (ii). �

The Lie algebra DerC (O (𝐺)) acts on Ω1 (𝐺) by the Lie derivative as follows:

((Lie 𝜃).𝜔) (𝜃1) = 𝜃 (〈𝜃1, 𝜔〉) − 〈[𝜃, 𝜃1], 𝜔〉, (B.6)

for 𝜔 ∈ Ω1
𝐺

and 𝜃, 𝜃1 ∈ DerC (O (𝐺)). (In fact, the Lie algebra DerC (O (𝐺)) acts on
Ω(𝐺) = ∧

𝑑Ω1 (𝐺) by the Lie derivative; see [102, §1.2].)
So for 𝑖, 𝑗 = 1, . . . , 𝑑, we have

(Lie 𝑥𝑖).𝜔 𝑗 =
∑︁
𝑠

𝛼
𝑖, 𝑗
𝑠 𝜔

𝑝 ,

for some 𝛼𝑖, 𝑗𝑠 ∈ C.

Lemma B.3 The following identities hold:

i). for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑},
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(Lie 𝑥𝑖).𝜔 𝑗 =
∑︁
𝑠

𝑐
𝑠,𝑖
𝑗
𝜔𝑠 ,

ii). for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑},
(Lie 𝑥𝑖𝑅).𝜔 𝑗 = 0.

Proof For 𝑖, 𝑗 , 𝑠 ∈ {1, . . . , 𝑑}, we have

𝛼
𝑖, 𝑗
𝑠 = 〈𝑥𝑠 , (Lie 𝑥𝑖).𝜔 𝑗〉 = (Lie 𝑥𝑖).〈𝑥𝑠 , 𝜔 𝑗〉 + 〈[𝑥𝑠 , 𝑥𝑖], 𝜔 𝑗〉 = 𝑐𝑠,𝑖

𝑗
,

whence (i).
Similarly, for 𝑖, 𝑗 , 𝑠 ∈ {1, . . . , 𝑑}, we have

〈𝑥𝑠𝑅, (Lie 𝑥𝑖𝑅).𝜔 𝑗〉 = (Lie 𝑥𝑖𝑅).〈𝑥𝑠𝑅, 𝜔
𝑗〉 + 〈[𝑥𝑠 , 𝑥𝑖]𝑅, 𝜔 𝑗〉

=
∑︁
𝑝

𝑓 𝑠, 𝑝 (𝑥𝑝
𝐿
𝑓 𝑖, 𝑗 ) +

∑︁
𝑝

𝑐𝑖,𝑠𝑝 𝑓 𝑝,𝑠 = 0

by (B.3) and Lemma B.2, whence (ii). whence (ii). �

By the Frobenius reciprocity, we have

HomO (𝐺) (DerC (O (𝐺)),O (𝐺)) � HomC (𝔤,O (𝐺))

since DerC (O (𝐺)) � O (𝐺) ⊗C 𝔤. Hence, as a C-vector spaces,

Ω1 (𝐺) � HomC (𝔤,O (𝐺)).

The above isomorphism has to be understand as follows. Write 𝜔 ∈ Ω1 (𝐺) as
𝜔 =

∑
𝑖

𝑓𝑖𝑑𝑔𝑖 by Lemma B.1. To such an 𝜔 we attach the element of HomC (𝔤,O (𝐺))
which maps an element 𝑥 ∈ 𝔤 to

∑
𝑖

𝑓𝑖 (𝑥𝐿𝑔𝑖) ∈ O (𝐺).
As a consequence we obtain the following proposition.

Proposition B.2 The linear map from Ω1
𝐺

to HomC (𝔤,O (𝐺)) sending 𝑑𝑔 to the
element 𝑥 7! 𝑥𝐿𝑔 of HomC (𝔤,O (𝐺)) is an isomorphism of O (𝐺)-modules.

B.4 The algebra of differential operators on a group

We keep the notation of the previous section.
Let D(𝐺) be the algebra of differential operators on 𝐺. We have a natural

embedding
O (𝐺) ↩−! D(𝐺).

Moreover, from the embedding 𝔤 ↩! Θ(𝐺), 𝑥 7! 𝑥𝐿 , given by the left invariant
vector fields, we get an embedding

𝑈 (𝔤) ↩−! D(𝐺),
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where𝑈 (𝔤) is the enveloping algebra of 𝔤 (see Appendix A). This induces a map

𝜄 : O (𝐺) ⊗ 𝑈 (𝔤) ↩−! D(𝐺) (B.7)

of O (𝐺)-modules. We have a structure of 𝐺-equivariant sheaf on both sides, with
respect to the left translation action of 𝐺 on itself. The 𝐺-equivariant structure on
the left-hand-side comes from the 𝐺-action on O (𝐺) induces by the left translation
action of 𝐺 on itself, that is, the 𝐺-action on 𝑈 (𝔤) is trivial; the 𝐺-action on the
right-hand-side is described as follows: for 𝑔 ∈ 𝐺, 𝑓 ∈ O (𝐺) and 𝜃 ∈ 𝔤 ⊂ Θ(𝐺)
then 𝑔.( 𝑓 𝜃) = (𝑔. 𝑓 )𝜃.

Let D𝑙 (𝐺) be the algebra of left invariant differential operators on 𝐺, that is,
the algebra of elements 𝛼 ∈ D(𝐺) such that for all 𝑔 ∈ 𝐺 and all 𝑓 ∈ O (𝐺),
𝜆𝑔 (𝛼 𝑓 ) = 𝛼(𝜆𝑔 𝑓 ).

Proposition B.3 The map 𝜄 induces an isomorphism of O (𝐺)-modules,

O (𝐺) ⊗ 𝑈 (𝔤) � D(𝐺).

Moreover,
𝑈 (𝔤) � D𝑙 (𝐺) � D(𝐺)𝐺 .

Proof Let us first show that 𝜄 is an isomorphism. The algebra D(𝐺) is filtered by
the order filtration 𝐹•D(𝐺). On the other hand, the PBW filtration 𝐹•𝑈 (𝔤) on𝑈 (𝔤)
induces a filtration 𝐹• (O (𝐺) ⊗ 𝑈 (𝔤)) on O (𝐺) ⊗ 𝑈 (𝔤) by setting

𝐹𝑙 (O (𝐺) ⊗ 𝑈 (𝔤)) := O (𝐺) ⊗ 𝐹𝑙𝑈 (𝔤), 𝑙 ∈ Z>0.

The map 𝜄 sends 𝐹𝑙 (O (𝐺) ⊗ 𝑈 (𝔤)) to 𝐹𝑙D(𝐺), and both filtrations are exhaustive.
So it suffices to check that the map on associated graded space is an isomorphism.
The associated graded of the right-hand-side is

O𝑇 ∗𝐺 � O𝐺×𝔤∗ � O (𝐺) ⊗ O (𝔤∗),

by (B.1), while by the PBW theorem the associated graded of the left-hand-side is

O (𝐺) ⊗ 𝑆(𝔤),

whence the statement since O (𝔤∗) � 𝑆(𝔤).
Next, since the map 𝜄 is 𝐺-equivariant,

(D(𝐺))𝐺 � (O (𝐺) ⊗ 𝑈 (𝔤))𝐺 � O (𝐺)𝐺 ⊗ 𝑈 (𝔤) � 𝑈 (𝔤) ↩! D𝑙 (𝐺).

To show the other inclusion, observe that gr𝑈 (𝔤) � 𝑆(𝔤) � O (𝔤∗) while

gr D𝑙 (𝐺) � (O (𝐺) ⊗ O (𝔤∗))𝐺 � O (𝐺)𝐺 ⊗ O (𝔤∗) � O (𝔤∗),

where 𝐺 acts on on O (𝐺) by 𝜆𝑔, 𝑔 ∈ 𝐺, and trivially on O (𝔤∗). Hence, D𝑙 (𝐺) �
(D(𝐺))𝐺 � 𝑈 (𝔤) as desired.



Appendix C
Poisson algebras, Poisson varieties and
Hamiltonian reduction

We have compiled in this appendix some basic facts on Poisson algebras and Poisson
varieties.

C.1 Poisson algebras and Poisson varieties

Let 𝐴 be a commutative associative C-algebra with unit.

Definition C.1 Suppose that 𝐴 is endowed with an additional C-bilinear bracket
{ , } : 𝐴 × 𝐴! 𝐴. Then 𝐴 is called a Poisson algebra if the following conditions
holds:

i). 𝐴 is a Lie algebra with respect to { , },
ii). (Leibniz rule) {𝑎, 𝑏 · 𝑐} = {𝑎, 𝑏} · 𝑐 + 𝑏 · {𝑎, 𝑐}, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴.

The Lie bracket { , } is called a Poisson bracket on 𝐴.

Similarly, one can define the notion of Poisson superalgebra: see Appendix E.

Example C.1 Let (𝑋, 𝜔) be a symplectic variety. Then the algebra (O (𝑋), { , }) of
regular functions, with pointwise multiplication, is a Poisson algebra.

As an example, let 𝔤 = Lie(𝐺) be a complex algebraic finite-dimensional Lie
algebra. and pick a coadjoint orbit O = 𝐺.𝜉 of 𝔤∗. Then O has a natural structure of
symplectic structure, see e.g. [54, Proposition 1.1.5]; for 𝜉 ∈ 𝔤∗, we have

𝑇𝜉 (O) = 𝑇𝜉 (𝐺/𝐺 𝜉 ) ' 𝔤/𝔤𝜉

and the bilinear form 𝜔𝜉 : (𝑥, 𝑦) 7! 𝜉 ( [𝑥, 𝑦]) descends to 𝔤/𝔤𝜉 . This gives the
symplectic structure. Hence, together with a coadjoint orbit in 𝔤∗, we have a natural
Poisson algebra.

169
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C.2 Tensor products of Poisson algebras

C.3 Almost commutative algebras

In another direction, we have examples of Poisson algebras coming from some
noncommutative algebras. Let 𝐵 be an associative filtered (noncommutative) algebra
with unit,

0 = 𝐵−1 ⊂ 𝐵0 ⊂ 𝐵1 ⊂ · · · ,
⋃
𝑖>0

𝐵𝑖 = 𝐵,

such that 𝐵𝑖 .𝐵 𝑗 ⊂ 𝐵𝑖+ 𝑗 for any 𝑖, 𝑗 > 0. Let

𝐴 := gr 𝐵 =
⊕
𝑖

𝐵𝑖/𝐵𝑖−1

be its graded algebra (the multiplication in 𝐵 gives rise a well-defined product
𝐵𝑖/𝐵𝑖−1 × 𝐵 𝑗/𝐵 𝑗−1 ! 𝐵𝑖+ 𝑗/𝐵𝑖+ 𝑗−1, making 𝐴 an associative algebra). We said that
𝐵 is almost commutative if 𝐴 is commutative: this means that 𝑎𝑖𝑏 𝑗 − 𝑏 𝑗𝑎𝑖 ∈ 𝐵𝑖+ 𝑗−1
for 𝑎𝑖 ∈ 𝐵𝑖 , 𝑏 𝑗 ∈ 𝐵 𝑗 .

Assume that 𝐵 is almost commutative. Then gr 𝐵 has a natural structure of Poisson
algebra. We define the Poisson bracket

{ , } : 𝐵𝑖/𝐵𝑖−1 × 𝐵 𝑗/𝐵 𝑗−1 ! 𝐵𝑖+ 𝑗−1/𝐵𝑖+ 𝑗−2

as follows: for 𝑎1 ∈ 𝐵𝑖/𝐵𝑖−1 and 𝑎2 ∈ 𝐵 𝑗/𝐵 𝑗−1, let 𝑏1 (resp. 𝑏2) be a representative
of 𝑎1 in 𝐵𝑖 (resp. 𝐵 𝑗 ) and set

{𝑎1, 𝑎2} := 𝑏1𝑏2 − 𝑏2𝑏1 mod 𝐵𝑖+ 𝑗−2 .

Then we can check the required properties.

Example C.2 Let 𝔤 be any complex finite-dimensional Lie algebra. Let 𝑈•𝔤 be the
PBW filtration of the universal enveloping algebra 𝑈 (𝔤) of 𝔤, that is, 𝑈𝑖 (𝔤) is the
subspace of𝑈 (𝔤) spanned by the products of at most 𝑖 elements of 𝔤, and𝑈 (𝔤)0 = C1
(see Appendix A). Then

0 = 𝑈−1 (𝔤) ⊂ 𝑈0 (𝔤) ⊂ 𝑈1 (𝔤) ⊂ . . . , 𝑈 (𝔤) =
⋃
𝑖

𝑈𝑖 (𝔤),

𝑈𝑖 (𝔤) ·𝑈 𝑗 (𝔤) ⊂ 𝑈𝑖+ 𝑗 (𝔤), [𝑈𝑖 (𝔤),𝑈 𝑗 (𝔤)] ⊂ 𝑈𝑖+ 𝑗−1 (𝔤).

The associated graded space gr𝑈 (𝔤) =
⊕

𝑖>0𝑈𝑖 (𝔤)/𝑈𝑖−1 (𝔤) is naturally a Poisson
algebra, and the PBW Theorem states that

gr𝑈 (𝔤) � 𝑆(𝔤) � C[𝔤∗]

as Poisson algebras, where 𝑆(𝔤) is the symmetric algebra of 𝔤.
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Let us describe explicitly the Poisson bracket on C[𝔤∗] (see [54, Proposition
1.3.18]). Let {𝑥1, . . . , 𝑥𝑛} be a basis of 𝔤, with structure constants 𝑐𝑘

𝑖, 𝑗
, that is,

[𝑥𝑖 , 𝑥 𝑗 ] =
∑
𝑘

𝑐𝑘
𝑖, 𝑗
𝑥𝑘 . Through the canonical isomorphism (𝔤∗)∗ � 𝔤, any element of

𝔤 is regarded as a linear functions on 𝔤∗, and thus as an element of C[𝔤∗]. We get for
𝑓 , 𝑔 ∈ C[𝔤∗],

{ 𝑓 , 𝑔} =
∑︁
𝑖, 𝑗 ,𝑘

𝑐𝑘𝑖, 𝑗𝑥𝑘
𝜕 𝑓

𝜕𝑥∗
𝑖

𝜕𝑔

𝜕𝑥∗
𝑗

.

In a more concise way, we have:

{ 𝑓 , 𝑔} : 𝔤∗ −! C, 𝜉 7−! 〈𝜉, [𝑑𝜉 𝑓 , 𝑑𝜉𝑔]〉

where 𝑑𝜉 𝑓 , 𝑑𝜉𝑔 ∈ (𝔤∗)∗ � 𝔤 denote the differentials of 𝑓 and 𝑔 at 𝜉. In particular,
if 𝑥, 𝑦 ∈ 𝔤 � (𝔤∗)∗ ⊂ C[𝔤∗], then

{𝑥, 𝑦} = [𝑥, 𝑦] .

Moreover, if O is a coadjoint orbit of 𝔤∗,

{ 𝑓 , 𝑔}|O = { 𝑓 |O, 𝑔 |O}symplectic.

The above Poisson structure on C[𝔤∗] is referred to as the Kirillov-Kostant-Souriau
Poisson structure.

Example C.3 Let 𝐺 be an affine algebraic group, 𝔤 = Lie(𝐺), and D(𝐺) the algebra
of (global) differential operators on 𝐺. It is filtered by the order filtration 𝐹•D(𝐺),
see Section B.2.

According to Proposition B.1, the filtered algebra D(𝐺) is almost commutative.
It fact, by (B.1), one knows that

grD(𝐺) � O𝑇 ∗𝐺 ,

where 𝑇∗𝐺 is the cotangent bundle of 𝐺. Thus O𝑇 ∗𝐺 inherits a Poisson algebra
structure from that of grD(𝐺).

One the other hand,𝑇∗𝐺 is a symplectic variety and therefore O𝑇 ∗𝐺 has a Poisson
algebra structure arising from its symplectic structure. It turns out that these two
Poisson structures coincide (see, for example, [54, Theorem 1.3.10]).

A affine Poisson scheme (resp., affine Poisson variety) is an affine scheme 𝑋 =

Spec 𝐴 (resp. 𝑋 = Specm 𝐴) such that 𝐴 is a Poisson algebra. A Poisson scheme
(resp. Poisson variety) is a scheme (resp. reduced scheme) such that the structure
sheaf O𝑋 is a sheaf of Poisson algebras.

For example, let 𝐵 be as above and continue to assume that 𝐵 is almost com-
mutative, that is, 𝐴 = gr 𝐵 is commutative. Assume furthermore that 𝐴 is a finitely
generated commutative algebra without zero-divisors. In other words, 𝐴 = C[𝑋]
is the coordinate ring of a (reduced) irreducible affine algebraic variety 𝑋 . So the
Poisson structure on 𝐴 makes 𝑋 a Poisson variety.
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C.4 Symplectic leaves

If 𝑋 is smooth, then one may view 𝑋 as a complex-analytic manifold equipped with
a holomorphic Poisson structure. For each point 𝑥 ∈ 𝑋 one defines the symplectic
leaf L𝑥 through 𝑥 to be the set of points that could be reached from 𝑥 by going along
Hamiltonian flows1.

If 𝑋 is not necessarily smooth, let Sing(𝑋) be the singular locus of 𝑋 , and for any
𝑘 > 1 define inductively Sing𝑘 (𝑋) := Sing(Sing𝑘−1 (𝑋)). We get a finite partition
𝑋 =

⊔
𝑘 𝑋

𝑘 , where the strata 𝑋 𝑘 := Sing𝑘−1 (𝑋) \ Sing𝑘 (𝑋) are smooth analytic
varieties (by definition we put 𝑋0 = 𝑋 \ Sing(𝑋)). It is known (cf. e.g., [45]) that
each 𝑋 𝑘 inherits a Poisson structure. So for any point 𝑥 ∈ 𝑋 𝑘 there is a well defined
symplectic leaf L𝑥 ⊂ 𝑋 𝑘 . In this way one defines symplectic leaves on an arbitrary
Poisson variety. In general, each symplectic leaf is a connected smooth analytic (but
not necessarily algebraic) subset in 𝑋 . However, if the algebraic variety 𝑋 consists
of finitely many symplectic leaves only, then it was shown in [45] that each leaf is
a smooth irreducible locally-closed algebraic subvariety in 𝑋 , and the partition into
symplectic leaves gives an algebraic stratification of 𝑋 .

Example C.4 If 𝔤 = Lie(𝐺) is an algebraic Lie algebra, the space 𝔤∗ is a (smooth)
Poisson variety and the symplectic leaves of 𝔤∗ are the coadjoint orbits of 𝔤∗, cf.
[179, Prop. 3.1]. The Poisson structure on the coadjoint orbits of 𝔤∗ is known as the
Kirillov-Kostant Poisson structure.

If 𝔤 is simple, the nilpotent cone N of 𝔤, which is the (reduced) subscheme of 𝔤∗
associated with the augmentation ideal C[𝔤∗]𝐺+ of the ring of invariants C[𝔤∗], is an
example of Poisson variety with finitely many symplectic leaves. These are precisely
the nilpotent orbits of 𝔤∗ � 𝔤.

C.5 Induced Poisson structures and Hamiltonian reduction

There are roughly two ways to construct a new Poisson variety from a Poisson
manifold 𝑋: the induction and the Hamiltonian reduction.

Recall first a result of Weinstein about the induction; see [179, Prop. 3.10]:

Theorem C.1 (Weinstein) Let 𝑌 be a submanifold of a Poisson manifold 𝑋 such
that:

i). 𝑌 is transversal to the symplectic leaves, i.e., for any symplectic leaf 𝑆 and any
𝑥 ∈ 𝑌 ∩ 𝑆, 𝑇𝑥𝑌 + 𝑇𝑥𝑆 = 𝑇𝑥𝑋 ,

ii). for any 𝑥 ∈ 𝑌 , 𝑇𝑥𝑌 ∩ 𝑇𝑥𝑆 is a symplectic subspace of 𝑇𝑥𝑆, where 𝑆 is the leaf of
𝑋 containing 𝑥.

1 A Hamiltonian flow in 𝑋 from 𝑥 to 𝑥′ is a curve 𝛾 defined on an open neighborhood of [0, 1] in
C, with 𝛾 (0) = 𝑥 and 𝛾 (1) = 𝑥′, which is an integral curve of a Hamiltonian vector field 𝜉 𝑓 , for
some 𝑓 ∈ O (𝑋 ) , defined on an open neighborhood of 𝛾 ( [0, 1]) . See for example [138, Chap. 1]
for more details.
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Then, there is a natural induced Poisson structure on 𝑌 , and the symplectic leaf of 𝑌
through 𝑥 ∈ 𝑌 is 𝑌 ∩ 𝑆 if 𝑆 is the symplectic leaf through 𝑥 in 𝑋 .

Let us now turn to the classical Hamiltonian reduction. Let 𝐺 be a Lie group,
with Lie algebra 𝔤, acting on an affine Poisson variety (𝑋, { , }).

Definition C.2 The action of 𝐺 in 𝑋 is said to be Hamiltonian if there is a Lie
algebra homomorphism

𝐻 : 𝔤 −! O𝑋 (𝑋), 𝑥 7−! 𝐻𝑥

such that the following diagram is commutative:

𝔤 //

𝐻
''

X (𝑋 )

O𝑋 (𝑋 )

OO

where X (𝑋) is the Lie algebra of vector fields on 𝑋 and the vertical map is the
natural map from O𝑋 (𝑋) to X (𝑋) given by 𝑓 7! { 𝑓 , }. As for the horizontal map,
it comes from the 𝐺-action on 𝑋 . Namely, it is the map

𝔤 −!X (𝑋), 𝑎 7−!
(
𝑥 7!

𝑑

𝑑𝑡
(exp(𝑡 ad 𝑎).𝑥) |𝑡=0 ∈ 𝑇𝑥𝑋

)
.

The map 𝐻 : 𝔤! O𝑋 (𝑋) is called the Hamiltonian. Define the moment map

𝜇 : 𝑋 −! 𝔤∗

by assigning to 𝑥 ∈ 𝑋 the linear function 𝜇(𝑥) : 𝔤 ! C, 𝑎 7! 𝐻𝑎 (𝑥). The moment
map induces a Poisson algebra homomorphism

C[𝔤∗] −! O𝑋 (𝑋).

Moroever, if the group 𝐺 is connected, then 𝜇 is 𝐺-equivariant with respect to the
coadjoint action on 𝔤∗.

We refer to [179, Theorem 7.31] or [138, Proposition 5.39 and Definition 5.9] for
the following result.

Theorem C.2 (Marsden-Weinstein) Assume that𝐺 is connected and that the action
of 𝐺 in 𝑋 is Hamiltonian. Let 𝛾 ∈ 𝔤∗. Assume that 𝛾 is a regular value2 of 𝜇,
that 𝜇−1 (𝛾) is 𝐺-stable and that 𝜇−1 (𝛾)/𝐺 is a variety. Let 𝜄 : 𝜇−1 (𝛾) ↩! 𝑋 and
𝜋 : 𝜇−1 (𝛾) � 𝜇−1 (𝛾)/𝐺 be the natural maps: 𝜄 is the inclusion and 𝜋 is the quotient
map. Then the triple

(𝑋, 𝜇−1 (𝛾), 𝜇−1 (𝛾)/𝐺)

2 If 𝑓 : 𝑋 ! 𝑌 is a smooth map between varieties, we say that a point 𝑦 is a regular value of
𝑓 if for all 𝑥 ∈ 𝑓 −1 (𝑦) , the map 𝑑𝑥 𝑓 : 𝑇𝑥 (𝑋 ) ! 𝑇𝑦 (𝑌 ) is surjective. If so, then 𝑓 −1 (𝑦) is a
subvariety of 𝑋 and the codimension of this variety in 𝑋 is equal to the dimension of 𝑌 .
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is Poisson-reducible, i.e., there exists a Poisson structure { , }′ on 𝜇−1 (𝛾)/𝐺 such
that for all open subset𝑈 ⊂ 𝑋 and for all 𝑓 , 𝑔 ∈ O𝑋 (𝜋(𝑈 ∩ 𝜇−1 (𝛾)), on has

{ 𝑓 , 𝑔}′ ◦ 𝜋(𝑢) = { 𝑓 , 𝑔̃} ◦ 𝜄(𝑢)

at any point 𝑢 ∈ 𝑈 ∩ 𝜇−1 (𝛾), where 𝑓 , 𝑔̃ ∈ O𝑋 (𝑈) are arbitrary extensions of
𝑓 ◦ 𝜋 |𝑈∩𝜇−1 (𝛾) , 𝑔 ◦ 𝜋 |𝑈∩𝜇−1 (𝛾) to𝑈.

C.6 Poisson modules

Let 𝑅 be a Poisson algebra. A Poisson 𝑅-module is a 𝑅-module 𝑀 in the usual
associative sense equipped with a bilinear map

𝑅 × 𝑀 ! 𝑀, (𝑟, 𝑚) 7! ad 𝑟 (𝑚) = {𝑟, 𝑚},

which makes 𝑀 a Lie algebra module over 𝑅 satisfying

{𝑟1, 𝑟2𝑚} = {𝑟1, 𝑟2}𝑚 + 𝑟2{𝑟1, 𝑚}, {𝑟1𝑟2, 𝑚} = 𝑟1{𝑟2, 𝑛} + 𝑟2{𝑟1, 𝑚}

for 𝑟1, 𝑟2 ∈ 𝑅, 𝑚 ∈ 𝑀 .

Lemma C.1 For any Lie algebra 𝔤, a Poisson module over C[𝔤∗] is the same as a
C[𝔤∗]-module 𝑁 in the usual associative sense equipped with a Lie algebra module
structure 𝔤! End𝑀 , 𝑥 7! ad(𝑥), such that

ad(𝑥) ( 𝑓 𝑚) = {𝑥, 𝑓 }.𝑚 + 𝑓 . ad(𝑥) (𝑚)

for 𝑥 ∈ 𝔤, 𝑓 ∈ C[𝔤∗], 𝑚 ∈ 𝑀 .

Example C.5 If 𝔤 = Lie(𝐺) is a simple Lie algebra, letHC(𝔤) be the full subcategory
of the category of Poisson C[𝔤∗]-modules on which the Lie algebra 𝔤-action is
integrable, that is, locally finite. If 𝑋 is an affine Poisson scheme equipped with a
Hamiltonian 𝐺-action, then C[𝑋] is an object of HC(𝔤). Note that the action of
C[𝔤∗] on C[𝑋] is given by { 𝑓 , 𝑔} = {𝜇∗ ( 𝑓 ), 𝔤}, for 𝑓 ∈ C[𝔤∗] and 𝑔 ∈ C[𝑋], where
𝜇∗ : C[𝔤∗] ! C[𝑋] is the comorphism of the moment map 𝜇 : 𝑋 ! 𝔤∗.



Appendix D
Nilpotent orbits and associated varieties of
primitive ideals

In this appendix, 𝔤 is a complex simple Lie algebra with adjoint group 𝐺. We keep
all the related notations used in Appendix A. Our main references for the results of
Section D.1 are [106, 55, 176].

D.1 Nilpotent cone

Let N = N (𝔤) be the nilpotent cone of 𝔤 , that is, the set of all nilpotent elements
of 𝔤. If 𝔤 is a simple Lie algebra of matrices, note that N coincides with the set of
nilpotent matrices of 𝔤. For 𝑒 ∈ 𝔤, we denote by𝐺.𝑒 its adjoint𝐺-orbit. The nilpotent
cone is a finite union of nilpotent 𝐺-orbits and it is itself the closure of the regular
nilpotent orbit , denoted by Oreg. It is the unique nilpotent orbit of codimension
the rank 𝑟 of 𝔤. An element 𝑥 ∈ 𝔤 is regular if its centralizer 𝔤𝑥 has the minimal
dimension, that is, the rank 𝑟 of 𝔤. Thus, Oreg is the set of all regular nilpotent
elements of 𝔤. Regular nilpotent elements are sometimes called principal.

Example D.1 If 𝔤 = 𝔰𝔩𝑛, then the rank of 𝔤 is 𝑛 − 1 and Oreg is the conjugacy class
of the 𝑛-size Jordan block 𝐽𝑛, i.e., Oreg = 𝑆𝐿𝑛.𝐽𝑛 with

𝐽𝑛 :=

©­­­­­«
0 1 0
. . .

. . .

. . . 1
0 0

ª®®®®®¬
=

𝑛−1∑︁
𝑖=1

𝑒𝑖,𝑖+1,

where 𝑒𝑖, 𝑗 is the elementary matrix whose entries are all zero, except the one in
position (𝑖, 𝑗) which equals 1.

Next, there is a unique dense open orbit in N \ Oreg which is called the subregular
nilpotent orbit of 𝔤, and denoted by Osubreg. Its codimension in 𝔤 is the rank of
𝔤 plus two. At the extreme opposite, there is a unique nilpotent orbit of smallest

175
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positive dimension called the minimal nilpotent orbit of 𝔤, and denoted by Omin. Its
dimension is 2ℎ∨ − 2 ([182]).

D.2 Chevalley order

The set of nilpotent orbits in 𝔤 is naturally a poset P with partial order 6, called
the Chevalley order, or closure order, defined as follows: O′ 6 O if and only if
O′ ⊆ O. The regular nilpotent orbit Oreg is maximal and the zero orbit is minimal
with respect to this order. Moreover, Osubreg is maximal in the poset P \ Oreg and
Omin is minimal in the poset P \ {0}.

The Chevalley order on P corresponds to a partial order on the set P (𝑛) of
partitions of 𝑛, for 𝑛 > 1, for 𝔤 = 𝔰𝔩𝑛, first described by Gerstenhaber. More generally,
the Chevalley order corresponds to a partial order on some subset of P (𝑛) when 𝔤

is of classical type as we explain below.
Let 𝑛 ∈ Z>0. As a rule, unless otherwise specified, we write an element 𝝀 of

P (𝑛) as a decreasing sequence 𝝀 = (𝜆1, . . . , 𝜆𝑠) omitting the zeroes. Thus,

𝜆1 > · · · > 𝜆𝑠 > 1 and 𝜆1 + · · · + 𝜆𝑠 = 𝑛.

We shall denote the dual partition of a partition 𝝀 ∈ P (𝑛) by 𝑡𝝀.
Let us denote by > the partial order on P (𝑛) relative to the dominance. More

precisely, given 𝝀 = (𝜆1, · · · , 𝜆𝑠), 𝜼 = (𝜇1, . . . , 𝜇𝑡 ) ∈ P (𝑛), we have 𝝀 > 𝜼 if

𝑘∑︁
𝑖=1

𝜆𝑖 >
𝑘∑︁
𝑖=1

𝜇𝑖 for 1 6 𝑘 6 min(𝑠, 𝑡).

D.2.1 Case 𝖘𝖑𝒏

Every nilpotent matrix in 𝔰𝔩𝑛 is conjugate to a Jordan block diagonal matrix. There-
fore, the nilpotent orbits in 𝔤 are parameterized by P (𝑛). We shall denote by O𝝀

the corresponding nilpotent orbit of 𝔰𝔩𝑛. Then O𝝀 is represented by the standard
Jordan form diag(𝐽𝜆1 , . . . , 𝐽𝜆𝑠 ), where 𝐽𝑘 is the 𝑘-size Jordan block. If we write
𝑡𝝀 = (𝑑1, . . . , 𝑑𝑡 ), then

dimO𝝀 = 𝑛2 −
𝑡∑︁
𝑖=1

𝑑2
𝑖 .

If 𝝀, 𝜼 ∈ P (𝑛), then O𝜼 ⊂ O𝝀 if and only if 𝜼 6 𝝀.
The regular, subregular, minimal and zero nilpotent orbits of 𝔰𝔩𝑛 correspond to

the partitions (𝑛), (𝑛 − 1, 1), (2, 1𝑛−2) and (1𝑛) of 𝑛, respectively.
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We give in Figure D.1 the description of the poset P (𝑛) for 𝑛 = 6. The column
on the right indicates the dimension of the orbits appearing in the same row. Such
diagram is called a Hasse diagram.
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Fig. D.1 Hasse diagram for 𝔰𝔩6

D.2.2 Cases 𝖔𝒏 and 𝖘𝖔𝒏

For 𝑛 ∈ N∗, set

P1 (𝑛) := {𝝀 ∈ P (𝑛) ; number of parts of each even number is even}.

The nilpotent orbits of 𝔰𝔬𝑛 are parametrized by P1 (𝑛), with the exception that each
very even partition 𝝀 ∈ P1 (𝑛) (i.e., 𝝀 has only even parts) corresponds to two
nilpotent orbits. For 𝝀 ∈ P1 (𝑛), not very even, we shall denote by O1,𝝀 , or simply
by O𝝀 when there is no possible confusion, the corresponding nilpotent orbit of 𝔰𝔬𝑛.
For very even 𝝀 ∈ P1 (𝑛), we shall denote by O𝐼1,𝝀 and O𝐼𝐼1,𝝀 the two corresponding
nilpotent orbits of 𝔰𝔬𝑛. In fact, their union forms a single 𝑂 (𝑛)-orbit. Thus nilpotent
orbits of 𝔬𝑛 are parametrized by P1 (𝑛).

Let 𝝀 = (𝜆1, . . . , 𝜆𝑠) ∈ P1 (𝑛) and 𝑡𝝀 = (𝑑1, . . . , 𝑑𝑡 ), then

dimO•
1,𝝀 =

𝑛(𝑛 − 1)
2

− 1
2

(
𝑡∑︁
𝑖=1

𝑑2
𝑖 − #{𝑖;𝜆𝑖 odd}

)
,
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where O•
1,𝝀 is either O1,𝝀 , O𝐼1,𝝀 or O𝐼 𝐼1,𝝀 according to whether 𝝀 is very even or not.

Using the same notations, If 𝝀, 𝜼 ∈ P1 (𝑛), then O•
1,𝜼 ( O

•
1,𝝀 if and only if 𝜼 < 𝝀,

where O•
1,𝝀 is either O1,𝝀 , O𝐼1,𝝀 or O𝐼 𝐼1,𝝀 according to whether 𝝀 is very even or not.

Given 𝝀 ∈ P (𝑛), there exists a unique 𝝀+ ∈ P1 (𝑛) such that 𝝀+ 6 𝝀, and if
𝜼 ∈ P1 (𝑛) verifies 𝜼 6 𝝀, then 𝜼 6 𝝀+. More precisely, let 𝝀 = (𝜆1, . . . , 𝜆𝑛) (adding
zeroes if necessary). If 𝝀 ∈ P1 (𝑛), then 𝝀+ = 𝝀. Otherwise if 𝝀 ∉ P1 (𝑛), set

𝝀′ = (𝜆1, . . . , 𝜆𝑠 , 𝜆𝑠+1 − 1, 𝜆𝑠+2, . . . , 𝜆𝑡−1, 𝜆𝑡 + 1, 𝜆𝑡+1, . . . , 𝜆𝑛),

where 𝑠 is maximum such that (𝜆1, . . . , 𝜆𝑠) ∈ P1 (𝜆1 + · · · + 𝜆𝑠), and 𝑡 is the index
of the first even part in (𝜆𝑠+2, . . . , 𝜆𝑛). Note that 𝑠 = 0 if such a maximum does not
exist, while 𝑡 is always defined. If 𝝀′ is not in P1 (𝑛), then we repeat the process
until we obtain an element of P1 (𝑛) which will be our 𝝀+.

D.2.3 Case 𝖘𝖕𝒏

For 𝑛 ∈ N∗, set

P−1 (𝑛) := {𝝀 ∈ P (𝑛) ; number of parts of each odd number is even}.

The nilpotent orbits of 𝔰𝔭𝑛 are parametrized by P−1 (𝑛). For 𝝀 = (𝜆1, . . . , 𝜆𝑟 ) ∈
P−1 (𝑛), we shall denote by O−1,𝝀 , or simply by O𝝀 when there is no possible
confusion, the corresponding nilpotent orbit of 𝔰𝔭𝑛, and if we write 𝑡𝝀 = (𝑑1, . . . , 𝑑𝑡 ),
then

dimO−1,𝝀 =
𝑛(𝑛 + 1)

2
− 1

2

(
𝑠∑︁
𝑖=1

𝑑2
𝑖 + #{𝑖;𝜆𝑖 odd}

)
.

As in the case of 𝔰𝔩𝑛, if 𝝀, 𝜼 ∈ P−1 (𝑛), then O−1,𝜼 ⊂ O−1,𝝀 if and only if 𝜼 6 𝝀.
Given 𝝀 ∈ P (𝑛), there exists a unique 𝝀− ∈ P−1 (𝑛) such that 𝝀− 6 𝝀, and if

𝜼 ∈ P−1 (𝑛) verifies 𝜼 6 𝝀, then 𝜼 6 𝝀−. The construction of 𝝀− is the same as in
the orthogonal case except that 𝑡 is the index of the first odd part in (𝜆𝑠+2, . . . , 𝜆𝑛).

D.3 Jacobson-Morosov Theorem and Dynkin grading

A 1
2Z-grading of the Lie algebra 𝔤 is a decomposition Γ : 𝔤 =

⊕
𝑗∈ 1

2Z
𝔤 𝑗 which

verifies [𝔤𝑖 , 𝔤 𝑗 ] ⊂ 𝔤𝑖+ 𝑗 for all 𝑖, 𝑗 .

Lemma D.1 ( cite[Proposition 20.1.5]Tauvel-Yu) If Γ is a 1
2Z-grading of 𝔤, then

for some semisimple element ℎΓ of 𝔤,

𝔤 𝑗 = {𝑥 ∈ 𝔤 ; [ℎΓ, 𝑥] = 2 𝑗𝑥}.
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Let ( | ) =
1

2ℎ∨
𝜅𝔤 be the non-degenerate symmetric bilinear form on 𝔤 as in

Appendix A. Since the bilinear form ( | ) of 𝔤 is ad ℎΓ-invariant and nondegenerate,
we get

(𝔤𝑖 , 𝔤 𝑗 ) = 0 ⇐⇒ 𝑖 + 𝑗 ≠ 0.

Hence 𝔤 𝑗 and 𝔤− 𝑗 are in pairing. In particular, they have the same dimension.
Fix a nonzero nilpotent element 𝑒 ∈ 𝔤. By the Jacobson-Morosov Theorem (cf.

e.g., [55, §3.3]), there exist ℎ, 𝑓 ∈ 𝔤 such that the triple (𝑒, ℎ, 𝑓 ) verifies the 𝔰𝔩2-triple
relations:

[ℎ, 𝑒] = 2𝑒, [𝑒, 𝑓 ] = ℎ, [ℎ, 𝑓 ] = −2 𝑓 .

In particular, ℎ is semisimple and the eigenvalues of ad ℎ are integers. Moreover, 𝑒
and 𝑓 belong to the same nilpotent 𝐺-orbit.

Example D.2 Let 𝔤 = 𝔰𝔩𝑛, and set,

𝑒 := 𝐽𝑛, ℎ :=
𝑛∑︁
𝑖=1

(𝑛 + 1 − 2𝑖)𝑒𝑖,𝑖 , 𝑓 :=
𝑛−1∑︁
𝑖=1

𝑖(𝑛 − 𝑖)𝑒𝑖+1,𝑖 .

Then (𝑒, ℎ, 𝑓 ) is an 𝔰𝔩2-triple. From this observation, we readily construct 𝔰𝔩2-triples
for any standard Jordan form diag(𝐽𝜆1 , . . . , 𝐽𝜆𝑛 ) with (𝜆1, . . . , 𝜆𝑛) ∈ P (𝑛).

The group𝐺 acts on the collection of 𝔰𝔩2-triples in 𝔤 by simultaneous conjugation.
This defines a natural map:

Ω : {𝔰𝔩2-triples}/𝐺 −! {nonzero nilpotent orbits}, (𝑒, ℎ, 𝑓 ) 7! 𝐺.𝑒.

Theorem D.1 ([55, Theorem 3.2.10]) The map Ω is bijective.

The mapΩ is surjective according to Jacobson-Morosov Theorem. The injectivity
is a result of Kostant ([55, Theorem 3.4.10]); see [183, §2.6] for a sketch of proof.

Since ℎ is semisimple and since the eigenvalues of ad ℎ are integers, we get a
1
2Z-grading on 𝔤 defined by ℎ, called the Dynkin grading associated with ℎ:

𝔤 =
⊕
𝑗∈ 1

2Z

𝔤 𝑗 , 𝔤 𝑗 := {𝑥 ∈ 𝔤 : [ℎ, 𝑥] = 2 𝑗𝑥}. (D.1)

We have 𝑒 ∈ 𝔤1. Moreover, it follows from the representation theory of 𝔰𝔩2 that
𝔤𝑒 ⊂

⊕
𝑗>0 𝔤 𝑗 and that dim 𝔤𝑒 = dim 𝔤0 + dim 𝔤 1

2
.

One can draw a picture to visualize the above properties. Decompose 𝔤 into simple
𝔰𝔩2-modules 𝔤 = 𝑉1 ⊕ · · · ⊕𝑉𝑠 and denote by 𝑑𝑘 the dimension of𝑉𝑘 for 𝑘 = 1, . . . , 𝑠.
We can assume that 𝑑1 > · · · > 𝑑𝑠 > 1. We have dim𝑉𝑘 ∩ 𝔤 𝑗 6 1 for any 𝑗 ∈ 1

2Z.
We represent the module 𝑉𝑘 on the 𝑘-th row with 𝑑𝑘 boxes, each box corresponding
to a nonzero element of 𝑉𝑘 ∩ 𝔤 𝑗 for 𝑗 such that 𝑉𝑘 ∩ 𝔤 𝑗 ≠ {0}. We organize the
rows so that the 2 𝑗-th column corresponds to a generator of 𝑉𝑘 ∩ 𝔤 𝑗 . Then the boxes
appearing on the right position of each row lie in 𝔤𝑒.
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Example D.3 Consider the element 𝑒 = diag(𝐽3, 𝐽1) of 𝔰𝔩4. Here, we get dim 𝔤0 = 5,
dim 𝔤 1

2
= 0, dim 𝔤1 = 4 and dim 𝔤2 = 1. The corresponding picture is given in

Fig. D.2. In the Fig. D.2, the empty boxes � correspond to nonzero elements lying

�@
�@
�@
�@

�@
0 1 2

Fig. D.2 Decomposition into
𝔰𝔩2-modules for (3, 1)

in [ 𝑓 , 𝔤]. The boxes � correspond to nonzero elements lying in 𝔤𝑒.
This is an example of even nilpotent element, which means that 𝔤𝑖 = {0} for all

half-integers 𝑖. The nilpotent orbit of an even nilpotent element is called an even
nilpotent orbit. Note that the regular nilpotent orbit is always even.

Example D.4 Consider the element 𝑒 = diag(𝐽2, 𝐽1, 𝐽1) of 𝔰𝔩4 which lies in the
minimal nilpotent orbit of 𝔰𝔩4. Here, we get dim 𝔤0 = 5, dim 𝔤 1

2
= 4, dim 𝔤1 = 1. The

corresponding picture is given in Fig. D.3:
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012

Fig. D.3 Decomposition into
𝔰𝔩2-modules for (2, 12)

We observe that
⊕

𝑖>1 𝔤𝑖 equals 𝔤1 and has dimension 1.

Remark D.1 This is actually a general fact: if 𝑒 lies in the minimal nilpotent orbit of
a simple 𝔤, then ⊕𝑖>1𝔤𝑖 = 𝔤1 = C𝑒 and thus

⊕
𝑖>1 𝔤𝑖 has dimension 1.

One can assume that the Cartan subalgebra 𝔥 of 𝔤 is also a Cartan subalgebra of
the reductive Lie algebra 𝔤0.

Lemma D.2 i). For any 𝛼 ∈ Δ, 𝔤𝛼 is contained in 𝔤 𝑗 for some 𝑗 ∈ 1
2Z.

ii). Fix a root system Δ0 of (𝔤0, 𝔥), and set Δ0,+ = Δ+ ∩ Δ0. Then

Δ+ = Δ0,+ ∪ {𝛼 ; 𝔤𝛼 ⊂ 𝔤>0}.

Denoting by Π the set of simple roots of Δ+, we get

Π =
⋃
𝑗∈ 1

2Z

Π 𝑗 with Π 𝑗 := {𝛼 ∈ Π ; 𝔤𝛼 ⊂ 𝔤 𝑗 }.
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Lemma D.3 We have Π = Π0 ∪ Π 1
2
∪ Π1.

Proof Assume that there exists 𝛽 ∈ Π𝑠 for 𝑠 > 1. A contradiction is expected. Since
𝑒 ∈ 𝔤1 and since 𝔤1 is contained in the subalgebra generated by the root spaces 𝔤𝛼
with 𝛼 ∈ Π0 ∪ Π 1

2
∪ Π1, we get [𝑒, 𝔤−𝛽] = {0}. In other words, 𝔤−𝛽 ⊂ 𝔤𝑒. This

contradicts the fact that 𝔤𝑒 ⊂ 𝔤>0. �

From Lemma D.3 we define the weighted Dynkin diagram, or characteristic, of
the nilpotent orbit 𝐺.𝑒 when 𝔤 is simple as follows. Consider the Dynkin diagram
of the simple Lie algebra 𝔤. Each node of this diagram corresponds to a simple
root 𝛼 ∈ Π. Then the weighted Dynkin diagram is obtained by labeling the node
corresponding to 𝛼 with the value 𝛼(ℎ) ∈ {0, 1, 2}.

By convention, the zero orbit has a weighted Dynkin diagram with every node
labeled with 0.

Example D.5 In type 𝐸6, the characteristics of the regular, subregular and minimal
nilpotent orbits are respectively:

An important consequence of Lemma D.3 is that there are only finitely many
nilpotent orbits, namely at most 3rank𝔤. Also, the weighted Dynkin diagram is a
complete invariant, i.e., two such diagrams are equal if and only if the corresponding
nilpotent orbits are equal, [55, Theorem 3.5.4].

The regular nilpotent orbit always corresponds to the weighted Dynkin diagram
with only 2’s (this result is not obvious, cf. e.g., [55, Theorem 4.1.6]). More generally,
a nilpotent orbit is even if and only if the weighted Dynkin diagram have only 2’s or
0’s (see Example D.3 for the definition of even).

D.4 Digression on primitive ideals

Let 𝐼 be a two-sided ideal of the enveloping algebra 𝑈 (𝔤). The PBW filtration on
𝑈 (𝔤) induces a filtration on 𝐼, so that gr 𝐼 becomes a graded Poisson ideal in C[𝔤∗]
(see Example C.2). Denote by V (𝐼) the zero locus of gr 𝐼 in 𝔤∗,

V (𝐼) := Specm (C[𝔤∗]/gr 𝐼) ⊂ 𝔤∗.

The set V (𝐼) is usually referred to as the associated variety of 𝐼. Identifying 𝔤∗

with 𝔤 through a non-degenerate bilinear symmetric form on 𝔤, we shall often view
associated varieties of two-sided ideals of𝑈 (𝔤) as subsets of 𝔤.

A proper two-sided ideal 𝐼 of 𝑈 (𝔤) is called primitive if it is the annihilator of a
simple left 𝑈 (𝔤)-module. Let us mention two important results on primitive ideals
of𝑈 (𝔤).

Theorem D.2 (Duflo Theorem [62]) Any primitive ideal in𝑈 (𝔤) is the annihilator
Ann𝑈 (𝔤)𝐿𝔤 (𝜆) of some irreducible highest weight representation 𝐿𝔤 (𝜆) of 𝔤, where
𝜆 ∈ 𝔥∗.
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Theorem D.3 (Irreducibility Theorem [41, 128, 108]) The associated variety V (𝐼)
of a primitive ideal 𝐼 in 𝑈 (𝔤) is irreducible, specifically, it is the closure O of some
nilpotent orbit O in 𝔤.

In particular, the associated variety of a primitive ideal in contained in the nilpotent
cone N , which is a crucial property. Theorem D.3 was first partially proved (by a
case-by-case argument) in [41], and in a more conceptual way in [128] and [108]
(independently), using many earlier deep results due to Joseph, Gabber, Lusztig,
Vogan and others.

It is possible that different primitive ideals share the same associated variety. At
the same time, not all nilpotent orbit closures appear as associated variety of some
primitive ideal of𝑈 (𝔤).

Let 𝜆 ∈ 𝔥∗. The associated variety of the irreducible highest weight representation
𝐿𝔤 (𝜆) of 𝔤 is

V (𝐿𝔤 (𝜆)) := V (Ann𝑈 (𝔤) (𝐿𝔤 (𝜆))).

Naturally, the geometry of V (𝐿𝔤 (𝜆)) is expected to reflect some properties of the
representation 𝐿𝔤 (𝜆).

Example D.6 It is known that the irreducible highest weight representation 𝐿𝔤 (𝜆) is
finite-dimensional if and only if its associated variety V (𝐿𝔤 (𝜆)) is reduced to {0}.



Appendix E
Superalgebras and Clifford algebras

A superspace is a C-vector space 𝐸 equipped with a Z2-grading, 𝐸 = 𝐸 0̄ ⊕ 𝐸 1̄.
Elements in 𝐸 0̄ are called even, elements of 𝐸 1̄ are called odd. We denote by
|𝑣 | ∈ {0̄, 1̄} the parity of homogeneous elements 𝑣 ∈ 𝐸 . A morphism of superspaces
is a linear map preserving Z2-gradings. It is itself a superspace by:

Hom(𝐸, 𝐹)0̄ = Hom(𝐸 0̄, 𝐹 0̄) ⊕ Hom(𝐸 1̄, 𝐹 1̄),

Hom(𝐸, 𝐹)1̄ = Hom(𝐸 0̄, 𝐹 1̄) ⊕ Hom(𝐸 1̄, 𝐹 0̄).

The category of superspaces is a tensor category. Then one may define superalgebras,
Lie superalgebras, Poisson superalgebras, etc. as the algebra objects, Lie algebra
objects, Poisson algebra objects etc. in this tensor category.

For example, a Lie superalgebra is a superspace 𝐴 together with a bracket [ , ] : 𝐴×
𝐴! 𝐴 such that for all homogeneous elements 𝑎, 𝑏 ∈ 𝐴,

[𝑎, 𝑏] = −(−1) |𝑎 | |𝑏 | [𝑏, 𝑎],
[[𝑎, 𝑏], 𝑐] = [𝑎, [𝑏, 𝑐]] − (−1) |𝑎 | |𝑏 | [𝑏, [𝑎, 𝑐]] .

Note that any superalgebra 𝐴 is naturally a Lie superalgebra by setting for all
homogeneous elements 𝑎, 𝑏 ∈ 𝐴,

[𝑎, 𝑏] = 𝑎𝑏 − (−1) |𝑎 | |𝑏 |𝑏𝑎.

It is supercommutative if [𝐴, 𝐴] = 0.
A superspace 𝐴 is a Poisson superalgebra if it is equipped with a bracket { , } : 𝐴×

𝐴 ! 𝐴 such that (𝐴, { , }) is a Lie superalgebra and for any 𝑎 ∈ 𝐴, the operator
{𝑎, . } : 𝐴! 𝐴 is a superderivation: for all homogeneous elements 𝑎, 𝑏 ∈ 𝐴,

{𝑎, 𝑏𝑐} = {𝑎, 𝑏}𝑐 + (−1) |𝑎 | |𝑏 |𝑏{𝑎, 𝑐}.

Let 𝐸 be a C-vector space. The exterior algebra
∧
𝐸 is the quotient of the tensor

algebra 𝑇 (𝐸) =
⊕

𝑘∈Z 𝑇
𝑘 (𝐸), with 𝑇 𝑘 (𝐸) = 𝐸 ⊗ · · · ⊗ 𝐸 the 𝑘-fold tensor product,
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by the two-sided ideal 𝐼 (𝐸) generated by elements of the form 𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑣 with
𝑣, 𝑤 ∈ 𝐸 . The product in

∧
𝐸 is usually denoted by 𝑣 ∧ 𝑤. Since 𝐼 (𝐸) is graded, the

exterior algebra inherits a grading∧
𝐸 =

⊕
𝑘∈Z

∧𝑘𝐸.

Clearly,
∧0𝐸 = C and

∧1𝐸 = 𝐸 . We may thus think of
∧
𝐸 as the associative

algebra linearly generated by 𝐸 , subject to the relations 𝑣 ∧ 𝑤 + 𝑤 ∧ 𝑣 = 0. We will
regard

∧
𝐸 as a graded superalgebra, where the Z2-grading is the mod 2 reduction

of the Z-grading. Since

[𝑢1, 𝑢2] = 𝑢1 ∧ 𝑢2 − (−1)𝑘1𝑘2𝑢2 ∧ 𝑢1 = 0

for 𝑢1 ∈ ∧
𝑘1𝐸 and 𝑢2 ∈ ∧

𝑘2𝐸 , we see that
∧
𝐸 is supercommutative.

Assume that 𝐸 is endowed with a symmetric bilinear form 𝐵 : 𝐸 × 𝐸 ! 𝐸

(possibly degenerate).

Definition E.1 The Clifford algebra1 𝐶𝑙 (𝐸, 𝐵) is the quotient of 𝑇 (𝐸) by the two-
sided ideal I (𝐸, 𝐵) generated by all elements of the form

𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑣 − 𝐵(𝑣, 𝑤)1, 𝑣, 𝑤 ∈ 𝐸.

Clearly, 𝐶𝑙 (𝐸, 0) = ∧
𝑉 .

The inclusions C! 𝑇 (𝐸) and 𝐸 ! 𝑇 (𝐸) descend to inclusions C! 𝐶𝑙 (𝐸, 𝐵) and
𝐸 ! 𝐶𝑙 (𝐸, 𝐵) respectively. We will always view 𝐸 as a subspace of 𝐶𝑙 (𝐸, 𝐵).

Let us view 𝑇 (𝐸) =
⊕

𝑘∈Z 𝑇
𝑘 (𝐸) as a filtered superalgebra, with the Z2-grading

and filtration inherited from theZ-grading. Since the elements 𝑣⊗𝑤+𝑤⊗𝑣−𝐵(𝑣, 𝑤)1
are even, of filtration degree 2, the ideal I (𝐸, 𝐵) is a filtered super subspace of𝑇 (𝐸),
and hence 𝐶𝑙 (𝐸, 𝐵) inherits the structure of a filtered superalgebra. The Z2-grading
and filtration on 𝐶𝑙 (𝐸, 𝐵) are defined by the condition that the generators 𝑣 ∈ 𝐸 are
odd, of filtration degree 1. In the decomposition

𝐶𝑙 (𝐸, 𝐵) = 𝐶𝑙 (𝐸, 𝐵)0̄ ⊕ 𝐶𝑙 (𝐸, 𝐵)1̄

the two summands are spanned by products 𝑣1 . . . 𝑣𝑘 with 𝑘 even, respectively odd.
We will always regard𝐶𝑙 (𝐸, 𝐵) as a filtered superalgebra. Then the defining relations
for the Clifford algebra become

[𝑣, 𝑤] = 𝑣𝑤 + 𝑤𝑣 = 𝐵(𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝐸.

The quantization map, given by the anti-symmetrization:

𝑞 :
∧(𝐸) ! 𝐶𝑙 (𝐸, 𝐵), 𝑣1 ∧ . . . ∧ 𝑣𝑘 7!

∑︁
𝜎∈𝔖𝑘

sgn(𝜎)𝑣𝜎1 . . . 𝑣𝜎𝑘 ,

1 In [154], there is a factor 2. For some reasons, we prefer here a different normalization.
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with 𝔖𝑘 the permutation group of order 𝑘 , is an isomorphism of superspaces. Its
inverse is called the symbol map.

Proposition E.1 The symbol map 𝜎 : 𝐶𝑙 (𝐸, 𝐵) ! ∧
𝐸 induces an isomorphism of

graded superalgebras,
gr𝐶𝑙 (𝐸, 𝐵) '

−!
∧
𝐸.

Since
∧(𝐸) is supercommutative, gr𝐶𝑙 (𝐸, 𝐵) inherits a Poisson superalgebra struc-

ture2, and the graded symbol map is an isomorphism of graded Poisson superalge-
bras. The Poisson bracket on

∧
𝐸 can be described by:

{𝑣, 𝑤} = 𝐵(𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝐸 =
∧1𝐸.

For more about Clifford algebras, we refer to the recent book of Eckhard Mein-
renken (it also adsresses Weil algebras and quantized Weil algebras) [154].

2 The arguments are similar to the case of almost commutative algebras; see §C.1.





Hints for the exercises

Hints for the exercises of Chapter 2

2.3 Notice that the locality axiom is automatically satisfied by the OPE (cf. Propo-
sition 2.1, (ii)⇒(i)).

Hints for the exercises of Chapter 3

3.3 Apply the “Frobenius reciprocity”, which asserts that

Hom𝔤̂ (𝑈 (𝔤̂) ⊗𝔤[𝑡 ] ⊕C𝐾 C𝑘 , 𝑉
𝑘 (𝔤)) � Hom𝔤[𝑡 ] ⊕C𝐾 (C𝑘 , 𝑉 𝑘 (𝔤)).

Hints for the exercises of Chapter 4

4.1

i). Describe 𝐹 𝑝Vir𝑐
Δ
, where Δ ∈ Z>0, using the PBW Theorem.

ii). Just use (1).
iii). Remember that by Remark 4.2, one can go one step further, and then compute

𝜎1 (𝐿 (0)𝐿), 𝜎0 (𝐿 (1)𝐿) using the commuting relations.
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188 Hints for the exercises

Hints for the exercises of Chapter 4

Hints for the exercises of Chapter 5

5.1 Note that the maximal submodule of 𝐿1 (𝔤) is generated by the singular vector
(𝑒𝜃 𝑡−1)𝑘+1 |0〉 to show that 𝑅𝑉 � Zhu(gr𝐹𝑉) and use Remark 5.1.

Hints for the exercises of Chapter 8

8.1

i). Kostant’s Separation Theorem [133, Th. 0.2 and 0.11] says that 𝑆 = 𝑍𝐻, where
𝑍 � C[Ω] is the center of the symmetric algebra 𝑆 of 𝔰𝔩2, and 𝐻 is the space
of invariant harmonic polynomials which decomposes, as an 𝔰𝔩2-module, as 𝐻 =⊕

𝜆∈Z>0
𝑉
𝑚𝜆

𝜆
, with 𝑚𝜆 = 1 for all 𝜆. Therefore, 𝑆ad 𝑒 =

⊕
𝜆∈Z>0

𝑍𝑉ad 𝑒
𝜆

. To
conclude, observe that, 𝑣 being a singular vector, it has a fixed weight and, hence,
a fixed degree.

ii). Note that from (i), Ω𝑒 ∈
√
𝐼𝑘 and, so, Ω𝔰𝔩2 ∈

√
𝐼𝑘 , whence Ω ∈

√
𝐼𝑘 . But in 𝔰𝔩2,

the nilpotent cone is precisely the zero locus of Ω.

8.2

i). Just use the commuting relations in 𝑉−3/2 (𝔰𝔩3).
ii). Observe that the image 𝐼𝑘 of the maximal proper maximal ideal of 𝑉−3/2 (𝔰𝔩3) is

generated by the vector 𝑣̄ as an (ad 𝔰𝔩3)-module, where

𝑣̄ =
1
3
(ℎ1 − ℎ2) 𝑒1,3 + 𝑒1,2𝑒2,3

is the image of 𝑣 in 𝑅𝑉 −3/2 (𝔰𝔩3) � C[ℎ𝑖 , 𝑒𝑘,𝑙 ; 𝑖 = 1, 2, 𝑘 ≠ 𝑙]. Verify that

(ad 𝑒3,2) (ad 𝑒2,1)𝑣̄ = −𝑒1,2𝑒2,1 + 𝑒1,3𝑒3,1 +
1
3
(2ℎ1 + ℎ2) ℎ2,

(ad 𝑒2,1) (ad 𝑒3,2)𝑣̄ = −𝑒2,3𝑒3,2 + 𝑒1,3𝑒3,1 +
1
3
(ℎ1 + 2ℎ2) ℎ1,

and deduce from this that the intersection 𝑋𝐿−3/2 (𝔰𝔩3) ∩ 𝔥 is zero. For the last part,
resume the arguments of the proof of Proposition 8.1.

iii). Verify that 𝑒1,2 + 𝑒2,3 is not in 𝑋𝐿−3/2 (𝔰𝔩3) .
iv). Observe that 𝑋𝐿−3/2 (𝔰𝔩3) cannot be reduced to zero.



References

1. Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong. Rationality, regularity, and 𝐶2-
cofiniteness. Trans. Amer. Math. Soc., 356(8):3391–3402 (electronic), 2004.

2. Dražen Adamović, Victor Kac, Frajria Möseneder, Paolo Papi and Ozren Perše. An application
of collapsing levels to the representation theory of affine vertex algebras. To appear in Int.
Math. Res. Not.

3. Tomoyuki Arakawa. Representation theory of superconformal algebras and the Kac-Roan-
Wakimoto conjecture. Duke Math. J., 130(3):435–478, 2005.

4. Tomoyuki Arakawa. Representation theory of 𝑊 -algebras. Invent. Math., 169(2):219–320,
2007.

5. Tomoyuki Arakawa. Representation theory of 𝑊 -algebras, II. In Exploring new structures
and natural constructions in mathematical physics, volume 61 of Adv. Stud. Pure Math., pages
51–90. Math. Soc. Japan, Tokyo, 2011.

6. Tomoyuki Arakawa. A remark on the𝐶2-cofiniteness condition on vertex algebras. Math. Z.,
270(1-2):559–575, 2012.

7. Tomoyuki Arakawa. W-algebras at the critical level. Contemp. Math., 565:1–14, 2012.
8. Tomoyuki Arakawa. Associated varieties of modules over Kac-Moody algebras and 𝐶2-

cofiniteness of𝑊 -algebras. Int. Math. Res. Not. 2015(22): 11605-11666, 2015.
9. Tomoyuki Arakawa. Rationality of W-algebras: principal nilpotent cases. Ann. Math.,

182(2):565–694, 2015.
10. Tomoyuki Arakawa. Rationality of admissible affine vertex algebras in the category O. Duke

Math. J., 165(1), 67–93, 2016.
11. Tomoyuki Arakawa. Introduction to W-algebras and their representation theory. In: Callegaro

F., Carnovale G., Caselli F., De Concini C., De Sole A. (eds) Perspectives in Lie Theory.
Springer INdAM Series, vol 19. Springer.

12. Tomoyuki Arakawa. Associated varieties and Higgs branches (a survey). Contemp. Math.
711(2018), 37-44.

13. Tomoyuki Arakawa. Representation theory of W-algebras and Higgs branch conjecture,
submitted to the Proceedings of the ICM 2018.

14. Tomoyuki Arakawa. Chiral algebras of class S and Moore-Tachikawa symplectic varieties.
arXiv:1811.01577 [math.RT].

15. Tomoyuki Arakawa and Kazuya Kawasetsu. Quasi-lisse vertex algebras and modular linear
differential equations, V. G. Kac, V. L. Popov (eds.), Lie Groups, Geometry, and Representation
Theory, A Tribute to the Life and Work of Bertram Kostant, Progr. Math., 326, Birkhauser,
2018.

16. Tomoyuki Arakawa, Cuipo Jiang and Anne Moreau. Simplicity of vacuum modules and
associated varieties. Journal de l’École Polytechnique, 8:169–191, 2021.

17. Tomoyuki Arakawa and Andrew Linshaw. Singular support of a vertex algebra and the arc
space of its associated scheme. arXiv:1804.01287 [math.RT], to appear in a special volume
of Progress in Mathematics series in honour of 75’s birthday of Antony Joseph.

189



190 References

18. Tomoyuki Arakawa, Toshiro Kuwabara, and Fyodor Malikov. Localization of Affine W-
Algebras. Comm. Math. Phys., 335(1):143–182, 2015.

19. Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada. Zhu’s algebra, 𝐶2-algebra
and𝐶2-cofiniteness of parafermion vertex operator algebras. Adv. Math., 264:261–295, 2014.

20. Tomoyuki Arakawa and Alexander Molev. Explicit generators in rectangular affine𝑊 -algebras
of type 𝐴. arXiv:1403.1017 [math.RT], to appear in Lett. Math. Phys.

21. Tomoyuki Arakawa and Anne Moreau. Lectures on W-algebras (workshop in Melbourne). A
preliminary version is available on the webpage of the workshop.

22. Tomoyuki Arakawa and Anne Moreau. Joseph ideals and lisse minimal 𝑊 -algebras. J. Inst.
Math. Jussieu, 17(2):397–417, 2018.

23. Tomoyuki Arakawa and Anne Moreau. Sheets and associated varieties of affine vertex algebras.
Adv. Math. 320:157–209, 2017.

24. Tomoyuki Arakawa and Anne Moreau. On the irreducibility of associated varieties of W-
algebras, The special issue of J. Algebra in Honor of Efim Zelmanov on occasion of his 60th
anniversary, 500:542–568, 2018.

25. Tomoyuki Arakawa and Anne Moreau. Arc spaces and chiral symplectic cores. to appear
in the special issue of Publ. Res. Inst. Math. in honor of Professor Masaki Kashiwara’s 70th
birthday.

26. Tomoyuki Arakawa, Jethro Van Ekeren and Anne Moreau. Singularities of nilpotent Slodowy
slices and collapsing levels for𝑊 -algebras. in preparation.

27. Philip C. Argyres and Michael R. Douglas. New phenomena in SU(3) supersymmetric gauge
theory. Nuclear Phys. B, 448(1-2):93–126, 1995.

28. Philip C. Argyres, M. Ronen Plesser, Nathan Seiberg, and Edward Witten. New N = 2
superconformal field theories in four dimensions. Nuclear Phys. B, 461(1-2):71–84, 1996.

29. Sergey Arkhipov and Dennis Gaitsgory. Differential operators on the loop group via chiral
algebras. Int. Math. Res. Not., (4):165–210, 2002.

30. Michael Francis Atiyah and , Ian G. Macdonald. Introduction to Commutative Algebra.
Westview Press, 1969.

31. Bojko Bakalov and Alexander Kirillov, Jr. Lectures on tensor categories and modular functors,
volume 21 of University Lecture Series. American Mathematical Society, Providence, RI,
2001.

32. Hyman Bass, Hyman, Edwin Connell and David Wright. The Jacobian conjecture: reduction
of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7(2):287–330, 1982.

33. Arnaud Beauville. Symplectic singularities. Invent. Math., 139(3):541–549, 2000.
34. Christopher Beem and Leonardo Rastelli. Vertex operator algebras, Higgs branches, and

modular differential equations. preprint. arXiv:1707.07679[hep-th].
35. Christopher Beem, Madalena Lemos, Pedro Liendo, Wolfger Peelaers, Leonardo Rastelli,

and Balt C. van Rees. Infinite chiral symmetry in four dimensions. Comm. Math. Phys.,
336(3):1359–1433, 2015.

36. Alexandre Beilinson and Vladimir Drinfeld. Chiral algebras. American Mathematical Society,
Colloquium Publications 51, Providence, R.I (2004).

37. Alexander A. Beilinson and Vladimir G. Drinfeld. Quantization of Hitchin’s fibration and
Langlands’ program. In Algebraic and geometric methods in mathematical physics (Kaciveli,
1993), volume 19 of Math. Phys. Stud., pages 3–7. Kluwer Acad. Publ., DordrecAdlerht, 1996.

38. Aleksander A. Belavin, Alexander. M. Polyakov, and Aleksandr. B. Zamolodchikov. Infinite
conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241(2):333–
380, 1984.
BoeTji94

39. Richard E. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat.
Acad. Sci. U.S.A., 83(10):3068–3071, 1986.

40. Walter Borho. Über schichten halbeinfacher Lie-algebren. Invent. Math., 65:283–317, 1981.
41. Walter Borho and Jean-Luc Brylinski. Differential operators on homogeneous spaces. I.

Irreducibility of the associated variety for annihilators of induced modules. Invent. Math.
69(3):437–476, 1982.



References 191

42. Walter Borho and Hanspeter Kraft. Über Bahnen und deren Deformationen bei linear Aktionen
reducktiver Gruppen. Math. Helvetici., 54:61–104, 1979.

43. Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima. Ring objects in the equiv-
ariant derived Satake category arising from coulomb branch. arXiv:1706.02112 math.RT].

44. Egbert Brieskorn, Singular elements of semi-simple algebraic groups. in: Actes du Congrès
International des Mathématiciens, Tome 2, Nice, 1970, Gauthier-Villars, Paris, 1971, 279–284.

45. Kenneth A. Brown and Iain Gordon. Poisson orders, symplectic reflection algebras and
representation theory. J. Reine Angew. Math. 559:193–216, 2003.

46. Antoine Chambert-Loir, Johannes Nicaise and Julien Sebag. Motivic integration. Progress in
Mathematics, 325. Birkhäuser/Springer, New York, 2018.

47. Jonathan Brundan and Simon Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3)
94 (2007), no. 1, 155–180.

48. Jonathan Brundan, Simon Goodwin and Alexander Kleshchev, Highest weight theory for
finite W-algebras. Int. Math. Res. Not. 15, 2008.

49. Henri Cartan and Samuel Eilenberg. Homological algebra. Princeton University Press,
Princeton, N. J., 1956.

50. Roger W. Carter. Lie algebras of finite and affine type. Cambridge Studies in Advanced
Mathematics, 96. Cambridge University Press, Cambridge, 2005.

51. Jean-Yves Charbonnel and Anne Moreau. The symmetric invariants of the centralisers and
Slodowy grading. Math. Zeitschrift 282(1-2):273–339, 2016.

52. Jean-Yves Charbonnel and Anne Moreau. Nilpotent bicone and characteristic submodule of
a reductive Lie algebra. Transform. Groups 14(2):319–360, 2009.

53. Jean-Yves Charbonnel and Anne Moreau. The index of centralizers of elements of reductive
Lie algebras. Doc. Math. 15:387–421, 2010.

54. Neil Chriss and Victor Ginzburg. Representation theory and complex geometry. Reprint of
the 1997 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2010.

55. David H. Collingwood and William M. McGovern. Nilpotent orbits in semisimple Lie algebras.
Van Nostrand Reinhold Co. New York, 65, 1993.

56. Pierre Deligne. La série exceptionnelle de groupes de Lie. C. R. Acad. Sci. Paris, Ser I,
322(4), 321–326, 1996.

57. Alberto De Sole and Victor Kac. Finite vs affine W-algebras. Jpn. J. Math. 1(1):137–261,
2006.

58. Jacques Dixmier. Enveloping algebras, volume 11 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation.

59. Chongying Dong, Haisheng Li and Geoffrey Mason. Twisted representations of vertex operator
algebras. Math. Ann. 310(3):571–600, 1998.

60. Chongying Dong, Haisheng Li and Geoffrey Mason. Vertex operator algebras and associative
algebras. J. of Algebra 206:67–96, 1998.

61. Chongying Dong and Geoffrey Mason. Integrability of 𝐶2-cofinite vertex operator algebras.
Int. Math. Res. Not., pages Art. ID 80468, 15, 2006.

62. Michel Duflo. Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une
algèbre de Lie semisimple. Ann. of Math. 105:107–120, 1977.

63. Jethro van Ekeren and Reimundo Heluani. Chiral Homology of elliptic curves and Zhu’s
algebra. arXiv:1804.00017 [math.QA].

64. Lawrence Ein and Mircea Mustaţă. Jet schemes and singularities. Proc. Sympos. Pure Math.,
80, Part 2, Amer. Math. Soc., Providence, 2009.

65. David Eisenbud and Edward Frenkel. Appendix to [161]. 2001.
66. David Eisenbud and Joe Harris. The geometry of schemes, volume 197 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 2000.
67. Alexander Elashvili and Victor Kac. Classification of good gradings of simple Lie algebras.

in Lie groups and invariant theory (E.B. Vinberg ed.), Amer. Math. Soc. Transl. 213:85–104,
2005.

68. Pavel Etingof and Travis Schedler. Poisson traces and D-modules on Poisson varieties. Geom.
Funct. Anal., 20(4):958–987, 2010. With an appendix by Ivan Losev.



192 References

69. Vladimir A. Fateev and Sergei L. Lykyanov. The models of two-dimensional conformal
quantum field theory with 𝑍𝑛 symmetry. Internat. J. Modern Phys. A, 3(2):507–520, 1988.

70. Boris L. Feı̆gin. Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi
Mat. Nauk, 39(2(236)):195–196, 1984.

71. Boris Feigin, Evgeny Feigin and Peter Littelmann. Zhu’s algebras, C2-algebras and abelian
radicals. J. Algebra 329:130–146, 2011.

72. Boris Feigin and Edward Frenkel. Quantization of the Drinfel′d-Sokolov reduction. Phys.
Lett. B, 246(1-2):75–81, 1990.

73. Boris Feigin and Edward Frenkel. Affine Kac-Moody algebras at the critical level and
Gel′fand-Dikiı̆ algebras. In Infinite analysis, Part A, B (Kyoto, 1991), volume 16 of Adv. Ser.
Math. Phys., pages 197–215. World Sci. Publ., River Edge, NJ, 1992.

74. Boris Feigin and Dmitry Fuchs. Verma modules over the Virasoro algebra. Topology
(Leningrad, 1982), 230–245, Lecture Notes in Math., 1060, Springer, Berlin, 1984.

75. Boris Feigin and Fyodor Malikov. Modular functor and representation theory of ŝl2 at a
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homomorphism of vertex algebras, 38

ideal, 46
imaginary roots, 152
integrable, 155
integral Weyl group, 157
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