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Fonctions holomorphes

1.1. Définitions et premieres propriétés

Soit € un ouvert de C.

— Définition 1.1 \

On dit qu’une fonction f: ) — C est dérivable au sens complexe en z € € si la limite

w—oz W — 2
existe, oll w tend vers z dans . Si f/(z) existe pour tout z € 2 et si la fonction f’: 2 — C ainsi définie
est continue, on dit que f est holomorphe sur ).

Une fonction holomorphe sur €2 est donc continue sur {2. La condition de limite équivaut a dire que la limite

) et L) = 1)

h—0 h

ou h prend des valeurs non nulles, existe, ou encore qu’il existe A € C (unique) tel que
fz+h) = f(z) + Ah+ o(h),

)

ou la notation o(h) signifie que loml _, 0 quand h tend vers 0 dans , et on pose alors f/(z) = A.

A

La définition 1.1 peut étre allégée. On a en effet le résultat suivant (voir le théoreme 3.9), que I’on peut
0 omettre en premiere lecture :

Bien entendu, le complexe A\ dépend de z.

Soit f: Q@ — C que 'on suppose dérivable en tout point de ). Alors sa dérivée
'+ Q — C est continue.

L’hypotheése « f’: 2 — C est continue » de la définition est donc superflue.

EXERCICE DE COURS 1.1. Montrer que la fonction z — z est dérivable sur C, de dérivée constante égale a 1,
mais que que la fonction z +— Z n’est dérivable en aucun point de C.

La subtilité est que h varie dans un ensemble de dimension deux, de type disque « épointé » autour de
A 0, pour h assez petit pour que z + h € 2. On le voit trés bien sur le (non-)exemple z — Z : le module
de h tend vers 0, mais peut aussi tourner ou spiraler autour de 0!

5
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On note &'(2) I’ensemble des fonctions holomorphes sur €2.

EXERCICE DE COURS 1.2.

(1) Montrer que ¢'(2) forme une algébre unitaire pour le produit de fonctions usuel, et que pour A € C,
f,ge 0(2),ona:

AN =X (f+e'=f+d, (f9)=Ffg+fd.

(2) Montrer que si f € () ne s’annule pas sur €2, alors 1/ f est holomorphe sur € et que

() --%

o

(3) Soient 5 unouvertde C, f € O(Q) et g € O(24) tel que g(21) C €. Montrer que la composée f o g
est holomorphe sur €25 et que

(feg) =(fog)d"
(4) Soient Q un ouvertde C et f € &(2) une application bijective de 2 sur f(€2). Montrer que

1
—1 _
f - fo ffl .
EXEMPLE 1.1. 1) Une fonction polynomiale est holomorphe sur C.

2) La fonction z +— 1/z est holomorphe sur C*. Plus généralement, une fraction rationnelle P/Q, ou P,Q €
C[X], est holomorphe sur I’ouvert C privé des zéros de Q).

3) En revanche, si P € C[X,Y], lafonction z = x + iy — P(z,y) n’est pas holomorphe sur C en général. Par
exemple z — Z et z — Re(z) ne sont dérivables (au sens complexe) en aucun point de C.

1.2. Les conditions de Cauchy—Riemann

Soit €2 un ouvert de C. On rappelle qu’une fonction f: 2 — C est dérivable de dérivée A\ en un point z de 2 si et
seulement si, lorsque h tend vers 0, on a :

f(z+h)=f(z) + Ah+o(h).

On rappelle que A dépend du point z et que h varie dans C!

A

Cette condition peut encore s’exprimer en disant que, vue comme une application de 1’ouvert 2 de R? du R-
espace vectoriel C a valeurs dans le R-espace vectoriel C, f est différentiable en z et que sa différentielle D, f en z est
I’application

6] h +— Ah.

Une application R-linéaire T' de C dans C est de la forme (1) si et seulement si sa matrice dans la base (1, ¢) du R-espace
vectoriel C est :

a —b
2 G )
@) )
ou a,b € R sont tels que A = a + ¢b. Cette condition est encore équivalente & la suivante :
T(1)4+¢T(i) =0,
ou encore au fait que 7 est une application C-linéaire de C dans C.
REMARQUE 1.1. Géométriquement, une matrice de la forme (2) est une matrice de similitude directe, c’est-a-

dire la composée d’une rotation et d’une homothétie de I’espace euclidien orienté R2. Ainsi, en tout point z de € la
jacobienne de la différentielle D, f d’une fonction holomorphe est une matrice de similitude directe.

On a obtenu la proposition suivante :
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,—| Proposition 1.2 N\

Soient € un ouvert de C et f: 2 — C une application de classe ’* (vue comme une application définie
sur 2 C R?). Les conditions suivantes sont équivalentes :

(i) f est holomorphe,

(i1) les dérivées partielles 0f(z + 1) et 0f (@ +1y) satisfont a la relation
ox dy
of(x + 1y) " Z‘8f(:1ﬂ + 1y) _0
or dy

pour tout (z,y) € R? tel que x + iy € €,
(iii) pour tout z € {2, la différentielle D, f de f en z est C-linéaire.

La condition (ii) est appelée condition de Cauchy—Riemann.

Lorsque les conditions de la proposition 1.2 sont satisfaites, la différentielle D, f de f en un point z de €2 , donnée
par la multiplication complexe par f'(z), admet pour matrice dans la matrice (1,1%) :

ou Ou
0z Oy :<Ref’(2) 4mf’(z))
ov  Ov Imf’(2) Ref'(z)
dr  dy

ou pour tout (7, y) € R? tel que z + iy € ,

f(z +1iy) = u(z,y) +iv(z, y).
En particulier,

ou_ov 0w v
oxr Oy © oy  Ox’
De plus,

ox
En particulier, on en déduit la proposition suivante :

Proposition 1.3

On suppose que I’ouvert £ est  connexe J. Une fonction holomorphe f € ¢/(£2) est constante si et seulement
si f/ = 0sur Q.

EXERCICE DE COURS 1.3. Démontrer la proposition.

Q

Appliquer le théoréeme des accroissements finis a 1’application

(z,y) € Q C R* — (u(z +iy), v(z + iy)).

EXERCICE DE COURS 1.4. Vérifier que les fonctions suivantes sont holomorphes dans leur domaine de défi-
nition et qu’elles satisfont les conditions de Cauchy—Riemann :

z 27

2241’

3 1 e
z b )
z+1
ou I’application z — e* est définie a la section 1.4.
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EXERCICE DE COURS 1.5.

(1) Montrer qu’en coordonnées polaires z = re'?, les équations de Cauchy—Riemann prennent la forme :
ou 10v 10u ov

ar  rdl  roo o

@ Indication : vérifier d’abord les formules :
' — = cos 9 sinf 9 g—sineg cosf &
or  or v 90" 9y  or 1 06

(2) Utiliser ces équations pour montrer que la fonction logarithme définie par :

log z := logr + 0

pour z = re'? avec r > 0 et —7 < @ < 7 est holomorphe.

EXERCICE DE COURS 1.6. Soit la fonction

flz+iy) = /|||yl

définie pour tous (z,y) € R% Montrer que f satisfait les conditions de Cauchy-Riemann en (0,0) € R?, mais
qu’elle n’est pas différentiable au sens complexe en 0 € C.

Définition 1.4

Soient ; et 25 deux ouverts de C. On dit qu’une application ¢: 1 — 5 est biholomorphe lorsque ¢
est bijective et que ¢ et ¢! sont holomorphes.

La question (4) de I’exercice 1.2 montre que I’on a alors pour tout w € €25 :

(™) (w) = o)

Proposition 1.5 — inversion locale holomorphe]

Soient 2 un ouvert de C, f € 0(2) et 29 € Q. Si f/(z0) # 0, alors il existe des voisinages ouverts U de
zo dans Q et V de f(zp) dans C tels que f établisse une bijection biholomorphe de U sur V.

EXERCICE DE COURS 1.7. Démontrer la proposition a 1’aide du théoréme d’inversion locale (pour les appli-
cations de classe €’ entre ouverts de R?).

Corollaire 1.6 — application ouverte}

Soient 2 un ouvert de C et f € O(Q) tel que f'(z) # 0 pour tout z € Q. Alors f est une application
ouverte, c’est-a-dire que ’image de tout ouvert est un ouvert de C.
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1.3. Séries entiéres

Nous allons voir que la famille des séries entieres, qui englobe celle des polyndmes, donne des exemples fonda-
mentaux de fonctions holomorphes. Plus loin, nous verrons que toute fonction holomorphe est localement une série
entiere.

Rappels sur les séries entiéres. Une série entiére est une série de fonctions de la forme > (z — a,2") ol (an)neN
n=0
est une suite de nombres complexes et z la variable, que 1’on note, selon ’usage, simplement > a,2".
n=0
Son rayon de convergence p € [0, +oo[ U{+oco} est défini par les propriétés suivantes :

— pour tout r € R tel que r < p, la série entiere > a,z™ est normalement convergente sur le disque fermé
n>0

D(0,7) :={z € C: |z| < r}.

— pour tout z € C tel que |z| > p, la suite (a,2™),en n’est pas bornée et a fortiori la série > a,2" diverge.
n>0

On a donc I’égalité :
p =sup{r > 0: lasuite (|a,|r")nen est bornée},
ainsi que la formule de Hadamard :
1 . 1
— = limsup |a,|™,
P n— oo

avec la convention § = +oo et = = 0.

Jacques Salomon Hadamard, né le 8 décembre 1865 a Versailles et mort
le 17 octobre 1963 a Paris, est un mathématicien frangais, connu pour ses
travaux en théorie des nombres, en analyse complexe, en analyse fonction-
nelle, en géométrie différentielle et en théorie des équations aux dérivées

partielles.

Voir si besoin https://www.imo.universite—-paris—saclay.fr/~anne.moreau/
M41l-cours—2019.pdf pour des rappels de deuxieme année sur les suites et séries de fonctions.

D)

,—[Proposition 1.7 — les séries entieres sont holomorphes} <

Soit Y a, 2" une série entiere de rayon de convergence p > 0. La fonction f: D(0, p) — C qu’elle définit
n=0

sur le disque
D(0,p) := {z € C: |2] < p}

est holomorphe et, pour tout z € D(0, p), on a

f(z) = Z nanz" "t

n>1

On rappelle que la série entiere > na,2"~! ale méme rayon de convergence p que la série entiere > a,,2" et
n>1 n=0
donc le second membre de ’expression de f’(z) dans la proposition est bien convergent.

La proposition s’applique aussi & f’, f”/, etc. et I’on obtient par une récurrence immédiate :


https://www.imo.universite-paris-saclay.fr/~anne.moreau/M41-cours-2019.pdf
https://www.imo.universite-paris-saclay.fr/~anne.moreau/M41-cours-2019.pdf
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~— Corollaire 1.8

Dans les conditions de la proposition 1.7, la fonction f admet des dérivées (au sens complexe) a tous les
ordres, données par des séries entieres convergentes sur D(0, p). Précisément, pour k € N* et z € D(0, p),

Année 2025-2026

ona: -
f®(2) = Z nn—1)---(n—k+ az""*.
n=~k
REMARQUE 1.2. Ona
(n)
00
n!
pour tout n. € N. En particulier, si f: D(0, p) — C est somme de la série entiere Y a,z", cette série est la série de
neN
Taylor de f en 0.

Brook Taylor, est un homme de science anglais, né a Edmonton, aujour-
d’hui un quartier de Londres, le 18 aoiit 1685, et mort a Londres le 29 dé-
cembre 1731. Principalement connu comme mathématicien, il s’intéressa

aussi a la musique, a la peinture et a la religion.

FIGURE 1 - 2z et » comme dans la question (1) de I’exercice 1.8.

EXERCICE DE COURS 1.8. L’objectif de I’exercice est de démontrer la proposition 1.7. Soit zo dans D(0, p).
(1) Soit 7 tel que |zo| < r < p (voir la figure 1). Etablir :

f(z0 + h})l — f(z0) Z nanzy~t = Z anvn(h),

n=1 nz=2
ol vy, (h) tend vers 0 quand h tend vers 0 a n fixé, et

lanvn (h)| < 2n|an|7“"_1,

pour tout h tel que |zo| + |20 — h| < r.

10
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(2) Conclure en observant que le membre de droite de la question (1) est le terme général d’une série conver-

gente, et qu’il tend vers 0 quand A tend vers 0.

1.4. Exponentielle complexe, fonctions circulaires et hyperboliques
Voici des exemples importants de séries entieres, et donc de fonctions holomorphes.

~— Définition 1.9

n

. . o z 5 o “ 2 .

La série entiere E — est de rayon infini. Sa somme, notée exp, est appelée 1’exponentielle complexe.
n.

n>=0

On a ainsi :

nl
n=0

ZYL
VzeC, expz:z

L’exponentielle complexe étend I’exponentielle réelle. On note donc souvent e® au lieu de exp z

Définition 1.10

Une fonction enfiére est une fonction holomorphe définie sur le plan complexe C tout entier.

L’exponentielle complexe est donc une fonction entiere. Le théoréme suivant se démontre a 1’aide du produit de
Cauchy de deux séries entieres.

Théoreme 1.11 — produit de deux exponentielles]

Pour tous z, 2’ € C,

EXERCICE DE COURS 1.9.

n

. . . z . . £ Lo
(1) Vérifier que la la série entiere E — esten effet de rayon infini, et démontrer le théoréme 1.11
n!

n=0
(2) Montrer que pour tout z € C,
1 _
67:6 2’ (6Z)TL:€’I’LZ

(neN), eF=¢e  |&F]=¢ReR),

,—[Théoréme 1.12 — T’application exponentielle est continue et surjective

W
J

(i) L’application exp: z — e est un morphisme surjectif du groupe (C, +) sur le groupe (C*, x)
(ii) 1l existe un unique réel positif, noté , tel que Ker (exp) = 2inZ.
(ili) Onae’™ = —lete™2 =4

11
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Tout nombre complexe non nul z € C* admet donc une expression polaire

zZ=Te

ol r = |z| €]0,+o00] etou § € R est défini modulo 27Z.
Le fait que exp soit un morphisme de groupes est clair d’apres le théoreme 1.11. La surjectivité découle de I’exer-

cice suivant.

EXERCICE DE COURS 1.10 (surjectivité de I’exponentielle). A I’aide du corollaire 1.6, montrer que I’appli-
cation exp est ouverte, c’est-a-dire que 1’image de tout ouvert est un ouvert de C. En déduire que I’image de exp

est un ouvert de C et que I’application exp est surjective.

EXERCICE DE COURS 1.11.
(1) Vérifier que Ker(exp) C iR.
(2) Déterminer le noyau du morphisme de groupes
Y:te (R,+) e e (U, x)

ot U est ’ensemble des nombres complexes de modules 1. En déduire I’assertion (ii) du théoréme 1.12

(3) Montrer I’assertion (iii) du théoréme 1.12.

On définit aussi, pour tout z € C,

too »2n too »2n+1
cosz = E (=" , sinz= E ()" —m,
! !
o (2n)! = (2n +1)!
+oo 2n +oo 2n+1
z z
he=> - she=> .
chz Z(Qn)!’ Sz ;(2n+1)!

n=0
Les séries entieres ci-dessus sont toutes de rayon infini, et leurs sommes coincident sur R avec les fonctions cos, sin,

ch et sh respectivement.

,—[Proposition 1.13 — autres expressions des fonctions circulaires et hyperboliques] \

Pour tout z de C,on a :

eiz + efiz ) eiz _ efiz e + e % e? — e %
cosz=———, sinz=——+—— chz=—"—, _
2 24 2

z

En particulier, pour tout z € C, on a
chz—shz=e¢e¢"%,

cosz +isinz =e"®, cosz—isinz=e ¥, chz+shz=¢",
cos z = ch(iz), isinz = sh(iz).

EXERCICE DE COURS 1.12. Montrer pour tout z € C :
s
cosz =0 <= Z€§+7TZ,

sinz =0 < z € nZ

Pour tout z € C \ (g + 71'2), on pose

sin z
tanz =
oS z
et pour tout z € C \ 7Z, on pose
Cos 2
cotanz = ——.
sin z
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On se convaincra aisément que les formules de trigonométrie relatives aux fonctions circulaires d’une variable
réelle restent en grande partie valables pour les fonctions circulaires d’une variable complexe. On a par exemple pour
tout (2,w) € C%:

cos? z + sin?

z=1,
cos(z + w) = cos z cosw — sinw sin z,

sin(z + w) = sin z cos w + cos z sinw,

cos z 4+ cosw = 2 cos (Z_Qw)cos (z—;w)’

sin z 4+ sinw = 2sin (HTw) cos (z—2w) , etc.

D’apres la proposition 1.13 et ses conséquences, notamment,

ishz =sin(iz), chz = cos(iz),

on obtient les formules de trigonométrie hyperbolique a partir des formules de trigonométrie circulaire. Par exemple, a
partir de la relation sin(z — w) = sin z cos w — cos z sin w, on obtient pour tout (z,w) € C%:

sh(z — w) = sh(z)ch(w) — ch(z)sh(w).

En revanche, les relations
A cost = Re(e”) et sint = Im(e")

ne sont valables que lorsque ¢ € R.

1.5. Logarithme(s)

Dans le domaine réel, I’application exp: R — R’ est une bijection croissante. Son inverse est le logarithme
néperien, noté log: R’ — R. Dans le domaine complexe, I’application exp: C — C* est surjective, mais non injective.

Quand z € C* s’écrit z = e = et = %, nous observons que :
— la partie réelle a de w est bien définie, avec a = log|z|.
— la partie imaginaire b de w n’est déterminée qu’a 27 pres. On dit que b est argument de z.

Lorsqu’on écrit z € C* sous la forme z = ", le complexe w est appelé logarithme de z : il n’est défini qu’a 2im
pres. On dit que le logarithme complexe est une fonction multiforme (ou multivaluée).

~— Définition 1.14 \

Soit 2 C C* un ouvert. Une fonction f: 2 — C est appelée une détermination continue du logarithme
lorsque

(i) f est continue,

(i) pourtout z € Q, onaz = ef(?),

EXERCICE DE COURS 1.13.
(1) Montrer qu’il n’existe pas de détermination continue du logarithme sur C* tout entier.

(2) Soient €2 un ouvert connexe de C* et fy: 2 — C une détermination continue du logarithme sur 2.
Montrer que les autres déterminations continues du logarithme sur €2 sont exactement les fonctions

fn = fo+2imn pourn € Z.

13
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,—[Proposition 1.15 — conditions nécessaire et suffisante pour avoir une détermination continue du logarithme

Soit  un ouvert de C*.

(i) Si f: © — C estune détermination continue du logarithme sur €2, alors f est holomorphe et on a,
pour tout z € € :

(ii) On suppose que Iouvert €2 est (connexe ). Soit g € £ — C une fonction holomorphe telle que

1
g'(z) = — pour tout z € €. Alors il existe une constante « € C telle que
z
N—-C, z—g(z)—a

soit une détermination continue du logarithme.

EXERCICE DE COURS 1.14.

(1) Démontrer I’assertion (i) de la proposition.

h
(;) Indication : remarquer que exp(f(z+h) — f(2)) =1+ S et utiliser le développement

e/ limité de exp au voisinage de 0.

(2) Démontrer I’assertion (ii) de la proposition.

M et appliquer la proposition 1.3.
z

(,-) Indication : poser h(z) =

REMARQUE 1.3. Si f: Q) — C est une fonction continue sur un ouvert €2 de C, une primitive de f est une fonction
holomorphe F': Q — C telle que F’ = f. Nous étudierons 1’existence de primitives holomorphes pour une fonction
continue en détail plus loin dans le cours.

Puisque I’exponentielle exp: C — C* est un morphisme de groupes surjectif, de noyau Ker exp = 2inZ, sa
restriction a la bande horizontale semi-fermée
{zeC: —7 <Im(z) < 7}
est donc bijective.
L’image de la droite {z € C: Im(z) = —7} est C* N Rgo. Il s’ensuit que la restriction
exp: {z€C: —7m <Im(z) <7} — C\ Rgo
de exp a la bande ouverte est une application holomorphe bijective, dont la dérivée est partout non nulle.
Elle réalise donc un biholomorphisme entre ces deux ouverts (voir la proposition 1.5). L’application réciproque
l::C\Rgo — {2 €C: —7 <Im(z) <7}

est appelée la détermination principale du logarithme. Elle prolonge au plan coupé C \ Rg¢q le logarithme réel
log: R} —R.
Nous avons rencontré ce logarithme lors de 1’exercice 1.5.

2T = log(j?) # 21o(j) =

Les regles usuelles du logarithme réel ne sont plus toujours valables. Par exemple,
A
7

La détermination principale de I’argument correspondante, notée arg_, prend ses valeurs dans | — 7, 7|.

14
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EXERCICE DE COURS 1.15. Montrer que cette détermination principale du logarithme est maximale, au sens
ou elle ne se prolonge pas en une détermination continue du logarithme sur un ouvert plus grand.

Dans la suite du cours, log(z) désignera toujours la détermination principale du logarithme.

EXERCICE DE COURS 1.16.

(1) Montrer que la détermination principale du logarithme est développable en série entiere sur le disque
ouvert D(1, 1) et que I’on a pour tout z € D(1,1),

s 5 — n+1
log(2) = £a(2) = (-1 - U
n=0

(2) Soita € C*.
1
(2.1) Montrer que la fonction z — — est développable en série entiere sur le disque ouvert D(a, |al) et
z
déterminer ce développement.

(2.2) Montrer qu’il existe une détermination continue du logarithme ¢: D(a,|a]) — C et que £ est
développable en série entiere sur le disque ouvert D(a, |a|). Expliciter son dévelopement.

REMARQUE 1.4. Si A est une demi-droite fermée issue de I’origine et si & € R est un argument (commun !) pour
tous les éléments de A \ {0}, on obtient de méme une détermination continue du logarithme

lo: C\NA — {z€C: a—27 <Im(z) < a}

sur le plan coupé C \ A.

Les déterminations ¢,, et log = £, ont méme partie réelle, égale a z — log|z|.

Soit & € N*. Un nombre complexe non nul z posséde exactement k racines k-ieme w telle que w*
different toutes d’une racine k-ieme de 1’unité.

= 2z, qui

Comme pour le logarithme, on peut se poser la question de 1’existence d’une détermination continue (ou holo-
morphe) de la fonction racine k-iéme sur un ouvert de C*.

EXERCICE DE COURS 1.17. Soit 2 C C*. un ouvert sur lequel il existe une détermination continue (donc
holomorphe) ¢: 2 — C du logarithme. Montrer que 1’application
1
rg: Q@ —C, zr——exp <%€(2)) :

fournit une détermination holomorphe de la racine k-ieme sur 2.

Fonctions multiformes et surfaces de Riemann
Les calculs faisant intervenir des fonctions multiformes sont parfois lourds et compliqués. Riemann a
eu I’idée de transformer les fonctions multiformes en fonctions uniformes (un point n’a qu’une seule
image), en modifiant le domaine de définition. Il recolle pour cela continiiment plusieurs représenta-
tions du domaine de définition, les feuillets, et obtient le concept de surface de Riemann.

15
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Georg Friedrich Bernhard Riemann, né le 17 septembre 1826 a Brese-
lenz, Etat de Hanovre, mort le 20 juillet 1866 & Selasca, hameau de la
commune de Verbania, Italie, est un mathématicien allemand. Influent sur
le plan théorique, il a apporté de nombreuses contributions importantes
a l'analyse et a la géométrie différentielle, certaines d’entre elles ayant

permis par la suite le développement de la relativité générale.

FIGURE 2 - Surfaces de Riemann associées au logarithme et a la racine carrée

16
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1.6. Fonctions analytiques

Soit  un ouvert de C.

~ Définition 1.16 N

On dit qu’une fonction f: 2 — C est analytique si, pour tout point a € €2, il existe un réel r > 0 et une

série entiere Y a,2" de rayon de convergence > r tels que le disque ouvert D(a, r) soit contenu dans €2
n=0
et que, pour tout point z de ce disque,

3) )= an(z—a)™
n=0

\. J

D’apres la proposition 1.7 et son corollaire 1.8, une telle fonction est indéfiniment dérivable au sens complexe
sur ). De plus, d’aprés la remarque 1.2, les coefficients a,, apparaissant dans la formule (3) sont nécessairement
donnés par
/) (a)

n!
Le développement (3) n’est autre que le développement de Taylor de f au point a :

x ) (g
=3 LW oy

n!

Ay =

n=0

EXERCICE DE COURS 1.18. Montrer que ’ensemble des fonctions analytiques sur {2 forme une algebre
unitaire et que les fonctions polynomiales et 1I’application exp sont analytiques sur C.

@ Utiliser le produit de Cauchy de deux séries entieres.

-
Montrer aussi que la fonction z — 1/z est analytique sur C*.

On peut généraliser les exemples de 1’exercice précédent.

,—[Proposition 1.17 — la somme d’une série entiere est une fonction analytique]

La somme

f(z) = Z anz"
n=0

d’une série entiere de rayon de convergence p > ( définit une fonction analytique sur le disque
ouvert D(0, p).

D’apres le corollaire 1.8, on sait déja que f est indéfiniment dérivable sur D(0, p) et que pour tout zg € D(0, p),

oo

170 = 3 G f!n)!akzgn.

k=n
EXERCICE DE COURS 1.19. Soient zg € D(0,p) etz € D(zg, p — |20])-

, , — /" (20) - . .
(1) En exprimant f(z) d’une part, et Z =2 (z — z9)" d’autre part, en fonction des coefficients a,,

n!
) n , > F) (20)
et des puissances (z — 2)", montrer que le développement de Taylor E —
n!

n=0

(z — 2zp)™ converge
n=0
vers f(z) si la somme double

k! k—n n
2. e~y 70 (2= 20)

(n,k)EN2
n<k

17
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est absolument sommable.

(2) Montrer que c’est le cas, et conclure.

Nous verrons plus loin I’équivalence entre holomorphie et analycité (Théoreme 2.4).

REMARQUE 1.5. L’exercice 1.19 fournit une démonstration indépendante de 1’holomorphie des séries entieres
(Proposition 1.7). Réciproquement, la proposition 1.7 apparaitra comme une conséquence de la proposition 1.17
lorsque nous disposerons du théoréme 2.4 (équivalence entre holomorphie et analycité).

1.7. Zéros des fonctions analytiques

Soient 2 un ouvert de C et f: 2 — C une fonction analytique. Considérons le développement de Taylor de f en
un point a de €2 :

(n)

(Zia)na

o0
-7
n=0
valable pour tout z dans le disque ouvert D(a, ) pour € > 0 assez petit.
Deux possibilités se présentent :

1) ou bien toutes les dérivées f() (a) sont nulles; f est alors nulle au voisinage de a,

2) ou bien I'une de ces dérivées est non nulle. Soit f("0) (a) la premiére d’entre elles.

On peut alors écrire, si z € D(a,¢€),

o (n)(g
=3 T Doy = c—ayoga),

n=ngo

Ho3 L) f<k+”°>< ) (.ot

imo (k+mo)!
La fonction g: D(a,e) — C ainsi définie est analytique, donc continue, et

(no)
o) = L 20

Ainsi, g ne s’annule pas au voisinage de a, et f ne s’annule pas sur un voisinage épointé de a, c’est-a-dire
un voisinage de a privé du point a.

Définition 1.18

L’entier ng est appelé la multiplicité, ou 1’ordre du zéro de f en a, ou encore la valuation de f en a.
On le note v, (f).

Autrement dit, v, (f) est un entier positif défini, lorsque f n’est pas identiquement nulle au voisinage de a, par

va(f) =0 <= f(a) #0.

Rappelons qu’un point d’accumulation d’une partie A de € est un point a de I’adhérence de A \ {a} dans .

18
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,—[Théoréme 1.19 — zéros des fonctions analytiques] \

Soient £ un ouvert non vide de C et f:  — C une fonction analytique. Les conditions suivantes
sont équivalentes :

(i) f estidentiquement nulle sur €2,
(i) I’ensemble des zéros de f posseéde un point d’accumulation ,
(iii) il existe a € €2 tel que, pour tout n € N,
f™(a) = 0.

EXERCICE DE COURS 1.20. L’objectif de cet exercice est de démontrer le théoreme 1.19.
(1) Démontrer les implications (i) = (ii) et (ii) = (iii) a I’aide de la discussion précédente.
(2) On considere I’ensemble

Z ={z€Q: pourtoutn € N, f(™(z) = 0}.

Montrer que Z est une partie a la fois fermée et ouverte de €2 et en déduire 1’implication (iii) = (i) du
théoréeme.

,—[Corollaire 1.20 — principe du prolongement analytique} \

Soient f, g deux fonctions analytiques définies sur un ouvert Q de C. Si f et g coincident sur une
partie de (2 ayant un point d’accumulation dans €2, alors elles coincident.

,—[Corollaire 1.21 — principe des zéros isolés] \

Soit f une fonction analytique définie sur un ouvert Q de C. Si f n’est pas identiquement nulle,
alors tous les zéros de f sont isolés.

EXERCICE DE COURS 1.21. Démontrer ces deux corollaires a 1’aide du théoreme 1.19.

f(z)zsin(liz).

Montrer que f est analytique sur le disque ouvert D(0, 1). Déterminer les zéros de f. A-t-on une contradiction
avec le principe des zéros isolés ?

EXERCICE DE COURS 1.22. Soit
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La théorie de Cauchy

2.1. Intégration le long d’un chemin

On rappelle qu’une application continue 7: [a,b] — C définie sur un segment [a, b] de R est de classe € par
morceaux lorsqu’il existe une subdivision

a=aqy<a; <---<ap=>

de son intervalle de définition telle que chaque restriction -y
dérivée a droite en a; et a gauche en a;41).

[as,a14,] SOIt de classe €' (on ne considere alors que la

On appelle chemin de C une application v: [a,b] — C de classe ¢! par morceaux définie sur un segment de R et
a valeurs dans C. On dit que v est fermé, ou que c’est un lacet, lorsque v(a) = v(b).

e

FIGURE 3 — Un chemin et un chemin fermé

~— Définition 2.1

Soit f: 2 — C une fonction continue sur une partie {2 de C. On définit son intégrale de long d’un chemin
v: [a,b] — Q par:

b
[ 1@z = [ o

Dans I’écriture / f(2)dz, lalettre z est une variable muette et peut étre remplacée par n’importe quelle
‘ ’ gl

autre lettre. On note parfois simplement / f-
gl

L’intégrable d’une fonction continue le long d’un chemin est donc simplement 1’intégrable d’une fonction de
variable réelle a valeurs complexes.

Voici quelques propriétés élémentaires de 1’intégration de long d’un chemin. Soient €, v et f comme dans la
définition 2.1.

(a) Invariance par reparamétrage. Soit ¢: [, 3] — [a, b] une bijection ¢! croissante. Posons 7 = ~ o ¢.
Alors 4 est un chemin défini sur [« 3] et

Af(z)dzzlf(z)dz.
21
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(b) Chemin opposé. Soit v* le chemin opposé a v défini par
v la,b] = Q, t—y(a+b—1t).

L J(z)dz = - L F(2)dz.

FIGURE 4 — chemin opposé

Alors

(c) Concaténation. Soit ¢ € [a, b] et soient

71 = 7|[a,c] et 7y i=7y

Le chemin y est ainsi la « concaténation » des chemins 7; et 2, eton a:
/f(z)dz = / f)dz+ | f(2)d=.
v 71 72

On note parfois v * 2 la concaténation des chemins v et s.

[e,b]

FIGURE 5 — concatenation de deux chemins

(d) Majoration par la norme uniforme. Il découle de la formule de la définition 2.1 que

[yf(z)dz

b
L’intégrale / |7/ (t)|dt est, par définition, la longueur de ~.
a

b
< s |f(2)] / /(1) dt.

z€v([a,b])

EXERCICE DE COURS 2.1. Soient €2, v et f comme dans la définition 2.1.
(1) Vérifier les propriétés ci-dessus.
(2) Supposons que 2 soit un ouvert de C et qu’il existe une fonction holomorphe F': 2 — C telle que
F =f.
Montrer que

/ f(2)dz = F(3(8)) — F(2(a)).

En déduire que si y est un chemin fermé (un lacet), alors

Lf(z)dz =0.

(3) Soity: [0,27] — C le chemin défini par (t) = e**. Montrer que

d
9 _ 29,

W’Z
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Une fonction holomorphe F' comme a la question (2) de I’exercice 2.1 est appelée une primitive de f sur 2. On
déduit de la question (3) que la fonction z — 1/z n’admet pas de primitive sur C*.

o

Voici quelques chemins particuliers tres utiles :

Le calcul élémentaire de la question (3) est fondamental. 11 sera la base de la définition de 1’indice, et
du théoréeme des résidus.

— sia € Cetr > 0, le cercle dans le sens direct de centre a et de rayon r désigne le chemin fermé

€(a,r): [0,2r] — C
t —  a+ret.

Sa longueur est 27r.

— pour (a,b) € C?, le segment d’origine a et 1’extrémité b désigne le chemin

[a,b]: [0,1] — C
t — a+tb—a).

Sa longueur est [b — al.

EXEMPLE 2.1. Soit ¢, la détermination principale du logarithme. Alors pour tout w € C\ Rgp, ona:

L (w) :/ %
[1w] #

On vérifie cela gréce a la proposition 1.15. Notons que le chemin [1, w] évite I’orgine !

EXERCICE DE COURS 2.2 (quelques exemples de calculs).

/ 2"dz.

€(0,1)

/ 2"dz,
€ (a,r)

ol %(a,r) est un cercle qui ne contient pas 1’origine.

(a) Pour n € Z, calculer I’intégrale :

(b) Méme question pour

(c) Soienta,b € Cetr € RY tel que |a] < r < |b|. Montrer :

/ 1 ds — 24T
%0, (z —a)(z—0) a—"b

2.2. La formule de Cauchy

Nous pouvons a présent énoncer et démontrer un résultat fondamental, la formule de Cauchy.

,—[The’oréme 2.2 — formule de Cauchy} N

Soit f une fonction holomorphe sur un ouvert €2 de C, et soient a € 2 et r > 0 tel que le disque fermé

D(a,r) soit contenu 2. Pour tout z € D(a, ), on a alors :

0 =5 |, @) g, L [ Slatren)

= = : re'tdt.
2T Jg(ar) W— 2 2r Jo a+ret —z

\. J

En particulier, la valeur de la fonction holomorphe f au centre du disque est égale a la moyenne de f sur le bord
du disque :

1 27

fla) = — fla+ret)dt.

21 0
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On dit que f satisfait la propriété de la moyenne.

Blas)

FIGURE 6 — Un disque fermé D(a, ) contenu dans un ouvert )

~— Corollaire 2.3 \

Dans les notations du théoreme 2.2, posons pour tout n € N :

1
Qp = — &dw.
2im Jeg(a,ry (W —a)mtt

La série entiere » , a,,2™ a un rayon de convergence > r et, pour tout z € D(a,r),ona:

n2>0
= Z an(z —a)"

n=0

EXERCICE DE COURS 2.3. L’objectif de I’exercice est de démontrer le corollaire.
(1) Observer que pour tout z € D(a,r) et tout w € D(a,r), ou
dD(a,r) = D(a,r)\ D(a,r),

I | (1 z—a)l_ 1 i(z—a)"
w—2z w-—a w—a Cw—a (w—a)™’
n=0
et que cette série, pour z fixé, converge uniformément en w € dD(a,r).

on a

(2) A l'aide de la formule de Cauchy (Théoreme 2.2), démontrer le corollaire.

o0
(;) Remarquer que la convergence uniforme en w € € (a,r) de E

n—O
-

permet de permuter les signes / et Z
% (a,r)

Le corollaire 2.3 permet de démontrer le résultat suivant.
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,—[Théoréme 2.4 — I’holomorphie et 1’analycité sont équivalentes] \

Soit f: 2 — C une fonction définie sur un ouvert €2 de C. Les conditions suivantes sont équivalentes :
(i) f est holomorphe sur €2,
(ii) f est analytique sur €.

Plus précisément, lorsqu’elles sont réalisées, pour tout disque ouvert D(a, p) contenu dans €, la série de

Taylor de f en a
(") (g

Zf ()(Z_a)n

n!

converge vers f(z) pour tout z € D(a, p).

Le théoréme assure notamment que pour tout R € ]0, 00|, les fonctions analytiques sur le disque D(0, R) sont

exactement les fonctions définies par une série entiére Y, a,,2"™ de rayon de convergence > R, et les fonctions analy-
n=0
tiques sur C, appelées fonctions entiéres (Définition 1.10), sont exactement les fonctions définies par une série entiere

de rayon de convergence infini.

Voici en quels termes Cauchy énonce ce résultat (~1841) :

La fonction f(x) sera développable par la formule de Maclaurin en une série enti¢re convergente ordonnée suivant les
puissances ascendantes en x, si le module de la variable réelle ou imaginaire x conserve une valeur inférieure a celle pour

laquelle la fonction (ou sa dérivée du premier ordre) cesse d’étre finie ou continue.

Colin Maclaurin (1698 — 1746) est un mathématicien écossais. Il fut pro-
fesseur de mathématiques au Marischal College a Aberdeen de 1717 a
1725 et & Uuniversité d’Edimbourg de 1725 a 1745. 11 fit des travaux
remarquables en géométrie, plus précisément dans 1’étude de courbes

planes. 1l écrivit un important mémoire sur la théorie des marées.

EXERCICE DE COURS 2.4. L’objectif de I’exercice est de démontrer le théoreme 2.4.
(1) Démontrer I’implication (ii) = (i) a I’aide de la proposition 1.7.

(2) Démontrer I’implication (i) = (ii) et la derniere assertion a 1’aide du corollaire 2.3.

La situation dans le cas complexe est donc trés différente du cas réel! Rappelons qu’il existe des
é fonctions f: R — R de classe ¢! sans étre de classe > (par exemple = + |z|3). Par ailleurs la
fonction z +— e~/ ””2, prolongée par continuité en 0, est de classe €>°, ses dérivées a tous les ordres
sont nulles en 0, donc sa série de Taylor en 0 est la série nulle. Pourtant f(xz) # 0 si z # 0. Cette
fonction n’est donc pas développable en série entiére, c’est-a-dire égale a sa somme de Taylor.

fonction de classe ¥’ soit nul (prendre par exemple a,, = n! dans le théoréme de Borel ci-dessous).

: Dans le domaine réel, il se peut également que le rayon de convergence de la série de Taylor d’une
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Emile Borel, né & Saint-Affrique le 7 janvier 1871 et mort & Paris le 3
février 1956, est un mathématicien frangais, professeur a la Faculté des
sciences de Paris. Il est connu pour ses travaux fondamentaux dans les
champs de la théorie de la mesure et des probabilités. Membre de I’Acadé-
mie des sciences, homme politique frangais, député et ministre, ses actions
pour la Société des Nations et au sein de son Comité fédéral de Coopéra-

tion européenne font de lui un des précurseurs de I’idée européenne.

On énonce, a titre culturel seulement, le résultat suivant, di a Emile Borel.

Théoréme 2.5 — Borel}

Soit (@, )nen une suite de nombres complexes. Il existe une fonction f: R — R de classe €°° pour laquelle
pour tout € N, on a f(™(0) = a,,.

2.3. Le principe du module maximum

— Proposition 2.6 \

Soit f une fonction analytique sur un ouvert €2 de C et soient a € Q et » > 0 tels que le disque fermé

D(a,r) soit contenu dans 2. Pour toutn € N, on a:

ML,
€

n!  2im (a,r) (W —a)*t!
et
f(n) (a) —n 0
4) i <r 9?[10%§(ﬁ]|f(a+re )]

L’inégalité (4) de la proposition est appelée une inégalité de Cauchy.

EXERCICE DE COURS 2.5. Démontrer la proposition a 1’aide du corollaire 2.3 et de la majoration de la
norme (d).

L’inégalité de Cauchy possede la conséquence remarquable suivante.

Théoreme 2.7 — Liouville }

Une fonction entiere, c’est-a-dire analytique sur C, bornée est constante.

EXERCICE DE COURS 2.6. Démontrer le théoréme a I’aide de la proposition 2.6.
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Joseph Liouville, né le 24 mars 1809 a Saint-Omer et mort le 8 septembre
1882 a Paris, est un mathématicien frangais. Il est le fils d’un militaire
décoré a la bataille d’Austerlitz et qui, en 1814, établit sa famille a Toul. 1l
est diplomé de I’Ecole polytechnique (1825). Deux ans plus tard, il intégre
I’Ecole des ponts et chaussées, dont il n’obtient pas le dipléme en raison
de problémes de santé et, surtout, de sa volonté de suivre une carriére

académique plutdt qu’une carriére d’ingénieur. Il obtient le doctorat és

sciences mathématiques en 1836 devant la faculté des sciences de Paris

sous la direction de Siméon Denis Poisson et Louis Jacques Thenard.

Le théoréeme de Liouville implique notamment celui de d’ Alembert—Gauss qui affirme que :
« tout polynéme P € C[X| non constant posséde une racine dans C ».

En effet, si P était un tel polyndme sans racine, la fonction % serait entiére non constante et bornée, car | P(z)| tend
vers +o0 quand |z| tend vers +oo, ce qui contredirait le théoreme de Liouville.

Jean le Rond D’Alembert, né le 16 novembre 1717 a Paris ou il est mort
le 29 octobre 1783, est un mathématicien, physicien, philosophe et ency-
clopédiste frangais. Il est célébre pour avoir dirigé I’Encyclopédie avec
Denis Diderot jusqu’en 1757 et pour ses recherches en mathématiques sur

les équations différentielles et les dérivées partielles.

Johann Carl Friedrich Gauss, né le 30 avril 1777 a Brunswick et mort
le 23 février 1855 a Gottingen, est un mathématicien, astronome et phy-
sicien allemand. Doté d’un grand génie, il apporte de trés importantes
contributions a ces trois sciences. Surnommé « le prince des mathémati-
ciens », il est considéré comme ['un des plus grands mathématiciens de

tous les temps.

Rappels (identité de Parseval). Soit f: R — C une fonction T-périodique de carré intégrable sur une
période (par exemple, une fonction 7T-périodique continue par morceaux). On définit ses coefficients
de Fourier par :

L ein¥ar
Cn = = e .
L’égalité de Parseval affirme la convergence de la série suivante et énonce 1’identité :
+oo

1 T
>l =g [ IrPa = s

n=—oo

Marc-Antoine Parseval des Chénes, né le 27 avril 1755 a Rosiéres-aux-
Salines et mort le 16 aoiit 1836 a Paris, est un mathématicien frangais. On
a donné son nom a I’égalité de Parseval, une formule fondamentale de la

théorie des séries de Fourier.
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Jean Baptiste Joseph Fourier est un mathématicien et physicien frangais,
né le 21 mars 1768 a Auxerre et mort le 17 mai 1830 a Paris. 1l est connu
pour avoir déterminé par le calcul la diffusion de la chaleur, en utilisant
la décomposition d’une fonction périodique en une série trigonométrique,
qui sous certaines conditions, converge vers la fonction. Il est aussi ['un
des premiers a avoir évoqué la notion d’effet de serre pour I’atmosphére

terrestre.

,—[Proposition 2.8 - Parseval]

Sous les hypotheses de la proposition 2.6, on a une version plus précise :

| 1 ? 1 [ »
Y 5™ (a)| = o |f(a + re®)|2db.
"0 n: ™ Jo

Compte tenu de la majoration
Lo 1612 TNP)
_ X2 d0< X2 ,
3 [, (ke )P0 < max |f(act ret)

on retrouve I'inégalité de Cauchy (4) de la proposition 2.6.

EXERCICE DE COURS 2.7. Démontrer la proposition 2.8 a I’aide de I’identité de Parseval.

O Indication : observer que les coefficients c,, associés a la fonction 27-périodique 0 — f(a + re*)

\/ sont nuls pour n. < 0.

On va maintenant affiner les estimées de Cauchy (4) pour obtenir des estimées de Cauchy pour les

dérivées d’une fonction holomorphe sur une partie compacte de son domaine de définition.

Rappel de topologie. Soient €2 un ouvert de C et K un compact inclus dans 2.
— Ona
d(K,°Q) =min{la —b|: a € K, b e “Q} >0,
ol d(K,°Q2) est la distance de K au complémentaire “§2 de {2 dans C.
— Pour tout 7 tel que 0 < r < d(K,°Q2), on définit le r-voisinage K, de K par :
K, = U D(z,7r)={weC:d(w,K) <r}.
zeK
Alors K, est un voisinage compact de K inclus dans €2 (voir la figure 7).

,—[Corollaire 2.9 — estimées de Cauchy uniformes]

Soient §2 un ouvert de C, K un compact contenu dans €, » € Ry tel que 0 < r < d(K,°Q2) et f une
fonction holomorphe f: 2 — C. Pour toutn € N,on a:

(n)
sup |22 < vmm up 15(2)
zeK n: z€K,
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FIGURE 7 — Le voisinage compact K,

EXERCICE DE COURS 2.8. Démontrer le corollaire.

)

R — R, z + sin(kx).

La encore, on note la différence avec le cas réel! Considérer par exemple, pour k£ € N*, la fonction

La proposition 2.8 montre que si I’inégalité (4) pour n = 0 est une égalité, alors nécessairement f (™) (a) = 0 pour

tout n > 0. Jointe au principe du prolongement analytique, on obtient :

Proposition 2.10 — principe du maximum]

Soit f une fonction analytique sur un ouvert Q de C. Si | f| admet un maximum local en un point
a de €2, alors f est constante.

La dénomination « principe du maximum » vient en fait de la conséquence suivante.

,—| Proposition 2.11

Soient f une fonction analytique sur un ouvert connexe €2 de C et M un réel positif. Si pour tout w € 2\ 2,

limsup |f(2)| < M
z€QN

z—w

et que, de plus, lorsque 2 est non borné

limsup [ f(2) < M,

zZ€EQ

|z| — o0
alors

sup | f(z)] < M.
z€Q

EXERCICE DE COURS 2.9. Démontrer la proposition a I’aide de la proposition 2.10.

(;) Pour tout M’ > M, considérer le compact (vérifier que ¢’est bien un compact!) :
- K]\/[/:{ZEQtlf(Z)‘EM/},

et montrer que K j;/ est vide en raisonnant par 1’absurde.

On a aussi la variante utile suivante.
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,—| Proposition 2.12 N\

Soient 2 un ouvert connexe borné dans C et 9Q = Q \  sa frontiere. Si f est une fonction continue a
valeurs complexes sur {2, holomorphe sur 2, alors pour tout z € €2,

|f(2)] < sup [f(w)].
weIN

S’il existe z € Q tel qu’il y ait égalité, alors f est constante.

EXERCICE DE COURS 2.10. Démontrer la proposition a 1’aide de la proposition 2.10.

2.4. Homotopie des chemins et démonstration du théoreme 2.2
Considérons le carré [0, 1]2 dans R? et définissons un chemin fermé, ©* par morceaux,
b: [0,4] — R?,

qui «parcourt son bord dans le sens direct », comme 1"unique application affine sur chacun des intervalles [0, 1], [1, 2],
[2,3], [3,4] telle que

b(0) =b(4) = (0,0), b(1)=(1,0), b(2)=(1,1), b(3)=(0,1).

(9) ——— {4
A
/9 N
=ttt —r
o I R BA (59 €9

FIGURE 8 — Le chemin b

A toute application
r:[0,1?>—¢C
de classe €', nous pouvons associer le lacet €’ par morceaux

o' :==Tob: [0,4] — C.

Ainsi, pour toute fonction continue f de T'([0, 1]2\]0, 1[?) dans C, on a :

. f(z)dz = /F(—,O) f(z)dz+A(1,_) f(z)dz — /F(—,1) f(z)dz — /1“(0,—) f(z)dz.

Le théoreme suivant montre que les fonctions holomorphes — qui sont définies par une condition locale, satisfont
a une propriété globale remarquable concernant leurs intégrales le long des chemins.

~— Théoréme 2.13 N

Soient f une fonction holomorphe définie sur un ouvert 2 de C et I': [0,1]> —  une application de
classe 2. On a:

®) f(z)dz = 0.
or
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Pour démontrer ce théoréme, nous introduisons quelques notations. Considérons les chemins de classe ¢! (voir la
Figure 9) :

s :=T(s,—): [0,1] — Q,
ds :=T(—,0): [0,5] — Q,

ds :=T(—,1): [0,s] — Q.

M2

(0] 3: A A

FIGURE 9 — Les chemins ~y;, ds, d5

Pour démontrer le théoréme 2.13, nous allons montrer que pour tout s € [0, 1],

(6) f(z)dz — f(z)dz:/g f(z)dz—/(S f(z)dz.

=G(s) =D(s)

Avec s = 1, on obtient le théoreme 2.13.

EXERCICE DE COURS 2.11. Notons G(s) le membre de gauche de I’expression (6), et D(s) son membre de
droite.

(1) En revenant a la définition de I’intégration le long d’un chemin, puis en dérivant et en utilisant la pro-
priété (3) de I’exercice 1.2, montrer que tout s € [0,1],ona:

G'(s) = D'(s).

(2) En déduire que G et D coincident sur [0, 1] et conclure.

— Corollaire 2.14 \

Soient f une fonction holomorphe sur un ouvert (2 et
r: 0,1 —Q
une application de classe €. Supposons que les chemins +, définis pour tout s € [0, 1] par
vs :=T(s,—): [0,1] — Q

satisfont a I’une des conditions suivantes :

(i) pour tout s € [0, 1], 5 est un chemin fermé,
(ii) 7s(0) (resp. vs(1)) est indépendant de s € [0, 1].
Alors
@) (2)dz= [ f(2)dz.

71 Yo
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Lorsque la condition (i) est réalisée on dit que I' est une homotopie de lacets de classe € a valeurs dans 2 reliant

Yo €t 1.
Lorsque la condition (ii) est réalisée on dit que I est une homotopie de chemins d’extrémités fixés de classe €2 a
valeurs dans € reliant vy et ;.

EXERCICE DE COURS 2.12. Démontrer le corollaire a 1’aide du théoreéme 2.13.

Pour tout triplet (o, 3,7) € C2, onnote A(a, 3, ) le triangle de sommets a, 3, 7, ¢’ est-a-dire 1’enveloppe convexe
dans C de {a, 3, 7}.

— Corollaire 2.15 N

Soit f une fonction holomorphe sur un ouvert €2 de C. Pour tout triplet (, 3,7) € C? tel que A(a, 3,7)
soit contenu dans €2, on a :

f(z)dz+ (2)dz + f(z)dz = 0.
[o,8] (8] [v.0]

EXERCICE DE COURS 2.13. Soit I': [0,1]?> — € I’application affine en chacune des variables telle que
r0,0)=T0,1)=«, T(1,00=p8 et I(1,1)=nr.
Explicitement, on a :
D(s,t) = a+s(B—a)+ st(y —P).
Cette application I est de classe € et prend ses valeurs dans A(c, 3,7), donc dans . En remarquant que
[(=0)=[a, 8], T(,-)=I[8,7], T'(=1)=][an]

et que I'(0, —) est un chemin constant, démontrer le corollaire.

Les formules (5) et (7) sont souvent appelées formules de Cauchy.

DEMONSTRATION DU THEOREME 2.2. Nous pouvons a présent démontrer la formule de Cauchy (Théoréme 2.2)
a I’aide des formules de Cauchy ! Dans les notations de ce théoréme, considérons pour tout € €10, — |z — a|[ I’appli-
cation
r:[0,1?—¢C
telle que pour tout s € [0, 1], vs = I'(s, —) soit le cercle de centre ¢(s) = (1—s)a+sz etderayonr(s) = (1—s)r+se.
On a ainsi, pour tout (s, t) € [0,1]*:
[(s,t) = (1 —s)(a+re*™) + s(z + ee*™).

2imt 2t

Cette application est de classe ¢ et prend ses valeurs dans D(a, ) puisque a + re etz + ce appartiennent a

ce disque.

EXERCICE DE COURS 2.14. Montrer que I’image de I est disjointe de D(z, ¢).

REMARQUE 2.1. En fait, I'image de I est exactement D(a,r) \ D(z,¢); voir la figure 10.

En particulier, d’apres ’exercice 2.14, T" prend ses valeurs dans 2 \ {z}.

EXERCICE DE COURS 2.15.

(1) Appliquer le corollaire 2.14 a T et la fonction w +— 2_{(“})), holomorphe sur 2 \ {z}, pour obtenir
im(w — 2
I'égalité
1
L S, L S,
2T Jgam w—2 20T Jgzey w— 2
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Yo, &)

FIGURE 10 — L'image de I'

(2) Montrer que le membre de droite de la question (1) tend vers f(z) quand e tend vers 0.

Grice a I’exercice 2.15 on établit I’égalité requise :

1 f(w)

% € (a,r) w—z

dw = f(z),

ce qui acheve la démonstration. O

REMARQUE 2.2. Si on applique cette identité a la fonction w — (z — w) f(w) on obtient
1
27 Jeg(ar)
Cette formule découle aussi directement de la formule de Cauchy puisqu’il existe clairement une homotopie de lacets
de classe €2, a valeurs dans (2, reliant le lacet % (a,r) au lacet constant égal a a.
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Construction et étude locale des fonctions analytiques

3.1. Primitives

Soit f: 2 — C une fonction continue définie sur un ouvert €2 de C. Rappelons qu’une fonction F': {2 — C est une
primitive de f sur Q lorsque F est holomorphe de dérivée F' = f.

On constate d’emblée que les seules fonctions qui ont une chance d’admettre une primitive sont les fonctions
holomorphes !

EXERCICE DE COURS 3.1. Expliquer pourquoi !

EXEMPLE 3.1. (1) Pour n € Z avec n # —1, I’application F' définie par
n+1
n+1
est une primitive de I’application f définie par f(z) = 2™, sur C lorsque n > 0 et sur C* lorsque n < —2.

z

F(z) =

(2) Une détermination du logarithme f: 2 C C* — C est une primitive de la fonction z — — sur I’ouvert 2.
z

1
(3) La fonction z — — n’admet pas de primitive sur I’ouvert tout entier C* (voir I’exemple (3) de I’exercice 2.1).
z

EXERCICE DE COURS 3.2. Soit f une fonction holomorphe sur un disque ouvert D(a, ). Montrer que f
posseéde une primitive sur ce disque.

O Indication : utiliser le théoréme 2.4.

Nous allons généraliser 1’exercice 3.2.

Rappel. Un ouvert 2 de C est dit éfoilé s’il existe a € 2 tel que, pour tout z € Q le segment [a, 2]
soit contenu dans €. Dans ce cas, nous dirons que € est étoilé par rapport a o (voir la figure 11).

Proposition 3.1

Soient 2 C C un ouvert étoilé et f: 2 — C holomorphe. Alors f admet une primitive F’ sur 2.

EXERCICE DE COURS 3.3. Le but de I’exercice est de démontrer la proposition. Soit a € §2 tel que € soit
étoilé par rapport a a. Posons pour tout z € €2,

F(z) = f(w)dw.

[a,2]
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FIGURE 11 - Les deux ouverts sont étoilés par rapport a a, mais pas par rapport a b.

(1) Soient zg € Qete > 0 tel que D(z, ) soit contenu dans §2. Montrer que tout z € D(z, £) le triangle
A(a, z, 29) est contenu dans 2. En déduire que

F@—Fwﬁz/ f(w)duw.

[20,2]

(;) Indication : utiliser le corollaire 2.15.

(2) Montrer que F admet f(z) comme dérivée au sens complexe en tout point 2z € €2, et conclure.

Une fonction holomorphe sur un ouvert {2 de C n’admet pas toujours de primitive holomorphe sur ).
A D’apres la question (2) de 1’exercice 2.1, il est nécessaire pour cela que pour tout lacet de classe €

par morceaux y dans 2, [ f(z)dz = 0.
2l

Nous verrons que cette condition est en fait suffisante pour que f admette une primitive holomorphe (voir la
proposition 3.3).

r—[Théoréme 3.2- Morera} N

Soient {2 un ouvert de C et f une fonction de (2 dans C. Les conditions suivantes sont équivalentes :
@ fe o),
(ii) f est continue et pour tout (o, 3,7) € Q3 tel que A(a, 3,7) C Q,ona:

/ fMM+/ fde+ [ f)dz=o.
[a,f] [8,7] [v,e]

Giacinto Morera, né le 18 juillet 1856 a Novare et mort le 8 février 1909 a
Turin, est un mathématicien italien. Son nom est associé en analyse com-
plexe au théoréme de Morera. 1l était membre de I’Académie nationale des

Lincei et de I’Académie des sciences de Turin.

Nous avons déja vu I'implication (i) = (ii) ; c’est le corollaire 2.15.

EXERCICE DE COURS 3.4. Le but de I’exercice est de démontrer 1’autre implication du théoréme 3.2. Puisque
I’holomorphie est une condition locale, on peut supposer que €2 est un disque ouvert D(a, 7). On définit F' comme
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dans I’exercice 3.3. Montrer alors que 1’identité de la question (1) de I’exercice 3.3 reste valable. En reprenant mot
pour mot cet exercice, conclure que F' est dérivable au sens complexe de dérivée f et conclure.

,—[Proposition 3.3 — condition nécessaire et suffisante pour qu’une fonction holomorphe admette une primitive]

Soient € un ouvert quelconque de C, et f: 2 — C une fonction holomorphe. La fonction admet une

primitive sur €2 si et seulement si pour tout lacet ~y tracé dans (2,

Lf(z)dz =)

Nous avons déja vu que la condition de la proposition est nécessaire.

Pour montrer que la condition est suffisante, nous aurons besoin d’un rappel de topologie.

Rappel de topologie. Si €2 est un ouvert connexe de C, alors {2 est connexe par arcs continus par
morceaux de classe ¢’1. Si a € ), alors I’ouvert 2\ {a} est encore connexe (et donc connexe par arcs

continus par morceaux de classe ¢™!).

EXERCICE DE COURS 3.5. Le but de I’exercice est de démontrer la proposition 3.3.
Soit f comme dans la proposition. On veut montrer que f admet une primitive sur €2. On peut supposer que
Q) est connexe. D’apres le rappel (que 1’on essayera de démontrer!), {2 est alors connexe par arcs continus par

morceaux de classe €1.
Soit zg € (2. Posons pour tout z € €,

F(z) = / F(w)duw,

ol y est n’importe quel chemin de 2 joignant 2 a z (voir la figure 12).

(1) Montrer que I’application F' est bien définie.
(2) Soiente > 0 tel que D(z,¢) C €. Montrer que la restriction de F' & D(z, €) est une primitive de f sur

D(z,¢) et conclure.

FIGURE 12 — Lacets joignant zg et z dans {2

EXERCICE DE COURS 3.6. Soient €2 un ouvert étoilé de C et f: {2 — C* une fonction holomorphe qui ne

s’annule pas.
(1) Montrer qu’il existe une fonction holomorphe g: 2 — C telle e9 = f et que de telles applications

different d’une constante additive dans 2i7Z.
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(2) Pour tout k& € N*, montrer qu’il existe une fonction holomorphe h: Q — C telle ¥ = f et que de telles
applications différent d’une constante mutliplicative qui est une racine k-iéme de I’unité.

EXERCICE DE COURS 3.7. Soient {2 un ouvert de C et f: 2 — C* une fonction holomorphe qui ne s’annule
pas.

(1) Soit~y: [0,1] — £ un lacet. Montrer que

2m

!
. Indication : introduire la fonction A: [0,1] — C, t — exp ( / ') dz) .
@) (0. f(2)

(2) Montrer que f admet un logarithme holomorphe g: 2 — C, i.e., f = 9, si et seulement si pour tout

lacet v de 2, on a
f'(z)
dz = 0.
Lf(Z) 2=0

(3) Soit & > 2. Montrer que f admet une racine k-ieme de I’'unité holomorphe h: Q@ — C, ie., f = Kk si
et seulement si pour tout lacet v de {2 on a

1 f'(z)

2ir [, f(2)

dz € kZ.

3.2. Limites, sommes et intégrales de fonctions analytiques

Soit  un ouvert de C.

,—[Théoréme 3.4 — converge locale d’une suite de fonctions holomorphes} \

Soit (f,,)nen une suite de fonctions holomorphes définies sur €2. On suppose que la suite ( f,,),cn converge
uniformément sur tout compact de €2 vers une fonction f: 2 — C. Alors :

(1) lalimite f est holomorphe,

(ii) pour chaque k € N*, la suite des dérivées ( ,(Lk))neN converge localement uniformément vers la

dérivée fF).,

EXERCICE DE COURS 3.8. Le but de I’exercice est de démontrer le théoreme 3.4.
(1) Démontrer I’assertion (i) a I’aide du théoréme de Morera (Théoréme 3.2).

(2) Démontrer 1’assertion (ii) a I’aide des estimées de Cauchy uniformes (Corollaire 2.9) appliquées aux
fonctions holomorphes f — f,.

Noter la différence avec les fonctions de variable réelle : considérer la suite de fonctions R — R,
1
é t — (2 + 1) de classe € qui converge uniformément vers la fonction ¢ — +/t non dérivable a

I’origine. Penser aussi a la suite de fonctions R — R, t +— T sin(k?t) qui converge uniformément vers
0 alors que ses dérivées ne sont pas bornées.
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,—[Corollaire 3.5 — convergence locale d’une série de fonctions holomorphes] \

Soit (f)nen une suite de fonctions holomorphes définies sur €2 telle que la série de fonctions Y f,
n=0
converge uniformément (resp. normalement) sur tout compact de €2. Alors la fonction f: ) — C définie

comme la somme de cette série est holomorphe sur 2. De plus, pour tout & € N*, la série ) f,(f) converge

n=0
vers f*) uniformément (resp. normalement) sur tout compact de €.
EXERCICE DE COURS 3.9. Démontrer le corollaire.
,—[Théoréme 3.6 — holomorphie sous le signe intégrale} \

Soient [ un intervalle de R et 2 un ouvert de C. Soit F': I x €} — C une fonction satisfaisant aux conditions
suivantes :

(i) (holomorphie) pour tout ¢ € I, la fonction F'(¢,—): 2 — C est holomorphe,
(ii) (continuité) la fonction I est continue sur I x (2,

(ili) (domination) il existe une fonction mesurable ¢ € Z*(I) telle qu’on ait pour tout z € £ et tout
tel,
[F (¢, 2)| < ().
Alors la fonction f: 2 — C définie par

£(z) = /1 F(t, 2)dt

est holomorphe sur €. De plus, pour tout k& € N, la fonction O¥F(t,2) satisfait encore aux
conditions (i) et (ii) et I’on a pour tout z € €2 :

fo) = /8§F(t, z)dt.
I

REMARQUE 3.1. L’holomorphie est une propriété locale. On peut donc remplacer 1I’hypothese de domination par
une hypothese de domination sur tout compact.

EXERCICE DE COURS 3.10. L’objectif de I’exercice est de démontrer le théoréeme. La domination assure que
la fonction F(—, z), pour z € {2, est intégrable sur I, et donc f est bien définie.

(1) Montrer que f est holomorphe a I’aide du théoréme de Morera (Théoreme 3.2).

(2) Démontrer les autres assertions du théoréme.

REMARQUE 3.2. On peut aussi démontrer 1’expression intégrale des dérivées de la fonction holomorphe f al’aide
du corollaire 2.3 et du théoréeme de Fubini.

EXERCICE DE COURS 3.11 (la fonction I'). Soit O = {z € C: Re(z) > 0}.
(1) Soient z € C et ¢t un réel strictement positif. Donner un sens a I’expression ¢~.

(2) Montrer que I’application
r-o—2¢_C, zr—— / et dt
Jo

définit une fonction holomorphe sur O.
(3) Soit k € N*. Exprimer pour z € O, la dérivée I'*)(z) sous forme d’une intégrale.

Nous verrons a la section 4.6 d’autres propriétés de la fonction I'.

La théorie de Cauchy conduit au critére d’holomorphie suivant, dans le méme esprit que le théoreme de Morera.
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,—[Théoréme 3.7 — criteére d’holomorphie en terme de lacetsJ \

Soient €2 un ouvert de C et f une fonction de (2 dans C. Les conditions suivantes sont équivalentes :
(i) fe o),
(ii) f est et pour tout a € ) et tout disque fermée D(a,r) de rayon 7 > 0 inclus dans §2

ettout z € D(a,r),ona:
1
f(z) = 7/ de'
27 Jg(arm W—2

L’implication (i) = (ii) n’est autre que le théoreme 2.2.
L’implication (ii) = (i) a été établie lors de la démonstration du corollaire 2.3.

3.3. Deux applications du théoreme de Morera

Pour établir les théorémes 3.4 et 3.6, nous aurions pu tout aussi bien faire usage du théoreme 3.7 au lieu du
théoreme de Morera.
Voici deux applications pour lesquelles il est plus difficile de se passer du théoreme de Morera.

Théoréme 3.8 — une fonction continue, holomorphe sur €2 privé de la droite réelle, est holomorphe sur €2

Soient €2 un ouvert de C et f: 2 — C une fonction . Si f est holomorphe sur Q \ R, alors f est
holomorphe sur {2 tout entier.

La détermination continue du logarithme n’est pas continue sur C* donc le théoréme ne s’applique
pas!

A

EXERCICE DE COURS 3.12. Démontrer le théoreme a I’aide du théoréme de Morera.

Le théoréeme suivant se démontre aussi a 1’aide du théoréme de Morera.

Théoréme 3.9 — 1’hypothése €’ dans 1’holomorphie est superﬂue]

Soit f une fonction a valeurs complexes définie sur un ouvert €2 de C. Si f est dérivable au sens complexe
en tout point de {2, alors f est holomorphe sur 2.

Le théoréme est une conséquence du lemme suivant.

f—[Lemme 3.10 - Goursat} N\

Soient €2 un ouvert de C et f: {2 — C une fonction que I’on suppose derivable au sens complexe en chaque
point de Q. Soit A = A(a, (8, ) un triangle contenu dans 2. Alors

f(z)dz = 0.
A

EXERCICE DE COURS 3.13.
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(1) Démontrer le lemme 3.10 a I’aide du théoréme de Morera.

é | Pas facile !

(2) Démontrer le théoréme 3.9 a ’aide du Lemme 3.10 et du théoréme de Morera.

3.4. Produits infinis

Les produits infinis jouent un réle crucial dans bien des développements de la théorie des fonctions d’une variable
complexe.
Commengons par quelques rappels. Soit (4, ),en une suite de nombres complexes, et soit pour tout n € N :

n
Pn ‘= Hui.
i=0

Si p,, tend vers une limite p € C lorsque n tend vers +oo, on écrit

oo
p = H u’ﬂv
n=0

o0

et on dit que le produit infini H uy, converge.

n=0
En pratique, les produits infinis intéressants ont un terme général qui tend vers 1.

EXERCICE DE COURS 3.14. Soit (a;);cs une famille finie de nombres complexes. Montrer que :

[T+ lail) < exp (Z |> ,

iel iel
et H(1+az‘)—1 <H(1+|az‘|)—1~
iel iel
,—(Proposition 3.11 — rappels sur les produits inﬁnis] \
o0 o0
(i) Pour tout suite (ay,)nen dans Ry, [ (1 + a,,) converge si et seulement si Y, a,, converge.
n=0 n=0
o0 o0
(i) Si (an)nec est une suite complexe telle que > |ay,| converge, alors [] (1 + a,,) converge vers
n=0 n=0
une limite P. De plus, P est nul si et seulement s’il existe n € N tel que 1 + a,, = 0.

EXERCICE DE COURS 3.15. Démontrer la proposition.

Si I’on combine la proposition 3.11 et le théoréme 3.4, on obtient la premiére assertion du théoréme suivant.
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,—[Théoréme 3.12 — produits infinis de fonctions holomorphes] \

Soient € un ouvert connexe non vide de C et (u,)nen une suite de fonctions holomorphes sur 2 dont
o0

aucune ne vaut identiquement —1. Si la série ) w,, converge normalement sur tout compact de €2, alors
n=0

le produit infini

£2) = ] +ua(2))
n=0
converge uniformément sur tout compact de €2 et définit donc une fonction holomorphe f sur €.
De plus, f n’est pas identiquement nulle et pour tout z € 2, on a:

oo

v.(f) = vy (1 + ug).
k=0

Rappelons que v, (f) désigne la multiplicité du zéro de f en z. A I’exception d’un nombre fini d’entre eux, tous
les termes de la somme du membre de droite dans I’expression de v, (f) sont nuls.

EXERCICE DE COURS 3.16. Démontrer le théoréeme.

3.5. Forme normale locale d’une fonction analytique non constante

Nous allons montrer qu’une fonction analytique non constante définie au voisinage connexe d’un point zy de C a
«méme allure au voisinage de z » que 1’application z — 2™, olt m désigne la multiplicité v,, (f — f(20)).

,—[Théoréme 3.13 — forme normale locale d’une fonction analytique non constante} \

Soient £ un ouvert de C, f une fonction holomorphe sur € et zo un point de €.

Posons
wo = f(20) et m=wv,(f— f(20)) €N".
Il existe un voisinage ouvert sur U de 2y dans €2, un réel > 0 et une application biholomorphe
w: U — D(0,7)
telle que
©(20) =0

et telle que pour tout z € U,
f(z) =wo +@(2)™.

En posant
mm: C — C

z — Z'HL . ?

le théoreme se reformule en disant que le diagramme suivant commute
f

O

U

1R

wWo+Tm

D(0,r) D(wq, ™)

Lorsque m = 1, le théoréme découle du théoréeme d’inversion locale pour les fonctions holomorphes (Proposi-
tion 1.5).
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EXERCICE DE COURS 3.17.

(1) Montrer que pour tout o € C, la série entiere

wala—1)(a—k+1) ,
ro(z) := Z o z
k=1
a un rayon de convergence au moins égal a 1.

(2) Montrer que pour tout m € N* et tout z € D(0, 1),
(1 —|—7‘;(z))m =14z

DEMONSTRATION DU THEOREME 3.13. Par le raisonnement de la section 1.7 appliqué a f — wp on voit qu’il
existe un voisinage ouvert ' de 2z dans et une fonction g € (€)') telle que, pour tout z € /,

f(z) —wo = (2 = 20)"g(2)

et
A= g(z0) # 0.
La fonction A~!g vaut ainsi 1 en zq et prend donc ses valeurs dans D(1,1) sur un voisinage ouvert Q" de zo dans Q'.
Posons alors, pour tout z € ' :
R(z) =ri(A"'g(z) - 1).
La fonction ainsi définie est holomorphe sur Q2 et vérifie :
R(z) =0, (1+R))™=AX"1g(z) si z€Q".

Enfin, choisissons i € C tel que 4™ = X et posons, pour tout z € Q" :

¢(2) = p(z — 20) (1 + R(z)).

On conclut grace a I’exercice ci-dessous. D

EXERCICE DE COURS 3.18. Montrer que ¢ définit une fonction holomorphe sur " qui satisfait aux condi-
tions du théoreme 3.13.

3.6. Le théoreme de I’application ouverte

Rappels. Si X et Y sont deux espaces topologiques, une application f: X — Y est dite ouverte
lorsque pour tout ouvert U de X, f(U) est une partie ouverte de Y.

On vérifie aisément les assertions suivantes :

— une application f: X — Y est ouverte si et seulement si pour tout voisinage V' d’un point
z de X, f(V) est un voisinage de f(z),

— si f: X — Y estinjective, alors f est ouverte si et seulement si f(X) est ouvert dans Y et
f~t: f(X) — X est continue,

— la composée de deux applications ouvertes est ouverte.

Proposition 3.14 — théoreme de I’application ouverte]

Soit © un ouvert de C. Toute application holomorphe f: Q — Cest ouverte.

EXERCICE DE COURS 3.19. Démontrer la proposition a I’aide du théoreme 3.13.

Le théoreme 3.13 permet aussi de démontrer le résultat suivant.
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Proposition 3.15 — théoreme d’inversion globale}

Soient 2 un ouvertde C et f: 2 — C une application holomorphe injective. Alors I'image f(2) est ouverte
et f est une application biholomorphe de 2 sur f(€2).

EXERCICE DE COURS 3.20. Démontrer la proposition a I’aide du théoreme 3.13.

O Indication : remarquer que, comme f est injective, elle n’est pas constante au voisinage de tout

\/ point zg € €.

EXEMPLE 3.2. Voici quelques exemples déja rencontrés.

1) Restreinte au demi-plan
{z € C: Re(z) > 0}

la fonction z — 22 est injective, d’image C \ R_. La fonction holomorphe réciproque est la détermination
principale de la racine carrée, notée \/—. On a ainsi pour tous r € R* et § €] — 7, ],

Vreit = \/ret?/?.
2) Restreinte la bande horizontale ouverte
{z€eR: —7 <Im(z) < 7}

la fonction expontielle est injective, d’image C\ R_. La fonction holomorphe réciproque est la détermination
principale du logarithme, notée log. On a ainsi pour tous r € R* et § €] — 7, 7,

log(re'®) = log(r) + if.

La détermination principale du logarithme est 1’unique primitive sur C \ R_ de la fonction z — — valant 0
z

enlet, pourtout z € C\R_,
1
Vz = exp (5 logz) .
3) Pourtout A € Cettout z € C\ R_, posons
2 = exp(Alog 2).

On définit ainsi une fonction holomorphe, partout non nulle, de C \ R_, de dérivée
diz(z)‘) = exp(Alog z)g =21
Lorsque A € R% , pour tous 7 € R} et €] — 7, 7],
(rei®)* = preird,
On en déduit que pour tout A € R%_ et tout (o, 8, R) € (R%)? tels que
—T<a<f<T et —wm<Aa<A<m,
I’application z — z* définit une bijection biholomorphe de

S(a, B, R) := {re": r €]0, R[et 0 €]a, B[}
sur S(Aa, A3, R*).

EXERCICE DE COURS 3.21.
(1) Vérifier que I’on a, pour tout z € C\ R_,

[
I
®

z
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(2) A I'aide de I’exemple 3), montrer que 1’on a pour tout z € D(0,1):

(1+z)’\:1+§:)\(/\_1)'.I;!(/\_k+1)zk:1+r,\(z),
k=1

avec r) comme dans I’exercice 3.17.

(3) Montrer que, restreintes a la bande verticale ouverte
0 s
C:. —=— <R < —} ,
{z € 5 e(z) 5
les fonctions sin et tan sont injectives, d’images respectives
C\(]—o0,—1U[l,+o0]) et C\i(]—o00,—1]U][L,+o0]).
Les fonctions réciproques sont, respectivement, arcsin et arctan.
(4) Montrer que pour tout z € C\ (] — 0o, —1] U [1, +00][),
1-22cC\R_, iz++1-22€C\R_
et que

arcsin z = %log(iz +1—22).

45






Fonctions méromorphes

4.1. Fonctions holomorphes sur une couronne et série de Laurent
Soient R; et Ry deux éléments de Ry U {400} tels que
0 < Ry < Rs.
On définit ’anneau ouvert ou couronne ouverte de centre 1’origine et de rayons R; et Ry par :
A(R1,Ry) ={2€C: Ry <|z| < Ra}.

Soit (a,, )nez une suite de nombres complexes telle que les rayons de convergences p et o des séries entiéres
o0 o0
w(z) = Z apnz" et Plw) = Z a_pw"
n=0 n=1
satisfassent aux inégalités
(®) p=2Ry et o>=>—

avec la convention § = +o0o.

FIGURE 13 — La couronne A(R;, Ry).

Les séries et ¢ sont alors normalement convergentes sur les compacts, respectivement de D(0, Rs) et D(0, Ry 1),
et définissent des fonctions holomorphes sur chacun de ces domaines (voir la figure 13). Par conséquent, les séries

Eanz” et E anz",

neN ne—N*
et donc leur somme

©) > anz",
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sont normalement convergentes sur tout compact de la couronne A(R;7, Ry) et définissent des fonctions holomorphes
sur celle-ci.

Une série de la forme (9) est appelée une série de Laurent. Lorsque les conditions (8) sont satisfaites, on dit que
la série de Laurent est convergente sur A(R;, R2). Ces conditions sont équivalentes a la convergence absolue en tout
point de A(R;, Ry) de la série de Laurent (9).

Pierre Alphonse Laurent, né le 18 juillet 1813 a Paris et mort le 12 sep-
tembre 1854 a Avesnes-sur-Helpe, est un ingénieur militaire et mathéma-

ticien frangais connu pour la découverte des séries de Laurent.

EXERCICE DE COURS 4.1. Soit ¢ € O(A(R1, Ry)). Montrer que 'intégrale

/ w(z)dz
€(0,r)

@ Indication : considérer une homotopie de lacets de classe € reliant ¢'(0,71) & €' (0, r2) prenant
ses valeurs dans A(Ry, Rz), ol 1,79 €] Ry, Ra[, par exemple :

est indépendante de r € Ry, Ra|.

T(s,t) = ((1—s)r1 + 87:2)622-71't-

,—[Théoréme 4.1 — les fonctions holomorphes sur la couronne sont les séries de Laurent de cette couronne]ﬂ

L’application qui a une suite de nombres complexe (a,, ),z satisfaisant aux conditions (8) associe la fonc-
tion holomorphe sur A(R;, Ry) définie par

flz) = Z anz"
nezZ
est bijective.
La bijection réciproque envoie f € O(A(R1, R2)) sur la suite (a,,),ez définie par

(10) 4y = / 1),
%(0,

um r) Zn+1 ’

our E}Rl,Rg[.

Pour démontrer le théoréeme, nous devons établir les deux assertions suivantes :

(1) si (ap)nez satisfait aux conditions (8) et si f(z) = > a,2z"™ sur A(Ry, R2) alors la relation (10) est vérifiée
nez
pour tout n € Z,

(i) si f € O(A(R;1, R2)) etsi pour tout n € Z, a,, est défini par (10), alors la série > a,2" converge absolu-
neZ
ment vers f(z) pour tout z € A(R1, Rg).

EXERCICE DE COURS 4.2. Démontrer (i) en observant que la convergence normale de Y azz" sur tout

kez
compact de A(R;, Rs) permet d’écrire
1 —n—1 1 k—n—1
— 2" f(z)dz = — ak/ 2V .
2 Jeg(0.r) Zim ,; )
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EXERCICE DE COURS 4.3. L’objectif de cet exercice est de démontrer (ii). Soient f € O(A(R1, R2)), z un

point de A(Ry, Rs) et r1, 7o deux réels tels que
R <r <|z] <7192 < Rs.

(1) Montrer que les intégrales

L / LIC) / S 4
2071 Jgom) W — 2 20T Jg 0,0 W — 2

sont indépendantes de tels 1, 7.

f(w)

w—z

@ Appliquer 'exercice 4.1 a w +—
- figure 14).

1
£2) = %/ J@) i/ RACO
i G(0,r0) W — 2 2w G(0,r) W— 2

(2) Montrer que

(;) Appliquer ’exercice 4.1 a la fonction g: A(R;, Re) — C définie par
v ) =10 o,
g(w) = w—z
f'(2) siw = z,

en s’assurant au préalable que g est bien holomorphe sur A(Ry, Rs).

(3) Conclure en démontrant I’ assertion (ii).

FIGURE 14 — €(0,r1), €(0,72) et z.

holomorphe sur A(Ry, |z|) et A(|z|, R2) (voir la

. . 1
EXERCICE DE COURS 4.4. Développer en séries de Laurent les fonctions z +— 22 exp (7> et z —
z

1

1
exp (Z + ;) dans A(O, +OO), et la fonction Z m

C:0<|z—1] <1}
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4.2. Application : fonctions holomorhes périodiques

Soient Jay, az[C R un intervalle ouvert non vide, avec —oco < a1 < as < 400 et B(ay, az) la bande ouverte de C
définie par

Blar,az) = {z € C: Im(z) €la1,az[}.
Soit T' € R’ . Posons

er: C— C*

(21'7T )
Z exp TZ .

L application er envoie surjectivement la bande % (a1, as) sur la couronne A(Ry, Ry) ol

21 .
exp (—?ag) sias € R

Rl =
0 Sias = +00
( 2n ) iay €R
exp| ——a sia
Ry = p T 2
+00 sia; = —o0

EXERCICE DE COURS 4.5. Montrer que pour tout (21, z2) € c?,
er(z1) = er(z) <= 2 —2z €TZ,

et que er est localement biholomorphe.

On en déduit que I’algebre des fonctions holomorphes T-périodiques sur % (a1, as) est en bijection avec I’algebre
des fonctions holomorphes sur la couronne A(R;, Ry) via I’application

f’—)fO@T.

On obtient donc le théoréme suivant.

~ Théoréme 4.2 \

Toute fonction holomorphe 7T'-périodique s’écrit de facon unique sous la forme

+oo
f(Z): Z an62z7rnz/T7

n=—oo

ol (an)nez est une suite complexe telle que les séries entieres

+oo —+oo
E apz” et E a_npz"
n=0 n=1

aient un rayon de convergence respectifs

1
P 2 R2 et g > Ril
Réciproquement, pour toute suite (a,, ),cz satisfaisant a ces conditions, le membre de droite de 1’expression
de f(z) est normalement convergent sur tout compact de (a1, as) et définit une fonction holomorphe T'-
périodique.
De plus, pour tout w € % (ay,as) ettoutn € Z,ona:

— —2i7rnz/Tf( )d
an, e z)dz.
T [w,w+T]

Pour résumer, une fonction holomorphe 7T-périodique sur une bande possede donc un développement de Fourier
normalement convergent sur tout compact de cette bande.
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4.3. Fonctions holomorphes sur un ouvert épointé

Soient Q un ouvert de C, zo un point de €2, f une fonction holomorphe sur Q\ {20} et p > 0 tel que D(zp, p) C Q.

La fonction z — f(z + 2¢) est holomorphe sur le disque épointé D(0, p) \ {0}. Ce disque épointé coincide avec
la couronne A(Ry, Ry) out Ry = 0 et Ry = p. On obtient donc que les intégrales

1
Ay = — Ldz
2T Jg (20,r) (z — zo)t1

sont indépendantes de r € 0, p[, que la série entiere

o0 o0
E a_pz" (resp. E anz™)
n=1 n=0

a un rayon de convergence infini (resp. > p) et que, sur D(zg, p) \ {20}, on dispose du développement de f en série de
Laurent :

(11) f(z)= Zan(z—zo)”.

nez

En particulier, la série

+o0o
h(z) = Z a_n(z—20)""

n=1

est convergente et définit une fonction holomorphe sur C \ {z}. On ’appelle la partie singuliére de f en z.

Pour tout z € D(zp, p) \ {20}, il vient :

F(2) = h(z) = an(z— 20)"

n=0

Par conséquent, la fonction f — h, a priori définit sur 2\ {zo}, se prolonge en un fonction analytique sur §2.

Par ailleurs, la définition des a,, montre aussitdt que pour tout n € Z et tout r €0, p|,

lan] <77 max  |f(2)].
2€0D(z0,r)

,—[Théoréme 4.3 — théoréme de prolongement de Riemann} \

Les conditions suivantes sont équivalentes :
(i) f est bornée sur un voisinage épointé de 2,
(ii) pour tout entier n < 0, a,, = 0,

(iii) f se prolonge en une fonction f € G(Q).

Lorsque les conditions du théoréme sont réalisées, on dit que f posséde une singularité illusoire en zy. On dit
parfois, par abus de langage, que f est holomorphe en a.

EXERCICE DE COURS 4.6. Démontrer le théoréeme.
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,—[Théoréme 4.4 — théoréme de prolongement a l’inﬁni] \

Les conditions suivantes sont équivalentes :
(i) |f(2)| tend vers +o0o quand z € 2\ {zo} tend vers z,
(ii) il existe k € N* tel que a_j, # O et tel que
n<—-k = a,=0,

(iii) il existe un polyndme non constant P € C[X] tel que

f)-P (=)

zZ— 20

se prolonge en une fonction holomorphe sur 2.

Lorsque les conditions du théoréme sont réalisées, I’entier k de (ii) est uniquement déterminé et 1’on dit que f
possede un péle d’ordre k en z.

EXERCICE DE COURS 4.7. L’objectif de I’exercice est de démontrer le théoreme 4.4.

(1) Démontrer I’'implication (i) = (ii).

O Indication : observer que la fonction g = 1/f est holomorphe sur un voisinage épointé
de zy avec une singularité illusoire en zy, qu’elle se prolonge donc en une fonction
holomorphe g définie sur un voisinage de zy que I’on peut écrire

9(z) = (= = z0)"h(2),

ou k est I’ordre de g en z et h est une fonction holomorphe non nulle en zj.

(2) Démontrer I’implication (ii) = (iii).

(3) Démontrer I’implication (iii) = (i).

Définition 4.5

On dit que f est méromorphe en z si zy est une singularité illusoire ou un pdle de f.
Lorsque f n’est pas méromorphe en zg, on dit que f admet une singularité essentielle en z.

On peut étendre la définition de I’ordre ou valuation en 2 (voir la définition 1.18) d’une fonction analytique au
voisinage de z( en posant
Vs (f) :=inf{n € Z: a,, # 0} € ZU {£o0}.

On dispose alors des équivalences suivantes :

f est nulle au voisinage de z = v, (f) =+
f admet zy comme zéro d’ordre k = v, (f)=k

f admet une singularité illusoire en 2 = v,(f) =0

f admet zy comme pdle d’ordre k = v, (f)=—-k
f est méromorhe en z = v, (f) > —
f admet une singularité essentielle en zg <= v, (f) = —o0

De plus, ou voit sur le développement de Laurent 11 que, lorsque v, (f) € Z (i.e., f est méromorphe en 2, et non
identiquement nulle au voisinage de zg), c’est I’'unique entier & tel que la fonction
g(2) = _f&)
(z — 20)k
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se prolonge en une fonction holomorphe sur €2, non nulle en zj.

EXERCICE DE COURS 4.8 (propriétés de la valuation).

(1) Supposons que v,,(f) € Z. Montrer que la fonction 1/f est définie et holomorphe sur un voisinage
épointé de zg dans €2, qu’elle est méromorphe en z et que

Vzg (%) = —u,,(f).

(2) Soient f, fo deux fonctions holomorphes sur 2\ {2z} méromorphes en z,. Montrer que fi f5 et f1 + f2
sont méromorphes en zg et que

vzo(f1f2> = Uzo(fl) +U20(f2)7
Vzo (fl + fQ) 2 min (UZ()(fl)’UZo(fQ)) .

L’énoncé suivant montre que le comportement d’une fonction holomorphe au voisinage d’une singularité essen-
tielle est « tres sauvage ».

r—[Théoréme 4.6 — Casorati—Weierstrass}

Les conditions suivantes sont équivalentes :
(i) f admet une singularité essentielle en zq,

(i) pour toutr €]0, p[, f (D(z0,7) \ {20}) est dense dans C.

Karl Theodor Wilhelm Weierstrass, né le 31 octobre 1815 a Ostenfelde
(Province de Westphalie), mort le 19 février 1897 a Berlin, est un mathé-

maticien allemand, lauréat de la médaille Copley en 1895.

Felice Casorati, Pavie, 1835 — Casteggio, 1890, est un mathématicien ita-
lien du XIXe siécle. Son nom est connu surtout en analyse complexe pour
le théoréme de Weierstrass—Casorati. Il est le premier lauréat en 1868 du

prix mathématique de I’Académie italienne des sciences.

EXEMPLE 4.1. L’image de la fonction z — sin(1/z) au voisinage de 0 est C tout entier. Qu’en est-il de I'image
de z — exp(1/2)?
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EXERCICE DE COURS 4.9. Démontrer le théoréeme.

Les résultats précédents permettent aussi d’étudier les fonctions holomorphes au « voisinage de I’infini », i.e., les
fonctions holomorphes sur un ouvert de la forme C \ K ot K est une partie compacte de C.
Soit en effet h: C\ K — C une telle fonction, et soit

Q:={zeC":2teC\K}.
C’est un ouvert de C (pourquoi ?), et I’on définit une fonction holomorphe
f:Q9—2C
en posant

fz) =n(z"h).

On dit que h est holomorphe (resp. méromorphe, admet une singularité essentielle a I’infini) si f est holomorphe
(resp. méromorphe, admet une singularité essentielle en 0).

EXERCICE DE COURS 4.10. Exhiber des fonctions holomorphes n’ayant dans le plan complexe que les sin-
gularités suivantes :

1) un pdle triple en 0, un pole simple en 1, un point singulier essentiel en 7 et —1,

2) un point singulier essentiel en tout entier relatif.

4.4. Fonctions méromorphes

Soit € un ouvert de C.

Définition 4.7

On appelle fonction méromorphe sur ) une fonction holomorphe f sur le complémentaire 2 \ F' d’une
partie discrete F' de €2, méromorphe en tout point de F'.

On note .# (1) I’ensemble des fonctions méromorphes sur €2. C’est une algebre contenant &' (£2) et, lorsque 2 est
non vide et connexe, c’est un corps.

Soit (44 )aen une famille de fonctions méromorphes sur . indexée par un ensemble dénombrable A. On dit que

la série de fonctions méromorphes > wu,, est normalement convergente sur tout compact de §Q si, pour tout compact
acA
K de Q, il existe une partie finie Fx de A telle que, si @« € A\ {Fk}, u, n’a pas de pdle dans K (i.e., est holomorphe

au voisinage de K) et telle que la série

(12) S

a€A\{Fk}

En fait, lorsque 2 est non vide et connexe, il est possible de montrer que .# () s’identifie au corps
des fractions de €'(12).

converge normalement sur K.
Lorsque cette condition est satisfaite, la réunion F' des ensembles de pdles des u,, & € A, est une partie discrete
de Q, et pour tout z € Q \ F, la série
u(z) = Z Ue(2)
acA
est absolument convergente.
En appliquant le corollaire 3.5 aux sommes (12) on obtient la proposition suivante.
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,—[Proposition 4.8 — série de fonctions méromorphes} \

(i) La fonction u est méromorphe sur €.

(ii) Pour tout k € N, la série de fonctions méromorphes u&k) est normalement convergente sur
aEA

tout compact de €2, et sa somme est u®),
(iii) Enfin, si zg € et si les développements en série de Laurent en zg des u,, et de u s’écrivent

ue(2) = Z Aa,n(z — 20)",

nez

u(z) =) an(z = 2)",

nezZ

et

alors pour toutn € Z, on a

Z |@an| <o et ap= Z Qo -

a€cA acA

EXERCICE DE COURS 4.11 (dérivées logarithmiques de produits infinis). Soient {2 un ouvert connexe et

o0

> u,, une série de fonctions holomorphes sur €2, donc aucune ne vaut identiquement —1, convergeant normale-
n=0
ment sur tout compact de 2. Montrer que la série de fonctions méromorphes sur §2

U (2)
Z 14+ up(z)

n=0
!/
converge normalement sur tout compact de €2 vers la dérivée logarithmique j} ((Z)) du produit infini
z
72 = T+ un(2)).
n=0

D’apres le théoreme 3.12, f est une fonction holomorphe non identiquement nulle sur €).

D)

Soient f une fonction méromorphe sur €2 et F' I’ensemble de ses poles. C’est une partie discréte (donc dénom-
brable) de C et pour tout a € F, la partie singuliere de f en a s’écrit P, (7>, ou P, est un polyndme complexe

non nul, sans terme constant.

g Attention : on ne peut pas toujours écrire

1= P () + 02

acF
avec g holomorphe sur €2, car le membre de droite n’est pas convergent en général !

)*pA@

Lorsque €2 = C, une telle décomposition est possible quitte 2 modifier la partie singuliere par P, (
z—a
ol p, est un polyndme.

55



L3 — Magistére de mathématiques Année 2025-2026

,—[Théoréme 4.9 — décomposition d’une fonction méromorphe sur C] \

Soient F' une partie discréte de C et (P, ),cr une famille de polyndmes non nuls sans terme constant.
(i) Il existe une famille (p,)qcr de polyndmes telle que la série de fonctions méromorphes

¥ [ (:55) -#0)

a€F

soit normalement convergente sur tout compact de C, et définisse donc une fonction méromorphe

1 L o
sur C admettant exactement ' comme ensemble de poles et P, <7> comme partie singuliere
z

en tout point a de F'.

(ii) Toute fonction méromorphe f sur C satisfaisant a ces conditions s’écrit
1

=3 |7 (=) -0

acF

+9(2),

ou g est une fonction entiere.

DEMONSTRATION DU THEOREME 4.9. Le seul point a établir est la possibilité de choisir des polynémes p,, ren-

dant la somme
2 [ (:5) o)

a€F

normalement convergente sur tout compact.
* Lorsque F est fini, on peut prendre tous les p, nuls.

* Sinon, F’ est infini, fermé et discret et on peut énumérer ses éléments par module croissant
F ={an, n €N}
avec
|a/0| < |a/1| < < |an| < |an+1| < T

etl’on a

lim |a,| = +o0.
n—-+o0o

EXERCICE DE COURS 4.12. Pour tout n € N, montrer que I’on peut choisir un polyndme p,,, de sorte que

1 1
A<l =1 = [P () —pe ()] < o
Si maintenant K est un compact de C, il existe IV € N tel que

an| 2 1+ max |z

lan| > 1+ max|s,
et I’exercice 4.12 montre alors que pourtout z € K etn > N,

1 1
Fa. (z - a) ~Pa(2)] S on’

d’ou la convergence requise. (|

4.5. Exemples

Dans de nombreux cas particuliers importants, on peut choisir comme polyndomes p, certains polyndmes explicites
tres simples. Le théoreme 4.9 conduit alors a des constructions remarquables de fonctions méromorphes ou a des
identités remarquables.

Nous allons voir deux illustrations de ce principe.
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4.5.1. Développement eulériens des fonctions trigonométriques. Les identités de 1’exercice suivant ont été
établies par Euler dans les années 1730.

Leonhard Euler, né le 15 avril 1707 a Bale et mort le 7 septembre 1783 a
Saint-Pétersbourg, est un mathématicien et physicien suisse, qui passa la
plus grande partie de sa vie dans I’Empire russe et en Allemagne. Il était

notamment membre de I’Académie royale des sciences de Prusse a Berlin.

EXERCICE DE COURS 4.13 (identités d’Euler).
(1) Etablir, pour tout z € C :

00 2
. z
smz:z” (1—ﬁ>.
n?m
n=1

(2) Etablir, pour tout z € C\ 7Z :

 — 1 1
cotanz:f—i—Z( + )
z e \z—nm Z+nm
1 1 1
2+ Y ()
nezZ\{0}
1 1
sin?z 7; (z —nm)2’

(3) Montrer que le produit infini de la question (1) et les séries de fonctions méromorphes de la question (2)
convergent normalement sur tout compact de C.

En comparant les coefficients du développement en série de Laurent a I’origine des deux membres de la ques-
tion (1), on obtient une série infinie d’identités remarquables.

Rappelons que I’on définit des nombres réels by, par
o0 k
x x
er — 1 = Zbkﬁ
k=0
Onabg=1,by = —1/2,b, = 0si k > 3. On pose alors
ka = (_1)k+1Bk7 ke N*a

de sorte que I’on peut écrire

X X > J)Qk
=1-= —1)**'B )
e — 1 2 +kz=:1( ) " (2k)!

Les nombres By, qui sont rationnels par définition, sont les nombres de Bernoulli.

Daniel Bernoulli est un médecin, physicien et mathématicien suisse, né a
Groningue le 8 février 1700, et mort a Bdle, le 17 mars 1782.
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On a

EXERCICE DE COURS 4.14 (développements eulériens).

(1) Etablir, pour tout k € N* :
o 22k71

1 _ 2k
D o = gy B

(2) En déduire les identités :

o0 o0
1 s 1 t
SEo% e Yaw
n2 6 n* 90
n=1 n=1
Les identités de la question (1) montrent d’une part que les nombres de Bernoulli By, sont strictement
0 positifs, et d’autre part que les réels

1 i 1
2k n2k
n=1

sont rationnels, ce qui est merveilleux !

4.5.2. Fonction p de Weierstrass. Nous étudions dans ce paragraphe des fonctions méromorphes sur C admettant
un réseau comme période.

,—[Déﬁnition 4.10 — réseau et fonction elliptique} \

(1) On appelle réseau de C un sous-groupe I' de C de la forme Zw; + Zws, ol (wy, w2) est une base
de C considéré comme un R-espace vectoriel.

(2) On appelle fonction elliptique relativement a un réseau I' de C une fonction méromorphe I'-
périodique sur C.

EXERCICE DE COURS 4.15. Montrer a ’aide du théoreme de Liouville (Théoreme 2.7) que toute fonction
elliptique holomorphe sur C est constante.

EXERCICE DE COURS 4.16. Soit I est un réseau de C. Montrer que la série
> o
o

sérop 1!

est convergente pour tout o € ]2, +00|.

dxdy

Indication : majorer cette série par un multiple d’une intégrale de la forme / / 272/2,
re\k (22 +y%)7

- ol K est un voisinage compact de (0, 0).

Grace a I’exercice 4.16, on peut considérer pour tout n > 3,
1
= 2 o
'yGF\{O}

appelée séries de Eisenstein de poids n. Avec —v a la place de -y dans I’expression de G,,(I") on voit que G, (T") est
nul lorsque n est impair.
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Ferdinand Gotthold Max Eisenstein, (16 avril 1823 — 11 octobre 1852) est un
mathématicien prussien. Comme Galois et Abel, Eisenstein est mort avant I’dge
de 30 ans, et comme Abel, sa mort est due a la tuberculose. Il est né et mort a
Berlin, Allemagne. Il fit ses études a I’Université de Berlin ou Dirichlet était son
professeur. Gauss aurait déclaré : « Il n’y a que trois mathématiciens qui feront
date : Archiméde, Newton et Eisenstein. » Le choix par Gauss d’Eisenstein, lequel
s’était spécialisé dans la théorie des nombres et I’analyse, peut sembler étrange
a certains, mais il est justifié par le fait qu’Eisenstein avait prouvé facilement
plusieurs résultats jusqu’alors inaccessibles, méme a Gauss, comme d’étendre

son théoréme de réciprocité biquadratique au cas général.

r—[Théoréme 4.11 — la fonction de Weierstrassj \

Soit I' = Zw; + Zws un réseau de C.
(i) La série de fonctions méromorphes sur C
1 1 1
o)=z+ ¥ (=)
yer\{o}
est normalement convergente sur tout compact de C.

Sa somme est une fonction elliptique relativement a I', appelée la fonction de Weierstrass
associée a I'. C’est une fonction paire, holomorphe sur C\ I', admettant un pdle double en chaque
point de I".

Sa dérivée admet le développement
1
/
fle) =23 ——
DG

en série de fonctions méromorphes normalement convergente sur tout compact de C.

(ii) Le développement en série de Laurent de p(2) en 1’origine s’écrit

o0

1
p(z) =+ > (@0 + 1)Gaginy (D)2

n=1

(iii) La fonction p satisfait a I’équation différentielle

o' (2)? = 4p(2)° — g29(2) — gs,

g2 :=60G4(T") et g3:=140Ge(T).

EXERCICE DE COURS 4.17 (démonstration du théoréme 4.11).
(1) Démontrer la premire partie des assertions (i), et déterminer ' (z).
(2) En déduire que @’ est I'-périodique puis que g est I'-périodique. Compléter alors la démonstration de (i).
(3) Démontrer I’assertion (ii) a I’aide de la proposition 4.8.

(4) Démontrer 1’assertion (iii).

O Indication : observer que chacun des membres de I’équation fonctionnelle est une fonc-
\/ tion elliptique relativement a I', holomorphe sur C\ T". Utiliser alors I’exercice 4.15 pour
conclure.

La fonction de Weierstrass, et sa dérivée, sont plus que de simples exemples : on peut montrer que toute
fonction elliptique T est une fraction rationnelle de p et p'.
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4.6. La fonction I

L’étude de la fonction I" fournit des illustrations remarquables des paragraphes précédents.

4.6.1. La fonction I" dans le domaine réel. Commengons par quelques rappels, sans détail, dans le domaine réel.
Pour tout € R* , on pose

+o0
I(x):= / e " dt.
0
— Cette intégrale est convergente et définit une fonction de classe > sur R* , de dérivées données par :
+oo
) (z) ::/ e t(logt)*t*Ldt,
0
pourk € N,z € RY.
— De plus, I' vérifie I’équation fonctionnelle
I'(z+1) =2l (2), reRL.

— Par ailleurs, on a
+oo
(1) = / etdt=1 et I'(n+1) =nl, n € N.
0

— Le comportement asymptotique de la I" est donnée par la formule de Stirling :
x x
D(z+1) ~V2rx (7) lorsque = — 400,
e
qui s’écrit encore, compte tenu de 1’équation fonctionnelle,

D(z+1) ~V2rz" Y27 lorsque 2 — +oc.

Methodus  Differentialis &
SIVE

TRACTATUS

SUMMATIONE

James Stirling, né en mai 16921 a Garden prés de Stirling, mort

le 5 décembre 1770 a Edimbourg, est un mathématicien écossais. it
INTERPOLATIONE

James ou Jacob Stirling, peut-étre issu d’une famille plus anglaise SERIERUM INFINITARUM.
qu’écossaise, fait ses études a Oxford, au Balliol College, a partir oReesle 10000 SR TR AR,
de 1710. 1l en est écarté, vers 1717, pour des raisons politiques, car .3%@ ¢

il soutient les Jacobites, les partisans des Stuarts.

Protas apud J. Wassron & B. Wi #3; s Pl
TMDCCLXIY

— A partir de I’équation fonctionnelle et de la formule de Stirling, on déduit la formule de Gauss :

I lim z(x+1)---(x+n)

L(z) notoo nln®

— Rappelons enfin que la constante d’Euler ~ est le nombre réel > 0 défini par

S RN

k=1
N
1 k+1
- 5wt
Niriloo; k k
= lim zn:l—lo n
_n—>+oo k:lk &

On en déduit que pour tout nombre réel, on a :

n
o —_z
lim n%e?™ H e & =1.
n—-+oo

k=1
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— On obtient alors, grice a I’identité

ﬁ(l-i-f): (a:+1)~-~(m+n)’

k n!
k=1

la formule de Weirstrass : pour tout x € RY,
L:xe'ﬁ” lim f[ (1+§) e k.
I'(x) n—+oo - k

4.6.2. La fonction I' dans le domaine complexe. D’apres I’exercice 3.11, I'intégrale

+o00
I'(z) ::/ et ldt
0
est absolument convergente pour tout z € C tel que Re(z) > 0 et définit une fonction holomorphe sur le demi-plan
O ={z € C: Re(z) > 0}.

De plus, pour tout z dans ce demi-plan et tout k € N, ona:

“+o0
k) (z) = / e t(logt)Ft*Ldt.
0

EXERCICE DE COURS 4.18. Démontrer que pour tout z € O on a encore I’équation fonctionnelle
I(z+1) = 2I'(2),

et que pour tout n € N*,

=0

En déduire que I' admet un prolongement analytique sur le demi-plan
{z € C: Re(z) > —n},

dont les seuls pdles sont simples et situés aux entiers négatifs.

,—[Proposition 4.12 — prolongement méromorphe de la fonction F}

La fonction I" admet un prolongement méromorphe sur C. Elle est holomorphe sur C \ (—N) et, pour tout

n € N, admet un pdle simple en —n. Les équations fonctionnelles précédentes restent valables pour tout
z € C\ (—N).

EXERCICE DE COURS 4.19. Démontrer la proposition.

,—[Corollaire 4.13 — expression de la dérivée logarithmique de F]

La fonction I /T, méromorphe sur C, admet le développement suivant, sous forme de séries de fonctions
méromorphes normalement convergentes sur tout compact de C :

V(2 1 /1 1
r((z)):_7_2+l;(k_z+k)’ 2€CAEN).

EXERCICE DE COURS 4.20. Démontrer le corollaire.

@ Indication : étendre au domaine complexe les formules de Gauss et de Weierstrass.
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Le corollaire 4.13 permet d’obtenir des identités remarquables que nous mentionnons ici sans détail.

— Pourtout z € C\ (—N),ona

1 .
= —sinmz.

rzril-z =«
Avec z = 1/2, on en déduit

(2)-ve

— Pourtout z € C\ (—N) ettoutp € N*,on a:

ﬁr (ﬂ) — (2m)®=D/2p =71 ().
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Théoreme des résidus et applications

5.1. Indice d’un lacet par rapport a un point

En termes géométriques, 1’indice Ind(~, a) d’un lacet par rapport a un point a est un qui compte le nombre
de tours (avec un signe) que le lacet effectue autour du point a (voir la remarque 5.1).
On le définit analytiquement de la facon suivante.

~— Définition 5.1 \

Soient v C C un lacet et a € C \ y un point pris hors de I’image de +. On appelle indice du lacet -y par
rapport au point a I’intégrale :

1 dz
Ind(v,a) := %5ir | 7=
¥

Le support d’un lacet v est I'image de «y dans 2. On notera souvent ¥ C Q ou a € Q \ v pour indiquer
que 7y est tracé dans {2 ou bien que «y évite a.

EXERCICE DE COURS 5.1 (propriétés élémentaires de I’indice). Soit~: [0,1] — C lacet. Montrer les asser-
tions suivantes :

(i) T’application C \ v — C, a — Ind(v, a) est a valeurs entiéres, i.e,

1 dz
Ind(y,a) = ﬂ/ P e’z
Y

(ii) elle est constante sur chaque composante connexe de C \ 7,

(iii) elle est nulle sur I’'unique composante connexe non bornée de C \ 7.

(r) Indication pour (i) : considérer \g tel que e*® = ~(0) — a, et montrer que I’application continue

t /
' A:[0,1] — C, t»—>)\0+/ B
0 Y(s)—a

vérifie

pour tout ¢ € [0, 1].
Grace a I’exercice, ’indice se calcule « visuellement » (voir la figure 15).

On a aussi les propriétés élémentaires suivantes, pour 7y;, y2 deux lacets dont I’'image ne contient pas a :
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L L h % %
FIGURE 15 - Calcul «visuel » de I'indice. Ici Ind(1,0) = 1, Ind(72,0) = —1, Ind(y3,0) = 2,
Ind(v4,0) = 0.

— (lacet opposé) Ind(v7, a) = —Ind(y1,a),
— (concaténation) Ind(v; * y2,a) = Ind(y1, a) + Ind(72, a).

REMARQUE 5.1. Il n’existe pas de détermination continue du logarithme sur tout C*. La démonstration de 1’as-
sertion (i) de I"exercice 5.1 fournit cependant une détermination continue A: [0, 1] — C du logarithme de ¢ € [0,1] —
~(t) — a € C*. On dit que \ est une détermination continue du logarithme de z — a le long du chemin ~.

On a alors que I"application Im()\): [0,1] — R fournit, pour chaque ¢ € [0, 1], un argument pour v(¢) — a qui
dépend continiment de ¢. Autrement dit, Im(\) est une détermination continue de I’argument de z — a le long du
chemin 7.

L’interprétation géométrique de I’indice vient alors de ce que 1’on a, par définition,

Ind(y, a) = %(Im()\(l)) — Im(\(0)).

Voici une premiere généralisation de la formule de Cauchy (on integre sur un lacet qui n’est plus nécessairement
un cercle).

,—(Théoréme 5.2 — formule de Cauchy dans un ouvert étoilé} \

Soient €2 un ouvert de C, f: 2 — C une fonction holomorphe, v un lacet tracé dans 2 et a € 2
pris hors de ’image de . On a :

1 [ f(z)
Ind = dz.
f@md(ra) = 5 | 5ds
REMARQUE 5.2. 1) Lorsque f est constante égale a 1 on retrouve la définition de I’indice.

2) Lorsque 7 est un cercle € (zq, ) avec a € D(zp, ), on retrouve la formule de Cauchy (Théoreme 2.2).

EXERCICE DE COURS 5.2. Démontrer le théoréeme.

(;) Indication : considérer la fonction g: 2 — C, holomorphe sur 2\ {a}, définie par
\ G -1 o,
9(2) = z—a
7'(a) siz#a,

montrer que g s’entend en une fonction holomorphe sur €2 et que son intégrale sur ~y est nulle.

EXEMPLE 5.1. On illustre sur la figure 16 le théoreme 5.2. Le lacet v découpe trois composantes connexes dans §2.
On indique la valeur donnée par I’intégrale du théoréme lorsqu’on prend a dans chacune de ces composantes.
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FIGURE 16 — Le théoréme 5.2 sur un exemple

,—[Corollaire 5.3 — formule de Cauchy pour les dérivées]

Soient €2 un ouvert de C, f: Q — C une fonction holomorphe, v un lacet tracé dans Q eta € 2\ 7.

Pour toutn € N,on a :
1 1 f(z)
(™) ()Ind — 7/ — e
n' (a) il (’Y,a) 2,”.(. Y (Z _ a)n+1 &

EXERCICE DE COURS 5.3. Démontrer le corollaire.

5.2. Ouverts élémentaires

Définition 5.4

Un ouvert €2 de C est dit élémentaire s’il est non vide, connexe et si toute fonction holomorphe f: 2 — C
admet une primitive sur ).

Nous savons que les ouvert étoilés, et donc en particulier les ouverts convexes, sont élémentaires (voir la proposi-
tion 3.1). Il y en a bien d’autres comme le montre 1’exercice suivant !

EXERCICE DE COURS 5.4 (ouverts élémentaires).
(1) Soient €24, 2, deux ouverts de C. Montrer que s’il existe une application biholomorphe
0: Q5 Oy
et si (27 est un ouvert élémentaire, il en va de méme de 5.

(2) Soient 91, Q5 deux ouverts élémentaires de C. Montrer que si {21 N 25 est non vide et connexe, alors
1 U Qs est un ouvert élémentaire.

(3) Montrer que si 29 C 21 C 22 C --- est une suite croissante d’ouverts élémentaires de C, alors
o0
Q=]
n=0

est un ouvert élémentaire.

@ Indication pour (2) et (3) : montrer que 1’ouvert € est élémentaire si et seulement si tout f € ()

\/ posséde une unique primitive F' € €(12) telle que F'(a) = 0.
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Définition 5.5

Un ouvert connexe (2 de C est dit simplement connexe lorsque tout lacet tracé dans €2 est homotope a 0.

Il est possible de classifier completement les ouverts élémentaires de C et de montrer que pour tout
o ouvert connexe non vide de C, les conditions suivantes sont équivalentes :

(i) Q estun ouvert élémentaire,
(i) € est simplement connexe,
(iii) © = C ou bien il existe une bijection biholomorphe

0: Q — D(0,1).

5.3. Le théoréme des résidus

Soient a € C, r € R%, © un voisinage ouvert de D(a,r) dans C et f une fonction holomorphe sur 2\ {a}. Cette
fonction posséde un développement de Laurent en a

f(z)= Z an(z —a)”,
neZ

normalement convergent sur tout compact de D(a,r) \ {a}.

Définition 5.6 — résidu}

Le résidu, noté Res(f, a), de f en a est le coefficient a_; de (z — a)~! dans ce développement :

Res(f,a) :=a_1.

EXERCICE DE COURS 5.5. Vérifier que 'on a:
1
Res(f,a) = / f(z)dz.
€ (a,r)

~ 2ir

On se souvient que a_; estI’obstruction a ce que la fonction f admette une primitive sur D(a, )\ {a}.

Voici quelques recettes pour le calcul des résidus.

—

,—[Proposition 5.7 — résidu en un pole J N

Soient f une fonction méromorphe non identiquement nulle sur un ouvert connexe €2 de C et a un point
de Q. Siv,(f) = —1, alors

Res(f,a) = lim (z — a) f(2).
zZ—a
Plus généralement, si a est un pole d’ordre k£ € N* de f, alors

L_FE D) o f(2) = (2 - @) £(2).

Res(f,a) = (=S
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,—[Proposition 5.8 — résidu de quotients de fonctions méromorphes] \

Soient f, g deux fonctions méromorphes non identiquement nulles sur un ouvert connexe €2 de C et a un
point de 2.

(i) Sivg(f) = 0etvy(g) =1 (.e., f est holomorphe en a et g posséde un zéro simple en a), alors
pes (L) < L0
9 g'(a)
(ii) La fonction f’/f est méromorphe sur 2. Ses pdles sont tous simples; ce sont exactement les
z€ros et les poles de f etona:

Res (?,a) = va(f)-

Si de plus v, (g) > 0, alors

Res (41-,a) = gl@yun(s).

EXERCICE DE COURS 5.6. Démontrer les deux propositions.

EXERCICE DE COURS 5.7. Déterminer les pdles des fonctions tan, th, cotan et coth, leur ordre ainsi que le
résidu en chaque pole, ol th = sh/ch est la tangente hyperbolique, et coth = 1/th.

EXERCICE DE COURS 5.8. Démontrer que la fonction I", holomorphe sur C \ (—N) (voir la proposition 4.12)

(="

admet, pour tout n € N, un péle simple de résidu [ en—n.
n!
O Indication : utiliser I’expression de I'(z) obtenue a I’exercice 4.18.
w
r—[Théoréme 5.9 — théoreme des résidus} N

Soient €2 un ouvert élémentaire de C (par exemple étoilé), ' un ensemble fini de points de €2, f une fonction
holomorphe sur ) \ F et «y un lacet de classe ¢! par morceaux a valeurs dans Q2 \ F. On a alors :

1 [yf (2)dz =) Res(f,a)Ind(y,a).

20w
acF

DEMONSTRATION. Pour chaque a € F, considérons le développement de Laurent de f en a :
f(z) = Z Uan(z — )",
nez

qui est valable sur un voisinage épointé de a dans (2, puis la partie singuliere h, de f en a, c’est-a-dire la fonction
holomorphe sur C \ {a} définie par

ha(z) = Z Ug (2 —a)".

ne—N*

g:f_zha'

a€F
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EXERCICE DE COURS 5.9.

(1) Vérifier que la fonction g, a priori holomorphe sur Q2 \ F', n’a que des singularités illusoires en les points
de F' et qu’elle se prolonge donc en une fonction holomorphe sur 2. En déduire que

/f(z)dz = Z ha(2)dz.
v acF 7Y

(2) Etablir que

L ha()dz = 3 tan L (= — a)"dz.

ne—N*

Le théoreme des résidus découle alors de I’exercice précédent et de la formule

1
/ dz = 2ir Ind(7, a).
.

zZ—a

O

Attention : le théoreme des résidus peut étre mis en défaut sur un lacet autour d’un « trou » d’un ouvert

A non élémentaire ! Considérer par exemple un ouvert {2 comme sur la figure 17, v un lacet qui fait le tour
du trou et f: © — C une fonction holomorphe qui se prolonge a I’ouvert ' (obtenu en « bouchant le
trou ») en une fonction possédant une singularité isolée au point z; € Q' \ Q.

On G- 0O

FIGURE 17 — Ouvert avec un trou

Le théoreme des résidus s’applique cependant au lacet vy C €2 de la figure 17 : il suffit en effet de se
o restreindre a un ouvert étoilé {2y C 2 qui contient ~yg.

Le théoreme 5.9, appliqué a la fonction

h: Q\{a} — C
f(w)

)
w—a

w

redonne immédiatement le théoreme 5.2.

5.4. Applications au dénombrement des zéros et des poles des fonctions méromorphes

Rappelons que si f est méromorphe non identiquement nulle au voisinage d’un point ¢ € C, on a d’apres la
proposition 5.8 (ii) :
!
Res (fT,a) =v,(f)-

Appliquée a la dérivée logarithmique d’une fonction méromorphe, la formule des résidus donne :
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,—[Proposition 5.10 — formule des résidus appliquée a la dérivée logarithmique d’une fonction méromorphe]—,

Soient €2 un ouvert élémentaire de C, f une fonction méromorphe sur 2 dont I’ensemble F' des zéros et des
poles est fini, et v un lacet a valeurs dans 2 \ F'. On a alors :

L [ dz = Z Ve (f)Ind(y, a).

2im J., f(2) =

En particulier, lorsque dans la proposition on a, pour tout a € F,
Ind(vy,a) =1,

on définit le nombre de zéros N (0) (resp. le nombre de poles N (o)) de f dans 2, comptés avec leur multiplicité, en
posant

NO) = Y valf)

a€F
va (f)>0

et

Ny =~ 3 walf):
o

L’identité de la proposition peut alors s’écrire
L),
2im /., f(2)

z=N(0) — N(0).

,—[Proposition 5.11 — continuité par passage a la limite uniforme du nombre de zéros des fonctions holomorphes]

Soient  un ouvert de C et (f,,),en une suite dans &(§2) convergeant uniformément sur tout compact de
Q vers une fonction f € O(12). Soient zy € Q et r € R% tels que D(20,7) C et f ne s’annule pas sur
dD(zg,7).
Il existe alors N € N tel que, pour tout n > N, f,, ne s’annule pas sur 9D (z, ) et
Z Ua(fn) = Z va(f)'
a€D(zg,r) a€D(zo,r)

En résumé, pour n > N, f, et f ont méme nombre de zéros (compte tenu des multiplicités) dans le disque
ouvert D(zg, ).

EXERCICE DE COURS 5.10. Démontrer la proposition.

5.5. Applications aux calculs d’intégrales

Appliquée a des fonctions et des lacets bien choisis, la formule des résidus (Théoreme 5.9) permet d’évaluer
diverses intégrales remarquables. Ce procédé est appelé la méthode des résidus.

EXEMPLE 5.2. Considérons des intégrales de la forme
2T P(cost,sint)
o Q(cost,sint)
ol P et @ sont des polyndmes de C[X, Y], et ot ) ne s’annule pas sur le cercle
{(z,y) €R*: 2® +y* = 1}.

On définit une fonction rationnelle f en posant

b

(z+271), %(z - z_l))
Gae b))
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on voit aussitdt que f ne posséde aucun pdle sur dD(0, 1) et la formule des résidus donne

2m :
Mdt:/ f(z)dz = 2im Z Res(f, a).
%(0,1)

o Q(cost,sint) a€D(0,1)

EXERCICE DE COURS 5.11 (application). Calculer

27 dt .
—_ a>1.
o a-+sint’

,—[Proposition 5.12 — intégrales aux bornes inﬁnies}

voisinage ouvert de H\ ' = RU (H \ F) dans C telle que
lim zf(z) =0.

z€EH\F
|z|—+o0

On a alors

R
lim / f(t)dt:inE Res(f, a).
-R

R—+o00
acF

Soit F' un ensemble fini de points dans le demi-plan supérieur H et soit f une fonction holomorphe sur un

EXERCICE DE COURS 5.12. Démontrer la proposition.

La proposition permet de calculer des intégrales de la forme

—+oo
/ R(t)dt
ol R(t) est une fraction rationnelle en ¢ sans pole réel telle que
lim zR(z)=0.
2] =00
EXERCICE DE COURS 5.13. Soit o
4
R(t) = ——
t) =

ou k et n sont deux entiers tels que 0 < k& < n.
(1) Montrer que les pdles de R dans H sont les points

2 +1
p(j+ m'), 0<j<mn,
2n

et calculer le résidu de R en ces points.
(2) En déduire que

+oo tQk T
dt = .
/,Oo 142 nsin ((2k + 1)7/2n)
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