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Augustin Louis, baron Cauchy, né à Paris le 21 août 1789 et mort à

Sceaux le 23 mai 1857, est un mathématicien français, membre de l’Acadé-

mie des sciences et professeur à l’École polytechnique. Catholique fervent,

il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des

Écoles d’Orient. Royaliste légitimiste, il s’exila volontairement lors de

l’avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions

politiques et religieuses lui valurent nombre d’oppositions.
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1
Fonctions holomorphes

1.1. Définitions et premières propriétés

Soit Ω un ouvert de C.

On dit qu’une fonction f : Ω! C est dérivable au sens complexe en z ∈ Ω si la limite

f ′(z) := lim
w!z

f(w)− f(z)

w − z
existe, où w tend vers z dans

�� ��C . Si f ′(z) existe pour tout z ∈ Ω et si la fonction f ′ : Ω! C ainsi définie
est continue, on dit que f est holomorphe sur Ω.

Définition 1.1

Une fonction holomorphe sur Ω est donc continue sur Ω. La condition de limite équivaut à dire que la limite

f ′(z) := lim
h!0

f(z + h)− f(z)

h
,

où h prend des valeurs
�� ��complexes non nulles, existe, ou encore qu’il existe λ ∈ C (unique) tel que

f(z + h) = f(z) + λh+ o(h),

où la notation o(h) signifie que |o(h)|
|h| ! 0 quand h tend vers 0 dans

�� ��C , et on pose alors f ′(z) = λ.

,
Bien entendu, le complexe λ dépend de z.

ð
La définition 1.1 peut être allégée. On a en effet le résultat suivant (voir le théorème 3.9), que l’on peut
omettre en première lecture :

Soit f : Ω ! C que l’on suppose dérivable en tout point de Ω. Alors sa dérivée
f ′ : Ω! C est continue.

L’hypothèse « f ′ : Ω! C est continue » de la définition est donc superflue.

EXERCICE DE COURS 1.1. Montrer que la fonction z 7! z est dérivable sur C, de dérivée constante égale à 1,
mais que que la fonction z 7! z̄ n’est dérivable en aucun point de C.

,
La subtilité est que h varie dans un ensemble de dimension deux, de type disque « épointé » autour de
0, pour h assez petit pour que z + h ∈ Ω. On le voit très bien sur le (non-)exemple z 7! z̄ : le module
de h tend vers 0, mais peut aussi tourner ou spiraler autour de 0 !
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On note O(Ω) l’ensemble des fonctions holomorphes sur Ω.

EXERCICE DE COURS 1.2.

(1) Montrer que O(Ω) forme une algèbre unitaire pour le produit de fonctions usuel, et que pour λ ∈ C,
f, g ∈ O(Ω), on a :

(λf)′ = λf ′, (f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′.

(2) Montrer que si f ∈ O(Ω) ne s’annule pas sur Ω, alors 1/f est holomorphe sur Ω et queÅ
1

f

ã′
= − f

′

f2
.

(3) Soient Ω1 un ouvert de C, f ∈ O(Ω) et g ∈ O(Ω1) tel que g(Ω1) ⊂ Ω. Montrer que la composée f ◦ g
est holomorphe sur Ω1 et que

(f ◦ g)′ = (f ′ ◦ g)g′.

(4) Soient Ω un ouvert de C et f ∈ O(Ω) une application bijective de Ω sur f(Ω). Montrer que

f−1 =
1

f ′ ◦ f−1
.

EXEMPLE 1.1. 1) Une fonction polynomiale est holomorphe sur C.

2) La fonction z 7! 1/z est holomorphe sur C∗. Plus généralement, une fraction rationnelle P/Q, où P,Q ∈
C[X], est holomorphe sur l’ouvert C privé des zéros de Q.

3) En revanche, si P ∈ C[X,Y ], la fonction z = x+ iy 7! P (x, y) n’est pas holomorphe sur C en général. Par
exemple z 7! z̄ et z 7! Re(z) ne sont dérivables (au sens complexe) en aucun point de C.

1.2. Les conditions de Cauchy–Riemann

Soit Ω un ouvert de C. On rappelle qu’une fonction f : Ω ! C est dérivable de dérivée λ en un point z de Ω si et
seulement si, lorsque h tend vers 0, on a :

f(z + h) = f(z) + λh+ o(h).

,
On rappelle que λ dépend du point z et que h varie dans C !

Cette condition peut encore s’exprimer en disant que, vue comme une application de l’ouvert Ω de R2 du R-
espace vectoriel C à valeurs dans le R-espace vectoriel C, f est différentiable en z et que sa différentielle Dzf en z est
l’application

h 7! λh.(1)

Une application R-linéaire T de C dans C est de la forme (1) si et seulement si sa matrice dans la base (1, i) du R-espace
vectoriel C est : Å

a −b
b a

ã
,(2)

où a, b ∈ R sont tels que λ = a+ ib. Cette condition est encore équivalente à la suivante :

T (1) + iT (i) = 0,

ou encore au fait que T est une application C-linéaire de C dans C.

REMARQUE 1.1. Géométriquement, une matrice de la forme (2) est une matrice de similitude directe, c’est-à-
dire la composée d’une rotation et d’une homothétie de l’espace euclidien orienté R2. Ainsi, en tout point z de Ω la
jacobienne de la différentielle Dzf d’une fonction holomorphe est une matrice de similitude directe.

On a obtenu la proposition suivante :
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Soient Ω un ouvert de C et f : Ω ! C une application de classe C 1 (vue comme une application définie
sur Ω ⊂ R2). Les conditions suivantes sont équivalentes :

(i) f est holomorphe,

(ii) les dérivées partielles
∂f(x+ iy)

∂x
et
∂f(x+ iy)

∂y
satisfont à la relation

∂f(x+ iy)

∂x
+ i

∂f(x+ iy)

∂y
= 0

pour tout (x, y) ∈ R2 tel que x+ iy ∈ Ω,

(iii) pour tout z ∈ Ω, la différentielle Dzf de f en z est C-linéaire.

Proposition 1.2

La condition (ii) est appelée condition de Cauchy–Riemann.

Lorsque les conditions de la proposition 1.2 sont satisfaites, la différentielle Dzf de f en un point z de Ω , donnée
par la multiplication complexe par f ′(z), admet pour matrice dans la matrice (1, i) :á

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

ë
=

Å
Ref ′(z) −Imf ′(z)

Imf ′(z) Ref ′(z)

ã
où pour tout (x, y) ∈ R2 tel que x+ iy ∈ Ω,

f(x+ iy) = u(x, y) + iv(x, y).

En particulier,
∂u

∂x
=
∂v

∂y
et

∂u

∂y
= −∂v

∂x
.

De plus,
∂f(x+ iy)

∂x
= f ′(z) et

∂f(x+ iy)

∂y
= if ′(z).

En particulier, on en déduit la proposition suivante :

On suppose que l’ouvert Ω est
�� ��connexe . Une fonction holomorphe f ∈ O(Ω) est constante si et seulement

si f ′ = 0 sur Ω.

Proposition 1.3

EXERCICE DE COURS 1.3. Démontrer la proposition.

�
Appliquer le théorème des accroissements finis à l’application

(x, y) ∈ Ω ⊂ R2 7−! (u(x+ iy), v(x+ iy)).

EXERCICE DE COURS 1.4. Vérifier que les fonctions suivantes sont holomorphes dans leur domaine de défi-
nition et qu’elles satisfont les conditions de Cauchy–Riemann :

z3,
1

z + 1
,

ez

z5
,

z7

z2 + 1
,

où l’application z 7! ez est définie à la section 1.4.
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EXERCICE DE COURS 1.5.

(1) Montrer qu’en coordonnées polaires z = reiθ, les équations de Cauchy–Riemann prennent la forme :
∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
.

�
Indication : vérifier d’abord les formules :

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

(2) Utiliser ces équations pour montrer que la fonction logarithme définie par :

log z := log r + iθ

pour z = reiθ avec r > 0 et −π < θ < π est holomorphe.

EXERCICE DE COURS 1.6. Soit la fonction

f(x+ iy) =
»
|x| |y|

définie pour tous (x, y) ∈ R2. Montrer que f satisfait les conditions de Cauchy–Riemann en (0, 0) ∈ R2, mais
qu’elle n’est pas différentiable au sens complexe en 0 ∈ C.

Soient Ω1 et Ω2 deux ouverts de C. On dit qu’une application ϕ : Ω1 ! Ω2 est biholomorphe lorsque ϕ
est bijective et que ϕ et ϕ−1 sont holomorphes.

Définition 1.4

La question (4) de l’exercice 1.2 montre que l’on a alors pour tout w ∈ Ω2 :

(ϕ−1)′(w) =
1

ϕ′(ϕ−1(w))
.

Soient Ω un ouvert de C, f ∈ O(Ω) et z0 ∈ Ω. Si f ′(z0) 6= 0, alors il existe des voisinages ouverts U de
z0 dans Ω et V de f(z0) dans C tels que f établisse une bijection biholomorphe de U sur V .

Proposition 1.5 – inversion locale holomorphe

EXERCICE DE COURS 1.7. Démontrer la proposition à l’aide du théorème d’inversion locale (pour les appli-
cations de classe C 1 entre ouverts de R2).

Soient Ω un ouvert de C et f ∈ O(Ω) tel que f ′(z) 6= 0 pour tout z ∈ Ω. Alors f est une application
ouverte, c’est-à-dire que l’image de tout ouvert est un ouvert de C.

Corollaire 1.6 – application ouverte
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1.3. Séries entières

Nous allons voir que la famille des séries entières, qui englobe celle des polynômes, donne des exemples fonda-
mentaux de fonctions holomorphes. Plus loin, nous verrons que toute fonction holomorphe est localement une série
entière.

Rappels sur les séries entières. Une série entière est une série de fonctions de la forme
∑
n>0

(z 7! anz
n) où (an)n∈N

est une suite de nombres complexes et z la variable, que l’on note, selon l’usage, simplement
∑
n>0

anz
n.

Son rayon de convergence ρ ∈ [0,+∞[∪{+∞} est défini par les propriétés suivantes :

– pour tout r ∈ R+ tel que r < ρ, la série entière
∑
n>0

anz
n est normalement convergente sur le disque fermé

D̄(0, r) := {z ∈ C : |z| 6 r}.

– pour tout z ∈ C tel que |z| > ρ, la suite (anz
n)n∈N n’est pas bornée et a fortiori la série

∑
n>0

anz
n diverge.

On a donc l’égalité :
ρ = sup{r > 0: la suite (|an|rn)n∈N est bornée},

ainsi que la formule de Hadamard :
1

ρ
= lim sup

n!+∞
|an|

1
n ,

avec la convention 1
0 = +∞ et 1

∞ = 0.

Jacques Salomon Hadamard, né le 8 décembre 1865 à Versailles et mort

le 17 octobre 1963 à Paris, est un mathématicien français, connu pour ses

travaux en théorie des nombres, en analyse complexe, en analyse fonction-

nelle, en géométrie différentielle et en théorie des équations aux dérivées

partielles.

Z
Voir si besoin https://www.imo.universite-paris-saclay.fr/~anne.moreau/
M41-cours-2019.pdf pour des rappels de deuxième année sur les suites et séries de fonctions.

Soit
∑
n>0

anz
n une série entière de rayon de convergence ρ > 0. La fonction f : D(0, ρ)! C qu’elle définit

sur le disque
�� ��ouvert

D(0, ρ) := {z ∈ C : |z| < ρ}
est holomorphe et, pour tout z ∈ D(0, ρ), on a

f ′(z) =
∑
n>1

nanz
n−1.

Proposition 1.7 – les séries entières sont holomorphes

On rappelle que la série entière
∑
n>1

nanz
n−1 a le même rayon de convergence ρ que la série entière

∑
n>0

anz
n et

donc le second membre de l’expression de f ′(z) dans la proposition est bien convergent.

La proposition s’applique aussi à f ′, f ′′, etc. et l’on obtient par une récurrence immédiate :

9
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Dans les conditions de la proposition 1.7, la fonction f admet des dérivées (au sens complexe) à tous les
ordres, données par des séries entières convergentes sur D(0, ρ). Précisément, pour k ∈ N∗ et z ∈ D(0, ρ),
on a :

f (k)(z) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)anz
n−k.

Corollaire 1.8

REMARQUE 1.2. On a

an =
f (n)(0)

n!
pour tout n ∈ N. En particulier, si f : D(0, ρ) ! C est somme de la série entière

∑
n∈N

anz
n, cette série est la série de

Taylor de f en 0.

Brook Taylor, est un homme de science anglais, né à Edmonton, aujour-

d’hui un quartier de Londres, le 18 août 1685, et mort à Londres le 29 dé-

cembre 1731. Principalement connu comme mathématicien, il s’intéressa

aussi à la musique, à la peinture et à la religion.

FIGURE 1 – z0 et r comme dans la question (1) de l’exercice 1.8.

EXERCICE DE COURS 1.8. L’objectif de l’exercice est de démontrer la proposition 1.7. Soit z0 dans D(0, ρ).

(1) Soit r tel que |z0| < r < ρ (voir la figure 1). Établir :

f(z0 + h)− f(z0)

h
−
∑
n>1

nanz
n−1
0 =

∑
n>2

anvn(h),

où vn(h) tend vers 0 quand h tend vers 0 à n fixé, et

|anvn(h)| 6 2n|an|rn−1,

pour tout h tel que |z0|+ |z0 − h| < r.

10
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(2) Conclure en observant que le membre de droite de la question (1) est le terme général d’une série conver-
gente, et qu’il tend vers 0 quand h tend vers 0.

1.4. Exponentielle complexe, fonctions circulaires et hyperboliques

Voici des exemples importants de séries entières, et donc de fonctions holomorphes.

La série entière
∑
n>0

zn

n!
est de rayon infini. Sa somme, notée exp, est appelée l’exponentielle complexe.

On a ainsi :
∀ z ∈ C, exp z =

∑
n>0

zn

n!
.

Définition 1.9

L’exponentielle complexe étend l’exponentielle réelle. On note donc souvent ez au lieu de exp z.

Une fonction entière est une fonction holomorphe définie sur le plan complexe C tout entier.

Définition 1.10

L’exponentielle complexe est donc une fonction entière. Le théorème suivant se démontre à l’aide du produit de
Cauchy de deux séries entières.

Pour tous z, z′ ∈ C,
ezez

′
= ez+z

′
.

Théorème 1.11 – produit de deux exponentielles

EXERCICE DE COURS 1.9.

(1) Vérifier que la la série entière
∑
n>0

zn

n!
est en effet de rayon infini, et démontrer le théorème 1.11.

(2) Montrer que pour tout z ∈ C,
1

ez
= e−z, (ez)n = enz (n ∈ N), ez = ez̄, |ez| = eRe(z).

(i) L’application exp: z 7! ez est un morphisme surjectif du groupe (C,+) sur le groupe (C∗,×).

(ii) Il existe un unique réel positif, noté π, tel que Ker(exp) = 2iπZ.

(iii) On a eiπ = −1 et eiπ/2 = i.

Théorème 1.12 – l’application exponentielle est continue et surjective

11
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Tout nombre complexe non nul z ∈ C∗ admet donc une expression polaire

z = reiθ

où r = |z| ∈ ]0,+∞[ et où θ ∈ R est défini modulo 2πZ.

Le fait que exp soit un morphisme de groupes est clair d’après le théoreme 1.11. La surjectivité découle de l’exer-
cice suivant.

EXERCICE DE COURS 1.10 (surjectivité de l’exponentielle). À l’aide du corollaire 1.6, montrer que l’appli-
cation exp est ouverte, c’est-à-dire que l’image de tout ouvert est un ouvert de C. En déduire que l’image de exp

est un ouvert de C et que l’application exp est surjective.

EXERCICE DE COURS 1.11.

(1) Vérifier que Ker(exp) ⊂ iR.

(2) Déterminer le noyau du morphisme de groupes

ψ : t ∈ (R,+) 7! eit ∈ (U,×)

où U est l’ensemble des nombres complexes de modules 1. En déduire l’assertion (ii) du théorème 1.12.

(3) Montrer l’assertion (iii) du théorème 1.12.

On définit aussi, pour tout z ∈ C,

cos z =

+∞∑
n=0

(−1)n
z2n

(2n)!
, sin z =

+∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

ch z =

+∞∑
n=0

z2n

(2n)!
, sh z =

+∞∑
n=0

z2n+1

(2n+ 1)!
.

Les séries entières ci-dessus sont toutes de rayon infini, et leurs sommes coïncident sur R avec les fonctions cos, sin,
ch et sh respectivement.

Pour tout z de C, on a :

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, ch z =

ez + e−z

2
, sh z =

ez − e−z

2
.

Proposition 1.13 – autres expressions des fonctions circulaires et hyperboliques

En particulier, pour tout z ∈ C, on a

cos z + i sin z = eiz, cos z − i sin z = e−iz, ch z + sh z = ez, ch z − sh z = e−z,

cos z = ch(iz), i sin z = sh(iz).

EXERCICE DE COURS 1.12. Montrer pour tout z ∈ C :{
cos z = 0 ⇐⇒ z ∈ π

2
+ πZ,

sin z = 0 ⇐⇒ z ∈ πZ.

Pour tout z ∈ C \
(π

2
+ πZ

)
, on pose

tan z =
sin z

cos z
,

et pour tout z ∈ C \ πZ, on pose

cotan z =
cos z

sin z
.

12
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On se convaincra aisément que les formules de trigonométrie relatives aux fonctions circulaires d’une variable
réelle restent en grande partie valables pour les fonctions circulaires d’une variable complexe. On a par exemple pour
tout (z, w) ∈ C2 :

cos2 z + sin2 z = 1,

cos(z + w) = cos z cosw − sinw sin z,

sin(z + w) = sin z cosw + cos z sinw,

cos z + cosw = 2 cos
(z − w

2

)
cos
(z + w

2

)
,

sin z + sinw = 2 sin
(z + w

2

)
cos
(z − w

2

)
, etc.

D’après la proposition 1.13 et ses conséquences, notamment,

i sh z = sin(iz), ch z = cos(iz),

on obtient les formules de trigonométrie hyperbolique à partir des formules de trigonométrie circulaire. Par exemple, à
partir de la relation sin(z − w) = sin z cosw − cos z sinw, on obtient pour tout (z, w) ∈ C2 :

sh(z − w) = sh(z)ch(w)− ch(z)sh(w).

,
En revanche, les relations

cos t = Re(eit) et sin t = Im(eit)

ne sont valables que lorsque t ∈ R.

1.5. Logarithme(s)

Dans le domaine réel, l’application exp: R ! R∗+ est une bijection croissante. Son inverse est le logarithme
néperien, noté log : R∗+ ! R. Dans le domaine complexe, l’application exp: C! C∗ est surjective, mais non injective.
Quand z ∈ C∗ s’écrit z = ew = ea+ib = eaeib, nous observons que :

— la partie réelle a de w est bien définie, avec a = log |z|.

— la partie imaginaire b de w n’est déterminée qu’à 2π près. On dit que b est
�� ��un argument de z.

Lorsqu’on écrit z ∈ C∗ sous la forme z = ew, le complexe w est appelé
�� ��un logarithme de z : il n’est défini qu’à 2iπ

près. On dit que le logarithme complexe est une fonction multiforme (ou multivaluée).

Soit Ω ⊂ C∗ un ouvert. Une fonction f : Ω ! C est appelée une détermination continue du logarithme
lorsque

(i) f est continue,

(ii) pour tout z ∈ Ω, on a z = ef(z).

Définition 1.14

EXERCICE DE COURS 1.13.

(1) Montrer qu’il n’existe pas de détermination continue du logarithme sur C∗ tout entier.

(2) Soient Ω un ouvert connexe de C∗ et f0 : Ω ! C une détermination continue du logarithme sur Ω.
Montrer que les autres déterminations continues du logarithme sur Ω sont exactement les fonctions

fn = f0 + 2iπn pour n ∈ Z.

13
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Soit Ω un ouvert de C∗.

(i) Si f : Ω! C est une détermination continue du logarithme sur Ω, alors f est holomorphe et on a,
pour tout z ∈ Ω :

f ′(z) =
1

z
.

(ii) On suppose que l’ouvert Ω est
�� ��connexe . Soit g ∈ Ω ! C une fonction holomorphe telle que

g′(z) =
1

z
pour tout z ∈ Ω. Alors il existe une constante α ∈ C telle que

Ω! C, z 7! g(z)− α
soit une détermination continue du logarithme.

Proposition 1.15 – conditions nécessaire et suffisante pour avoir une détermination continue du logarithme

EXERCICE DE COURS 1.14.

(1) Démontrer l’assertion (i) de la proposition.

�
Indication : remarquer que exp(f(z + h)− f(z)) = 1 +

h

z
et utiliser le développement

limité de exp au voisinage de 0.

(2) Démontrer l’assertion (ii) de la proposition.

�
Indication : poser h(z) =

exp(g(z))

z
et appliquer la proposition 1.3.

REMARQUE 1.3. Si f : Ω! C est une fonction continue sur un ouvert Ω de C, une primitive de f est une fonction
holomorphe F : Ω ! C telle que F ′ = f . Nous étudierons l’existence de primitives holomorphes pour une fonction
continue en détail plus loin dans le cours.

Puisque l’exponentielle exp: C ! C∗ est un morphisme de groupes surjectif, de noyau Ker exp = 2iπZ, sa
restriction à la bande horizontale semi-fermée

{z ∈ C : − π 6 Im(z) < π}

est donc bijective.

L’image de la droite {z ∈ C : Im(z) = −π} est C∗ ∩ R60. Il s’ensuit que la restriction

exp: {z ∈ C : − π < Im(z) < π} −! C \ R60

de exp à la bande ouverte est une application holomorphe bijective, dont la dérivée est partout non nulle.

Elle réalise donc un biholomorphisme entre ces deux ouverts (voir la proposition 1.5). L’application réciproque

`π : C \ R60 −! {z ∈ C : − π < Im(z) < π}

est appelée la détermination principale du logarithme. Elle prolonge au plan coupé C \ R60 le logarithme réel
log : R∗+ ! R.

Nous avons rencontré ce logarithme lors de l’exercice 1.5.

,
Les règles usuelles du logarithme réel ne sont plus toujours valables. Par exemple,

−2iπ

3
= log(j2) 6= 2 log(j) =

4iπ

3
.

La détermination principale de l’argument correspondante, notée argπ , prend ses valeurs dans ]− π, π[.

14
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EXERCICE DE COURS 1.15. Montrer que cette détermination principale du logarithme est maximale, au sens
où elle ne se prolonge pas en une détermination continue du logarithme sur un ouvert plus grand.

+
Dans la suite du cours, log(z) désignera toujours la détermination principale du logarithme.

EXERCICE DE COURS 1.16.

(1) Montrer que la détermination principale du logarithme est développable en série entière sur le disque
ouvert D(1, 1) et que l’on a pour tout z ∈ D(1, 1),

log(z) = `π(z) =

∞∑
n=0

(−1)n
(z − 1)n+1

n+ 1
.

(2) Soit a ∈ C∗.

(2.1) Montrer que la fonction z 7!
1

z
est développable en série entière sur le disque ouvert D(a, |a|) et

déterminer ce développement.

(2.2) Montrer qu’il existe une détermination continue du logarithme ` : D(a, |a|) ! C et que ` est
développable en série entière sur le disque ouvert D(a, |a|). Expliciter son dévelopement.

REMARQUE 1.4. Si ∆ est une demi-droite fermée issue de l’origine et si α ∈ R est un argument (commun!) pour
tous les éléments de ∆ \ {0}, on obtient de même une détermination continue du logarithme

`α : C \∆ −! {z ∈ C : α− 2π < Im(z) < α}

sur le plan coupé C \∆.
Les déterminations `α et log = `π ont même partie réelle, égale à z 7! log |z|.

Soit k ∈ N∗. Un nombre complexe non nul z possède exactement k racines k-ième w telle que wk = z, qui
diffèrent toutes d’une racine k-ième de l’unité.

Comme pour le logarithme, on peut se poser la question de l’existence d’une détermination continue (ou holo-
morphe) de la fonction racine k-ième sur un ouvert de C∗.

EXERCICE DE COURS 1.17. Soit Ω ⊂ C∗. un ouvert sur lequel il existe une détermination continue (donc
holomorphe) ` : Ω! C du logarithme. Montrer que l’application

rk : Ω −! C, z 7−! exp

Å
1

k
`(z)

ã
.

fournit une détermination holomorphe de la racine k-ième sur Ω.

Fonctions multiformes et surfaces de Riemann
Les calculs faisant intervenir des fonctions multiformes sont parfois lourds et compliqués. Riemann a
eu l’idée de transformer les fonctions multiformes en fonctions uniformes (un point n’a qu’une seule
image), en modifiant le domaine de définition. Il recolle pour cela continûment plusieurs représenta-
tions du domaine de définition, les feuillets, et obtient le concept de surface de Riemann.

15
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Georg Friedrich Bernhard Riemann, né le 17 septembre 1826 à Brese-

lenz, État de Hanovre, mort le 20 juillet 1866 à Selasca, hameau de la

commune de Verbania, Italie, est un mathématicien allemand. Influent sur

le plan théorique, il a apporté de nombreuses contributions importantes

à l’analyse et à la géométrie différentielle, certaines d’entre elles ayant

permis par la suite le développement de la relativité générale.

FIGURE 2 – Surfaces de Riemann associées au logarithme et à la racine carrée

16
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1.6. Fonctions analytiques

Soit Ω un ouvert de C.

On dit qu’une fonction f : Ω ! C est analytique si, pour tout point a ∈ Ω, il existe un réel r > 0 et une
série entière

∑
n>0

anz
n de rayon de convergence > r tels que le disque ouvert D(a, r) soit contenu dans Ω

et que, pour tout point z de ce disque,

f(z) =

∞∑
n=0

an(z − a)n.(3)

Définition 1.16

D’après la proposition 1.7 et son corollaire 1.8, une telle fonction est indéfiniment dérivable au sens complexe
sur Ω. De plus, d’après la remarque 1.2, les coefficients an apparaissant dans la formule (3) sont nécessairement
donnés par

an =
f (n)(a)

n!
.

Le développement (3) n’est autre que le développement de Taylor de f au point a :

f(z) =

∞∑
n=0

f (n)(a)

n!
(z − a)n.

EXERCICE DE COURS 1.18. Montrer que l’ensemble des fonctions analytiques sur Ω forme une algèbre
unitaire et que les fonctions polynomiales et l’application exp sont analytiques sur C.

�
Utiliser le produit de Cauchy de deux séries entières.

Montrer aussi que la fonction z 7! 1/z est analytique sur C∗.

On peut généraliser les exemples de l’exercice précédent.

La somme

f(z) =
∞∑
n=0

anz
n

d’une série entière de rayon de convergence ρ > 0 définit une fonction analytique sur le disque
ouvert D(0, ρ).

Proposition 1.17 – la somme d’une série entière est une fonction analytique

D’après le corollaire 1.8, on sait déjà que f est indéfiniment dérivable sur D(0, ρ) et que pour tout z0 ∈ D(0, ρ),

f (n)(z0) =

∞∑
k=n

k!

(k − n)!
akz

k−n
0 .

EXERCICE DE COURS 1.19. Soient z0 ∈ D(0, ρ) et z ∈ D(z0, ρ− |z0|).

(1) En exprimant f(z) d’une part, et
∞∑
n=0

f (n)(z0)

n!
(z − z0)n d’autre part, en fonction des coefficients an

et des puissances (z − z0)n, montrer que le développement de Taylor
∞∑
n=0

f (n)(z0)

n!
(z − z0)n converge

vers f(z) si la somme double ∑
(n,k)∈N2

n6k

k!

n!(k − n)!
akz

k−n
0 (z − z0)n

17
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est absolument sommable.

(2) Montrer que c’est le cas, et conclure.

Nous verrons plus loin l’équivalence entre holomorphie et analycité (Théorème 2.4).

REMARQUE 1.5. L’exercice 1.19 fournit une démonstration indépendante de l’holomorphie des séries entières
(Proposition 1.7). Réciproquement, la proposition 1.7 apparaîtra comme une conséquence de la proposition 1.17
lorsque nous disposerons du théorème 2.4 (équivalence entre holomorphie et analycité).

1.7. Zéros des fonctions analytiques

Soient Ω un ouvert de C et f : Ω ! C une fonction analytique. Considérons le développement de Taylor de f en
un point a de Ω :

f(z) =

∞∑
n=0

f (n)(a)

n!
(z − a)n,

valable pour tout z dans le disque ouvert D(a, ε) pour ε > 0 assez petit.

Deux possibilités se présentent :

1) ou bien toutes les dérivées f (n)(a) sont nulles ; f est alors nulle au voisinage de a,

2) ou bien l’une de ces dérivées est non nulle. Soit f (n0)(a) la première d’entre elles.

On peut alors écrire, si z ∈ D(a, ε),

f(z) =

∞∑
n=n0

f (n)(a)

n!
(z − a)n = (z − a)n0g(z),

où

g(z) =

∞∑
k=0

f (k+n0)(a)

(k + n0)!
(z − a)k.

La fonction g : D(a, ε)! C ainsi définie est analytique, donc continue, et

g(a) =
f (n0)(a)

n0!
6= 0.

Ainsi, g ne s’annule pas au voisinage de a, et f ne s’annule pas sur un voisinage épointé de a, c’est-à-dire
un voisinage de a privé du point a.

L’entier n0 est appelé la multiplicité, ou l’ordre du zéro de f en a, ou encore la valuation de f en a.
On le note va(f).

Définition 1.18

Autrement dit, va(f) est un entier positif défini, lorsque f n’est pas identiquement nulle au voisinage de a, par

va(f) = 0 ⇐⇒ f(a) 6= 0.

Rappelons qu’un point d’accumulation d’une partie A de Ω est un point a de l’adhérence de A \ {a} dans Ω.

18
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Soient Ω un ouvert
�� ��connexe non vide de C et f : Ω! C une fonction analytique. Les conditions suivantes

sont équivalentes :

(i) f est identiquement nulle sur Ω,

(ii) l’ensemble des zéros de f possède un point d’accumulation
�� ��dans Ω ,

(iii) il existe a ∈ Ω tel que, pour tout n ∈ N,

f (n)(a) = 0.

Théorème 1.19 – zéros des fonctions analytiques

EXERCICE DE COURS 1.20. L’objectif de cet exercice est de démontrer le théorème 1.19.

(1) Démontrer les implications (i)⇒ (ii) et (ii)⇒ (iii) à l’aide de la discussion précédente.

(2) On considère l’ensemble

Z = {z ∈ Ω: pour tout n ∈ N, f (n)(z) = 0}.
Montrer que Z est une partie à la fois fermée et ouverte de Ω et en déduire l’implication (iii)⇒ (i) du
théorème.

Soient f, g deux fonctions analytiques définies sur un ouvert
�� ��connexe Ω de C. Si f et g coïncident sur une

partie de Ω ayant un point d’accumulation dans Ω, alors elles coïncident.

Corollaire 1.20 – principe du prolongement analytique

Soit f une fonction analytique définie sur un ouvert
�� ��connexe Ω de C. Si f n’est pas identiquement nulle,

alors tous les zéros de f sont isolés.

Corollaire 1.21 – principe des zéros isolés

EXERCICE DE COURS 1.21. Démontrer ces deux corollaires à l’aide du théorème 1.19.

EXERCICE DE COURS 1.22. Soit
f(z) = sin

Å
π

1− z

ã
.

Montrer que f est analytique sur le disque ouvert D(0, 1). Déterminer les zéros de f . A-t-on une contradiction
avec le principe des zéros isolés?
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2
La théorie de Cauchy

2.1. Intégration le long d’un chemin

On rappelle qu’une application continue γ : [a, b] ! C définie sur un segment [a, b] de R est de classe C 1 par
morceaux lorsqu’il existe une subdivision

a = a0 < a1 < · · · < an = b

de son intervalle de définition telle que chaque restriction γ|[ai,ai+1] soit de classe C 1 (on ne considère alors que la
dérivée à droite en ai et à gauche en ai+1).

On appelle chemin de C une application γ : [a, b]! C de classe C 1 par morceaux définie sur un segment de R et
à valeurs dans C. On dit que γ est fermé, ou que c’est un lacet, lorsque γ(a) = γ(b).

FIGURE 3 – Un chemin et un chemin fermé

Soit f : Ω! C une fonction continue sur une partie Ω de C. On définit son intégrale de long d’un chemin
γ : [a, b]! Ω par : ∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

Définition 2.1

Z
Dans l’écriture

∫
γ

f(z)dz, la lettre z est une variable muette et peut être remplacée par n’importe quelle

autre lettre. On note parfois simplement
∫
γ

f .

L’intégrable d’une fonction continue le long d’un chemin est donc simplement l’intégrable d’une fonction de
variable réelle à valeurs complexes.

Voici quelques propriétés élémentaires de l’intégration de long d’un chemin. Soient Ω, γ et f comme dans la
définition 2.1.

(a) Invariance par reparamétrage. Soit ϕ : [α, β] ! [a, b] une bijection C 1 croissante. Posons γ̃ = γ ◦ ϕ.
Alors γ̃ est un chemin défini sur [α, β] et∫

γ̃

f(z)dz =

∫
γ

f(z)dz.
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(b) Chemin opposé. Soit γ∗ le chemin opposé à γ défini par

γ∗ : [a, b]! Ω, t 7! γ(a+ b− t).
Alors ∫

γ∗
f(z)dz = −

∫
γ

f(z)dz.

FIGURE 4 – chemin opposé

(c) Concaténation. Soit c ∈ [a, b] et soient

γ1 := γ|[a,c] et γ2 := γ|[c,b].
Le chemin γ est ainsi la « concaténation » des chemins γ1 et γ2, et on a :∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

On note parfois γ1 ∗ γ2 la concaténation des chemins γ1 et γ2.

FIGURE 5 – concatenation de deux chemins

(d) Majoration par la norme uniforme. Il découle de la formule de la définition 2.1 que∣∣∣∣∣
∫
γ

f(z)dz

∣∣∣∣∣ 6 sup
z∈γ([a,b])

|f(z)|
∫ b

a

|γ′(t)|dt.

L’intégrale
∫ b

a

|γ′(t)|dt est, par définition, la longueur de γ.

EXERCICE DE COURS 2.1. Soient Ω, γ et f comme dans la définition 2.1.

(1) Vérifier les propriétés ci-dessus.

(2) Supposons que Ω soit un ouvert de C et qu’il existe une fonction holomorphe F : Ω! C telle que

F ′ = f.

Montrer que ∫
γ

f(z)dz = F (γ(b))− F (γ(a)).

En déduire que si γ est un chemin fermé (un lacet), alors∫
γ

f(z)dz = 0.

(3) Soit γ : [0, 2π]! C le chemin défini par γ(t) = eit. Montrer que∫
γ

dz

z
= 2iπ.
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Une fonction holomorphe F comme à la question (2) de l’exercice 2.1 est appelée une primitive de f sur Ω. On
déduit de la question (3) que la fonction z 7! 1/z n’admet pas de primitive sur C∗.

+
Le calcul élémentaire de la question (3) est fondamental. Il sera la base de la définition de l’indice, et
du théorème des résidus.

Voici quelques chemins particuliers très utiles :

– si a ∈ C et r > 0, le cercle dans le sens direct de centre a et de rayon r désigne le chemin fermé

C (a, r) : [0, 2π] ! C
t 7! a+ reit.

Sa longueur est 2πr.

– pour (a, b) ∈ C2, le segment d’origine a et l’extrémité b désigne le chemin

[a, b] : [0, 1] ! C
t 7! a+ t(b− a).

Sa longueur est |b− a|.

EXEMPLE 2.1. Soit `π la détermination principale du logarithme. Alors pour tout w ∈ C \ R60, on a :

`π(w) =

∫
[1,w]

dz

z
.

On vérifie cela grâce à la proposition 1.15. Notons que le chemin [1, w] évite l’orgine !

EXERCICE DE COURS 2.2 (quelques exemples de calculs).

(a) Pour n ∈ Z, calculer l’intégrale : ∫
C (0,1)

zndz.

(b) Même question pour ∫
C (a,r)

zndz,

où C (a, r) est un cercle qui ne contient pas l’origine.

(c) Soient a, b ∈ C et r ∈ R∗+ tel que |a| < r < |b|. Montrer :∫
C (0,r)

1

(z − a)(z − b)
dz =

2iπ

a− b
.

2.2. La formule de Cauchy

Nous pouvons à présent énoncer et démontrer un résultat fondamental, la formule de Cauchy.

Soit f une fonction holomorphe sur un ouvert Ω de C, et soient a ∈ Ω et r > 0 tel que le disque fermé
D̄(a, r) soit contenu Ω. Pour tout z ∈ D(a, r), on a alors :

f(z) =
1

2iπ

∫
C (a,r)

f(w)

w − z
dw =

1

2π

∫ 2π

0

f(a+ reit)

a+ reit − z
reitdt.

Théorème 2.2 – formule de Cauchy

En particulier, la valeur de la fonction holomorphe f au centre du disque est égale à la moyenne de f sur le bord
du disque :

f(a) =
1

2π

∫ 2π

0

f(a+ reit)dt.
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On dit que f satisfait la propriété de la moyenne.

FIGURE 6 – Un disque fermé D̄(a, r) contenu dans un ouvert Ω

Dans les notations du théorème 2.2, posons pour tout n ∈ N :

an :=
1

2iπ

∫
C (a,r)

f(w)

(w − a)n+1
dw.

La série entière
∑
n>0

anz
n a un rayon de convergence > r et, pour tout z ∈ D(a, r), on a :

f(z) =
∑
n>0

an(z − a)n.

Corollaire 2.3

EXERCICE DE COURS 2.3. L’objectif de l’exercice est de démontrer le corollaire.

(1) Observer que pour tout z ∈ D(a, r) et tout w ∈ ∂D̄(a, r), où

∂D̄(a, r) = D̄(a, r) \D(a, r),

on a
1

w − z
=

1

w − a

Å
1− z − a

w − a

ã−1

=
1

w − a

∞∑
n=0

(z − a)n

(w − a)n
,

et que cette série, pour z fixé, converge uniformément en w ∈ ∂D̄(a, r).

(2) À l’aide de la formule de Cauchy (Théorème 2.2), démontrer le corollaire.

�
Remarquer que la convergence uniforme en w ∈ C (a, r) de

∞∑
n=0

f(w)

(w − a)n+1
(z − a)n

permet de permuter les signes
∫

C (a,r)

et
∞∑
n

.

Le corollaire 2.3 permet de démontrer le résultat suivant.
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Soit f : Ω! C une fonction définie sur un ouvert Ω de C. Les conditions suivantes sont équivalentes :

(i) f est holomorphe sur Ω,

(ii) f est analytique sur Ω.

Plus précisément, lorsqu’elles sont réalisées, pour tout disque ouvert D(a, ρ) contenu dans Ω, la série de
Taylor de f en a

∞∑
n=0

f (n)(a)

n!
(z − a)n

converge vers f(z) pour tout z ∈ D(a, ρ).

Théorème 2.4 – l’holomorphie et l’analycité sont équivalentes

Le théorème assure notamment que pour tout R ∈ ]0,+∞[, les fonctions analytiques sur le disque D(0, R) sont
exactement les fonctions définies par une série entière

∑
n>0

anz
n de rayon de convergence > R, et les fonctions analy-

tiques sur C, appelées fonctions entières (Définition 1.10), sont exactement les fonctions définies par une série entière
de rayon de convergence infini.

Voici en quels termes Cauchy énonce ce résultat (∼1841) :

La fonction f(x) sera développable par la formule de Maclaurin en une série entière convergente ordonnée suivant les

puissances ascendantes en x, si le module de la variable réelle ou imaginaire x conserve une valeur inférieure à celle pour

laquelle la fonction (ou sa dérivée du premier ordre) cesse d’être finie ou continue.

Colin Maclaurin (1698 – 1746) est un mathématicien écossais. Il fut pro-

fesseur de mathématiques au Marischal College à Aberdeen de 1717 à

1725 et à l’université d’Édimbourg de 1725 à 1745. Il fit des travaux

remarquables en géométrie, plus précisément dans l’étude de courbes

planes. Il écrivit un important mémoire sur la théorie des marées.

EXERCICE DE COURS 2.4. L’objectif de l’exercice est de démontrer le théorème 2.4.

(1) Démontrer l’implication (ii)⇒ (i) à l’aide de la proposition 1.7.

(2) Démontrer l’implication (i)⇒ (ii) et la dernière assertion à l’aide du corollaire 2.3.

Z
La situation dans le cas complexe est donc très différente du cas réel ! Rappelons qu’il existe des
fonctions f : R ! R de classe C 1 sans être de classe C∞ (par exemple x 7! |x|3). Par ailleurs la
fonction x 7! e−1/x2

, prolongée par continuité en 0, est de classe C∞, ses dérivées à tous les ordres
sont nulles en 0, donc sa série de Taylor en 0 est la série nulle. Pourtant f(x) 6= 0 si x 6= 0. Cette
fonction n’est donc pas développable en série entière, c’est-à-dire égale à sa somme de Taylor.

Z
Dans le domaine réel, il se peut également que le rayon de convergence de la série de Taylor d’une
fonction de classe C∞ soit nul (prendre par exemple an = n! dans le théorème de Borel ci-dessous).
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Émile Borel, né à Saint-Affrique le 7 janvier 1871 et mort à Paris le 3

février 1956, est un mathématicien français, professeur à la Faculté des

sciences de Paris. Il est connu pour ses travaux fondamentaux dans les

champs de la théorie de la mesure et des probabilités. Membre de l’Acadé-

mie des sciences, homme politique français, député et ministre, ses actions

pour la Société des Nations et au sein de son Comité fédéral de Coopéra-

tion européenne font de lui un des précurseurs de l’idée européenne.

On énonce, à titre culturel seulement, le résultat suivant, dû à Émile Borel.

Soit (an)n∈N une suite de nombres complexes. Il existe une fonction f : R! R de classe C∞ pour laquelle
pour tout n ∈ N, on a f (n)(0) = an.

Théorème 2.5 – Borel

2.3. Le principe du module maximum

Soit f une fonction analytique sur un ouvert Ω de C et soient a ∈ Ω et r > 0 tels que le disque fermé
D̄(a, r) soit contenu dans Ω. Pour tout n ∈ N, on a :

f (n)(a)

n!
=

1

2iπ

∫
C (a,r)

f(w)

(w − a)n+1
dw

et ∣∣∣∣∣f (n)(a)

n!

∣∣∣∣∣ 6 r−n max
θ∈[0,2π]

|f(a+ reiθ)|.(4)

Proposition 2.6

L’inégalité (4) de la proposition est appelée une inégalité de Cauchy.

EXERCICE DE COURS 2.5. Démontrer la proposition à l’aide du corollaire 2.3 et de la majoration de la
norme (d).

L’inégalité de Cauchy possède la conséquence remarquable suivante.

Une fonction entière, c’est-à-dire analytique sur C, bornée est constante.

Théorème 2.7 – Liouville

EXERCICE DE COURS 2.6. Démontrer le théorème à l’aide de la proposition 2.6.

26



L3 – Magistère de mathématiques Année 2025–2026

Joseph Liouville, né le 24 mars 1809 à Saint-Omer et mort le 8 septembre

1882 à Paris, est un mathématicien français. Il est le fils d’un militaire

décoré à la bataille d’Austerlitz et qui, en 1814, établit sa famille à Toul. Il

est diplômé de l’École polytechnique (1825). Deux ans plus tard, il intègre

l’École des ponts et chaussées, dont il n’obtient pas le diplôme en raison

de problèmes de santé et, surtout, de sa volonté de suivre une carrière

académique plutôt qu’une carrière d’ingénieur. Il obtient le doctorat ès

sciences mathématiques en 1836 devant la faculté des sciences de Paris

sous la direction de Siméon Denis Poisson et Louis Jacques Thenard.

Le théorème de Liouville implique notamment celui de d’Alembert–Gauss qui affirme que :

« tout polynôme P ∈ C[X] non constant possède une racine dans C ».

En effet, si P était un tel polynôme sans racine, la fonction 1
P serait entière non constante et bornée, car |P (z)| tend

vers +∞ quand |z| tend vers +∞, ce qui contredirait le théorème de Liouville.

Jean le Rond D’Alembert, né le 16 novembre 1717 à Paris où il est mort

le 29 octobre 1783, est un mathématicien, physicien, philosophe et ency-

clopédiste français. Il est célèbre pour avoir dirigé l’Encyclopédie avec

Denis Diderot jusqu’en 1757 et pour ses recherches en mathématiques sur

les équations différentielles et les dérivées partielles.

Johann Carl Friedrich Gauss, né le 30 avril 1777 à Brunswick et mort

le 23 février 1855 à Göttingen, est un mathématicien, astronome et phy-

sicien allemand. Doté d’un grand génie, il apporte de très importantes

contributions à ces trois sciences. Surnommé « le prince des mathémati-

ciens », il est considéré comme l’un des plus grands mathématiciens de

tous les temps.

Rappels (identité de Parseval). Soit f : R! C une fonction T -périodique de carré intégrable sur une
période (par exemple, une fonction T -périodique continue par morceaux). On définit ses coefficients
de Fourier par :

cn =
1

T

∫ T

0

f(t)e−in
2π
T tdt.

L’égalité de Parseval affirme la convergence de la série suivante et énonce l’identité :
+∞∑

n=−∞
|cn|2 =

1

T

∫ T

0

|f(t)|2dt = ‖f‖2.

Marc-Antoine Parseval des Chênes, né le 27 avril 1755 à Rosières-aux-

Salines et mort le 16 août 1836 à Paris, est un mathématicien français. On

a donné son nom à l’égalité de Parseval, une formule fondamentale de la

théorie des séries de Fourier.
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Jean Baptiste Joseph Fourier est un mathématicien et physicien français,

né le 21 mars 1768 à Auxerre et mort le 17 mai 1830 à Paris. Il est connu

pour avoir déterminé par le calcul la diffusion de la chaleur, en utilisant

la décomposition d’une fonction périodique en une série trigonométrique,

qui sous certaines conditions, converge vers la fonction. Il est aussi l’un

des premiers à avoir évoqué la notion d’effet de serre pour l’atmosphère

terrestre.

Sous les hypothèses de la proposition 2.6, on a une version plus précise :
∞∑
n=0

∣∣∣∣ 1

n!
f (n)(a)

∣∣∣∣2 r2n =
1

2π

∫ 2π

0

|f(a+ reiθ)|2dθ.

Proposition 2.8 – Parseval

Compte tenu de la majoration

1

2π

∫ 2π

0

|f(a+ reiθ)|2dθ 6 max
θ∈[0,2π]

|f(a+ reiθ)|2,

on retrouve l’inégalité de Cauchy (4) de la proposition 2.6.

EXERCICE DE COURS 2.7. Démontrer la proposition 2.8 à l’aide de l’identité de Parseval.

�
Indication : observer que les coefficients cn associés à la fonction 2π-périodique θ 7! f(a+ reiθ)

sont nuls pour n < 0.

On va maintenant affiner les estimées de Cauchy (4) pour obtenir des estimées de Cauchy
�� ��uniformes pour les

dérivées d’une fonction holomorphe sur une partie compacte de son domaine de définition.

Rappel de topologie. Soient Ω un ouvert de C et K un compact inclus dans Ω.

— On a
d(K,cΩ) = min{|a− b| : a ∈ K, b ∈ cΩ} > 0,

où d(K,cΩ) est la distance de K au complémentaire cΩ de Ω dans C.

— Pour tout r tel que 0 < r < d(K,cΩ), on définit le r-voisinage Kr de K par :

Kr :=
⋃
z∈K

D̄(z, r) = {w ∈ C : d(w,K) 6 r}.

Alors Kr est un voisinage compact de K inclus dans Ω (voir la figure 7).

Soient Ω un ouvert de C, K un compact contenu dans Ω, r ∈ R+ tel que 0 < r < d(K,cΩ) et f une
fonction holomorphe f : Ω! C. Pour tout n ∈ N, on a :

sup
z∈K

∣∣∣∣∣f (n)(z)

n!

∣∣∣∣∣ 6 r−n sup
z∈Kr

|f(z)|.

Corollaire 2.9 – estimées de Cauchy uniformes
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FIGURE 7 – Le voisinage compact Kr

EXERCICE DE COURS 2.8. Démontrer le corollaire.

Z
Là encore, on note la différence avec le cas réel ! Considérer par exemple, pour k ∈ N∗, la fonction
R! R, x 7! sin(kx).

La proposition 2.8 montre que si l’inégalité (4) pour n = 0 est une égalité, alors nécessairement f (n)(a) = 0 pour
tout n > 0. Jointe au principe du prolongement analytique, on obtient :

Soit f une fonction analytique sur un ouvert
�� ��connexe Ω de C. Si |f | admet un maximum local en un point

a de Ω, alors f est constante.

Proposition 2.10 – principe du maximum

La dénomination « principe du maximum » vient en fait de la conséquence suivante.

Soient f une fonction analytique sur un ouvert connexe Ω de C etM un réel positif. Si pour tout w ∈ Ω\Ω,

lim sup
z∈Ω
z!w

|f(z)| 6M

et que, de plus, lorsque Ω est non borné

lim sup
z∈Ω
|z|!∞

|f(z)| 6M,

alors
sup
z∈Ω
|f(z)| 6M.

Proposition 2.11

EXERCICE DE COURS 2.9. Démontrer la proposition à l’aide de la proposition 2.10.

�
Pour tout M ′ > M , considérer le compact (vérifier que c’est bien un compact !) :

KM ′ = {z ∈ Ω: |f(z)| >M ′},
et montrer que KM ′ est vide en raisonnant par l’absurde.

On a aussi la variante utile suivante.
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Soient Ω un ouvert connexe borné dans C et ∂Ω = Ω \ Ω sa frontière. Si f est une fonction continue à
valeurs complexes sur Ω, holomorphe sur Ω, alors pour tout z ∈ Ω,

|f(z)| 6 sup
w∈∂Ω

|f(w)|.

S’il existe z ∈ Ω tel qu’il y ait égalité, alors f est constante.

Proposition 2.12

EXERCICE DE COURS 2.10. Démontrer la proposition à l’aide de la proposition 2.10.

2.4. Homotopie des chemins et démonstration du théorème 2.2

Considérons le carré [0, 1]2 dans R2 et définissons un chemin fermé, C 1 par morceaux,

b : [0, 4]! R2,

qui « parcourt son bord dans le sens direct », comme l’unique application affine sur chacun des intervalles [0, 1], [1, 2],
[2, 3], [3, 4] telle que

b(0) = b(4) = (0, 0), b(1) = (1, 0), b(2) = (1, 1), b(3) = (0, 1).

FIGURE 8 – Le chemin b

À toute application
Γ: [0, 1]2 ! C

de classe C 1, nous pouvons associer le lacet C 1 par morceaux

∂Γ := Γ ◦ b : [0, 4]! C.

Ainsi, pour toute fonction continue f de Γ([0, 1]2\]0, 1[2) dans C, on a :∫
∂Γ

f(z)dz =

∫
Γ(−,0)

f(z)dz +

∫
Γ(1,−)

f(z)dz −
∫

Γ(−,1)

f(z)dz −
∫

Γ(0,−)

f(z)dz.

Le théorème suivant montre que les fonctions holomorphes – qui sont définies par une condition locale, satisfont
à une propriété globale remarquable concernant leurs intégrales le long des chemins.

Soient f une fonction holomorphe définie sur un ouvert Ω de C et Γ: [0, 1]2 ! Ω une application de
classe C 2. On a : ∫

∂Γ

f(z)dz = 0.(5)

Théorème 2.13
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Pour démontrer ce théorème, nous introduisons quelques notations. Considérons les chemins de classe C 1 (voir la
Figure 9) :

γs := Γ(s,−) : [0, 1]! Ω,

δs := Γ(−, 0) : [0, s]! Ω,

δ̃s := Γ(−, 1) : [0, s]! Ω.

FIGURE 9 – Les chemins γs, δs, δ̃s

Pour démontrer le théorème 2.13, nous allons montrer que pour tout s ∈ [0, 1],∫
γs

f(z)dz −
∫
γ0

f(z)dz︸ ︷︷ ︸
=G(s)

=

∫
δ̃s

f(z)dz −
∫
δs

f(z)dz︸ ︷︷ ︸
=D(s)

.(6)

Avec s = 1, on obtient le théorème 2.13.

EXERCICE DE COURS 2.11. Notons G(s) le membre de gauche de l’expression (6), et D(s) son membre de
droite.

(1) En revenant à la définition de l’intégration le long d’un chemin, puis en dérivant et en utilisant la pro-
priété (3) de l’exercice 1.2, montrer que tout s ∈ [0, 1], on a :

G′(s) = D′(s).

(2) En déduire que G et D coïncident sur [0, 1] et conclure.

Soient f une fonction holomorphe sur un ouvert Ω et

Γ: [0, 1]2 ! Ω

une application de classe C 2. Supposons que les chemins γs, définis pour tout s ∈ [0, 1] par

γs := Γ(s,−) : [0, 1]! Ω

satisfont à l’une des conditions suivantes :

(i) pour tout s ∈ [0, 1], γs est un chemin fermé,

(ii) γs(0) (resp. γs(1)) est indépendant de s ∈ [0, 1].

Alors ∫
γ1

f(z)dz =

∫
γ0

f(z)dz.(7)

Corollaire 2.14
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Lorsque la condition (i) est réalisée on dit que Γ est une homotopie de lacets de classe C 2 à valeurs dans Ω reliant
γ0 et γ1.

Lorsque la condition (ii) est réalisée on dit que Γ est une homotopie de chemins d’extrémités fixés de classe C 2 à
valeurs dans Ω reliant γ0 et γ1.

EXERCICE DE COURS 2.12. Démontrer le corollaire à l’aide du théorème 2.13.

Pour tout triplet (α, β, γ) ∈ C2, on note ∆(α, β, γ) le triangle de sommets α, β, γ, c’est-à-dire l’enveloppe convexe
dans C de {α, β, γ}.

Soit f une fonction holomorphe sur un ouvert Ω de C. Pour tout triplet (α, β, γ) ∈ C2 tel que ∆(α, β, γ)

soit contenu dans Ω, on a : ∫
[α,β]

f(z)dz +

∫
[β,γ]

f(z)dz +

∫
[γ,α]

f(z)dz = 0.

Corollaire 2.15

EXERCICE DE COURS 2.13. Soit Γ: [0, 1]2 ! Ω l’application affine en chacune des variables telle que

Γ(0, 0) = Γ(0, 1) = α, Γ(1, 0) = β et Γ(1, 1) = γ.

Explicitement, on a :
Γ(s, t) = α+ s(β − α) + st(γ − β).

Cette application Γ est de classe C 2 et prend ses valeurs dans ∆(α, β, γ), donc dans Ω. En remarquant que

Γ(−, 0) = [α, β], Γ(1,−) = [β, γ], Γ(−, 1) = [α, γ],

et que Γ(0,−) est un chemin constant, démontrer le corollaire.

Les formules (5) et (7) sont souvent appelées formules de Cauchy.

DÉMONSTRATION DU THÉORÈME 2.2. Nous pouvons à présent démontrer la formule de Cauchy (Théorème 2.2)
à l’aide des formules de Cauchy ! Dans les notations de ce théorème, considérons pour tout ε ∈ ]0, r− |z − a|[ l’appli-
cation

Γ: [0, 1]2 ! C

telle que pour tout s ∈ [0, 1], γs = Γ(s,−) soit le cercle de centre c(s) = (1−s)a+sz et de rayon r(s) = (1−s)r+sε.
On a ainsi, pour tout (s, t) ∈ [0, 1]2 :

Γ(s, t) = (1− s)(a+ re2iπt) + s(z + εe2iπt).

Cette application est de classe C 2 et prend ses valeurs dans D̄(a, r) puisque a + re2iπt et z + εe2iπt appartiennent à
ce disque.

EXERCICE DE COURS 2.14. Montrer que l’image de Γ est disjointe de D(z, ε).

REMARQUE 2.1. En fait, l’image de Γ est exactement D̄(a, r) \D(z, ε) ; voir la figure 10.

En particulier, d’après l’exercice 2.14, Γ prend ses valeurs dans Ω \ {z}.

EXERCICE DE COURS 2.15.

(1) Appliquer le corollaire 2.14 à Γ et la fonction w 7!
f(w)

2iπ(w − z)
, holomorphe sur Ω \ {z}, pour obtenir

l’égalité
1

2iπ

∫
C (a,r)

f(w)

w − z
dw =

1

2iπ

∫
C (z,ε)

f(w)

w − z
dw.
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FIGURE 10 – L’image de Γ

(2) Montrer que le membre de droite de la question (1) tend vers f(z) quand ε tend vers 0.

Grâce à l’exercice 2.15 on établit l’égalité requise :

1

2iπ

∫
C (a,r)

f(w)

w − z
dw = f(z),

ce qui achève la démonstration. �

REMARQUE 2.2. Si on applique cette identité à la fonction w 7! (z − w)f(w) on obtient
1

2iπ

∫
C (a,r)

f(w)dw = 0.

Cette formule découle aussi directement de la formule de Cauchy puisqu’il existe clairement une homotopie de lacets
de classe C 2, à valeurs dans Ω, reliant le lacet C (a, r) au lacet constant égal à a.
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3
Construction et étude locale des fonctions analytiques

3.1. Primitives

Soit f : Ω! C une fonction continue définie sur un ouvert Ω de C. Rappelons qu’une fonction F : Ω! C est une
primitive de f sur Ω lorsque F est holomorphe de dérivée F ′ = f .

On constate d’emblée que les seules fonctions qui ont une chance d’admettre une primitive sont les fonctions
holomorphes !

EXERCICE DE COURS 3.1. Expliquer pourquoi !

EXEMPLE 3.1. (1) Pour n ∈ Z avec n 6= −1, l’application F définie par

F (z) =
zn+1

n+ 1

est une primitive de l’application f définie par f(z) = zn, sur C lorsque n > 0 et sur C∗ lorsque n 6 −2.

(2) Une détermination du logarithme f : Ω ⊂ C∗ ! C est une primitive de la fonction z 7!
1

z
sur l’ouvert Ω.

(3) La fonction z 7!
1

z
n’admet pas de primitive sur l’ouvert tout entier C∗ (voir l’exemple (3) de l’exercice 2.1).

EXERCICE DE COURS 3.2. Soit f une fonction holomorphe sur un disque ouvert D(a, r). Montrer que f
possède une primitive sur ce disque.

�
Indication : utiliser le théorème 2.4.

Nous allons généraliser l’exercice 3.2.

Rappel. Un ouvert Ω de C est dit étoilé s’il existe a ∈ Ω tel que, pour tout z ∈ Ω le segment [a, z]

soit contenu dans Ω. Dans ce cas, nous dirons que Ω est étoilé par rapport à a (voir la figure 11).

Soient Ω ⊂ C un ouvert étoilé et f : Ω! C holomorphe. Alors f admet une primitive F sur Ω.

Proposition 3.1

EXERCICE DE COURS 3.3. Le but de l’exercice est de démontrer la proposition. Soit a ∈ Ω tel que Ω soit
étoilé par rapport à a. Posons pour tout z ∈ Ω,

F (z) =

∫
[a,z]

f(w)dw.
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FIGURE 11 – Les deux ouverts sont étoilés par rapport à a, mais pas par rapport à b.

(1) Soient z0 ∈ Ω et ε > 0 tel que D(z0, ε) soit contenu dans Ω. Montrer que tout z ∈ D(z0, ε) le triangle
∆(a, z, z0) est contenu dans Ω. En déduire que

F (z)− F (z0) =

∫
[z0,z]

f(w)dw.

�
Indication : utiliser le corollaire 2.15.

(2) Montrer que F admet f(z0) comme dérivée au sens complexe en tout point z0 ∈ Ω, et conclure.

,
Une fonction holomorphe sur un ouvert Ω de C n’admet pas toujours de primitive holomorphe sur Ω.
D’après la question (2) de l’exercice 2.1, il est nécessaire pour cela que pour tout lacet de classe C 1

par morceaux γ dans Ω,
∫
γ

f(z)dz = 0.

Nous verrons que cette condition est en fait suffisante pour que f admette une primitive holomorphe (voir la
proposition 3.3).

Soient Ω un ouvert de C et f une fonction de Ω dans C. Les conditions suivantes sont équivalentes :

(i) f ∈ O(Ω),

(ii) f est continue et pour tout (α, β, γ) ∈ Ω3 tel que ∆(α, β, γ) ⊂ Ω, on a :∫
[α,β]

f(z)dz +

∫
[β,γ]

f(z)dz +

∫
[γ,α]

f(z)dz = 0.

Théorème 3.2 – Morera

Giacinto Morera, né le 18 juillet 1856 à Novare et mort le 8 février 1909 à

Turin, est un mathématicien italien. Son nom est associé en analyse com-

plexe au théorème de Morera. Il était membre de l’Académie nationale des

Lincei et de l’Académie des sciences de Turin.

Nous avons déjà vu l’implication (i)⇒ (ii) ; c’est le corollaire 2.15.

EXERCICE DE COURS 3.4. Le but de l’exercice est de démontrer l’autre implication du théorème 3.2. Puisque
l’holomorphie est une condition locale, on peut supposer que Ω est un disque ouvert D(a, r). On définit F comme
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dans l’exercice 3.3. Montrer alors que l’identité de la question (1) de l’exercice 3.3 reste valable. En reprenant mot
pour mot cet exercice, conclure que F est dérivable au sens complexe de dérivée f et conclure.

Soient Ω un ouvert quelconque de C, et f : Ω ! C une fonction holomorphe. La fonction admet une
primitive sur Ω si et seulement si pour tout lacet γ tracé dans Ω,∫

γ

f(z)dz = 0.

Proposition 3.3 – condition nécessaire et suffisante pour qu’une fonction holomorphe admette une primitive

Nous avons déjà vu que la condition de la proposition est nécessaire.

Pour montrer que la condition est suffisante, nous aurons besoin d’un rappel de topologie.

Rappel de topologie. Si Ω est un ouvert connexe de C, alors Ω est connexe par arcs continus par
morceaux de classe C 1. Si a ∈ Ω, alors l’ouvert Ω\{a} est encore connexe (et donc connexe par arcs
continus par morceaux de classe C 1).

EXERCICE DE COURS 3.5. Le but de l’exercice est de démontrer la proposition 3.3.
Soit f comme dans la proposition. On veut montrer que f admet une primitive sur Ω. On peut supposer que

Ω est connexe. D’après le rappel (que l’on essayera de démontrer !), Ω est alors connexe par arcs continus par
morceaux de classe C 1.

Soit z0 ∈ Ω. Posons pour tout z ∈ Ω,

F (z) =

∫
γ

f(w)dw,

où γ est n’importe quel chemin de Ω joignant z0 à z (voir la figure 12).

(1) Montrer que l’application F est bien définie.

(2) Soient ε > 0 tel que D(z, ε) ⊂ Ω. Montrer que la restriction de F à D(z, ε) est une primitive de f sur
D(z, ε) et conclure.

FIGURE 12 – Lacets joignant z0 et z dans Ω

EXERCICE DE COURS 3.6. Soient Ω un ouvert étoilé de C et f : Ω ! C∗ une fonction holomorphe qui ne
s’annule pas.

(1) Montrer qu’il existe une fonction holomorphe g : Ω ! C telle eg = f et que de telles applications
diffèrent d’une constante additive dans 2iπZ.
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(2) Pour tout k ∈ N∗, montrer qu’il existe une fonction holomorphe h : Ω! C telle hk = f et que de telles
applications diffèrent d’une constante mutliplicative qui est une racine k-ième de l’unité.

EXERCICE DE COURS 3.7. Soient Ω un ouvert de C et f : Ω! C∗ une fonction holomorphe qui ne s’annule
pas.

(1) Soit γ : [0, 1]! Ω un lacet. Montrer que

1

2iπ

∫
γ

f ′(z)

f(z)
dz ∈ Z.

�
Indication : introduire la fonction λ : [0, 1]! C, t 7! exp

Ç∫
γ([0,t])

f ′(z)

f(z)
dz

å
.

(2) Montrer que f admet un logarithme holomorphe g : Ω ! C, i.e., f = eg , si et seulement si pour tout
lacet γ de Ω, on a ∫

γ

f ′(z)

f(z)
dz = 0.

(3) Soit k > 2. Montrer que f admet une racine k-ième de l’unité holomorphe h : Ω ! C, i.e., f = hk, si
et seulement si pour tout lacet γ de Ω on a

1

2iπ

∫
γ

f ′(z)

f(z)
dz ∈ kZ.

3.2. Limites, sommes et intégrales de fonctions analytiques

Soit Ω un ouvert de C.

Soit (fn)n∈N une suite de fonctions holomorphes définies sur Ω. On suppose que la suite (fn)n∈N converge
uniformément sur tout compact de Ω vers une fonction f : Ω! C. Alors :

(i) la limite f est holomorphe,

(ii) pour chaque k ∈ N∗, la suite des dérivées (f
(k)
n )n∈N converge localement uniformément vers la

dérivée f (k).

Théorème 3.4 – converge locale d’une suite de fonctions holomorphes

EXERCICE DE COURS 3.8. Le but de l’exercice est de démontrer le théorème 3.4.

(1) Démontrer l’assertion (i) à l’aide du théorème de Morera (Théorème 3.2).

(2) Démontrer l’assertion (ii) à l’aide des estimées de Cauchy uniformes (Corollaire 2.9) appliquées aux
fonctions holomorphes f − fn.

Z
Noter la différence avec les fonctions de variable réelle : considérer la suite de fonctions R ! R,
t 7!

(
t2 + 1

n

) 1
2 de classe C∞ qui converge uniformément vers la fonction t 7!

√
t non dérivable à

l’origine. Penser aussi à la suite de fonctions R! R, t 7!
1

k
sin(k2t) qui converge uniformément vers

0 alors que ses dérivées ne sont pas bornées.
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Soit (fn)n∈N une suite de fonctions holomorphes définies sur Ω telle que la série de fonctions
∑
n>0

fn

converge uniformément (resp. normalement) sur tout compact de Ω. Alors la fonction f : Ω ! C définie
comme la somme de cette série est holomorphe sur Ω. De plus, pour tout k ∈ N∗, la série

∑
n>0

f
(k)
n converge

vers f (k) uniformément (resp. normalement) sur tout compact de Ω.

Corollaire 3.5 – convergence locale d’une série de fonctions holomorphes

EXERCICE DE COURS 3.9. Démontrer le corollaire.

Soient I un intervalle de R et Ω un ouvert de C. Soit F : I×Ω! C une fonction satisfaisant aux conditions
suivantes :

(i) (holomorphie) pour tout t ∈ I , la fonction F (t,−) : Ω! C est holomorphe,

(ii) (continuité) la fonction F est continue sur I × Ω,

(iii) (domination) il existe une fonction mesurable ϕ ∈ L 1(I) telle qu’on ait pour tout z ∈ Ω et tout
t ∈ I ,

|F (t, z)| 6 ϕ(t).

Alors la fonction f : Ω! C définie par

f(z) =

∫
I

F (t, z)dt

est holomorphe sur Ω. De plus, pour tout k ∈ N, la fonction ∂kzF (t, z) satisfait encore aux
conditions (i) et (ii) et l’on a pour tout z ∈ Ω :

f (k) =

∫
I

∂kzF (t, z)dt.

Théorème 3.6 – holomorphie sous le signe intégrale

REMARQUE 3.1. L’holomorphie est une propriété locale. On peut donc remplacer l’hypothèse de domination par
une hypothèse de domination sur tout compact.

EXERCICE DE COURS 3.10. L’objectif de l’exercice est de démontrer le théorème. La domination assure que
la fonction F (−, z), pour z ∈ Ω, est intégrable sur I , et donc f est bien définie.

(1) Montrer que f est holomorphe à l’aide du théorème de Morera (Théorème 3.2).

(2) Démontrer les autres assertions du théorème.

REMARQUE 3.2. On peut aussi démontrer l’expression intégrale des dérivées de la fonction holomorphe f à l’aide
du corollaire 2.3 et du théorème de Fubini.

EXERCICE DE COURS 3.11 (la fonction Γ). Soit O = {z ∈ C : Re(z) > 0}.
(1) Soient z ∈ C et t un réel strictement positif. Donner un sens à l’expression tz .

(2) Montrer que l’application

Γ: O −! C, z 7−!

∫ ∞
0

e−ttz−1dt

définit une fonction holomorphe sur O.

(3) Soit k ∈ N∗. Exprimer pour z ∈ O, la dérivée Γ(k)(z) sous forme d’une intégrale.

Nous verrons à la section 4.6 d’autres propriétés de la fonction Γ.

La théorie de Cauchy conduit au critère d’holomorphie suivant, dans le même esprit que le théorème de Morera.
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Soient Ω un ouvert de C et f une fonction de Ω dans C. Les conditions suivantes sont équivalentes :

(i) f ∈ O(Ω),

(ii) f est
�� ��continue et pour tout a ∈ Ω et tout disque fermée D̄(a, r) de rayon r > 0 inclus dans Ω

et tout z ∈ D̄(a, r), on a :

f(z) =
1

2iπ

∫
C (a,r)

f(w)

w − z
dw.

Théorème 3.7 – critère d’holomorphie en terme de lacets

L’implication (i)⇒ (ii) n’est autre que le théorème 2.2.
L’implication (ii)⇒ (i) a été établie lors de la démonstration du corollaire 2.3.

3.3. Deux applications du théorème de Morera

Pour établir les théorèmes 3.4 et 3.6, nous aurions pu tout aussi bien faire usage du théorème 3.7 au lieu du
théorème de Morera.

Voici deux applications pour lesquelles il est plus difficile de se passer du théorème de Morera.

Soient Ω un ouvert de C et f : Ω ! C une fonction
�� ��continue . Si f est holomorphe sur Ω \ R, alors f est

holomorphe sur Ω tout entier.

Théorème 3.8 – une fonction continue, holomorphe sur Ω privé de la droite réelle, est holomorphe sur Ω

,
La détermination continue du logarithme n’est pas continue sur C∗ donc le théorème ne s’applique
pas !

EXERCICE DE COURS 3.12. Démontrer le théorème à l’aide du théorème de Morera.

Le théorème suivant se démontre aussi à l’aide du théorème de Morera.

Soit f une fonction à valeurs complexes définie sur un ouvert Ω de C. Si f est dérivable au sens complexe
en tout point de Ω, alors f est holomorphe sur Ω.

Théorème 3.9 – l’hypothèse C 1 dans l’holomorphie est superflue

Le théorème est une conséquence du lemme suivant.

Soient Ω un ouvert de C et f : Ω! C une fonction que l’on suppose derivable au sens complexe en chaque
point de Ω. Soit ∆ = ∆(α, β, γ) un triangle contenu dans Ω. Alors∫

∂∆

f(z)dz = 0.

Lemme 3.10 – Goursat

EXERCICE DE COURS 3.13.
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(1) Démontrer le lemme 3.10 à l’aide du théorème de Morera.

Z
Pas facile !

(2) Démontrer le théorème 3.9 à l’aide du Lemme 3.10 et du théorème de Morera.

3.4. Produits infinis

Les produits infinis jouent un rôle crucial dans bien des développements de la théorie des fonctions d’une variable
complexe.

Commençons par quelques rappels. Soit (un)n∈N une suite de nombres complexes, et soit pour tout n ∈ N :

pn :=

n∏
i=0

ui.

Si pn tend vers une limite p ∈ C lorsque n tend vers +∞, on écrit

p =

∞∏
n=0

un,

et on dit que le produit infini
∞∏
n=0

un converge.

En pratique, les produits infinis intéressants ont un terme général qui tend vers 1.

EXERCICE DE COURS 3.14. Soit (ai)i∈I une famille finie de nombres complexes. Montrer que :∏
i∈I

(1 + |ai|) 6 exp

(∑
i∈I
|ai|

)
,

et

∣∣∣∣∣∏
i∈I

(1 + ai)− 1

∣∣∣∣∣ 6∏
i∈I

(1 + |ai|)− 1.

(i) Pour tout suite (an)n∈N dans R+,
∞∏
n=0

(1 + an) converge si et seulement si
∞∑
n=0

an converge.

(ii) Si (an)n∈C est une suite complexe telle que
∞∑
n=0
|an| converge, alors

∞∏
n=0

(1 + an) converge vers

une limite P . De plus, P est nul si et seulement s’il existe n ∈ N tel que 1 + an = 0.

Proposition 3.11 – rappels sur les produits infinis

EXERCICE DE COURS 3.15. Démontrer la proposition.

Si l’on combine la proposition 3.11 et le théorème 3.4, on obtient la première assertion du théorème suivant.
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Soient Ω un ouvert connexe non vide de C et (un)n∈N une suite de fonctions holomorphes sur Ω dont

aucune ne vaut identiquement −1. Si la série
∞∑
n=0

un converge normalement sur tout compact de Ω, alors

le produit infini

f(z) =

∞∏
n=0

(1 + un(z))

converge uniformément sur tout compact de Ω et définit donc une fonction holomorphe f sur Ω.
De plus, f n’est pas identiquement nulle et pour tout z ∈ Ω, on a :

vz(f) =

∞∑
k=0

vz(1 + uk).

Théorème 3.12 – produits infinis de fonctions holomorphes

Rappelons que vz(f) désigne la multiplicité du zéro de f en z. À l’exception d’un nombre fini d’entre eux, tous
les termes de la somme du membre de droite dans l’expression de vz(f) sont nuls.

EXERCICE DE COURS 3.16. Démontrer le théorème.

3.5. Forme normale locale d’une fonction analytique non constante

Nous allons montrer qu’une fonction analytique non constante définie au voisinage connexe d’un point z0 de C a
« même allure au voisinage de z0 » que l’application z 7! zm, où m désigne la multiplicité vz0(f − f(z0)).

Soient Ω un ouvert
�� ��connexe de C, f une fonction holomorphe

�� ��non constante sur Ω et z0 un point de Ω.
Posons

w0 = f(z0) et m = vz0(f − f(z0)) ∈ N∗.

Il existe un voisinage ouvert sur U de z0 dans Ω, un réel r > 0 et une application biholomorphe

ϕ : U −! D(0, r)

telle que
ϕ(z0) = 0

et telle que pour tout z ∈ U ,
f(z) = w0 + ϕ(z)m.

Théorème 3.13 – forme normale locale d’une fonction analytique non constante

En posant
πm : C −! C

z 7−! zm.
,

le théorème se reformule en disant que le diagramme suivant commute

U
f

//

ϕ

��

∼

��

C

D(0, r)
w0+πm // D(w0, r

m)
?�

OO

Lorsque m = 1, le théorème découle du théorème d’inversion locale pour les fonctions holomorphes (Proposi-
tion 1.5).
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EXERCICE DE COURS 3.17.

(1) Montrer que pour tout α ∈ C, la série entière

rα(z) :=

∞∑
k=1

α(α− 1) · · · (α− k + 1)

k!
zk

a un rayon de convergence au moins égal à 1.

(2) Montrer que pour tout m ∈ N∗ et tout z ∈ D(0, 1),Ä
1 + r 1

m
(z)
äm

= 1 + z.

DÉMONSTRATION DU THÉORÈME 3.13. Par le raisonnement de la section 1.7 appliqué à f − w0 on voit qu’il
existe un voisinage ouvert Ω′ de z0 dans Ω et une fonction g ∈ O(Ω′) telle que, pour tout z ∈ Ω′,

f(z)− w0 = (z − z0)mg(z)

et
λ := g(z0) 6= 0.

La fonction λ−1g vaut ainsi 1 en z0 et prend donc ses valeurs dans D(1, 1) sur un voisinage ouvert Ω′′ de z0 dans Ω′.
Posons alors, pour tout z ∈ Ω′′ :

R(z) = r 1
m

(λ−1g(z)− 1).

La fonction ainsi définie est holomorphe sur Ω′′ et vérifie :

R(z0) = 0, (1 +R(z))m = λ−1g(z) si z ∈ Ω′′.

Enfin, choisissons µ ∈ C tel que µm = λ et posons, pour tout z ∈ Ω′′ :

ϕ(z) = µ(z − z0)(1 +R(z)).

On conclut grâce à l’exercice ci-dessous. �

EXERCICE DE COURS 3.18. Montrer que ϕ définit une fonction holomorphe sur Ω′′ qui satisfait aux condi-
tions du théorème 3.13.

3.6. Le théorème de l’application ouverte

Rappels. Si X et Y sont deux espaces topologiques, une application f : X ! Y est dite ouverte
lorsque pour tout ouvert U de X , f(U) est une partie ouverte de Y .
On vérifie aisément les assertions suivantes :

– une application f : X ! Y est ouverte si et seulement si pour tout voisinage V d’un point
x de X , f(V ) est un voisinage de f(x),

– si f : X ! Y est injective, alors f est ouverte si et seulement si f(X) est ouvert dans Y et
f−1 : f(X)! X est continue,

– la composée de deux applications ouvertes est ouverte.

Soit Ω un ouvert
�� ��connexe de C. Toute application holomorphe

�� ��non constante f : Ω! C est ouverte.

Proposition 3.14 – théorème de l’application ouverte

EXERCICE DE COURS 3.19. Démontrer la proposition à l’aide du théorème 3.13.

Le théorème 3.13 permet aussi de démontrer le résultat suivant.
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Soient Ω un ouvert de C et f : Ω! C une application holomorphe injective. Alors l’image f(Ω) est ouverte
et f est une application biholomorphe de Ω sur f(Ω).

Proposition 3.15 – théorème d’inversion globale

EXERCICE DE COURS 3.20. Démontrer la proposition à l’aide du théorème 3.13.

�
Indication : remarquer que, comme f est injective, elle n’est pas constante au voisinage de tout
point z0 ∈ Ω.

EXEMPLE 3.2. Voici quelques exemples déjà rencontrés.

1) Restreinte au demi-plan
{z ∈ C : Re(z) > 0}

la fonction z 7! z2 est injective, d’image C \ R−. La fonction holomorphe réciproque est la détermination
principale de la racine carrée, notée

√
−. On a ainsi pour tous r ∈ R∗+ et θ ∈]− π, π[,
√
reiθ =

√
reiθ/2.

2) Restreinte la bande horizontale ouverte

{z ∈ R : − π < Im(z) < π}

la fonction expontielle est injective, d’image C\R−. La fonction holomorphe réciproque est la détermination
principale du logarithme, notée log. On a ainsi pour tous r ∈ R∗+ et θ ∈]− π, π[,

log(reiθ) = log(r) + iθ.

La détermination principale du logarithme est l’unique primitive sur C \ R− de la fonction z 7!
1

z
valant 0

en 1 et, pour tout z ∈ C \ R−,
√
z = exp

Å
1

2
log z

ã
.

3) Pour tout λ ∈ C et tout z ∈ C \ R−, posons

zλ = exp(λ log z).

On définit ainsi une fonction holomorphe, partout non nulle, de C \ R−, de dérivée

d

dz
(zλ) = exp(λ log z)

λ

z
= λzλ−1.

Lorsque λ ∈ R∗+, pour tous r ∈ R∗+ et θ ∈]− π, π[,

(reiθ)λ = rλeiλθ.

On en déduit que pour tout λ ∈ R∗+ et tout (α, β,R) ∈ (R∗+)3 tels que

−π < α < β < π et − π < λα < λβ < π,

l’application z 7! zλ définit une bijection biholomorphe de

S(α, β,R) := {reiθ : r ∈ ]0, R[ et θ ∈ ]α, β[}

sur S(λα, λβ,Rλ).

EXERCICE DE COURS 3.21.

(1) Vérifier que l’on a, pour tout z ∈ C \ R−,

z
1
2 =
√
z.
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(2) À l’aide de l’exemple 3), montrer que l’on a pour tout z ∈ D(0, 1) :

(1 + z)λ = 1 +

∞∑
k=1

λ(λ− 1) · · · (λ− k + 1)

k!
zk = 1 + rλ(z),

avec rλ comme dans l’exercice 3.17.

(3) Montrer que, restreintes à la bande verticale ouverte{
z ∈ C : − π

2
< Re(z) <

π

2

}
,

les fonctions sin et tan sont injectives, d’images respectives

C \ (]−∞,−1] ∪ [1,+∞[) et C \ i(]−∞,−1] ∪ [1,+∞[).

Les fonctions réciproques sont, respectivement, arcsin et arctan.

(4) Montrer que pour tout z ∈ C \ (]−∞,−1] ∪ [1,+∞[),

1− z2 ∈ C \ R−, iz +
√

1− z2 ∈ C \ R−

et que

arcsin z =
i

2
log(iz +

√
1− z2).
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4
Fonctions méromorphes

4.1. Fonctions holomorphes sur une couronne et série de Laurent

Soient R1 et R2 deux éléments de R+ ∪ {+∞} tels que

0 6 R1 < R2.

On définit l’anneau ouvert ou couronne ouverte de centre l’origine et de rayons R1 et R2 par :

A(R1, R2) = {z ∈ C : R1 < |z| < R2}.
Soit (an)n∈Z une suite de nombres complexes telle que les rayons de convergences ρ et σ des séries entières

ϕ(z) =

∞∑
n=0

anz
n et ψ(w) =

∞∑
n=1

a−nw
n

satisfassent aux inégalités

ρ > R2 et σ >
1

R1
,(8)

avec la convention 1
0 = +∞.

FIGURE 13 – La couronne A(R1, R2).

Les sériesϕ etψ sont alors normalement convergentes sur les compacts, respectivement deD(0, R2) etD(0, R−1
1 ),

et définissent des fonctions holomorphes sur chacun de ces domaines (voir la figure 13). Par conséquent, les séries∑
n∈N

anz
n et

∑
n∈−N∗

anz
n,

et donc leur somme ∑
n∈Z

anz
n,(9)
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sont normalement convergentes sur tout compact de la couronne A(R1, R2) et définissent des fonctions holomorphes
sur celle-ci.

Une série de la forme (9) est appelée une série de Laurent. Lorsque les conditions (8) sont satisfaites, on dit que
la série de Laurent est convergente sur A(R1, R2). Ces conditions sont équivalentes à la convergence absolue en tout
point de A(R1, R2) de la série de Laurent (9).

Pierre Alphonse Laurent, né le 18 juillet 1813 à Paris et mort le 12 sep-

tembre 1854 à Avesnes-sur-Helpe, est un ingénieur militaire et mathéma-

ticien français connu pour la découverte des séries de Laurent.

EXERCICE DE COURS 4.1. Soit ϕ ∈ O(A(R1, R2)). Montrer que l’intégrale∫
C (0,r)

ϕ(z)dz

est indépendante de r ∈ ]R1, R2[.

�
Indication : considérer une homotopie de lacets de classe C 2 reliant C (0, r1) à C (0, r2) prenant
ses valeurs dans A(R1, R2), où r1, r2 ∈ ]R1, R2[, par exemple :

Γ(s, t) = ((1− s)r1 + sr2)e2iπt.

L’application qui à une suite de nombres complexe (an)n∈Z satisfaisant aux conditions (8) associe la fonc-
tion holomorphe sur A(R1, R2) définie par

f(z) =
∑
n∈Z

anz
n

est bijective.
La bijection réciproque envoie f ∈ O(A(R1, R2)) sur la suite (an)n∈Z définie par

an :=
1

2iπ

∫
C (0,r)

f(z)

zn+1
dz,(10)

où r ∈ ]R1, R2[.

Théorème 4.1 – les fonctions holomorphes sur la couronne sont les séries de Laurent de cette couronne

Pour démontrer le théorème, nous devons établir les deux assertions suivantes :

(i) si (an)n∈Z satisfait aux conditions (8) et si f(z) =
∑
n∈Z

anz
n sur A(R1, R2) alors la relation (10) est vérifiée

pour tout n ∈ Z,
(ii) si f ∈ O(A(R1, R2)) et si pour tout n ∈ Z, an est défini par (10), alors la série

∑
n∈Z

anz
n converge absolu-

ment vers f(z) pour tout z ∈ A(R1, R2).

EXERCICE DE COURS 4.2. Démontrer (i) en observant que la convergence normale de
∑
k∈Z

akz
k sur tout

compact de A(R1, R2) permet d’écrire
1

2iπ

∫
C (0,r)

z−n−1f(z)dz =
1

2iπ

∑
k∈Z

ak

∫
C (0,r)

zk−n−1dz.
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EXERCICE DE COURS 4.3. L’objectif de cet exercice est de démontrer (ii). Soient f ∈ O(A(R1, R2)), z un
point de A(R1, R2) et r1, r2 deux réels tels que

R1 < r1 < |z| < r2 < R2.

(1) Montrer que les intégrales

1

2iπ

∫
C (0,r1)

f(w)

w − z
dw et

1

2iπ

∫
C (0,r2)

f(w)

w − z
dw

sont indépendantes de tels r1, r2.

�
Appliquer l’exercice 4.1 à w 7!

f(w)

w − z
holomorphe sur A(R1, |z|) et A(|z|, R2) (voir la

figure 14).

(2) Montrer que

f(z) =
1

2iπ

∫
C (0,r2)

f(w)

w − z
dw − 1

2iπ

∫
C (0,r1)

f(w)

w − z
dw.

�
Appliquer l’exercice 4.1 à la fonction g : A(R1, R2)! C définie par

g(w) =


f(w)− f(z)

w − z
si w 6= z,

f ′(z) si w = z,

en s’assurant au préalable que g est bien holomorphe sur A(R1, R2).

(3) Conclure en démontrant l’assertion (ii).

FIGURE 14 – C (0, r1), C (0, r2) et z.

EXERCICE DE COURS 4.4. Développer en séries de Laurent les fonctions z 7! z2 exp

Å
1

z

ã
et z 7!

exp

Å
z +

1

z

ã
dans A(0,+∞), et la fonction z 7!

1

(z − 1)(z − 2)
dans A(0, 1), A(1, 2), A(2,+∞) et {z ∈

C : 0 < |z − 1| < 1}.
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4.2. Application : fonctions holomorhes périodiques

Soient ]a1, a2[⊂ R un intervalle ouvert non vide, avec −∞ 6 a1 < a2 6 +∞ et B(a1, a2) la bande ouverte de C
définie par

B(a1, a2) := {z ∈ C : Im(z) ∈ ]a1, a2[}.

Soit T ∈ R∗+. Posons

eT : C −! C∗

z 7−! exp

Å
2iπ

T
z

ã
.

L’application eT envoie surjectivement la bande B(a1, a2) sur la couronne A(R1, R2) où

R1 :=

exp

Å
−2π

T
a2

ã
si a2 ∈ R

0 si a2 = +∞

R2 :=

exp

Å
−2π

T
a1

ã
si a2 ∈ R

+∞ si a1 = −∞

EXERCICE DE COURS 4.5. Montrer que pour tout (z1, z2) ∈ C2,

eT (z1) = eT (z2) ⇐⇒ z2 − z1 ∈ TZ,

et que eT est localement biholomorphe.

On en déduit que l’algèbre des fonctions holomorphes T -périodiques sur B(a1, a2) est en bijection avec l’algèbre
des fonctions holomorphes sur la couronne A(R1, R2) via l’application

f 7−! f ◦ eT .

On obtient donc le théorème suivant.

Toute fonction holomorphe T -périodique s’écrit de façon unique sous la forme

f(z) =

+∞∑
n=−∞

ane
2iπnz/T ,

où (an)n∈Z est une suite complexe telle que les séries entières
+∞∑
n=0

anz
n et

+∞∑
n=1

a−nz
n

aient un rayon de convergence respectifs

ρ > R2 et σ >
1

R1
.

Réciproquement, pour toute suite (an)n∈Z satisfaisant à ces conditions, le membre de droite de l’expression
de f(z) est normalement convergent sur tout compact de B(a1, a2) et définit une fonction holomorphe T -
périodique.

De plus, pour tout w ∈ B(a1, a2) et tout n ∈ Z, on a :

an =
1

T

∫
[w,w+T ]

e−2iπnz/T f(z)dz.

Théorème 4.2

Pour résumer, une fonction holomorphe T -périodique sur une bande possède donc un développement de Fourier
normalement convergent sur tout compact de cette bande.
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4.3. Fonctions holomorphes sur un ouvert épointé

Soient Ω un ouvert de C, z0 un point de Ω, f une fonction holomorphe sur Ω\{z0} et ρ > 0 tel queD(z0, ρ) ⊂ Ω.

La fonction z 7! f(z + z0) est holomorphe sur le disque épointé D(0, ρ) \ {0}. Ce disque épointé coïncide avec
la couronne A(R1, R2) où R1 = 0 et R2 = ρ. On obtient donc que les intégrales

an :=
1

2iπ

∫
C (z0,r)

f(z)

(z − z0)n+1
dz

sont indépendantes de r ∈ ]0, ρ[, que la série entière

∞∑
n=1

a−nz
n (resp.

∞∑
n=0

anz
n)

a un rayon de convergence infini (resp. > ρ) et que, sur D(z0, ρ) \ {z0}, on dispose du développement de f en série de
Laurent :

f(z) =
∑
n∈Z

an(z − z0)n.(11)

En particulier, la série

h(z) =

+∞∑
n=1

a−n(z − z0)−n

est convergente et définit une fonction holomorphe sur C \ {z0}. On l’appelle la partie singulière de f en z0.

Pour tout z ∈ D(z0, ρ) \ {z0}, il vient :

f(z)− h(z) =

∞∑
n=0

an(z − z0)n.

Par conséquent, la fonction f − h, a priori définit sur Ω \ {z0}, se prolonge en un fonction analytique sur Ω.

Par ailleurs, la définition des an montre aussitôt que pour tout n ∈ Z et tout r ∈ ]0, ρ[,

|an| 6 r−n max
z∈∂D̄(z0,r)

|f(z)|.

Les conditions suivantes sont équivalentes :

(i) f est bornée sur un voisinage épointé de z0,

(ii) pour tout entier n < 0, an = 0,

(iii) f se prolonge en une fonction f̃ ∈ O(Ω).

Théorème 4.3 – théorème de prolongement de Riemann

Lorsque les conditions du théorème sont réalisées, on dit que f possède une singularité illusoire en z0. On dit
parfois, par abus de langage, que f est holomorphe en a.

EXERCICE DE COURS 4.6. Démontrer le théorème.
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Les conditions suivantes sont équivalentes :

(i) |f(z)| tend vers +∞ quand z ∈ Ω \ {z0} tend vers z0,

(ii) il existe k ∈ N∗ tel que a−k 6= 0 et tel que

n < −k ⇒ an = 0,

(iii) il existe un polynôme non constant P ∈ C[X] tel que

f(z)− P
Å

1

z − z0

ã
se prolonge en une fonction holomorphe sur Ω.

Théorème 4.4 – théorème de prolongement à l’infini

Lorsque les conditions du théorème sont réalisées, l’entier k de (ii) est uniquement déterminé et l’on dit que f
possède un pôle d’ordre k en z0.

EXERCICE DE COURS 4.7. L’objectif de l’exercice est de démontrer le théorème 4.4.

(1) Démontrer l’implication (i)⇒ (ii).

�
Indication : observer que la fonction g = 1/f est holomorphe sur un voisinage épointé
de z0 avec une singularité illusoire en z0, qu’elle se prolonge donc en une fonction
holomorphe g̃ définie sur un voisinage de z0 que l’on peut écrire

g̃(z) = (z − z0)kh(z),

où k est l’ordre de g̃ en z0 et h est une fonction holomorphe non nulle en z0.

(2) Démontrer l’implication (ii)⇒ (iii).

(3) Démontrer l’implication (iii)⇒ (i).

On dit que f est méromorphe en z0 si z0 est une singularité illusoire ou un pôle de f .
Lorsque f n’est pas méromorphe en z0, on dit que f admet une singularité essentielle en z0.

Définition 4.5

On peut étendre la définition de l’ordre ou valuation en z0 (voir la définition 1.18) d’une fonction analytique au
voisinage de z0 en posant

vz0(f) := inf{n ∈ Z : an 6= 0} ∈ Z ∪ {±∞}.

On dispose alors des équivalences suivantes :

f est nulle au voisinage de z0 ⇐⇒ vz0(f) = +∞
f admet z0 comme zéro d’ordre k ⇐⇒ vz0(f) = k

f admet une singularité illusoire en z0 ⇐⇒ vz0(f) > 0

f admet z0 comme pôle d’ordre k ⇐⇒ vz0(f) = −k
f est méromorhe en z0 ⇐⇒ vz0(f) > −∞
f admet une singularité essentielle en z0 ⇐⇒ vz0(f) = −∞

De plus, ou voit sur le développement de Laurent 11 que, lorsque vz0(f) ∈ Z (i.e., f est méromorphe en z0 et non
identiquement nulle au voisinage de z0), c’est l’unique entier k tel que la fonction

g(z) =
f(z)

(z − z0)k
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se prolonge en une fonction holomorphe sur Ω, non nulle en z0.

EXERCICE DE COURS 4.8 (propriétés de la valuation).

(1) Supposons que vz0(f) ∈ Z. Montrer que la fonction 1/f est définie et holomorphe sur un voisinage
épointé de z0 dans Ω, qu’elle est méromorphe en z0 et que

vz0

Å
1

f

ã
= −vz0(f).

(2) Soient f1, f2 deux fonctions holomorphes sur Ω\{z0}méromorphes en z0. Montrer que f1f2 et f1 +f2

sont méromorphes en z0 et que

vz0(f1f2) = vz0(f1) + vz0(f2),

vz0(f1 + f2) > min (vz0(f1), vz0(f2)) .

L’énoncé suivant montre que le comportement d’une fonction holomorphe au voisinage d’une singularité essen-
tielle est « très sauvage ».

Les conditions suivantes sont équivalentes :

(i) f admet une singularité essentielle en z0,

(ii) pour tout r ∈ ]0, ρ[, f (D(z0, r) \ {z0}) est dense dans C.

Théorème 4.6 – Casorati–Weierstrass

Karl Theodor Wilhelm Weierstrass, né le 31 octobre 1815 à Ostenfelde

(Province de Westphalie), mort le 19 février 1897 à Berlin, est un mathé-

maticien allemand, lauréat de la médaille Copley en 1895.

Felice Casorati, Pavie, 1835 – Casteggio, 1890, est un mathématicien ita-

lien du XIXe siècle. Son nom est connu surtout en analyse complexe pour

le théorème de Weierstrass–Casorati. Il est le premier lauréat en 1868 du

prix mathématique de l’Académie italienne des sciences.

EXEMPLE 4.1. L’image de la fonction z 7! sin(1/z) au voisinage de 0 est C tout entier. Qu’en est-il de l’image
de z 7! exp(1/z)?
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EXERCICE DE COURS 4.9. Démontrer le théorème.

Les résultats précédents permettent aussi d’étudier les fonctions holomorphes au « voisinage de l’infini », i.e., les
fonctions holomorphes sur un ouvert de la forme C \K où K est une partie compacte de C.

Soit en effet h : C \K ! C une telle fonction, et soit

Ω := {z ∈ C∗ : z−1 ∈ C \K}.

C’est un ouvert de C (pourquoi ?), et l’on définit une fonction holomorphe

f : Ω −! C

en posant
f(z) = h(z−1).

On dit que h est holomorphe (resp. méromorphe, admet une singularité essentielle à l’infini) si f est holomorphe
(resp. méromorphe, admet une singularité essentielle en 0).

EXERCICE DE COURS 4.10. Exhiber des fonctions holomorphes n’ayant dans le plan complexe que les sin-
gularités suivantes :

1) un pôle triple en 0, un pôle simple en 1, un point singulier essentiel en i et −i,
2) un point singulier essentiel en tout entier relatif.

4.4. Fonctions méromorphes

Soit Ω un ouvert de C.

On appelle fonction méromorphe sur Ω une fonction holomorphe f sur le complémentaire Ω \ F d’une
partie discrète F de Ω, méromorphe en tout point de F .

Définition 4.7

On note M (Ω) l’ensemble des fonctions méromorphes sur Ω. C’est une algèbre contenant O(Ω) et, lorsque Ω est
non vide et connexe, c’est un corps.

ð
En fait, lorsque Ω est non vide et connexe, il est possible de montrer que M (Ω) s’identifie au corps
des fractions de O(Ω).

Soit (uα)α∈N une famille de fonctions méromorphes sur Ω. indexée par un ensemble dénombrable A. On dit que
la série de fonctions méromorphes

∑
α∈A

uα est normalement convergente sur tout compact de Ω si, pour tout compact

K de Ω, il existe une partie finie FK de A telle que, si α ∈ A \ {FK}, uα n’a pas de pôle dans K (i.e., est holomorphe
au voisinage de K) et telle que la série ∑

α∈A\{FK}

uα(12)

converge normalement sur K.
Lorsque cette condition est satisfaite, la réunion F des ensembles de pôles des uα, α ∈ A, est une partie discrète

de Ω, et pour tout z ∈ Ω \ F , la série

u(z) :=
∑
α∈A

uα(z)

est absolument convergente.
En appliquant le corollaire 3.5 aux sommes (12) on obtient la proposition suivante.
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(i) La fonction u est méromorphe sur Ω.

(ii) Pour tout k ∈ N, la série de fonctions méromorphes
∑
α∈A

u
(k)
α est normalement convergente sur

tout compact de Ω, et sa somme est u(k).

(iii) Enfin, si z0 ∈ Ω et si les développements en série de Laurent en z0 des uα et de u s’écrivent

uα(z) =
∑
n∈Z

aα,n(z − z0)n,

et
u(z) =

∑
n∈Z

an(z − z0)n,

alors pour tout n ∈ Z, on a∑
α∈A
|aα,n| <∞ et an =

∑
α∈A

aα,n.

Proposition 4.8 – série de fonctions méromorphes

EXERCICE DE COURS 4.11 (dérivées logarithmiques de produits infinis). Soient Ω un ouvert connexe et
∞∑
n=0

un une série de fonctions holomorphes sur Ω, donc aucune ne vaut identiquement −1, convergeant normale-

ment sur tout compact de Ω. Montrer que la série de fonctions méromorphes sur Ω
∞∑
n=0

u′n(z)

1 + un(z)

converge normalement sur tout compact de Ω vers la dérivée logarithmique
f ′(z)

f(z)
du produit infini

f(z) :=

∞∏
n=0

(1 + un(z)).

Z
D’après le théorème 3.12, f est une fonction holomorphe non identiquement nulle sur Ω.

Soient f une fonction méromorphe sur Ω et F l’ensemble de ses pôles. C’est une partie discrète (donc dénom-

brable) de C et pour tout a ∈ F , la partie singulière de f en a s’écrit Pa
Å

1

z − a

ã
, où Pa est un polynôme complexe

non nul, sans terme constant.

,
Attention : on ne peut pas toujours écrire

f(z) =
∑
a∈F

Pa

Å
1

z − a

ã
+ g(z),

avec g holomorphe sur Ω, car le membre de droite n’est pas convergent en général !

Lorsque Ω = C, une telle décomposition est possible quitte à modifier la partie singulière par Pa
Å

1

z − a

ã
−pa(z)

où pa est un polynôme.
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Soient F une partie discrète de C et (Pa)a∈F une famille de polynômes non nuls sans terme constant.

(i) Il existe une famille (pa)a∈F de polynômes telle que la série de fonctions méromorphes∑
a∈F

ï
Pa

Å
1

z − a

ã
− pa(z)

ò
soit normalement convergente sur tout compact de C, et définisse donc une fonction méromorphe

sur C admettant exactement F comme ensemble de pôles et Pa
Å

1

z − a

ã
comme partie singulière

en tout point a de F .

(ii) Toute fonction méromorphe f sur C satisfaisant à ces conditions s’écrit

f(z) =
∑
a∈F

ï
Pa

Å
1

z − a

ã
− pa(z)

ò
+ g(z),

où g est une fonction entière.

Théorème 4.9 – décomposition d’une fonction méromorphe sur C

DÉMONSTRATION DU THÉORÈME 4.9. Le seul point à établir est la possibilité de choisir des polynômes pa ren-
dant la somme ∑

a∈F

ï
Pa

Å
1

z − a

ã
− pa(z)

ò
normalement convergente sur tout compact.

∗ Lorsque F est fini, on peut prendre tous les pa nuls.

∗ Sinon, F est infini, fermé et discret et on peut énumérer ses éléments par module croissant

F = {an, n ∈ N}

avec
|a0| 6 |a1| 6 · · · 6 |an| 6 |an+1| 6 · · · ,

et l’on a
lim

n!+∞
|an| = +∞.

EXERCICE DE COURS 4.12. Pour tout n ∈ N, montrer que l’on peut choisir un polynôme pan de sorte que

|z| 6 |an| − 1 ⇒
∣∣∣∣Pan Å 1

z − a

ã
− pan(z)

∣∣∣∣ 6 1

2n
.

Si maintenant K est un compact de C, il existe N ∈ N tel que

|aN | > 1 + max
z∈K
|z|,

et l’exercice 4.12 montre alors que pour tout z ∈ K et n > N ,∣∣∣∣Pan Å 1

z − a

ã
− pan(z)

∣∣∣∣ 6 1

2n
,

d’où la convergence requise. �

4.5. Exemples

Dans de nombreux cas particuliers importants, on peut choisir comme polynômes pa certains polynômes explicites
très simples. Le théorème 4.9 conduit alors à des constructions remarquables de fonctions méromorphes ou à des
identités remarquables.

Nous allons voir deux illustrations de ce principe.
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4.5.1. Développement eulériens des fonctions trigonométriques. Les identités de l’exercice suivant ont été
établies par Euler dans les années 1730.

Leonhard Euler, né le 15 avril 1707 à Bâle et mort le 7 septembre 1783 à

Saint-Pétersbourg, est un mathématicien et physicien suisse, qui passa la

plus grande partie de sa vie dans l’Empire russe et en Allemagne. Il était

notamment membre de l’Académie royale des sciences de Prusse à Berlin.

EXERCICE DE COURS 4.13 (identités d’Euler).

(1) Établir, pour tout z ∈ C :

sin z = z

∞∏
n=1

Å
1− z2

n2π2

ã
.

(2) Établir, pour tout z ∈ C \ πZ :

cotan z =
1

z
+

∞∑
n=1

Å
1

z − nπ
+

1

z + nπ

ã
=

1

z
+

∑
n∈Z\{0}

Å
1

z − nπ
+

1

nπ

ã
1

sin2 z
=
∑
n∈Z

1

(z − nπ)2
.

(3) Montrer que le produit infini de la question (1) et les séries de fonctions méromorphes de la question (2)
convergent normalement sur tout compact de C.

En comparant les coefficients du développement en série de Laurent à l’origine des deux membres de la ques-
tion (1), on obtient une série infinie d’identités remarquables.

Rappelons que l’on définit des nombres réels bk par

x

ex − 1
=

∞∑
k=0

bk
xk

k!
.

On a b0 = 1, b1 = −1/2, bk = 0 si k > 3. On pose alors

b2k = (−1)k+1Bk, k ∈ N∗,

de sorte que l’on peut écrire
x

ex − 1
= 1− x

2
+

∞∑
k=1

(−1)k+1Bk
x2k

(2k)!
.

Les nombres Bk, qui sont rationnels par définition, sont les nombres de Bernoulli.

Daniel Bernoulli est un médecin, physicien et mathématicien suisse, né à

Groningue le 8 février 1700, et mort à Bâle, le 17 mars 1782.
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On a
B1 =

1

6
, B2 =

1

30
.

EXERCICE DE COURS 4.14 (développements eulériens).

(1) Établir, pour tout k ∈ N∗ :
∞∑
n=1

1

n2k
=

22k−1

(2k)!
Bkπ

2k.

(2) En déduire les identités :
∞∑
n=1

1

n2
=
π2

6
et

∞∑
n=1

1

n4
=
π4

90
.

ð
Les identités de la question (1) montrent d’une part que les nombres de Bernoulli Bk sont strictement
positifs, et d’autre part que les réels

1

π2k

∞∑
n=1

1

n2k

sont rationnels, ce qui est merveilleux !

4.5.2. Fonction ℘ de Weierstrass. Nous étudions dans ce paragraphe des fonctions méromorphes sur C admettant
un réseau comme période.

(1) On appelle réseau de C un sous-groupe Γ de C de la forme Zω1 + Zω2, où (ω1, ω2) est une base
de C considéré comme un R-espace vectoriel.

(2) On appelle fonction elliptique relativement à un réseau Γ de C une fonction méromorphe Γ-
périodique sur C.

Définition 4.10 – réseau et fonction elliptique

EXERCICE DE COURS 4.15. Montrer à l’aide du théorème de Liouville (Théorème 2.7) que toute fonction
elliptique holomorphe sur C est constante.

EXERCICE DE COURS 4.16. Soit Γ est un réseau de C. Montrer que la série∑
γ∈Γ\{0}

1

|γ|σ

est convergente pour tout σ ∈ ]2,+∞[.

�
Indication : majorer cette série par un multiple d’une intégrale de la forme

∫ ∫
R2\K

dxdy

(x2 + y2)σ/2
,

où K est un voisinage compact de (0, 0).

Grâce à l’exercice 4.16, on peut considérer pour tout n > 3,

Gn(Γ) :=
∑

γ∈Γ\{0}

1

γn
,

appelée séries de Eisenstein de poids n. Avec −γ à la place de γ dans l’expression de Gn(Γ) on voit que Gn(Γ) est
nul lorsque n est impair.
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Ferdinand Gotthold Max Eisenstein, (16 avril 1823 – 11 octobre 1852) est un

mathématicien prussien. Comme Galois et Abel, Eisenstein est mort avant l’âge

de 30 ans, et comme Abel, sa mort est due à la tuberculose. Il est né et mort à

Berlin, Allemagne. Il fit ses études à l’Université de Berlin où Dirichlet était son

professeur. Gauss aurait déclaré : « Il n’y a que trois mathématiciens qui feront

date : Archimède, Newton et Eisenstein. » Le choix par Gauss d’Eisenstein, lequel

s’était spécialisé dans la théorie des nombres et l’analyse, peut sembler étrange

à certains, mais il est justifié par le fait qu’Eisenstein avait prouvé facilement

plusieurs résultats jusqu’alors inaccessibles, même à Gauss, comme d’étendre

son théorème de réciprocité biquadratique au cas général.

Soit Γ = Zω1 + Zω2 un réseau de C.

(i) La série de fonctions méromorphes sur C

℘(z) :=
1

z2
+

∑
γ∈Γ\{0}

Å
1

(z − γ)2
− 1

γ2

ã
est normalement convergente sur tout compact de C.

Sa somme est une fonction elliptique relativement à Γ, appelée la fonction de Weierstrass
associée à Γ. C’est une fonction paire, holomorphe sur C\Γ, admettant un pôle double en chaque
point de Γ.

Sa dérivée admet le développement

℘′(z) = −2
∑
γ∈Γ

1

(z − γ)3

en série de fonctions méromorphes normalement convergente sur tout compact de C.

(ii) Le développement en série de Laurent de ℘(z) en l’origine s’écrit

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)G2(n+1)(Γ)z2n.

(iii) La fonction ℘ satisfait à l’équation différentielle

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

où
g2 := 60G4(Γ) et g3 := 140G6(Γ).

Théorème 4.11 – la fonction de Weierstrass

EXERCICE DE COURS 4.17 (démonstration du théorème 4.11).

(1) Démontrer la première partie des assertions (i), et déterminer ℘′(z).

(2) En déduire que ℘′ est Γ-périodique puis que ℘ est Γ-périodique. Compléter alors la démonstration de (i).

(3) Démontrer l’assertion (ii) à l’aide de la proposition 4.8.

(4) Démontrer l’assertion (iii).

�
Indication : observer que chacun des membres de l’équation fonctionnelle est une fonc-
tion elliptique relativement à Γ, holomorphe sur C\Γ. Utiliser alors l’exercice 4.15 pour
conclure.

ð
La fonction de Weierstrass, et sa dérivée, sont plus que de simples exemples : on peut montrer que toute
fonction elliptique Γ est une fraction rationnelle de ℘ et ℘′.
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4.6. La fonction Γ

L’étude de la fonction Γ fournit des illustrations remarquables des paragraphes précédents.

4.6.1. La fonction Γ dans le domaine réel. Commençons par quelques rappels, sans détail, dans le domaine réel.
Pour tout x ∈ R∗+, on pose

Γ(x) :=

∫ +∞

0

e−ttx−1dt.

— Cette intégrale est convergente et définit une fonction de classe C∞ sur R∗+, de dérivées données par :

Γ(k)(x) :=

∫ +∞

0

e−t(log t)ktx−1dt,

pour k ∈ N, x ∈ R∗+.

— De plus, Γ vérifie l’équation fonctionnelle

Γ(x+ 1) = xΓ(x), x ∈ R∗+.

— Par ailleurs, on a

Γ(1) =

∫ +∞

0

e−tdt = 1 et Γ(n+ 1) = n!, n ∈ N.

— Le comportement asymptotique de la Γ est donnée par la formule de Stirling :

Γ(x+ 1) ∼
√

2πx
(x
e

)x
lorsque x! +∞,

qui s’écrit encore, compte tenu de l’équation fonctionnelle,

Γ(x+ 1) ∼
√

2πxx−1/2e−x lorsque x! +∞.

James Stirling, né en mai 16921 à Garden près de Stirling, mort

le 5 décembre 1770 à Édimbourg, est un mathématicien écossais.

James ou Jacob Stirling, peut-être issu d’une famille plus anglaise

qu’écossaise, fait ses études à Oxford, au Balliol College, à partir

de 1710. Il en est écarté, vers 1717, pour des raisons politiques, car

il soutient les Jacobites, les partisans des Stuarts.

— À partir de l’équation fonctionnelle et de la formule de Stirling, on déduit la formule de Gauss :

1

Γ(x)
= lim
n!+∞

x(x+ 1) · · · (x+ n)

n!nx
.

— Rappelons enfin que la constante d’Euler γ est le nombre réel > 0 défini par

γ =

+∞∑
k=1

Å
1

k
− log

Å
1 +

1

k

ãã
= lim
N!+∞

N∑
k=1

Å
1

k
− log

k + 1

k

ã
= lim
n!+∞

(
n∑
k=1

1

k
− log n

)
.

On en déduit que pour tout nombre réel, on a :

lim
n!+∞

nxeγx
n∏
k=1

e−
x
k = 1.
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— On obtient alors, grâce à l’identité
n∏
k=1

(
1 +

x

k

)
=

(x+ 1) · · · (x+ n)

n!
,

la formule de Weirstrass : pour tout x ∈ R∗+,

1

Γ(x)
= xeγx lim

n!+∞

n∏
k=1

(
1 +

x

k

)
e−

x
k .

4.6.2. La fonction Γ dans le domaine complexe. D’après l’exercice 3.11, l’intégrale

Γ(z) :=

∫ +∞

0

e−ttz−1dt

est absolument convergente pour tout z ∈ C tel que Re(z) > 0 et définit une fonction holomorphe sur le demi-plan

O = {z ∈ C : Re(z) > 0}.

De plus, pour tout z dans ce demi-plan et tout k ∈ N, on a :

Γ(k)(z) :=

∫ +∞

0

e−t(log t)ktz−1dt.

EXERCICE DE COURS 4.18. Démontrer que pour tout z ∈ O on a encore l’équation fonctionnelle

Γ(z + 1) = zΓ(z),

et que pour tout n ∈ N∗,

Γ(z) =

n−1∏
i=0

Γ(z + n)

z + i
.

En déduire que Γ admet un prolongement analytique sur le demi-plan

{z ∈ C : Re(z) > −n},
dont les seuls pôles sont simples et situés aux entiers négatifs.

La fonction Γ admet un prolongement méromorphe sur C. Elle est holomorphe sur C \ (−N) et, pour tout
n ∈ N, admet un pôle simple en −n. Les équations fonctionnelles précédentes restent valables pour tout
z ∈ C \ (−N).

Proposition 4.12 – prolongement méromorphe de la fonction Γ

EXERCICE DE COURS 4.19. Démontrer la proposition.

La fonction Γ′/Γ, méromorphe sur C, admet le développement suivant, sous forme de séries de fonctions
méromorphes normalement convergentes sur tout compact de C :

Γ′(z)

Γ(z)
= −γ − 1

z
+

∞∑
k=1

Å
1

k
− 1

z + k

ã
, z ∈ C \ (−N).

Corollaire 4.13 – expression de la dérivée logarithmique de Γ

EXERCICE DE COURS 4.20. Démontrer le corollaire.

�
Indication : étendre au domaine complexe les formules de Gauss et de Weierstrass.
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Le corollaire 4.13 permet d’obtenir des identités remarquables que nous mentionnons ici sans détail.

— Pour tout z ∈ C \ (−N), on a
1

Γ(z)Γ(1− z)
=

1

π
sinπz.

Avec z = 1/2, on en déduit

Γ

Å
1

2

ã
=
√
π.

— Pour tout z ∈ C \ (−N) et tout p ∈ N∗, on a :
p−1∏
j=0

Γ

Å
z + j

p

ã
= (2π)(p−1)/2p

1
2−zΓ(z).
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5
Théorème des résidus et applications

5.1. Indice d’un lacet par rapport à un point

En termes géométriques, l’indice Ind(γ, a) d’un lacet par rapport à un point a est un
�� ��entier qui compte le nombre

de tours (avec un signe) que le lacet effectue autour du point a (voir la remarque 5.1).
On le définit analytiquement de la façon suivante.

Soient γ ⊂ C un lacet et a ∈ C \ γ un point pris hors de l’image de γ. On appelle indice du lacet γ par
rapport au point a l’intégrale :

Ind(γ, a) :=
1

2iπ

∫
γ

dz

z − a
.

Définition 5.1

+
Le support d’un lacet γ est l’image de γ dans Ω. On notera souvent γ ⊂ Ω ou a ∈ Ω \ γ pour indiquer
que γ est tracé dans Ω ou bien que γ évite a.

EXERCICE DE COURS 5.1 (propriétés élémentaires de l’indice). Soit γ : [0, 1] ! C lacet. Montrer les asser-
tions suivantes :

(i) l’application C \ γ ! C, a 7! Ind(γ, a) est à valeurs entières, i.e,

Ind(γ, a) =
1

2iπ

∫
γ

dz

z − a
∈ Z.

(ii) elle est constante sur chaque composante connexe de C \ γ,

(iii) elle est nulle sur l’unique composante connexe non bornée de C \ γ.

�
Indication pour (i) : considérer λ0 tel que eλ0 = γ(0)− a, et montrer que l’application continue

λ : [0, 1]! C, t 7! λ0 +

∫ t

0

γ′(s)

γ(s)− a
ds

vérifie
exp(λ(t)) = γ(t)− a

pour tout t ∈ [0, 1].

Grâce à l’exercice, l’indice se calcule « visuellement » (voir la figure 15).

On a aussi les propriétés élémentaires suivantes, pour γ1, γ2 deux lacets dont l’image ne contient pas a :
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FIGURE 15 – Calcul « visuel » de l’indice. Ici Ind(γ1, 0) = 1, Ind(γ2, 0) = −1, Ind(γ3, 0) = 2,
Ind(γ4, 0) = 0.

— (lacet opposé) Ind(γ∗1 , a) = −Ind(γ1, a),

— (concaténation) Ind(γ1 ∗ γ2, a) = Ind(γ1, a) + Ind(γ2, a).

REMARQUE 5.1. Il n’existe pas de détermination continue du logarithme sur tout C∗. La démonstration de l’as-
sertion (i) de l’exercice 5.1 fournit cependant une détermination continue λ : [0, 1]! C du logarithme de t ∈ [0, 1] 7!
γ(t)− a ∈ C∗. On dit que λ est une détermination continue du logarithme de z − a le long du chemin γ.

On a alors que l’application Im(λ) : [0, 1] ! R fournit, pour chaque t ∈ [0, 1], un argument pour γ(t) − a qui
dépend continûment de t. Autrement dit, Im(λ) est une détermination continue de l’argument de z − a le long du
chemin γ.

L’interprétation géométrique de l’indice vient alors de ce que l’on a, par définition,

Ind(γ, a) =
1

2π
(Im(λ(1))− Im(λ(0)).

Voici une première généralisation de la formule de Cauchy (on intègre sur un lacet qui n’est plus nécessairement
un cercle).

Soient Ω un ouvert
�� ��étoilé de C, f : Ω ! C une fonction holomorphe, γ un lacet tracé dans Ω et a ∈ Ω

pris hors de l’image de γ. On a :

f(a)Ind(γ, a) =
1

2iπ

∫
γ

f(z)

z − a
dz.

Théorème 5.2 – formule de Cauchy dans un ouvert étoilé

REMARQUE 5.2. 1) Lorsque f est constante égale à 1 on retrouve la définition de l’indice.

2) Lorsque γ est un cercle C (z0, r) avec a ∈ D(z0, r), on retrouve la formule de Cauchy (Théorème 2.2).

EXERCICE DE COURS 5.2. Démontrer le théorème.

�
Indication : considérer la fonction g : Ω! C, holomorphe sur Ω \ {a}, définie par

g(z) =


f(z)− f(a)

z − a
si z = a,

f ′(a) si z 6= a,

montrer que g s’entend en une fonction holomorphe sur Ω et que son intégrale sur γ est nulle.

EXEMPLE 5.1. On illustre sur la figure 16 le théorème 5.2. Le lacet γ découpe trois composantes connexes dans Ω.
On indique la valeur donnée par l’intégrale du théorème lorsqu’on prend a dans chacune de ces composantes.
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FIGURE 16 – Le théorème 5.2 sur un exemple

Soient Ω un ouvert
�� ��étoilé de C, f : Ω! C une fonction holomorphe, γ un lacet tracé dans Ω et a ∈ Ω\γ.

Pour tout n ∈ N, on a :
1

n!
f (n)(a)Ind(γ, a) =

1

2iπ

∫
γ

f(z)

(z − a)n+1
dz.

Corollaire 5.3 – formule de Cauchy pour les dérivées

EXERCICE DE COURS 5.3. Démontrer le corollaire.

5.2. Ouverts élémentaires

Un ouvert Ω de C est dit élémentaire s’il est non vide, connexe et si toute fonction holomorphe f : Ω! C
admet une primitive sur Ω.

Définition 5.4

Nous savons que les ouvert étoilés, et donc en particulier les ouverts convexes, sont élémentaires (voir la proposi-
tion 3.1). Il y en a bien d’autres comme le montre l’exercice suivant !

EXERCICE DE COURS 5.4 (ouverts élémentaires).

(1) Soient Ω1,Ω2 deux ouverts de C. Montrer que s’il existe une application biholomorphe

ϕ : Ω1
∼
−! Ω2

et si Ω1 est un ouvert élémentaire, il en va de même de Ω2.

(2) Soient Ω1,Ω2 deux ouverts élémentaires de C. Montrer que si Ω1 ∩ Ω2 est non vide et connexe, alors
Ω1 ∪ Ω2 est un ouvert élémentaire.

(3) Montrer que si Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ · · · est une suite croissante d’ouverts élémentaires de C, alors

Ω =

∞⋃
n=0

Ωn

est un ouvert élémentaire.

�
Indication pour (2) et (3) : montrer que l’ouvert Ω est élémentaire si et seulement si tout f ∈ O(Ω)

possède une unique primitive F ∈ O(Ω) telle que F (a) = 0.
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Un ouvert connexe Ω de C est dit simplement connexe lorsque tout lacet tracé dans Ω est homotope à 0.

Définition 5.5

ð
Il est possible de classifier complètement les ouverts élémentaires de C et de montrer que pour tout
ouvert connexe non vide de C, les conditions suivantes sont équivalentes :

(i) Ω est un ouvert élémentaire,

(ii) Ω est simplement connexe,

(iii) Ω = C ou bien il existe une bijection biholomorphe

ϕ : Ω
∼
−! D(0, 1).

5.3. Le théorème des résidus

Soient a ∈ C, r ∈ R∗+, Ω un voisinage ouvert de D̄(a, r) dans C et f une fonction holomorphe sur Ω \ {a}. Cette
fonction possède un développement de Laurent en a

f(z) =
∑
n∈Z

an(z − a)n,

normalement convergent sur tout compact de D̄(a, r) \ {a}.

Le résidu, noté Res(f, a), de f en a est le coefficient a−1 de (z − a)−1 dans ce développement :

Res(f, a) := a−1.

Définition 5.6 – résidu

EXERCICE DE COURS 5.5. Vérifier que l’on a :

Res(f, a) =
1

2iπ

∫
C (a,r)

f(z)dz.

+
On se souvient que a−1 est l’obstruction à ce que la fonction f admette une primitive surD(a, r)\{a}.

Voici quelques recettes pour le calcul des résidus.

Soient f une fonction méromorphe non identiquement nulle sur un ouvert connexe Ω de C et a un point
de Ω. Si va(f) > −1, alors

Res(f, a) = lim
z!a

(z − a)f(z).

Plus généralement, si a est un pôle d’ordre k ∈ N∗ de f , alors

Res(f, a) =
1

(k − 1)!
f̃ (k−1)(a) où f̃(z) = (z − a)kf(z).

Proposition 5.7 – résidu en un pôle
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Soient f, g deux fonctions méromorphes non identiquement nulles sur un ouvert connexe Ω de C et a un
point de Ω.

(i) Si va(f) > 0 et va(g) = 1 (i.e., f est holomorphe en a et g possède un zéro simple en a), alors

Res

Å
f

g
, a

ã
=
f(a)

g′(a)
.

(ii) La fonction f ′/f est méromorphe sur Ω. Ses pôles sont tous simples ; ce sont exactement les
zéros et les pôles de f et on a :

Res

Å
f ′

f
, a

ã
= va(f).

Si de plus va(g) > 0, alors

Res

Å
g
f ′

f
, a

ã
= g(a)va(f).

Proposition 5.8 – résidu de quotients de fonctions méromorphes

EXERCICE DE COURS 5.6. Démontrer les deux propositions.

EXERCICE DE COURS 5.7. Déterminer les pôles des fonctions tan, th, cotan et coth, leur ordre ainsi que le
résidu en chaque pôle, où th = sh/ch est la tangente hyperbolique, et coth = 1/th.

EXERCICE DE COURS 5.8. Démontrer que la fonction Γ, holomorphe sur C \ (−N) (voir la proposition 4.12)

admet, pour tout n ∈ N, un pôle simple de résidu
(−1)n

n!
en −n.

�
Indication : utiliser l’expression de Γ(z) obtenue à l’exercice 4.18.

Soient Ω un ouvert élémentaire de C (par exemple étoilé), F un ensemble fini de points de Ω, f une fonction
holomorphe sur Ω \ F et γ un lacet de classe C 1 par morceaux à valeurs dans Ω \ F . On a alors :

1

2iπ

∫
γ

f(z)dz =
∑
a∈F

Res(f, a)Ind(γ, a).

Théorème 5.9 – théorème des résidus

DÉMONSTRATION. Pour chaque a ∈ F , considérons le développement de Laurent de f en a :

f(z) =
∑
n∈Z

ua,n(z − a)n,

qui est valable sur un voisinage épointé de a dans Ω, puis la partie singulière ha de f en a, c’est-à-dire la fonction
holomorphe sur C \ {a} définie par

ha(z) =
∑

n∈−N∗

ua,n(z − a)n.

Posons
g = f −

∑
a∈F

ha.
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EXERCICE DE COURS 5.9.

(1) Vérifier que la fonction g, a priori holomorphe sur Ω \F , n’a que des singularités illusoires en les points
de F et qu’elle se prolonge donc en une fonction holomorphe sur Ω. En déduire que∫

γ

f(z)dz =
∑
a∈F

∫
γ

ha(z)dz.

(2) Établir que ∫
γ

ha(z)dz =
∑

n∈−N∗

ua,n

∫
γ

(z − a)ndz.

Le théorème des résidus découle alors de l’exercice précédent et de la formule∫
γ

1

z − a
dz = 2iπ Ind(γ, a).

�

,
Attention : le théorème des résidus peut être mis en défaut sur un lacet autour d’un « trou » d’un ouvert
non élémentaire ! Considérer par exemple un ouvert Ω comme sur la figure 17, γ un lacet qui fait le tour
du trou et f : Ω ! C une fonction holomorphe qui se prolonge à l’ouvert Ω′ (obtenu en « bouchant le
trou ») en une fonction possédant une singularité isolée au point z1 ∈ Ω′ \ Ω.

FIGURE 17 – Ouvert avec un trou

ð
Le théorème des résidus s’applique cependant au lacet γ0 ⊂ Ω de la figure 17 : il suffit en effet de se
restreindre à un ouvert étoilé Ω0 ⊂ Ω qui contient γ0.

Le théorème 5.9, appliqué à la fonction

h : Ω \ {a} −! C

w 7−!
f(w)

w − a
,

redonne immédiatement le théorème 5.2.

5.4. Applications au dénombrement des zéros et des pôles des fonctions méromorphes

Rappelons que si f est méromorphe non identiquement nulle au voisinage d’un point a ∈ C, on a d’après la
proposition 5.8 (ii) :

Res

Å
f ′

f
, a

ã
= va(f).

Appliquée à la dérivée logarithmique d’une fonction méromorphe, la formule des résidus donne :
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Soient Ω un ouvert élémentaire de C, f une fonction méromorphe sur Ω dont l’ensemble F des zéros et des
pôles est fini, et γ un lacet à valeurs dans Ω \ F . On a alors :

1

2iπ

∫
γ

f ′(z)

f(z)
dz =

∑
a∈F

va(f)Ind(γ, a).

Proposition 5.10 – formule des résidus appliquée à la dérivée logarithmique d’une fonction méromorphe

En particulier, lorsque dans la proposition on a, pour tout a ∈ F ,

Ind(γ, a) = 1,

on définit le nombre de zéros N(0) (resp. le nombre de pôles N(∞)) de f dans Ω, comptés avec leur multiplicité, en
posant

N(0) =
∑
a∈F

va(f)>0

va(f)

et
N(∞) = −

∑
a∈F

va(f)<0

va(f).

L’identité de la proposition peut alors s’écrire

1

2iπ

∫
γ

f ′(z)

f(z)
dz = N(0)−N(∞).

Soient Ω un ouvert de C et (fn)n∈N une suite dans O(Ω) convergeant uniformément sur tout compact de
Ω vers une fonction f ∈ O(Ω). Soient z0 ∈ Ω et r ∈ R∗+ tels que D̄(z0, r) ⊂ Ω et f ne s’annule pas sur
∂D̄(z0, r).
Il existe alors N ∈ N tel que, pour tout n > N , fn ne s’annule pas sur ∂D̄(z0, r) et∑

a∈D(z0,r)

va(fn) =
∑

a∈D(z0,r)

va(f).

En résumé, pour n > N , fn et f ont même nombre de zéros (compte tenu des multiplicités) dans le disque
ouvert D(z0, r).

Proposition 5.11 – continuité par passage à la limite uniforme du nombre de zéros des fonctions holomorphes

EXERCICE DE COURS 5.10. Démontrer la proposition.

5.5. Applications aux calculs d’intégrales

Appliquée à des fonctions et des lacets bien choisis, la formule des résidus (Théorème 5.9) permet d’évaluer
diverses intégrales remarquables. Ce procédé est appelé la méthode des résidus.

EXEMPLE 5.2. Considérons des intégrales de la forme∫ 2π

0

P (cos t, sin t)

Q(cos t, sin t)
dt,

où P et Q sont des polynômes de C[X,Y ], et où Q ne s’annule pas sur le cercle

{(x, y) ∈ R2 : x2 + y2 = 1}.

On définit une fonction rationnelle f en posant

f(z) :=
1

iz

P
(

1
2 (z + z−1), 1

2i (z − z
−1)
)

Q
(

1
2 (z + z−1), 1

2i (z − z−1)
) ,
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on voit aussitôt que f ne possède aucun pôle sur ∂D̄(0, 1) et la formule des résidus donne∫ 2π

0

P (cos t, sin t)

Q(cos t, sin t)
dt =

∫
C (0,1)

f(z)dz = 2iπ
∑

a∈D(0,1)

Res(f, a).

EXERCICE DE COURS 5.11 (application). Calculer∫ 2π

0

dt

a+ sin t
, a > 1.

Soit F un ensemble fini de points dans le demi-plan supérieur H et soit f une fonction holomorphe sur un
voisinage ouvert de H \ F = R ∪ (H \ F ) dans C telle que

lim
z∈H\F
|z|!+∞

zf(z) = 0.

On a alors

lim
R!+∞

∫ R

−R
f(t)dt = 2iπ

∑
a∈F

Res(f, a).

Proposition 5.12 – intégrales aux bornes infinies

EXERCICE DE COURS 5.12. Démontrer la proposition.

La proposition permet de calculer des intégrales de la forme∫ +∞

−∞
R(t)dt

où R(t) est une fraction rationnelle en t sans pôle réel telle que

lim
|z|!+∞

zR(z) = 0.

EXERCICE DE COURS 5.13. Soit

R(t) =
t2k

1 + t2n
,

où k et n sont deux entiers tels que 0 6 k < n.

(1) Montrer que les pôles de R dans H sont les points

exp

Å
2j + 1

2n
πi

ã
, 0 6 j < n,

et calculer le résidu de R en ces points.

(2) En déduire que ∫ +∞

−∞

t2k

1 + t2n
dt =

π

n sin ((2k + 1)π/2n)
.
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