
Les Diablerets, 7-11 January, 2019 Anne Moreau, University of Lille

EXERCISES ON THE LECTURE

“VERTEX ALGEBRAS AND ASSOCIATED VARIETIES”

Unless otherwise specified, the notations are those of the lectures.

Part 1.

Exercise 1 (On the translation axiom). Let V be a C-vector space.

(1) Assume that V is a vertex algebra, and fix a ∈ V . Verify that for all n ∈ Z,

[T, a(n)] = −na(n−1), (Ta)(n) = −na(n−1),

and deduce from this that
Ta = a(−2)|0〉.

(2) Conversely, verify that if the vector space V is endowed with a vector |0〉 ∈ V and a linear map
F → F (V ), a 7→ a(z) such that the vacuum and the locality axioms hold, then the linear map

V → V, a 7→ a(−2)|0〉
satisfies the translation axiom. This shows that the translation operator T is in fact a redondant
datum in the definition of a vertex algebra.

Hints for Exercise 1. (1) Use the translation axiom.
(2) Use the vacuum axiom.
(3) Compare (∂za(z))(−1) |0〉 and a(−2)|0〉, and compute [T, a(z)]|0〉|z=0.

Exercise 2 (Commutative algebras equipped with a derivation are commutative vertex algebras). Show that
there is a unique structure of a commutative vertex algebra on a commutative algebra R equipped with a
derivation ∂ such that the vacuum vector is the unit, and

a(z)b =
(
ez∂a

)
b =

∑
n>0

zn

n!
(∂na)b for all ∈ R.

Hints for Exercise 2. Notice that the locality axiom is automatically satisfied by the OPE.

Exercise 3 (Center of a vertex algebra). For V a vertex algebra, its (vertex) center Z(V ) is defined by:

Z(V ) := {a ∈ V | [b(z), a(w)] = 0 for all b ∈ V }.
Show that the following are equivalent:

(i) a ∈ Z(V ),

(ii) [b(m), a(n)] = 0 for all b ∈ V and all m,n ∈ Z,

(iii) b(z)a ∈ V [[z]] for all b ∈ V ,

(iv) b(m)a = 0 for all b ∈ V and all m ∈ Z>0.

Hints for Exercise 3. First, note that the equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) are clear. To show
(i)⇐⇒ (iii), observe that b(z)a = b(z)a(w)|0〉|w=0.

Exercise 4 (On the center of the universal affine vertex algebra). Let us consider the universal affine vertex
algebra V k(g) associated with a simple Lie algebra g at level k ∈ C.

(1) Show that Z(V k(g)) = V k(g)g[[t]], that is,

Z(V k(g)) = {a ∈ V k(g | x(m)a = 0 for all x ∈ g, m ∈ Z>0}.
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(2) Show that we have the following isomorphism of commutative C-algebras (the product on the com-
mutative vertex algebra Z(V k(g)) is the normally ordered product):

Z(V k(g)) ∼= Endĝ(V k(g)).

We shall first prove that Z(V k(g)) naturally embeds into Endĝ(V k(g)).

(3) Prove that if k 6= −h∨, then Z(V k(g)) = C|0〉.
For k = −h∨, the center Z(V −h

∨
(g)) =: z(ĝ) is “huge”, and it is usually referred as the Feigin-

Frenkel center: we have gr z(ĝ) ∼= C[J∞(g//G)], with g//G = SpecC[g]G.

Hints for Exercise 4. (1) Follows from Exercise 3.
(2) Apply the “Frobenius reciprocity”, which asserts that

Homĝ(U(ĝ)⊗g[t]⊕CK Ck, V k(g)) ∼= Homg[t]⊕CK(Ck, V k(g)).

(3) Use the Segal-Sugawara conformal vector ω.

Part 2.

Exercise 5 (Poisson structure on the Zhu’s C2-algebra of the universal affine vertex algebra). Let V k(g) be
the universal affine vertex algebra associated with a simple Lie algebra g at level k ∈ C.

(1) Show that the map

C[g∗] ∼= S(g) 7−→ V k(g)/t−2g[t−1]V k(g)

x1 . . . xr 7−→ (x1t
−1) . . . (xrt

−1)|0〉+ t−2g[t−1]V k(g), x1, . . . , xr ∈ g.

defines an isomorphism of commutative algebras, the product on the right-hand side being given by:(
(x1t

−1) . . . (xrt
−1)|0〉

)
.
(
(y1t

−1) . . . (yst
−1)|0〉

)
= (x1t

−1) . . . (xrt
−1)(y1t

−1) . . . (yst
−1)|0〉,

for xi, yj ∈ g.
(2) Verify that

RV k(g) = V k(g)/t−2g[t−1]V k(g),

and show that the Poisson bracket on RV k(g) is the one induced from the isomorphism of (1).

Hints for Exercise 5. (1) Use the PBW basis to show the bijectivity, the rest of the verifications are
clear.

(2) Just verify using the commuting relations that for x, y ∈ g,

{x, y} = [x, y] = x̄(0)ȳ,

where x̄ stands for the image of x, viewed as an element of g ∼= V k(g)1, in RV k(g).

Exercise 6 (Zhu’s C2-algebra and associated variety of the universal Virasoro vertex algebra). Let Virc be
the universal Virasoro vertex algebra of central charge c ∈ C.

(1) Show that grFVirc ∼= C[L−2, L−3, . . .], where F is the Li filtration.
(2) Deduce from (1) that RVirc

∼= C[x], where x is the image of L := L−2|0〉 in RVirc , with the trivial
Poisson structure, and that XVirc = A1 is the affine line.

(3) Show that one can endow grFVirc with a non-trivial Poisson vertex algebra structure such that

L−1L = L(0)L = TL and L0L = L(1)L = 2L, with L := σ0(L).

Hints for Exercise 6. (1) Describe F pVirc∆, where ∆ ∈ Z>0, using the PBW Theorem.
(2) Just use (1).
(3) Remember that when the Poisson structure is trivial, one can go one step further, and then compute

σ1(L(0)L), σ0(L(1)L) using the commuting relations.
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Part 3.

Exercise 7 (Simple affine vertex algebras associated with sl2). Let N be the proper maximal ideal of V k(sl2)
so that Lk(g) = V k(sl2)/N . Let I be the image of N in RV k(sl2) = C[g] so that RLk(g) = C[g]/I. It is known

that either N is trivial, that is, V k(sl2) is simple, or N is generated by a singular vector v whose image v in

I is nonzero. We assume in this exercise that N is non trivial. Thus, N = U(ŝl2)v.

(1) Using Kostant’s Separation Theorem show that, up to a nonzero scalar,

v = Ωmen,

for some m,n ∈ Z>0, where Ω = 2ef + 1
2h

2 is the Casimir element of the symmetric algebra of sl2.
(2) Deduce from this that

XLk(g) ⊂ N .
It is known that N is nontrivial if and only k is an admissible level for sl2, or k = −2 is critical. Thus we
have shown that XLk(g) ⊂ N if and only if k = −2 or k is admissible, i.e., k = −2 + p

q , with (p, q) = 1 and

p > 2. This was proven by Feigin and Malikov.

Hints for Exercise 7. (1) For g = sl2, Kostant’s Separation Theorem says that S = ZH, where Z ∼= C[Ω]
is the center of the symmetric algebra S of sl2, and H is the space of invariant harmonic polynomials
which decomposes, as an sl2-module, as H =

⊕
λ∈Z V

mλ
λ , with mλ = 1 for all λ since g = sl2.

Therefore, Sad e =
⊕

λ∈Z ZV
ad e
λ . To conclude, observe that, v being a singular vector, it has a fixed

weight and, hence, a fixed degree.
(2) Note that from (1), Ωe ∈

√
I and, so, Ωg ∈

√
I, whence Ω ∈

√
I. But in sl2, N is the zero locus

of Ω.

Exercise 8 (An explicit computation of an associated variety). The aim of this exercice is to compute
XL−3/2(sl3). It was shown by Perše that the proper maximal ideal of V −3/2(sl3) is generated by the singular
vector v given by:

v :=
1

3

(
(h1t

−1)(e1,3t
−1)|0〉 − (h2t

−1)(e1,3t
−1)|0〉

)
+ (e1,2t

−1)(e2,3t
−1)|0〉 − 1

2
e1,3t

−2|0〉,

where h1 := e1,1 − e2,2, h2 := e2,2 − e3,3 and ei,j is the elementary matrix of the coefficient (i, j) in sl3
identified with the set of traceless 3-size square matrices.

(1) Verify that v is indeed a singular vector for ŝl3, that is, ei,i+1v = 0 for i = 1, 2 and (e3,1t)v = 0.
(2) Let h := Ch1 + Ch2 be the usual Cartan subalgebra of sl3. Show that XL−3/2(sl3) ∩ h = {0}, and

deduce from this that XL−3/2(sl3) is contained in the nilpotent cone N of sl3.

(3) Show that N is not contained in XL−3/2(sl3).

(4) Denoting by Omin the minimal nilpotent orbit of sl3, conclude that

XL−3/2(sl3) = Omin.

Hints for Exercise 8. (1) Just use the commuting relations in V −3/2(sl3).
(2) Observe that the image I of the maximal proper maximal ideal of V −3/2(sl3) is generated by the

vector v̄ as an (ad sl3)-module, where

v̄ =
1

3
(h1 − h2) e1,3 + e1,2e2,3

is the image of v in RV −3/2(sl3)
∼= C[hi, ek,l ; i = 1, 2, k 6= l]. Verify that

(ad e3,2)(ad e2,1)v̄ = −e1,2e2,1 + e1,3e3,1 +
1

3
(2h1 + h2)h2,

(ad e2,1)(ad e3,2)v̄ = −e2,3e3,2 + e1,3e3,1 + +
1

3
(h1 + 2h2)h1,

and deduce from this that the intersection XL−3/2(sl3) ∩ h is zero. For the last part, remember that
XL−3/2(sl3) is closed, invariant, and conical.

(3) Verify that e1,2 + e2,3 is not in XL−3/2(sl3).

(4) Observe that XL−3/2(sl3) cannot be reduced to zero.
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Part 4.

Exercise 9 (A preliminary result for the BRST reduction). Let V be a vertex superalgebra, that is, a vector
superspace V = V0 ⊕ V1 satisfying the same axioms as a vertex algebra except that, in the locality axiom,
the bracket [a(z), b(w)] stands for

[a(z), b(w)] = a(z)b(w)− (−1)|a||b|b(w)a(z).

Fix an odd element Q of V such that Q(n)Q = 0 for all n > 0.

(1) Show that Q2
(0) = 0.

(2) Show that the quotient
kerQ(0)

imQ(0)
is naturally a vertex algebra, provided it is nonzero.

Hints for Exercise 9. (1) Remember that Q is odd and, hence, that Q2
(0) =

1

2
[Q(0), Q(0)]. Then use the

Borcherds identity.
(2) Show that kerQ(0) is a vertex subalgebra of V , and that imQ(0) is a vertex ideal of it.

Exercise 10 (Definition of the W -algebra associated with sl2 and a principal nilpotent element). Set

e :=

(
0 1
0 0

)
, h :=

(
1 0
0 −1

)
, f :=

(
0 0
1 0

)
so that sl2 = spanC(e, h, f). The aim of this exercice is to define the W -algebra Wk(sl2, f) associated with
sl2 and f at level k ∈ C. Set n := Ce.

(1) Let Ĉl be the Clifford algebra associated with n[t, t−1]⊕ n∗[t, t−1] and the symmetric bilinear form
( | ) given by:

(etm|etn) = (e∗tm|e∗tn) = 0, (etm|e∗tn) = δm+n,0.

We write ψm for etm ∈ Ĉl and ψ∗m for e∗tm ∈ Ĉl, m ∈ Z, so that Ĉl is the associative superalgebra
with odd generators ψm, ψ

∗
m, m ∈ Z, and relations:

[ψm, ψn] = [ψ∗m, ψ
∗
n] = 0, [ψm, ψ

∗
n] = δm+n,0.

Define the charged fermion Fock space as

F :=
Ĉl∑

m>0 Ĉlψm +
∑
n>1 Ĉlψ

∗
n

.

Show that there is a unique vertex (super)algebra structure on F such that the image of 1 is the
vacuum |0〉, and

ψ(z) := Y (ψ−1|0〉, z) =
∑
n∈Z

ψnz
−n−1, ψ∗(z) := Y (ψ∗0 |0〉, z) =

∑
n∈Z

ψ∗nz
−n.

Let V k(sl2) be the universal affine vertex algebra associated with sl2 at level k, and set

Ck(sl2) := V k(sl2)⊗F .
Define a gradation F =

⊕
p∈Z Fp by setting degψm = −1, degψ∗n = 1 for all m,n ∈ Z and

deg |0〉 = 0. Then set Ck,p(sl2) := V k(sl2)⊗Fp. Define a vector Q̂ of degree 1 in Ck,1(sl2) by:

Q̂(z) := (e(z) + 1)⊗ ψ∗(z).

(2) Verify that Q̂(n)Q̂ = 0 for all n > 0, and deduce from Exercice 9 that the cohomologyH•(Ck(sl2), Q̂(0))

inherits a vertex algebra structure from that of Ck(sl2), provided that it is nonzero.
The W -algebra Wk(sl2, f) associated with (sl2, f) at level k ∈ C is defined by:

Wk(sl2, f) := H0(Ck(sl2), Q̂(0)).

This definition of Wk(sl2, f) is due to Feigin and Frenkel. It can be generalized to any simple Lie
algebra g and to any nilpotent element.
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(3) Assume that k 6= −2. Show that there exists a unique vertex algebra homomorphism

Virc(k) →Wk(sl2, f), where c(k) := 1− 6(k + 1)2

k + 2
.

It can be shown that the above homomorphism is actually an isomorphism.

Hints for Exercise 10. (1) The main thing to be verified is the locality axiom.

(2) Observe that Q̂ = (e(−1)|0〉+ |0〉)⊗ e∗(0)|0〉 and then compute Q̂(z)Q̂ = 0.

(3) This is a very difficult question! We give the necessary guidance. Set

L(z) = Lsug(z) +
1

2
h(z) + LF (z) =

∑
n∈Z

Lnz
−n−1,

where

Lsug(z) =
1

2(k + 2)

(
: e(z)f(z) : + : f(z)e(z) : +

1

2
h(z)2

)
and LF (z) =: ∂zψ(z)ψ∗(z) :,

and verify that Q̂(0))L = 0 so that L defines an element of Wk(sl2, f). Then check that L−1 = T ,

that L0 acts semisimply on Wk(sl2, f) by

L0|0〉 = 0, [L0, h(n)] = −nh(n),

[L0, e(n)] = (1− n)e(n), [L0, f(n)] = (−1− n)f(n),

[L0, ψ
∗
(n)] = (−1− n)ψ∗(n), [L0, ψ(n)] = (1− n)ψ(n),

and that the Ln’s verify the Virasoro relations.
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