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Introduction

The goal of this lecture is to introduce the theory of vertex algebras and affine W -algebras, which are
certain vertex algebras, with emphasis on their geometrical aspects.

Roughly speaking, a vertex algebra is a vector space V , endowed with a distinguished vector, the vacuum
vector, and the vertex operator map from V to the space of formal Laurent series with linear operators on V
as coefficients. These data satisfy a number of axioms and have some fundamental properties as, for example,
an analogue to the Jacobi identity, locality and associativity. Although the definition is purely algebraic,
the above axioms have deep geometric meaning. They reflect the fact that vertex algebras give an algebraic
framework of the two-dimensional conformal field theory. The connections of this topic with other branches
of mathematics and physics include algebraic geometry (moduli spaces), representation theory (modular
representation theory, geometric Langlands correspondence), two dimensional conformal field theory, string
theory (mirror symmetry) and four dimensional gauge theory (AGT conjecture).

The nicest vertex algebras are those which are both rational and lisse. The rationality means the com-
pletely reducibility of modules. The lisse condition is a certain finiteness condition as explained next para-
graph. If a vertex algebra V is rational and lisse, then it gives rise to a rational conformal field theory.
In particular, the characters of simple V -modules form vector valued modular functions, and moreover, the
category of V -modules forms a modular tensor category, so that one can associate with it an invariant of
knots.

To each vertex algebra V one can naturally attach a certain Poisson variety XV called the associated
variety of V . For an affine Poisson variety X, a vertex algebra V such that XV

∼= X is called a chiral
quantization of X. A vertex algebra V is called lisse if dimXV = 0. Lisse vertex algebras are natural
generalizations of finite-dimensional algebras and possess remarkable properties. For instance, the modular
invariance of characters still holds without the rationality assumption.

In fact the geometry of the associated variety often reflects some algebraic properties of the vertex alge-
bras V . For example, vertex algebras whose associated variety has only finitely symplectic leaves are also of
great interest for several reasons that will be addressed in the lecture.

Important examples of vertex algebras are those coming from affine Kac-Moody algebras, which are called
affine vertex algebras. They play a crucial role in the representation theory of affine Kac-Moody algebras, and
of W -algebras. In the case that V is a simple affine vertex algebra, its associated variety is an invariant and
conic subvariety of the corresponding simple Lie algebra. It plays a role analogous to that of the associated
variety of primitive ideals of the enveloping algebra of simple Lie algebras. However, associated varieties of
affine vertex algebras are not necessarily contained in the nilpotent cone and it is difficult to describe them
in general.

In fact, although associated varieties seem to be significant also in connection with the recent study of
four dimensional superconformal field theory, their general description is fairly open, except in a few cases.

The affine W -algebras are certain vertex algebras associated with nilpotent elements of simple Lie algebras.
They can be regarded as affinizations of finite W -algebras (introduced by Premet), and can also be considered
as generalizations of affine Kac-Moody algebras and Virasoro algebras. They quantize the arc space of the
Slodowy slices associated with nilpotent elements. The study of affine W -algebras began with the work of
Zamolodchikov in 1985. Mathematically, affine W -algebras are defined by the method of quantized Drinfeld-
Sokolov reduction that was discovered by Feigin and Frenkel in the 1990s. The general definition of affine
W -algebras were given by Kac, Roan and Wakimoto in 2003. Affine W -algebras are related with integrable
systems, the two-dimensional conformal field theory and the geometric Langlands program. The most recent
developments in representation theory of affine W -algebras were done by Kac-Wakimoto and Arakawa.

Since they are not finitely generated by Lie algebras, the formalism of vertex algebras is necessary to
study then. In this context, associated varieties of W -algebras, and their quotients, are important tools
to understand some properties, such as the lisse condition and even the rationality condition. In general,
associated varieties of W -algebras are related to the singularities of nilpotent Slodowy slices.

It is only quite recently that the study of associated varieties of vertex algebras and their arc spaces
has been more intensively developed (recent developments include works of Arakawa, van Ekeren, Heluani,
Kawasetsu, Linshaw, and the author). This lecture aims to highlight this aspect of the theory of vertex
algebras. It includes open problems raised by my recent works with Arakawa.
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Part 1. Vertex algebras, definitions, first properties and examples

The best general references for this part are [46, 60]. Vertex algebras were introduced by Borcherds in
1986 [33]. They give the mathematical formalism of two-dimensional conformal field theory (CFT). In fact,
vertex algebras are an algebraic version of what physicists called chiral algebras whose rigorous definition
has been given by Beilinson and Drinfeld [30].

1.1. Definition of vertex algebras and operator product expansion

Let V be a vector space over C. We denote by (EndV )[[z, z−1]] the set of all formal Laurent series in the
variable z with coefficients in the space EndV . We call elements a(z) of (EndV )[[z, z−1]] a series on V . For
a series a(z) on V , we set

a(n) = Resz=0a(z)zn

so that the expansion of a(z) is

a(z) =
∑
n∈Z

a(n)z
−n−1.

The coefficient a(n) is called a Fourier mode of a(z). We write

a(z)b =
∑
n∈Z

a(n)bz
−n−1

for b ∈ V .

Definition 1. A series a(z) ∈ (EndV )[[z, z−1]] is called a field on V if for any b ∈ V , a(z)b ∈ V ((z)), that is,
for any b ∈ V , a(n)b = 0 for large enough n.

In the sequel, F (V ) stands for the space of all fields on V .

1.1.1. Definition. A vertex algebra is a vector space V equipped with the following data:

• (the vacuum vector) a vector |0〉 ∈ V ,
• (the vertex operator) a linear map

Y : V → F (V ), a 7→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1 = a(z),

• (the translation operator) a linear map T : V → V .

These data are subject to the following axioms:

• (the vacuum axiom) |0〉(z) = IdV . Furthermore, for all a ∈ V ,

a(z)|0〉 ∈ V [[z]]

and lim
z→0

a(z)|0〉 = a. In other words, a(n)|0〉 = 0 for n > 0 and a(−1)|0〉 = a,

• (the translation axiom) we have T |0〉 = 0 and for any a ∈ V ,

[T, a(z)] = ∂za(z), (Ta)(z) = ∂za(z)

• (the locality axiom) for all a, b ∈ V ,

(z − w)Na,b [a(z), b(w)] = 0

for some Na,b ∈ Z>0.

When two fields a(z), b(z) on a vector space V verify the condition of the locality axiom, we say that there
are mutually local.

The vacuum axiom implies that the map V → End(V ) defined by the formula a 7→ a(−1) is injective.
Namely, we have a = a(−1)|0〉. Therefore the map a 7→ a(z) is also injective.

Exercise 1 (On the translation axiom). Let V be a C-vector space.

(1) Assume that V is a vertex algebra, and fix a ∈ V . Verify that for all n ∈ Z,

[T, a(n)] = −na(n−1), (Ta)(n) = −na(n−1),

and deduce from this that
Ta = a(−2)|0〉.
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(2) Conversely, verify that if the vector space V is endowed with a vector |0〉 ∈ V and a linear map
F → F (V ), a 7→ a(z) such that the vacuum and the locality axioms hold, then the linear map

V → V, a 7→ a(−2)|0〉

satisfies the translation axiom. This shows that the translation operator T is in fact a redondant
datum in the definition of a vertex algebra.

Hints for Exercise 1. (1) Use the translation axiom.
(2) Use the vacuum axiom.
(3) Compare (∂za(z))(−1) |0〉 and a(−2)|0〉, and compute [T, a(z)]|0〉|z=0.

1.1.2. Operator product expansion (OPE).

Proposition 2. Fix two fields a(z), b(z) on a vector space V . The following assertions are equivalent:

(i) (z − w)Na,b [a(z), b(w)] = 0 for some Na,b ∈ Z>0.
(ii)

[a(z), b(w)] =

Na,b−1∑
n=0

(a(n)b)(w)
1

n!
∂nwδ(z − w),

where δ(z − w) :=
∑
n∈Z w

nz−n−1 ∈ C[[z, w, z−1, w−1]] is the formal delta-function.
(iii)

a(z)b(w) =

Na,b−1∑
n=0

(a(n)b)(w)τz,w

(
1

(z − w)n+1

)
+ : a(z)b(w) : ,

and

b(w)a(z) =

Na,b−1∑
n=0

(a(n)b)(w)τw,z

(
1

(z − w)n+1

)
+ : a(z)b(w) : ,

where : a(z)b(w) : and the maps τz,w and τw,z are defined below.

For a(z), b(z) ∈ F (V ),

: a(z)b(w) : = a(z)+b(w) + b(w)a(z)−,

where

a(z)+ =
∑
n<0

a(n)z
−n−1, a(z)− =

∑
n>0

a(n)z
−n−1.

The normally ordered product on a vertex algebra V is defined as : ab := a(−1)b. Thus

: ab : (z) = : a(z)b(z) : .

The normally ordered product is neither commutative nor associative. By definition, : a(z)b(z)c(z) : stands
for : a(z) : b(z)c(z) : :.

The two maps τz,w and τw,z are the homomorphisms of algebras defined by:

τz,w : C[z, w, z−1, w−1,
1

z − w
]→ C((z))((w)),

1

z − w
7→ 1

z

∑
n>0

(w
z

)n
= δ(z − w)−,

τw,z : C[z, w, z−1, w−1,
1

z − w
]→ C((w))((z)),

1

z − w
7→ −1

z

∑
n>0

( z
w

)n
= −δ(z − w)+.

Thus the map τz,w is the expansion of
1

z − w
in |z| > |w| and τw,z is the expansion of

1

z − w
in |w| > |z|.

Proof of the implication (ii)⇒(i). We prove only this implication, and we refer to [46, Chap. 3] for the other
implications.
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Let us write

δ(z − w) =
1

z

∑
n>0

(w
z

)n
︸ ︷︷ ︸
δ(z−w)−

+
1

z

∑
n>0

( z
w

)n
︸ ︷︷ ︸
δ(z−w)+

,

so that when |z| > |w|, the series δ(z−w)− converges to the meromorphic function
1

z − w
and when |z| < |w|,

the series δ(z − w)+ converges to the meromorphic function − 1

z − w
.

We have

δ(z − w) = τz,w

(
1

z − w

)
− τw,z

(
1

z − w

)
.

Both homomorphisms τz,w and τw,z commute with ∂w and ∂z. Therefore,

1

j!
∂jwδ(z − w) = τz,w

(
1

(z − w)j+1

)
− τw,z

(
1

(z − w)j+1

)
,

whence

(z − w)n+1 1

n!
∂nwδ(z − w) = (z − w)n+1

(
τz,w

(
1

(z − w)n+1

)
− τw,z

(
1

(z − w)n+1

))
= τz,w(1)− τw,z(1) = 0.

The implication (ii)⇒(i) is then clear. Note that (iii)⇒(ii) also follows. �

1.1.3. Borcherds identities. Consequences of the definition are the following relations, called Borcherds
identities:

[a(m), b(n)] =
∑
i>0

(
m
i

)
(a(i)b)(m+n−i),(1)

(a(m)b)(n) =
∑
j>0

(−1)j
(
m
j

)
(a(m−j)b(n+j) − (−1)mb(m+n−j)a(j)),(2)

for m,n ∈ Z. In the above formulas, the notation

(
m
i

)
for i > 0 and m ∈ Z means(

m
i

)
=
m(m− 1)× · · · × (m− i+ 1)

i(i− 1)× · · · × 1
.

1.2. Commutative vertex algebras

A vertex algebra V is called commutative if all vertex operators a(z), a ∈ V , commute each other (i.e.,
we have Na,b = 0 in the locality axiom). This condition is equivalent to that

[a(m), b(n)] = 0 for all a, b ∈ Z, m, n ∈ Z.

Hence if V is a commutative vertex algebra, then a(z) ∈ EndV [[z]] for all a ∈ V , that is, a(n) = 0 for n > 0
in EndV for all a ∈ V .

Then a commutative vertex algebra has a structure of a unital commutative algebra with the product:

a · b = : ab : = a(−1)b,

where the unit is given by the vacuum vector |0〉. The translation operator T of V acts on V as a derivation
with respect to this product:

T (a · b) = (Ta) · b+ a · (Tb).
Therefore a commutative vertex algebra has the structure of a differential algebra, that is, a unital commu-
tative algebra equipped with a derivation.

The converse holds according to the following exercice.
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Exercise 2 (Commutative algebras equipped with a derivation are commutative vertex algebras). Show that
there is a unique structure of a commutative vertex algebra on a commutative algebra R equipped with a
derivation ∂ such that the vacuum vector is the unit, and

a(z)b =
(
ez∂a

)
b =

∑
n>0

zn

n!
(∂na)b for all a, b ∈ R.

Hints for Exercise 2. Notice that the locality axiom is automatically satisfied by the OPE (cf. Proposition 2,
(ii)⇒(i)).

This correspondence gives the following result.

Theorem 3 ([33]). The category of commutative vertex algebras is the same as that of differential algebras.

One important example of commutative vertex algebras are obtained by considering the function sheaf
over arc spaces of a scheme (see Sect. 2.1).

Exercise 3 (Center of a vertex algebra). For V a vertex algebra, its (vertex) center Z(V ) is defined by:

Z(V ) := {a ∈ V | [b(z), a(w)] = 0 for all b ∈ V }.

Show that the following are equivalent:

(i) a ∈ Z(V ),

(ii) [b(m), a(n)] = 0 for all b ∈ V and all m,n ∈ Z,

(iii) b(z)a ∈ V [[z]] for all b ∈ V ,

(iv) b(m)a = 0 for all b ∈ V and all m ∈ Z>0.

Hints for Exercise 3. First, note that the equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) are clear. To show
(i)⇐⇒ (iii), observe that b(z)a = b(z)a(w)|0〉|w=0.

1.3. Universal affine vertex algebras

1.3.1. Affine Kac-Moody algebras. Let g be a complex simple Lie algebra. Hence g is the Lie algebra of
a certain linear algebraic group G. The Killing form of g,

κg : g× g→ C, (x, y) 7→ Tr(adx ad y),

is a nondegenerate symmetric bilinear form of g which is G-invariant. Since g is semisimple, any other such
bilinear form is a nonzero multiple of the Killing form.

We define the normalized bilinear form ( | ) on g by:

( | ) =
1

2h∨
κg,

where h∨ is the dual Coxeter number. For example, if g = sln, realized as the set of traceless n-size square
matrices with Lie bracket [x, y] = xy − yx, then h∨ = n and for all x, y ∈ g, (x|y) = Tr(xy).

We define the affine Kac-Moody algebra as the vector space ĝ = g[t, t−1] ⊕ CK, with the commutation
relations:

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K, [K, ĝ] = 0,

for all x, y ∈ g and all m,n ∈ Z, where δi,j is the Kronecker symbol.
Consider the Lie subalgebra g[t] ⊕ CK of ĝ. It is a parabolic subalgebra of g since it contains the Borel

subalgebra ĥ⊕ n̂, where

g = n− ⊕ h⊕ n

is a triangular decomposition of g, and

n̂ := (n− ⊕ h)⊗ tC[t]⊕ n⊗ C[t] = n + tg[t],

ĥ := (h⊗ 1)⊕ CK = h + CK.

Fix k ∈ C, and consider the one-dimensional representation Ck of g[t]⊕ CK on which g[t] acts by 0 and K
acts as a multiplication by the scalar k.
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Definition 4. We define the universal vacuum representation of level k of ĝ as the representation induced
from Ck:

V k(ĝ) = Indĝ
g[t]⊕CKCk = U(ĝ)⊗U(g[t]⊕CK) Ck.

It can be viewed as a generalized Verma module.

1.3.2. Level of a representation. The representation V k(g) is a highest weight representation of ĝ with
highest weight kΛ0, with Λ0 is the highest weight of the basic representation (it corresponds to k = 1) and
highest weight vector vk, where vk denotes the image of 1⊗1 in V k(g). We will often write |0〉 for the vector
vk (the notation will be justified §1.3.4). According to the well-known Schur Lemma, any central element of
a Lie algebra acts as a scalar on a simple finite dimensional representation. As the Schur Lemma extends to
a representation with countable dimension1, the result holds for highest weight ĝ-modules.

Definition 5. A representation M is said to be of level k if K acts as kId on M .

Then V k(g) is by construction of level k.

1.3.3. PBW basis and grading. By the Poincaré-Birkhoff-Witt Theorem, the direct sum decomposition
(as a vector space)

ĝ = (g⊗ t−1C[t−1])⊕ (g[t]⊕ CK)

gives us the isomorphism of vector spaces

U(ĝ) ∼= U(g⊗ t−1C[t−1])⊗ U(g[t]⊕ CK),

whence

V k(ĝ) ∼= U(g⊗ t−1C[t−1]).

Let {x1, . . . , xd}, where d = dim g, be an ordered basis of g. For any x ∈ g and n ∈ Z, set

x(n) := x⊗ tn = xtn ∈ g[t, t−1].

Then {K,xi(n), i = 1, . . . , d, n ∈ Z} forms a basis of ĝ and {K,xi(n), i = 1, . . . , d, n ∈ Z>0} forms a basis of

g[t]⊕ CK. By the PBW Theorem, V k(g) has a PBW basis of monomials of the form

xi1(n1) . . . x
im
(nm)|0〉,

where n1 6 n2 6 · · · 6 nm < 0, and if nj = nj+1, then ij 6 ij+1.
The space V k(g) is naturally graded, V k(g) =

⊕
∆∈Z>0

V k(g)∆, where the grading is defined by

deg xi1(n1) . . . x
im
(nm)|0〉 = −

m∑
i=1

ni, deg |0〉 = 0.

We have V k(g)0 = C|0〉, and we identify g with V k(g)1 via the linear isomorphism defined by x 7→ xt−1|0〉.
Any graded quotient V of V k(g) (i.e., a quotient by a proper submodule of V k(g)) is again a highest weight

representation of ĝ with highest weight kΛ0, and of level k. In particular, V k(g) has a unique maximal proper
graded submodule Nk and so

Lk(g) := V k(g)/Nk

is an irreducible highest weight representation of ĝ with highest weight kΛ0, and of level k. Thus, as a
ĝ-representation, we have

Lk(g) ∼= L(kΛ0),

where for λ ∈ ĥ∗, L(λ) stands for the highest weight representation of ĝ of highest weight λ.

1i.e., it admits a countable set of generators.
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1.3.4. Vertex algebra structure. Recall that |0〉 = vk is the image of 1 ⊗ 1 ∈ U(ĝ) ⊗ C in V k(g). Then
(V k(g), |0〉, T, Y ) is a vertex algebra, where the translation operator T is given by

T |0〉 = 0, [T, x(n)] = −nx(n−1), x ∈ g, n ∈ Z,

and the vertex operators are defined inductively by:

Y (|0〉, z) = IdV k(g), Y (xi(−1)|0〉, z) = xi(z) =
∑
n∈Z

xi(n)z
−n−1,

Y (xi1(n1) . . . x
im
(nm)|0〉, z)

=
1

(−n1 − 1)! . . . (−nm − 1)!
: ∂−n1−1

z xi1(z) . . . ∂−nm−1
z xim(z) :

We have thus obtained:

Theorem-Definition 6. The vector space V k(g) is a Z>0-graded vertex algebra, called the universal affine
vertex algebra associated with g at level k.

Proof. We prove only the locality axiom. It is enough to check the locality on generator fields by Dong’s
lemma, which says that if a(z), b(z), c(z) are three mutually local fields on a vector space V , then the fields
: a(z)b(z) : and c(z) are also mutually local.

Let x, y ∈ g. Then

[x(z), y(w)] =
∑
n,m∈Z

[x(n), y(m)]z
−n−1w−m−1

=
∑
n,m∈Z

[x, y](n+m)z
−n−1w−m−1 +

∑
n∈Z

n(x|y)kz−n−1wn−1

=
∑
l∈Z

[x, y](l)

(∑
n∈Z

z−n−1wn

)
w−l−1 + (x|y)k

∑
n∈Z

nz−n−1wn−1

= [x, y](w)δ(z − w) + (x|y)k∂wδ(z − w).

Then it follows that for all x, y ∈ g,

(z − w)2[x(z), y(w)] = 0,

so the locality axiom holds for these fields. �

Remark 7. The equality

[x(z), y(w)] = [x, y](w)δ(z − w) + (x|y)k∂wδ(z − w)

is equivalent to the commutation relations in the Lie algebra ĝ.

Remark 8. The above construction can be generalized to the Kac-Moody affinization

â = a[t, t−1]⊕C1

of an arbitrary Lie algebra a, endowed with a symmetric invariant bilinear form κ, with commutation relations

[xtm, ytn] = [x, y]tm+n +mδm+n,0κ(x, y)1, x, y ∈ a, m, n ∈ Z, [1, â] = 0.

We show similarly that the induced representation,

V κ(a) := U(â)⊗U(a[t]⊕C1) C,

where C is a one-dimensional representation of a[t]⊕C1 on which a[t] acts trivially and 1 acts as the identity,
has the structure of a vertex algebra, called the universal affine vertex algebra V κ(a) associated with a and κ.

In particular, when a ∼= C is a one-dimensional Lie algebra and κ is any non-degenerate bilinear form
on a, then V κ(a) is the Heisenberg vertex algebra.
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1.4. The Virasoro vertex algebra

Let V ir = C((t))∂t ⊕ CC be the Virasoro Lie algebra, with the commutation relations

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn+m,0C,

[C, V ir] = 0,

where Ln := −tn+1∂t for n ∈ Z.
Given c ∈ C, we define the induced representation

Virc = IndV irC[[t]]∂t⊕CCCc = U(V ir)⊗C[[t]]∂t⊕CC Cc,

where C acts as multiplication by c and C[[t]]∂t acts by 0 on the one-dimensional module Cc.
By the PBW Theorem, Virc has a basis of the form

Lj1 . . . Ljm |0〉, j1 6 · · · 6 jl 6 −2,

where |0〉 is the image of 1⊗1 in Virc. Then (Virc, |0〉, T, Y ) is a vertex algebra, called the universal Virasoro
vertex algebra with central charge c, such that T = L−1 and:

Y (|0〉, z) = IdVircc , Y (L−2|0〉, z) =
∑
n∈Z

Lnz
−n−2 =: L(z),

Y (Lj1 . . . Ljm |0〉, z)

=
1

(−j1 − 2)! . . . (−jm − 2)!
: ∂−j1−2

z L(z) . . . ∂−jm−2
z L(z) :

Moreover, Virc is Z>0-graded by deg |0〉 = 0 and degLn|0〉 = −n.

1.5. Conformal vertex algebras

Definition 9. A vertex algebra V is called conformal if there exists a vector ω, called the conformal vector,
such that the corresponding field

ω(z) =
∑
n∈Z

Lnz
−n−2

satisfies the following conditions:

(1) [Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn+m,0c, where c is a constant called the central charge of V ,

(2) ω(1) = L0 acts semisimply on V ,
(3) ω(0) = L−1 = T .

For a conformal vertex algebra V we set V∆ = {v ∈ V | L0v = ∆v} so that

V =
⊕
∆

V∆.

For a ∈ V∆, the conformal weight of a is ∆a := ∆. A Z-graded conformal vertex algebra such that V∆ = 0
for sufficiently small ∆ is also called a vertex operator algebra.

Example 10. The Virasoro vertex algebra Virc is clearly conformal with central charge c and conformal
vector ω = L−2|0〉.

Example 11. The universal affine vertex algebra V k(g) has a natural conformal vector, called the Segal-
Sugawara vector ω, with central charge

c(k) =
k dim g

k + h∨
,

provided that k 6= −h∨ (cf. [46, §3.4.8]). It is defined by

ω =
1

2(k + h∨)

d∑
i=1

xi,(−1)x
i
(−1)|0〉,

9



where {xi, . . . , xd} is the dual basis of {xi, . . . , xd} with respect to the bilinear form ( | ), and

xi(z) =
∑
n∈Z

xi(n)z
−n−1, xi(z) =

∑
n∈Z

xi,(n)z
−n−1.

Note that we have

[Lm, x(n)] = −nx(m+n) x ∈ g, m.n ∈ Z.

1.6. Modules over vertex algebras

1.6.1. Definition. A module over a vertex algebra V is a vector space M together with a linear map

V → F (M), a 7→ aM (z) =
∑
n∈Z

aM(n)z
−n−1,

which satisfies the following axioms:

|0〉(z) = IdM ,

(Ta)M (z) = ∂za
M (z),∑

j>0

(
m
j

)
(a(n+j)b)

M
(m+k−j)(3)

=
∑
j>0

(−1)j
(
n
j

)
(aM(m+n−j)b

M
(k+j) − (−1)nbM(n+k−j)a

M
(m+j)).

Notice that (3) is equivalent to (1) and (2) for M = V .
The axioms imply that V is a module over itself (called the adjoint module). We have naturally the notions

of submodules, quotient module and vertex ideals. Note that vertex ideals are the same as submodules of
adjoint modules. For example, any graded quotient of the universal affine vertex algebra V k(g) inherits a
vertex algebra structure. Such quotients are called affine vertex algebras.

A module whose only submodules are 0 and itself is called simple. In particular, the vertex algebra V
is said to be simple if it is simple as a module over itself. For example, the irreducible ĝ-representation
L(kΛ0) ∼= Lk(g) is simple as a vertex algebra.

1.6.2. Modules of the universal affine vertex algebra. In the case that V is the universal affine vertex
algebra V k(g) associated with g at level k ∈ C, V -modules play a crucial role in the representation theory
of the affine Kac-Moody algebra ĝ.

A ĝ-module M of level k is called smooth if x(z) is a field on M for x ∈ g, that is, given any m ∈ M ,
there is N > 0 such that (xtn)m = 0 for all x ∈ g and n > N .

Any V k(g)-module M is naturally a smooth ĝ-module of level k. Conversely, any smooth ĝ-module of
level k can be regarded as a V k(g)-module. It follows that a V k(g)-module is the same as a smooth ĝ-module
of level k.

More specifically, we have the following result.

Proposition 12 (See [46, §5.1.18] for a proof). There is an equivalence of category between the category of
V k(g)-modules and the category of smooth ĝ-modules of level k.

1.6.3. Center of the universal affine vertex algebra. The following exercise gives a description of the
vertex center (cf. Exercise 3) of V k(g) which has a priori nothing to do the vertex algebra structure.

Exercise 4 (On the center of the universal affine vertex algebra). Let us consider the universal affine vertex
algebra V k(g) associated with a simple Lie algebra g at level k ∈ C.

(1) Show that Z(V k(g)) = V k(g)g[[t]], that is,

Z(V k(g)) = {a ∈ V k(g | x(m)a = 0 for all x ∈ g, m ∈ Z>0}.

(2) Show that we have the following isomorphism of commutative C-algebras (the product on the com-
mutative vertex algebra Z(V k(g)) is the normally ordered product):

Z(V k(g)) ∼= Endĝ(V k(g)).
10



We shall first prove that Z(V k(g)) naturally embeds into Endĝ(V k(g)).

(3) Prove that if k 6= −h∨, then Z(V k(g)) = C|0〉.
For k = −h∨, the center Z(V −h

∨
(g)) =: z(ĝ) is “huge”, and it is usually referred as the Feigin-

Frenkel center2: we have gr z(ĝ) ∼= C[J∞(g//G)], with g//G = SpecC[g]G.

Hints for Exercise 4. (1) Follows from Exercise 3.
(2) Apply the “Frobenius reciprocity”, which asserts that

Homĝ(U(ĝ)⊗g[t]⊕CK Ck, V k(g)) ∼= Homg[t]⊕CK(Ck, V k(g)).

(3) Use the Segal-Sugawara conformal vector ω (cf. Example 11).

2 See Example 17 for more details about the scheme J∞(g//G).
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Part 2. Poisson vertex algebras, arc spaces, and associated varieties

As we will see in this part, any vertex algebra is naturally filtered and the corresponding graded algebra is
a Poisson vertex algebra. A nice way to construct Poisson vertex algebras is to consider the coordinate ring
of the arc space of an affine Poisson variety. Actually, strong relations exists, at least conjecturally, between
the arc space of the associated variety and the singular support of a vertex algebra, that is, the spectrum of
the corresponding graded algebra.

For all these reasons we start by reviewing some standard facts on jet schemes and arc spaces.

2.1. Jet schemes and arc spaces

For more details on jet schemes and arc spaces, we refer to [86, 42, 55].

2.1.1. Definitions. Let X be an object of the category Sch of schemes of finite type over C, and fix m ∈ Z>0.

Definition 13. An m-jet of X is a morphism

SpecC[t]/(tm+1) −→ X.

The set of all m-jets of X carries the structure of a scheme Jm(X), called the m-th jet scheme of X. It is a
scheme of finite type over C characterized by the functorial property that for every scheme Z over C,

HomSch(Z, Jm(X)) = HomSch(Z ×SpecC SpecC[t]/(tm+1), X).

The C-points of Jm(X) are thus the C[t]/(tm+1)-points of X. From Definition 13, we have for example
that J0(X) ' X and that J1(X) ' TX, where TX denotes the total tangent bundle of X.

The canonical projection C[t]/(tm+1)→ C[t]/(tn+1), m > n, induces a truncation morphism

πm,n : Jm(X)→ Jn(X).

The canonical injection C ↪→ C[t]/(tm+1) induces a morphism ιm : X → Jm(X), and we have πm◦ιm,0 = IdX .
Hence ιm is injective and πm,0 is surjective.

Define the (formal) disc as

D := SpecC[[t]].

The projections πm,n yield a projective system {Jm(X), πm,n}m>n of schemes.

Definition 14. Denote by J∞(X) its projective limit in the category of schemes,

J∞(X) = lim←− Jm(X).

It is called the arc space, or the infinite jet scheme of X.

Thus elements of J∞(X) are the morphisms

γ : D → X,

and for every scheme Z over C,

HomSch(Z, Jm(X)) = HomSch(Z×̂SpecCD,X),

where Z×̂SpecCD = Z×̂D is the completion of Z×D with respect to the subscheme Z×{0}. In other words,
the contravariant functor

Sch→ Set, Z 7→ HomSch(Z×̂D,X)

is represented by the scheme J∞(X). The reason why we need the completion Z×̂D in the definition is that,
for A an algebra, A⊗ C[[t]] $ A[[t]] = A⊗̂C[[t]] in general.

We denote by π∞ the canonical projection:

π∞ : J∞(X)→ X.
12



2.1.2. The affine case. In the case where X = SpecC[x1, . . . , xN ] ∼= AN , is an N -dimensional affine space,
we have the following explicit description of J∞X. Giving a morphism γ : D → AN is equivalent to giving
a morphism γ∗ : C[x1, . . . , xN ]→ C[[t]], or to giving

γ∗(xi) =
∑
j>0

γi(−j−1)t
j , i = 1, . . . , N.

Then

J∞AN = SpecC[xi(−j−1) ; i = 1, . . . , N, j > 0],

where for i = 1, . . . , N and j > 0,

xi(−j−1)(γ) = j!γi(−j−1).

Define a derivation T of the algebra C[xi(−j−1) ; i = 1, . . . , N, j > 0] by

Txi(−j) = jxi(−j−1), j > 0.

Here we identify xi with xi(−1).

More generally, if X ⊂ AN is an affine subscheme defined by an ideal I = (f1, . . . , fr) of C[x1, . . . , xN ],
that is, X = SpecR with

R = C[x1, x2, · · · , xN ]/(f1, f2, · · · , fr),

then its arc space J∞X is the affine scheme Spec(J∞R), where

J∞R :=
C[xi(−j−1) ; i = 1, 2, · · · , N, j > 0]

(T jfi ; i = 1, . . . , r, j > 0)
,(4)

and T is as above.
The derivation T acts on the quotient ring J∞R given by (4). Hence for an affine scheme X = SpecR,

the coordinate ring J∞R = C[J∞X] of its arc space is a differential algebra, hence is a commutative vertex
algebra by Theorem 3.

Remark 15 ([42]). The differential algebra (J∞(R), T ) is universal in the following sense. We have a C-
algebra homomorphism j : R → J∞(R) such that if (A, ∂) is another differential algebra, and if f : R → A
is a C-algebra homomorphism, then there is a unique differential algebra homomorphism3 h : J∞(R) → A
making the following diagram commutative.

R
j

//

f
!!

(J∞(R), T )

h
yy

(A, ∂)

Lemma 16 ([42]). Given any m ∈ Z>0 ∪ {∞} and any open subset U of X, Jm(U) = π−1
m (U).

Then for a general scheme Y of finite type with an affine open covering {Ui}i∈I , its arc space J∞(Y ) is
obtained by glueing J∞(Ui) (see [42, 55]). In particular, the structure sheaf OJ∞(Y ) is a sheaf of commutative
vertex algebras.

The natural projection π∞ : J∞(X) → X corresponds to the embedding R ↪→ J∞(R), xi → xi(−1) in the

case where X = SpecR is affine. In terms of arcs, π∞(α) = α(0) for α ∈ HomSch(D,X), where 0 is the
unique closed point of the formal disc D.

3A differential algebra homomorphism is a C-algebra homomorphism which commutes with the derivations.
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2.1.3. Basic properties. The map from a scheme to its jet schemes or its arc space is functorial. If
f : X → Y is a morphism of schemes, then we naturally obtain a morphism Jmf : Jm(X)→ Jm(Y ) making
the following diagram commutative,

Jm(X)
Jmf //

πm,0

��

Jm(Y )

πm,0

��

X
f

// Y

In terms of arcs, it means that Jmf(α) = f ◦ α for α ∈ Jm(X). This also holds for m =∞.
In addition, for every m ∈ Z>0 ∪ {∞} and every schemes X,Y ,

Jm(X × Y ) ∼= Jm(X)× Jm(Y ).(5)

Indeed, for any scheme Z in Sch,

Hom(Z, Jm(X × Y )) = Hom(Z ×SpecC C[t]/(tm+1), X × Y )

∼= Hom(Z ×SpecC C[t]/(tm+1), X)×Hom(Z ×SpecC C[t]/(tm+1), Y )

= Hom(Z, Jm(X))×Hom(Z, Jm(Y ))

∼= Hom(Z, Jm(X)× Jm(Y )).

For m = ∞, just replace C[t]/(tm+1) with C[[t]] and take the completion in the product Z×̂SpecC[[t]] =
Z×̂D.

If G is a group scheme over C, then Jm(G) is also a group scheme over C. Moreover, by (5), if G acts
on X, then Jm(G) acts on Jm(X).

Example 17. Consider the algebra

g∞ := g[[t]] = g⊗C C[[t]] ∼= J∞(g).

It is naturally a Lie algebra, with Lie bracket:

[xtm, ytn)] = [x, y]tm+n, x, y ∈ g, m, n ∈ Z>0.

The arc space J∞(G) of the algebraic group G is naturally a proalgebraic group4. Regarding J∞(G) as the
set of C[[t]]-points of G, we have J∞(G) = G[[t]]. As Lie algebras, we have

g∞ ∼= Lie(J∞(G)).

The adjoint action of G on g induces an action of J∞(G) on g∞, and the coadjoint action of G on g∗ induces
an action of J∞(G) on J∞(g∗), and so on C[J∞(g∗)].

Let N be the nilpotent cone of g, that is, the set of nilpotent elements of g. It is well-known that N is
the reduced scheme of g defined by the equations p1, . . . , pr, where p1, . . . , pr are homogeneous generators of
C[g]G. Hence, J∞(N ) is the subscheme of g∞ defined by the equations T jpi, i = 1 . . . , r and j > 0.

Furthermore, following deep result was obtained independently by Räıs-Tauvel, Beilinson-Drinfeld, Eisenbud-
Frenkel [91, 31, 43]:

J∞(g//G) ∼= J∞g//J∞G,

where J∞g//J∞G = SpecC[J∞g]J∞G. In other words, the invariant ring C[J∞g]J∞G is the polynomial ring

C[J∞(g//G)] = C[T jpi, i = 1, . . . , r, j > 0],

since C[g//G] = C[p1, . . . , pr]. In particular,

J∞(N ) = SpecC[J∞g]/C[J∞g]J∞G+ ,

where C[J∞g]J∞G+ is the augmentation ideal of C[J∞g]J∞G.

4A proalgebraic group is an inverse limit of algebraic groups.
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2.1.4. Geometrical results. As we have seen, the jet schemes Jm(X) and the arc space J∞(X) share
several properties. For geometrical aspects, arc spaces behave rather differently. The main reason is that
C[[t]] is a domain, contrary to C[t]/(tm+1). Thereby, although J∞(X) is not of finite type in general, its
geometric properties are somehow simpler than those of the finite jet schemes Jm(X).

Lemma 18. The natural morphism Xred → X induces an isomorphism J∞Xred
'−→ (J∞X)red of topological

spaces, where Xred stands for the reduced scheme of X.

Proof. We may assume thatX = SpecR. An arc α ofX corresponds to a ring homomorphism α∗ : R→ C[[t]].

Since C[[t]] is an integral domain, it decomposes as α∗ : R→ R/
√

0→ C[[t]]. Thus, α is an arc of Xred. �

Similarly, if X = X1 ∪ . . . ∪Xr, where all Xi are closed in X, then

J∞(X) = J∞(X1) ∪ . . . ∪ J∞(Xr).

(Note that Lemma 18 is false for the schemes Jm(X).)
If X is a point, then J∞(X) is also a point, because Hom(D,X) = Hom(C,C[[t]]) consists of only one

element. Thus, Lemma 18 implies the following.

Corollary 19. If X is zero-dimensional, then J∞(X) is also zero-dimensional.

Theorem 20 ([74]). The scheme J∞(X) is irreducible if X is irreducible.

Theorem 20 is false for the jet schemes Jm(X): see for instance [85] for counter-examples in the setting
of nilpotent orbit closures. We refer to loc. cit., and the references given there, for more about existing
relations between the geometry of the jet schemes Jm(X), m ∈ Z>0, and the singularities of X.

2.2. Poisson vertex algebras

Let V be a commutative vertex algebra (cf. §1.2), or equivalently, a unital commutative algebra equipped
with a derivation. Recall that this means: a(n) = 0 in End(V ) for all n > 0.

2.2.1. Definition. A commutative vertex algebra V is called a Poisson vertex algebra if it is also equipped
with a linear operation,

V → Hom(V, z−1V [z−1]), a 7→ a−(z),

such that

(Ta)(n) = −na(n−1),(6)

a(n)b =
∑
j>0

(−1)n+j+1 1

j!
T j(b(n+j)a),(7)

[a(m), b(n)] =
∑
j>0

(
m
j

)
(a(j)b)(m+n−j),(8)

a(n)(b · c) = (a(n)b) · c+ b · (a(n)c)(9)

for all a, b, c ∈ V and all n,m > 0. Here, by abuse of notations, we have set

a−(z) =
∑
n>0

a(n)z
−n−1

so that the a(n), n > 0, are “new” operators, the “old” ones given by the field a(z) being zero for n > 0, for
V is commutative.

The equation (9) says that a(n), n > 0, is a derivation of the ring V . (Do not confuse a(n) ∈ Der(V ),
n > 0, with the multiplication a(n) as a vertex algebra, which should be zero for a commutative vertex
algebra.) Note that (7), (8) and (9) are equivalent to the “skewsymmetry”, the “Jacobi identity” and the
“left Leibniz rule” in [61, §5.1].

It follows from the definition that we also have the “right Leibniz rule” ([61, Exercise 4.2]):

(a · b)(n)c =
∑
i>0

(b(−i−1)a(n+i)c+ a(−i−1)b(n+i)c),

for all a, b, c ∈ V , n ∈ Z>0.
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2.2.2. Poisson vertex structure on arc spaces. Arc spaces over an affine Poisson scheme naturally give
rise to a vertex Poisson algebras, as shows the following result.

Theorem 21 ([6, Prop. 2.3.1]). Given an affine Poisson scheme X, that is, X = SpecR for some Poisson
algebra R, there is a unique Poisson vertex algebra structure on J∞(R) = C[J∞(X)] such that

a(n)b =

{
{a, b} if n = 0,

0 if n > 0,

for all a, b ∈ R.

Proof. The uniqueness is clear by (6) since J∞(R) is generated by R as a differential algebra. We leave it to
the reader to check the well-definedness. Since J∞(R) is generated by R, the formula a(n)b = δn,0{a, b} for
all a, b ∈ R is sufficient to define the fields on J∞(R) by formulas (6)–(9), whence the existence. �

Remark 22. More generally, given a Poisson scheme X, not necessarily affine, the structure sheaf OJ∞(X)

carries a unique Poisson vertex algebra structure such that

f(n)g = δn,0{f, g}
for all f, g ∈ OX ⊂ OJ∞(X), see [16, Lem. 2.1.3.1].

Example 23. Recall that C[g∗] has naturally a Poisson structure induced from the Kirillov-Kostant-Souriau
Poisson structure on g∗. Namely, for all f, g ∈ C[g∗] and all x ∈ g∗,

{f, g}(x) = 〈x, [dxf, dxg]〉,
where dxf, dxg are the differentials of f, g, respectively, at x ∈ g∗ viewed as elements of (g∗)∗ ∼= g. In
particular, for f, g ∈ g = (g∗)∗ ⊂ C[g∗],

{f, g} = [f, g].

By §2.1.2,

J∞(g∗) = SpecC[xi(−n) ; i = 1, . . . , d, n > 1],

where {x1, . . . , xd} is a basis of g. So by Theorem 21, C[J∞(g∗)] inherits a Poisson vertex algebra from that
of C[g∗].

We may identify C[J∞(g∗)] with the symmetric algebra S(g[t−1]t−1) via

x(−n) 7−→ xt−n, x ∈ g, n > 1.

For x ∈ g, identify x with x(−1)|0〉 = (xt−1)|0〉, where |0〉 stands for the unit element in S(g[t−1]t−1). Then
(8) gives that

[x(m), y(n)] = (x(0)y)m+n = {x, y}(m+n) = [x, y](m+n),

for all x, y ∈ g and all m,n ∈ Z≥0. So the Lie algebra J∞(g) = g[[t]] acts on C[J∞(g∗)] by:

g[[t]]→ End(C[J∞(g∗)]), xtn 7→ x(n), n > 0,

where x(n), n > 0, is the endomorphism of C[J∞(g∗)] given by the Poisson vertex structure on C[J∞(g∗)].
This action coincides with that obtained by differentiating the action of J∞(G) = G[[t]] on J∞(g∗) induced
by the coadjoint action of G (see Example 17). In other words, the Poisson vertex algebra structure of
C[J∞(g∗)] comes from the J∞(G)-action on J∞(g∗).

2.2.3. Canonical filtration and Poisson vertex structure. Our second basic example of Poisson vertex
algebras comes from the graded vertex algebra associated with the canonical filtration, that is, the Li
filtration.

Haisheng Li [79] has shown that every vertex algebra is canonically filtered. For a vertex algebra V , let
F pV be the subspace of V spanned by the elements

a1
(−n1−1)a

2
(−n2−1) · · · a

r
(−nr−1)|0〉

with a1, a2, · · · , ar ∈ V , ni > 0, n1 + n2 + · · ·+ nr > p. Then

V = F 0V ⊃ F 1V ⊃ . . . .

It is clear that TF pV ⊂ F p+1V .
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Set

(F pV )(n)F
qV := spanC{a(n)b ; a ∈ F pV, b ∈ F qV }.

Note that F 1V = spanC{a(−2)b | a, b ∈ V }. We also write C2(V ) for the space F 1V .

Lemma 24. We have

F pV =
∑
j>0

(F 0V )(−j−1)F
p−jV.

Proposition 25. (1) (F pV )(n)(F
qV ) ⊂ F p+q−n−1V . Moreover, if n > 0, (F pV )(n)(F

qV ) ⊂ F p+q−nV .
Here we have set F pV = V for p < 0.

(2) The filtration F •V is separated, that is,
⋂
p>0 F

pV = {0}, if V is positively graded.

The verifications are straightforward and are left to the reader. (Part (2) also follows from Lemma 37
below.)

In this note we always assume that a vertex algebra V is conformal and positively graded, V =
⊕

n∈Z>0
Vn,

so that the filtration F •V is separated. We will also assume that V0 = C|0〉 ∼= C.

Set

grFV =
⊕
p>0

F pV/F p+1V.

We denote by σp : F pV 7→ F pV/F p+1V , for p > 0, the canonical quotient map. When the filtration F is
obvious, we often briefly write grV for the space grF V .

Proposition 26 ([79]). The space grFV is a Poisson vertex algebra by

σp(a) · σq(b) := σp+q(a(−1)b),

Tσp(a) := σp+1(Ta),

σp(a)(n)σq(b) := σp+q−n(a(n)b),

for all a ∈ F pV \ F p−nV , b ∈ F qV , n > 0.

Set

RV := F 0V/F 1V = V/C2(V ) ⊂ grV.

Definition 27. The algebra RV is called the Zhu C2-algebra of V . The algebra structure is given by:

ā · b̄ := a(−1)b,

where ā = σ0(a).

Proposition 28 ([95, 79]). The restriction of the vertex Poisson structure on grFV gives to Zhu’s C2-algebra
RV a Poisson algebra structure, that is, RV is a Poisson algebra by

ā · b̄ := a(−1)b, {ā, b̄} = a(0)b,

where ā = σ0(a).

Proof. It is straightforward from Proposition 26. �

We say that a vertex algebra V is finitely strongly generated if RV is finitely generated as a ring.

In this note all vertex algebras are assumed to be finitely strongly generated.

Exercise 5 (Poisson structure on the Zhu C2-algebra of the universal affine vertex algebra). Let V k(g) be
the universal affine vertex algebra associated with a simple Lie algebra g at level k ∈ C.
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(1) Show that the map

C[g∗] ∼= S(g) 7−→ V k(g)/t−2g[t−1]V k(g)

x1 . . . xr 7−→ (x1t
−1) . . . (xrt

−1)|0〉+ t−2g[t−1]V k(g), x1, . . . , xr ∈ g.

defines an isomorphism of commutative algebras, the product on the right-hand side being given by:(
(x1t

−1) . . . (xrt
−1)|0〉

)
.
(
(y1t

−1) . . . (yst
−1)|0〉

)
= (x1t

−1) . . . (xrt
−1)(y1t

−1) . . . (yst
−1)|0〉,

for xi, yj ∈ g.
(2) Verify that

RV k(g) = V k(g)/t−2g[t−1]V k(g),

and show that the Poisson bracket on RV k(g) is the one induced from the isomorphism of (1).

Hints for Exercise 5. (1) Use the PBW basis to show the bijectivity, the rest of the verifications are
clear.

(2) Just verify using the commuting relations that for x, y ∈ g,

{x, y} = [x, y] = x̄(0)ȳ,

where x̄ stands for the image of x, viewed as an element of g ∼= V k(g)1, in RV k(g).

Remark 29. Suppose that the Poisson structure of RV is trivial. Then the Poisson vertex algebra structure
of J∞(RV ) is trivial, and so is that of grFV by Theorem 31. This happens if and only if

(F pV )(n)(F
qV ) ⊂ F p+q−n+1V for all n > 0.

If this is the case, one can give grFV yet another Poisson vertex algebra structure by setting

σp(a)(n)σq(b) := σp+q−n+1(a(n)b) for all n > 0.

(We can repeat this procedure if this Poisson vertex algebra structure is again trivial.)

Exercise 6 (Zhu’s C2-algebra and associated variety of the universal Virasoro vertex algebra). Let Virc be
the universal Virasoro vertex algebra of central charge c ∈ C.

(1) Show that grFVirc ∼= C[L−2, L−3, . . .], where F is the Li filtration.
(2) Deduce from (1) that RVirc

∼= C[x], where x is the image of L := L−2|0〉 in RVirc , with the trivial
Poisson structure.

(3) Show that one can endow grFVirc with a non-trivial Poisson vertex algebra structure such that

L−1L = L(0)L = TL and L0L = L(1)L = 2L, with L := σ0(L).

Hints for Exercise 6. (1) Describe F pVirc∆, where ∆ ∈ Z>0, using the PBW Theorem.
(2) Just use (1).
(3) Remember that by Remark 29, one can go one step further, and then compute σ1(L(0)L), σ0(L(1)L)

using the commuting relations.

2.3. Associated variety of a vertex algebra

We now in a position to define the main object of study of this lecture note.

2.3.1. Associated variety and singular support.

Definition 30. Define the associated scheme X̃V and the associated variety XV of a vertex algebra V as

X̃V := SpecRV , XV := SpecmRV = (X̃V )red.

It was shown in [79, Lem. 4.2] that grFV is generated by the subring RV as a differential algebra. Thus,
we have a surjection J∞(RV )→ grFV of differential algebras by Remark 15 since RV generates J∞(RV ) as
a differential algebra, too.

This is in fact a homomorphism of Poisson vertex algebras.
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Theorem 31 ([79, Lem. 4.2], [6, Prop. 2.5.1]). The identity map RV → RV induces a surjective Poisson
vertex algebra homomorphism

J∞(RV ) = C[J∞(X̃V )]� grFV.

Definition 32. Define the singular support of a vertex algebra V as

SS(V ) := Spec(grFV ) ⊂ J∞(X̃V ).

Note that the equality SS(V )red = (J∞(XV ))red as topological spaces hold in many examples (there is
no known counter-example so far).

However, the equality SS(V ) = J∞(X̃V ) as schemes is not true in general. Van Ekeren and Heluani [41]
showed that this may fail for the minimal series representation of the Virasoro algebra (cf. §3.2.2). Arakawa
et Linshaw [15] found a counter-example in the context of W -algebras. Finally, Arakawa and the author
discovered a counter-example for a non quasi-lisse (cf. Definition 46) affine vertex algebra. Note that all
these counter-examples were discovered only recently.

Theorem 33. We have dimSS(V ) = 0 if and only if dimXV = 0.

Proof. The “only if” part is obvious since π∞(SS(V )) = X̃V . The “if” part follows from Corollary 19. �

2.3.2. The lisse condition.

Definition 34. A vertex algebra V is called lisse (or C2-cofinite) if RV = V/C2(V ) is finite dimensional.

Thus by Theorem 33 we get:

Lemma 35. The vertex algebra V is lisse if and only if dimXV = 0, that is, if and only if dimSS(V ) = 0.

Remark 36. By our assumption that V =
⊕

i>0 Vi is Z>0-graded with V0 = C|0〉, the algebras grFV and
RV are equipped with the induced grading:

grFV =
⊕
i>0

(grFV )i, (grFV )0 = C,

RV =
⊕
i>0

(RV )i, (RV )0 = C.

So the following conditions are equivalent:

(1) V is lisse,
(2) XV = {point},
(3) the image of any vector a ∈ Vi for i > 1 in grFV is nilpotent,
(4) the image of any vector a ∈ Vi for i > 1 in RV is nilpotent.

Thus, lisse vertex algebras can be regarded as a generalization of finite-dimensional algebras.

2.3.3. Comparison with weight-depending filtration. There is another natural filtration of V defined
as follows [78]. Let GpV be the subspace of V spanned by the vectors

a1
(−n1−1)a

2
(−n2−1) · · · a

r
(−nr−1)|0〉

with ai ∈ V homogeneous, ∆a1 + · · ·+ ∆ar 6 p. Then G•V defines an increasing filtration of V :

0 = G−1V ⊂ G0V ⊂ . . . G1V ⊂ . . . , V =
⋃
p

GpV.

Moreover we have

TGpV ⊂ GpV,
(Gp)(n)GqV ⊂ Gp+qV for n ∈ Z,
(Gp)(n)GqV ⊂ Gp+q−1V for n ∈ Z>0,

It follows that grG V =
⊕
GpV/Gp−1V is naturally a Poisson vertex algebras.
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Lemma 37 ([6, Prop. 2.6.1]). We have

F pV∆ = G∆−pV∆,

where F pV∆ = V∆ ∩ F pV , GpV∆ = V∆ ∩GpV . Therefore

grFV ∼= grGV

as Poisson vertex algebras.

2.3.4. Universal affine vertex algebras. Consider the universal affine vertex algebra V k(g) associated
with a simple Lie algebra g at level k ∈ C. Recall that F 1V k(g) = g[t−1]t−2V k(g) and that RV k(g)

∼= C[g∗]
as Poisson algebras (cf. Exercice 5). Thus, identifying g∗ with g through ( | ), we get

X̃V k(g) = g∗ ∼= g.

On the other hand,

GpV
k(g) = Up(g[t−1]t−1)|0〉,

where {Up(g[t−1]t−1)}p is the PBW filtration of U(g[t−1]t−1), and we have the isomorphisms (cf. Example 23)

grU(g[t−1]t−1) ∼= S(g[t−1]t−1) ∼= C[J∞(g∗)].

As a consequence of Lemma 37, we get

SS(V k(g)) = J∞(g∗).

(The equality holds as schemes and, hence, SS(V k(g)) = J∞(X̃V k(g)).)

Given any quotient V of V k(g), one can set

RV = V/t−2g[t−1]V,

and we get a surjective homomorphism of Poisson algebras,

C[g∗] −→ RV = V/t−2g[t−1]V

x1 . . . xr 7−→ (x1t−1) . . . (xrt−1)|0〉+ t−2g[t−1]V (xi ∈ g),
(10)

the Poisson algebra structure on RV being defined as before. This map is surjective but not an isomorphism
in general. The associated variety XV is then the zero locus in g∗ of the kernel of the map (10). In particular,
for V = Lk(g) the simple quotient, we get that XLk(g) is a closed G-invariant conic subvariety of g∗.
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Part 3. Examples and properties of lisse and quasi-lisse vertex algebras

In this part, we give examples of lisse and quasi-lisse vertex algebras, essentially coming from affine vertex
algebras. We will see other important examples in the setting of W -algebras next part. To motivate our
examples, we start with a short digression on primitive ideals.

3.1. Digression on primitive ideals

3.1.1. Associated variety of primitive ideals. We remind that g = LieG is a simple Lie algebra. Let I
be a two-sided ideal of U(g). The PBW filtration on U(g) induces a filtration on I, so that gr I becomes a
graded Poisson ideal in C[g∗]. The zero locus V(I) of gr I in g∗,

V(I) = SpecmC[g∗]/gr I ⊂ g∗,

is usually referred to as the associated variety of I. Identifying g∗ with g through ( | ), we shall often view
associated varieties of two-sided ideals of U(g) as subsets of g.

A proper two-sided ideal I of U(g) is called primitive if it is the annihilator of a simple left U(g)-module.
Let us mention two important results on primitive ideals of U(g).

Theorem 38 (Duflo Theorem [40]). Any primitive ideal in U(g) is the annihilator AnnU(g)Lg(λ) of some
irreducible highest weight representation Lg(λ), where λ ∈ h∗, of g.

Theorem 39 (Irreducibility Theorem [34, 73, 57]). The associated variety V(I) of a primitive ideal I in
U(g) is irreducible, specifically, it is the closure O of some nilpotent orbit O in g.

In particular, the associated variety of a primitive ideal in contained in the nilpotent cone, which is a
crucial property. Theorem 39 was first partially proved (by a case-by-case argument) in [34], and in a more
conceptual way in [73] and [57] (independently), using many earlier deep results due to Joseph, Gabber,
Lusztig, Vogan and others.

It is possible that different primitive ideals share the same associated variety. At the same time, not all
nilpotent orbit closures appear as associated variety of some primitive ideal of U(g).

3.1.2. Analogs for affine Kac-Moody algebras? We have seen that V k(g) plays a role similar to that
of the enveloping algebra of g for the representation theory of the affine Kac-Moody algebra ĝ (cf. §1.6.2).
Because of this, it would be nice to have analogs of the associated varieties of primitive ideals in this context.
Unfortunately, one cannot expect exactly the same theory. One of the main reasons is that the center of
U(ĝ) is trivial (unless for the critical level k = −h∨), and so we do not have analog of the nilpotent cone (for
the critical level, the analog is played by the arc space of the nilpotent cone, see Exercice 4 and Example 17).
So we need some replacements.

In this context, the associated variety of the highest weight irreducible representation L(kΛ0) = Lk(g)
of ĝ, k ∈ C, viewed as a vertex algebra5, is a better analog. We will see next paragraphs some analogies
between the associated variety of Lk(g) and the associated variety of primitive ideals. But there are also
substantial differences. For example, since Lk(g) ∼= V k(g) for k 6∈ Q (cf. [62]), we see that XV k(g) is not
always contained in the nilpotent cone N . See Remark 57 for other examples where XV k(g) is not contained
in N .

3.2. Lisse vertex algebras

Recall that a vertex algebra V is called lisse if dimXV = 0, or equivalently, if RV is finite-dimensional
(cf. §2.3.2). Below are some examples.

5More generally, there is a notion of an associated variety for any module over a vertex algebra [6], and in particular, the
associated variety of any irreducible highest representation L(λ) of ĝ makes sense, too.
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3.2.1. Integrable representations of affine Kac-Moody algebras. The irreducible g-representation
Lg(λ), where λ ∈ h∗, is finite-dimensional if and only if its associated variety V(AnnU(g)(Lg(λ))) is zero.
Contrary to irreducible highest weight representations of g, the irreducible ĝ-representation L(λ), where

λ ∈ ĥ∗, is finite-dimensional if and only if λ = 0, that is, L(λ) is the trivial representation.
The notion of finite-dimensional representations has to be replaced by the notion of integrable represen-

tations in the category O. The category O for ĝ is defined in the similar way that for g, except that we do
not require that the object are finitely generated by g (cf. [83]).

Definition 40. Given a triangular decomposition of ĝ,

ĝ = n̂− ⊕ ĥ⊕ n̂,

a representation M of ĝ is said to be integrable if

(1) M is ĥ-diagonalisable,

(2) for λ ∈ ĥ∗, Mλ is finite-dimensional,
(3) for i = 0, . . . , r, Ei and Fi act locally nilpotently on M , where Ei, Hi, Fi are Chevalley generators6

of ĝ.

Remark 41. As an ai-module, i = 0, . . . , r, an integrable representation M decomposes into a direct sum

of finite dimensional irreducible ĥ-invariant modules, where ai ∼= sl2 is the Lie algebra generated by the
Chevalley generators Ei, Fi, Hi. Hence the action of ai on M can be “integrated” to the action of the group
SL2(C).

The character of the simple integrable representations in the category O satisfy remarkable combinatorial
identities (related to Macdonald identities).

Theorem 42 ([39]). Lk(g) is lisse if and only if Lk(g) is integrable as a ĝ-module (which happens if and
only if k ∈ Z>0).

The last equivalence in parenthesis of the statement is well-known. We explain below the “if” part of
Theorem 42.

Lemma 43. Let (R, ∂) be a differential algebra over Q, and let I be a differential ideal of R, i.e., I is an

ideal of R such that ∂I ⊂ I. Then ∂
√
I ⊂
√
I.

Proof. Let a ∈
√
I, so that am ∈ I for some m ∈ Z>0. Since I is ∂-invariant, we have ∂mam ∈ I. But

∂mam ≡ m!(∂a)m (mod
√
I).

Hence (∂a)m ∈
√
I, and therefore, ∂a ∈

√
I. �

Recall that a singular vector of a g-module M is a vector v ∈ M such that n.v = 0, that is, ei.v = 0
for i = 1, . . . , r. A singular vector of a ĝ-representation M is a vector v ∈ M such that n̂.v = 0, that is,
ei.v = 0 for i = 1, . . . , r, and (fθt).v = 0 (θ is the highest positive root). In particular, regarding V k(g) as a
ĝ-representation, a vector v ∈ V k(g) is singular if and only if n̂.v = 0.

Proof of the “if” part of Theorem 42. Suppose that Lk(g) is integrable. This condition is equivalent to that
k ∈ Z>0, and the maximal submodule Nk(g) of V k(g) is generated by the singular vector (eθt

−1)k+1|0〉
([59]). The exact sequence 0→ Nk(g)→ V k(g)→ Lk(g)→ 0 induces the exact sequence

0→ Ik → RV k(g) → RLk(g) → 0,

where Ik is the image of Nk in RV k(g) = C[g∗], and so, RLk(g) = C[g∗]/Ik. The image of the singular vector

in Ik is given by ek+1
θ . Therefore, eθ ∈

√
Ik. On the other hand, by Lemma 43,

√
Ik is preserved by the

adjoint action of g. Since g is simple, g ⊂
√
Ik. This proves that XLk(g) = {0} as required. �

The proof of the “only if” part follows from [39]. It can also be proven using W-algebras.
In view of Theorem 42, one may regard the lisse condition as a generalization of the integrability condition

to an arbitrary vertex algebra.

6Namely, Ei = ei ⊗ 1, Fi = fi ⊗ 1, Hi = fi ⊗ 1, for i = 1, . . . , r, where ei, fi, hi are the Chevalley generators of g, and
E0 = e0 ⊗ t, F0 = f0 ⊗ t−1, with f0 ∈ gθ, e0 ∈ g−θ such that (f0|e0) = 1. Here θ is the highest positive root.
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3.2.2. Minimal series representations of the Virasoro algebra. Let Nc be the unique maximal sub-
module of the Virasoro vertex algebra Virc, and let Virc := Virc/Nc be the simple quotient. By [6,
Prop. 3.4.1], the following are equivalent:

(i) Virc is lisse,

(ii) c = 1 − 6(p− q)2

pq
for some p, q ∈ Z>2 such that (p, q) = 1. (These are precisely the central charge

of the minimal series representations of the Virasoro algebra V ir.)

3.2.3. On the lisse and the rational conditions. It is known that lisse vertex algebras have various nice
properties. Let us mention a remarkable result.

Theorem 44 ([1, 95, 82]). Let V be a Z>0-graded conformal lisse vertex algebra.

(1) Any simple V -module is a positive energy representation, that is, a positively graded V -module.
Therefore the number of isomorphic classes of simple V -modules is finite.

(2) Let M1, . . . ,Ms be representatives of these classes, and let for i = 1, . . . , s,

χMi
(τ) = TrMi

(qL0− c
24 ) =

∑
n>0

dim(Mi)nq
n− c

24 , q = e2iπτ ,

be the normalized character of Mi. Then χMi
(τ) converges in the domain {τ ∈ C | Im(τ) > 0}, and

the vector space generated by SL2(Z).χMi
(τ) is finite-dimensional.

Definition 45. A conformal vertex algebra V is called rational if every Z>0-graded V -modules is completely
reducible (i.e., isomorphic to a direct sum of simple V -modules).

It is known ([38]) that the rationality condition implies that V has finitely many simple Z>0-graded
modules and that the graded components of each of these Z>0-graded modules are finite dimensional. If V
is as in Theorem 44 and also rational, it is known [54] that under some mild assumptions, the category of
V -modules forms a modular tensor category, which for instance yields an invariant of 3-manifolds, see [26].
It is actually conjectured by Zhu in [95] that rational vertex algebras must be lisse (this conjecture is still
open).

However, there are significant vertex algebras that do not satisfy the lisse condition. For instance, an
admissible affine vertex algebra Lk(g) (see below) has a complete reducibility property ([8]), and the modular
invariance property ([65]) in the category O still holds, although it is not lisse unless it is integrable.

So it is natural to try to relax the lisse condition. This is the purpose of next section.

3.3. Quasi-lisse vertex algebras

3.3.1. Symplectic stratification. Recall that XV is a Poisson variety.
If XV is smooth, then one may view XV as a complex-analytic manifold equipped with a holomorphic

Poisson structure, and for each point x ∈ XV there is a well-defined symplectic Sx leaf through x, which is
the set of points that can be reached from x by going along Hamiltonian flows.

If XV is not necessarily smooth, let Sing(XV ) be the singular locus of X, and for any k > 1 define

inductively Singk(XV ) := Sing(Singk−1(XV )). We get a finite partition

XV =
⊔
k

Xk
V ,

where the strata Xk
V := Singk−1(XV ) \ Singk(XV ) are smooth analytic varieties (by definition we put

X0
V = XV \ Sing(XV )). It is known (cf. e.g., [36]) that each Xk

V inherits a Poisson structure. So for any
point x ∈ Xk

V there is a well-defined symplectic leaf Sx ⊂ Xk
V . In this way one defines symplectic leaves on

an arbitrary Poisson variety.
For example, the symplectic leaves of g∗ are the (co)adjoint orbits Gξ, ξ ∈ g∗ ∼= g.
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3.3.2. Definition and properties of quasi-lisse vertex algebras.

Definition 46 ([14]). A vertex algebra is called quasi-lisse if XV has only finitely many symplectic leaves.

Clearly, lisse vertex algebras are quasi-lisse. We have already noticed that lisse vertex algebras are very nice
(see Lemma 35 and Theorem 44). It turns out that quasi-lisse vertex algebras have remarkable properties,
too.

Theorem 47 ([14]). A quasi-lisse vertex operator algebra has only finitely many simple ordinary represen-
tations. Here, a V -module is called ordinary if it is a positive energy representation and each homogeneous
space is finite-dimensional, so that the normalized character

χM (τ) = TrM (qL0− c
24 )

is well-defined.
Moreover, the normalized character of any ordinary module has a modular invariance property, in the

sense that it satisfies a modular linear differential equation.

A quasi-lisse vertex algebras quantizes the arc space of some Poisson variety as we recently demonstrated.

Theorem 48 ([21]). Assume that V is a quasi-lisse vertex algebra. Then

SS(V )red
∼= (J∞XV )red

as topological spaces. Moreover, the reduced singular support SS(V )red have finitely many irreducible com-
ponents, and each of them is a chiral symplectic cores closure7.

We now intend to give various examples of quasi-lisse vertex algebras.

Lemma 49. The simple affine vertex algebra Lk(g) is quasi-lisse if and only if XLk(g) ⊂ N .

Proof. Symplectic leaves in XLk(g) are the adjoint G-orbits contained in XLk(g) ⊂ g. It is well-known that
the nilpotent cone N of the simple Lie algebra is a finite union of adjoint orbits. Hence, if XLk(g) ⊂ N then
Lk(g) is quasi-lisse. This proves the converse implication.

To show the direct implication, first observe that if x is semisimple, then the closed G-invariant cone GC∗x
generated by x contains infinitely many symplectic leaves. Assume now that XLk(g) contains a non-nilpotent

element x, with Jordan decomposition x = xs + xn. If xn = 0, then XLk(g) contains GC∗x since XLk(g) is a
closed G-invariant cone of g. So XLk(g) cannot be quasi-lisse. If xn 6= 0, then given an sl2-triplet (xn, h, yn)
of g, we have

ρ(t)x = xs + t2xn,

where ρ : C∗ → G is the one-parameter subgroup generated by adh. Taking the limit when t goes to 0, we
deduce that xs ∈ XLk(g) and, hence, by the first case, XLk(g) cannot be quasi-lisse. �

3.3.3. Admissible representations. Let ∆̂re be the set of real roots of ĝ, and ∆̂re
+ the set of real positive

roots with respect to the triangular decomposition

ĝ = n̂− ⊕ ĥ⊕ n̂.

Definition 50 ([65, 67]). A weight λ ∈ ĥ∗ is called admissible if

(1) λ is regular dominant, that is,

〈λ+ ρ̂, α∨〉 6∈ −Z>0 for all α ∈ ∆̂re
+ ,

where ρ̂ = h∨Λ0 + ρ, with ρ the half-sum of positive roots of g,
(2) Q∆̂λ = Q∆̂re, where ∆̂λ := {α ∈ ∆̂re | 〈λ+ ρ̂, α∨〉 ∈ Z}.

The irreducible highest weight representation L(λ) of ĝ with highest weight λ ∈ ĥ∗ is called admissible if
λ is admissible. An irreducible integrable representation of ĝ is admissible. The simple affine vertex algebra
Lk(g) is called admissible if it is admissible as a ĝ-module. This happens if and only if k satisfies one of the
following conditions:

7The notion of chiral symplectic core is introduced in [21]: it is an affine analog to the notion of symplectic core ([36].
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(1) k = −h∨ +
p

q
, where p, q ∈ Z>0, (p, q) = 1 and p > h∨,

(2) k = −h∨ +
p

q
, where p, q ∈ Z>0, (p, q) = 1, (q, r∨) = r∨ and p > hg.

Here r∨ is the lacety of g (i.e., r∨ = 1 for the types A,D,E, r∨ = 2 for the types B,C, F and r∨ = 3 for the
type G2), and hg is the Coxeter number.

Definition 51. If k satisfies one of the above conditions (1) or (2) we say that k is an admissible level.

The following fact was conjectured by Feigin and Frenkel and proved for the case that g = sl2 by Feigin
and Malikov [45].

Theorem 52 ([7]). If k is admissible, then SS(Lk(g)) ⊂ J∞(N ) or, equivalently, the associated variety
XLk(g) is contained in N .

In fact, a stronger result holds.

Theorem 53 ([7]). Assume that k is admissible. Then

XLk(g) = Ok,

where Ok is a nilpotent orbit which only depends on q, with q as in Definition 51.

Remark 54. Let us describe explicitly the nilpotent orbit Ok of Theorem 53 in the case where g = sln. Recall
that the nilpotent orbits of sln are parameterized by the partitions of n. Let k be an admissible level for sln,

that is, k = −n+
p

q
, with p ∈ Z, p > n, and (p, q) = 1. Then

XLk(g) = {x ∈ g | (adx)2q = 0} = Ok,

where Ok is the nilpotent orbit corresponding to the partition (n) is q > n, and to the partition (q, q, . . . , q, s) =
(qm, s), where m and s are the quotient and the rest of the Euclidean division of n by q, respectively, if
q < n.

Next exercice gives a proof of Theorem 53 for g = sl2. It is based on Feigin and Malikov approach (see
also [7, Theo. 5.6]).

Exercise 7 (Simple affine vertex algebras associated with sl2). Let N be the proper maximal ideal of V k(sl2)
so that Lk(g) = V k(sl2)/N . Let I be the image of N in RV k(sl2) = C[g] so that RLk(g) = C[g]/I. It is known

that either N is trivial, that is, V k(sl2) is simple, or N is generated by a singular vector v whose image v in
I is nonzero ([64, 81]).

We assume in this exercise that N is non trivial. Thus, N = U(ŝl2)v.

(1) Using Kostant’s Separation Theorem show that, up to a nonzero scalar,

v = Ωmen,

for some m,n ∈ Z>0, where Ω = 2ef + 1
2h

2 is the Casimir element of the symmetric algebra of sl2.
(2) Deduce from this that

XLk(g) ⊂ N .

It is known that N is nontrivial if and only k is an admissible level for sl2, or k = −2 is critical. Thus we
have shown that XLk(g) ⊂ N if and only if k = −2 or k is admissible, i.e., k = −2 + p

q , with (p, q) = 1 and
p > 2.

Hints for Exercise 7. (1) For g = sl2, Kostant’s Separation Theorem [76, Th. 0.2 and 0.11] says that
S = ZH, where Z ∼= C[Ω] is the center of the symmetric algebra S of sl2, and H is the space
of invariant harmonic polynomials which decomposes, as an sl2-module, as H =

⊕
λ∈Z V

mλ
λ , with

mλ = 1 for all λ since g = sl2. Therefore, Sad e =
⊕

λ∈Z ZV
ad e
λ . To conclude, observe that, v being

a singular vector, it has a fixed weight and, hence, a fixed degree.
(2) Note that from (1), Ωe ∈

√
I and, so, Ωg ∈

√
I, whence Ω ∈

√
I. But in sl2, N is the zero locus

of Ω.
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3.3.4. Exceptional Deligne series. There was actually a “strong Feigin-Frenkel conjecture” stating that
k is admissible if and only if XLk(g) ⊂ N (provided that k is not critical, that is, k 6= −h∨ in which case
it is known that XLk(g) = N ). Such a statement would be interesting because it would give a geometrical
description of the admissible representations Lk(g).

As seen in Exercise 7, the equivalence holds for g = sl2. The stronger conjecture is wrong in general, as
shown the following result.

Theorem 55 ([18]). Assume that g belongs to the Deligne exceptional series,

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8,

and that k = −h
∨

6
− 1 + n, where n ∈ Z>0 is such that k 6∈ Z>0. Then

XLk(g) = Omin,
where Omin is the minimal nilpotent orbit of g, that is, the unique nilpotent orbit of g of minimal dimension
2h∨ − 2.

Note that the level k = −h
∨

6
− 1 is not admissible for the types D4, E6, E7, E8 (it equals −2,−3,−4,−6,

respectively). Theorem 55 provides the first known examples of associated varieties contained in the nilpotent
cone corresponding to non-admissible levels. The proof of this result is closely related to the Joseph primitive
ideal8 [56], and its description by Gan and Savin [49], associated with the minimal nilpotent orbit.

Note that the condition XLk(g) ⊂ N implies that Lk(g) has only finitely many simple objects in the
category O, and one can describe them thanks to Joseph’s classification [58] of irreducible highest weights
representation Lg(λ) whose associated variety is Omin.

The following exercise explains how to compute the associated variety in a concrete example exploiting a
singular vector. This example is covered by both Theorem 53 and Theorem 55.

Exercise 8 (An explicit computation of an associated variety). The aim of this exercice is to compute
XL−3/2(sl3). It was shown by Perše [89] that the proper maximal ideal of V −3/2(sl3) is generated by the
singular vector v given by:

v :=
1

3

(
(h1t

−1)(e1,3t
−1)|0〉 − (h2t

−1)(e1,3t
−1)|0〉

)
+ (e1,2t

−1)(e2,3t
−1)|0〉 − 1

2
e1,3t

−2|0〉,

where h1 := e1,1 − e2,2, h2 := e2,2 − e3,3 and ei,j is the elementary matrix of the coefficient (i, j) in sl3
identified with the set of traceless 3-size square matrices.

(1) Verify that v is indeed a singular vector for ŝl3, that is, ei,i+1v = 0 for i = 1, 2 and (e3,1t)v = 0.
(2) Let h := Ch1 + Ch2 be the usual Cartan subalgebra of sl3. Show that XL−3/2(sl3) ∩ h = {0}, and

deduce from this that XL−3/2(sl3) is contained in the nilpotent cone N of sl3.

(3) Show that N is not contained in XL−3/2(sl3).

(4) Denoting by Omin the minimal nilpotent orbit of sl3, conclude that

XL−3/2(sl3) = Omin.

Hints for Exercise 8. (1) Just use the commuting relations in V −3/2(sl3).
(2) Observe that the image I of the maximal proper maximal ideal of V −3/2(sl3) is generated by the

vector v̄ as an (ad sl3)-module, where

v̄ =
1

3
(h1 − h2) e1,3 + e1,2e2,3

is the image of v in RV −3/2(sl3)
∼= C[hi, ek,l ; i = 1, 2, k 6= l]. Verify that

(ad e3,2)(ad e2,1)v̄ = −e1,2e2,1 + e1,3e3,1 +
1

3
(2h1 + h2)h2,

(ad e2,1)(ad e3,2)v̄ = −e2,3e3,2 + e1,3e3,1 + +
1

3
(h1 + 2h2)h1,

8For g not of type A, there is the unique primitive ideal J0 of U(g) whose associated variety V(J0) is the minimal nilpotent
orbit closure.
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and deduce from this that the intersection XL−3/2(sl3) ∩ h is zero. For the last part, resume the
arguments of the proof of Lemma 49.

(3) Verify that e1,2 + e2,3 is not in XL−3/2(sl3).

(4) Observe that XL−3/2(sl3) cannot be reduced to zero.

Remark 56. There are other examples of simple quasi-lisse affine vertex algebras Lk(g), at non-admissible
level k, in type Dr, r > 5, and in type Br, r > 3; see [18, 19, 20]. Except for g = sl2, the classification
problem of quasi-lisse affine vertex algebras is wide open.

Remark 57. It may happen that the associated variety XLk(g) is neither the whole g, nor contained in the
nilpotent cone. For example [19, Th. 1.1], for n > 4,

XL−1(sln) = GC∗$̌1 6⊂ N ,
where $̌1 is the fundamental co-weight associated with α1 if α1, . . . , αn−1 are the simple roots of sln, and
for m > 2,

XL−m(sl2m) = GC∗$̌m 6⊂ N ,
where $̌m is the fundamental co-weight associated with αm.

3.3.5. Chiral differential operators. So far, all our examples of quasi-lisse, non lisse, vertex algebras
are affine vertex algebras. We will see other examples next part in the context of W -algebras by taking the
quantized Drinfeld-Sokolov reduction of quasi-lisse affine vertex algebras. There are other expected examples
coming from four dimensional N = 2 superconformal field theories, see Sect. 3.4.

Here is another type of example.

Example 58. Given a smooth affine variety X, the global section of the chiral differential operators DchX
([80, 53, 30]) is quasi-lisse because its associated scheme is canonically isomorphic to the cotangent bundle
T ∗X. As a consequence of [21, Cor. 9.3], the vertex algebra DchX is simple, since the associated scheme is
smooth, reduced ans symplectic. In particular, the global section of the chiral differential operators DchG,k
on the group G ([52, 25]) is simple at any level k. This example is important since DchG,−h∨ appears in the

4d/2d duality for the class S theory (cf. [13] or, here, Sect. 3.4).

3.3.6. Irreducibility conjecture. In view of the above results, and other ones, particularly, on associated
varieties of simple affine W -algebras (cf. Part 4), we formulate a conjecture.

Conjecture 59 ([19, Conj. 1]). Let V= ⊕d>0Vd be a simple, finitely strongly generated, positively graded
conformal vertex operator algebra such that V0 = C. Assume that XV has finitely many symplectic leaves,
that is, V is quasi-lisse. Then XV is irreducible. In particular, if XVk(g) ⊂ N , then XVk(g) is the closure of
some nilpotent orbit.

The conjecture is a natural affine analog of the irreducibility theorem (cf. Theorem 39) for the associated
variety of primitive ideals of U(g), which has been generalized to a large class of Noetherian algebras by
Ginzburg [50]:

Theorem 60 ([50]). Let A be a filtered unital C-algebra. Assume furthermore that grA ∼= C[X] is the
coordinate ring of a reduced irreducible affine algebraic variety X, and assume that the Poisson variety
Spec(grA) has only finitely many symplectic leaves. Then for any primitive ideal I ⊂ A, the zero locus V(I)
of gr I in X is the closure of a single symplectic leaf. In particular, it is irreducible.

Unfortunately, the algebras we consider in Conjecture 59 are not Noetherian. The reader is referred to
Remark 72 for more about this conjecture in the context of W -algebras.

3.4. Higgs branch and four dimensional N = 2 superconformal field theories

There are other known examples of quasi-lisse vertex algebras: apart from the above examples, it is the
case when V is the (generalized) Drinfeld-Sokolov reduction of a quasi-lisse affine vertex algebra provided
that it is nonzero [7] (cf. §§4.2.2 and 4.2.3).

This is also expected to happen for the vertex algebras obtained from four dimensional N = 2 super-
conformal field theories (4d N = 2 SCFTs), where the associated variety is expected to coincide with the
spectrum of the chiral ring of the Higgs branch of the four dimensional theory [29].
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More precisely, the physicists Beem, Rastelli et al [29] showed that there is a remarkable map

Φ: {4d N = 2 SCFTs} → {vertex algebras},
such that the character of the vertex algebra Φ(T ) coincides with the Schur index of the corresponding 4d
N = 2 SCFT T , which is an important invariant. Now, there is another important invariant, called the
Higgs branch, which we denote by Higgs(T ). The Higgs branch Higgs(T ) is an affine algebraic variety that
has a hyperKähler structure in its smooth part. In particular, Higgs(T ) is a (possibly singular) symplectic
variety. Note the meaning of this is not completely clear since there is no mathematical definition of the
Higgs branch in general.

The main examples of vertex algebras considered in [29] are the affine vertex algebras Lk(g) of types D4,

E6, E7, E8 at level k = −h
∨

6
− 1, which are non-rational, non-admissible quasi-lisse affine vertex algebras

that appear in Theorem 55.

Let T be one of the 4d N = 2 SCFTs studied in [29] such that Φ(T ) = Lk(g) with k = −h
∨

6
− 1 for

g of type D4, E6, E7, E8 as above. It is known that the Higgs(T ) = Omin, which equals to XLk(g) by
Theorem 55. It is expected that this is not just a coincidence.

Conjecture 61 ([28]). For T any 4d N = 2 SCFT, we have

Higgs(T ) = XΦ(T ).

Conjecture 61 has been recently proved by Arakawa for the theory of class S [13], a particular class of 4d
N = 2 SCFT’s for which the Higgs branches has been mathematically defined in terms of two-dimensional
topological quantum field theories [84, 35]. This includes the above examples. In particular, Arakawa’s result
reproves Theorem 55 for g = D4, k = −2 and g = E6, k = −3. We refer to the recent surveys [11, 12] for
more details about this conjecture.

It is expected by physicists that the Higgs branch of 4d N = 2 SCFT’s is an irreducible, normal, (possibly
singular) symplectic variety. Hence, by a result of Kaledin [68, Th. 2.3] it implies that the Higgs branch
has expectedly only finitely many symplectic leaves. In other words, physical intuition predicts that vertex
algebras that come from 4d N = 2 SCFTs via the map Φ are quasi-lisse. In this context, our conjecture 59
would give an evidence to Beem-Rastelli conjecture.
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Part 4. Affine W -algebras

Given a nilpotent element f of a simple Lie algebra g, the W -algebra associated with (g, f) at level
k is a certain vertex algebra defined by the generalized quantized Drinfeld-Sokolov reduction, which is a
certain quantized Hamiltonian reduction. Affine W -algebras are natural affinizations of the finite W -algebras
introduced by Premet [90] in the sense that Zhu’s algebras9 of W -algebras are finite W -algebras. The later
are certain generalizations of the enveloping algebra of a simple Lie algebra. On the other hand, as discussed
later, affine W -algebras are chiral quantizations of Slodowy slices associated with nilpotent elements.

In this part, we indicate how to define concretely the affine W -algebra associated with g = sl2 and a
nonzero nilpotent element f via the BRST cohomology (see Exercice 10). However we do not give the
general definition in this note. We refer to [10] and the references given there for more details. Then we
will restrict our attention to associated varieties of quantized Drinfeld-Sokolov reductions, and discuss some
applications.

4.1. Poisson structure on Slodowy slices

In this section, we review some important properties of Slodowy slices. Continue to assume that g = Lie(G)
is a simple Lie algebra.

4.1.1. Slodowy slices. Fix a nilpotent element f of g that we embed into an sl2-triple (e, h, f) of g. Let
φ : g→ g∗ be the isomorphism induced from the non-degenerate bilinear form ( | ), and set

χ := φ(f) = (f | · ) ∈ g∗.

Then define the Slodowy slice associated with (e, h, f) to be

Sf := φ(f + ge) = χ+ φ(ge) ⊂ g∗.

Denote by gi the i-eigenspace of ad(h) for i ∈ Z,

gi = {x ∈ g | [h, x] = ix}, i ∈ Z.
The restriction of the antisymmetric bilinear form,

ωχ : g× g→ C, (x, y) 7→ (f |[x, y]),

to g 1
2
× g 1

2
is nondegenerate. This results from the paring between g 1

2
and g− 1

2
, and from the injectivity of

the map ad f : g 1
2
→ g− 1

2
. It is called the Kirillov form associated with f . Let ` be a Lagrangian subspace

of g 1
2
, that is, ` is maximal isotropic which means ωχ(`, `) = 0 and dim ` = 1

2 dim g 1
2
. Set

m = mχ,` := `⊕
⊕
j> 1

2

gj .

Then m is an ad-nilpotent10, adh-graded subalgebra, of g, and we have:

(χ1) χ([m,m]) = (f |[m,m]) = 0,
(χ2) m ∩ gf = {0},
(χ3) dimm = 1

2 dimG.f .

Denote by M the unipotent subgroup of G corresponding to m.

4.1.2. Contracting C∗-action. The embedding spanC{e, h, f} ∼= sl2 ↪→ g exponentiates to a homomor-
phism SL2 → G. By restriction to the one-dimensional torus consisting of diagonal matrices, we obtain a
one-parameter subgroup ρ : C∗ → G. Thus ρ(t)x = t2jx for any x ∈ gj . For t ∈ C∗ and x ∈ g, set

ρ̃(t)x := t2ρ(t)(x).(11)

So, for any x ∈ gj , ρ̃(t)x = t2+2jx. In particular, ρ̃(t)f = f and the C∗-action of ρ̃ stabilizes Sf . Moreover,
it is contracting to f on Sf , that is,

lim
t→0

ρ̃(t)(f + x) = f

9The Zhu algebra of a graded vertex algebra is a certain quotient of the vertex algebra which naturally has the structure of
a filtered associative algebra.

10i.e., m only consists of nilpotent elements of g.
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for any x ∈ ge, because ge ⊂ m⊥ ⊆ g>−1. The same lines of arguments show that the action ρ̃ stabilizes
f + m⊥ and it is contracting to f on f + m⊥, too.

Next theorem asserts that affine space Sf is a “slice”.

Theorem 62. The affine space Sf is transversal to the coadjoint orbits of g∗. More precisely, given any
ξ ∈ Sf , we have Tξ(G.ξ) + Tξ(Sf ) = g∗. An analogue statement holds for the affine variety χ+ m⊥.

Proof. We have to show that [g, x] + ge = g for any x ∈ f + ge since Tx(G.x) = [g, x] and Tx(f + ge) = ge.
It suffices to verify that the map

η : G× (f + ge)→ g

is a submersion at any point (g, x) of G×(f+ge), that is, the differential dη(g,x) of η at (g, x) is surjective for
any point (g, x) of G× (f + ge). The differential of η is the linear map g× ge → g, (v, w) 7→ g([v, x]) + g(w).
So dη(Id,f)(v, w) = [v, f ] + w and, hence, dη(Id,f) is surjective, for [g, f ] + ge = g. Thus dη(Id,x) is surjective
for any x in an open neighborhood Ω of f in f + ge. Because the morphism η is G-equivariant for the action
by left multiplication, we deduce that dη(g,x) is surjective for any g ∈ G and any x ∈ Ω. In particular, for
any x ∈ Ω, we get

g = [g, x] + ge

We now use the contracting C∗-action ρ on f + ge to show that η is actually a submersion at any point of
G× (f + ge). �

4.1.3. An isomorphism. Consider the adjoint map

M × (f + m⊥)→ g, (g, x) 7→ g.x

Its image is contained in f + m⊥. Indeed, for any x ∈ n and any y ∈ m⊥, exp(adx)(f + y) ∈ f + m⊥ since
[m,m] ⊂ m and χ([m,m]) = 0. This is enough to conclude because, m being ad-nilpotent, M is generated by
the elements exp(adx) for x running through m. As a result, by restriction, we get a map

α : M ×Sf → f + m⊥.

Theorem 63 ([48, §2.3]). The map α : M ×Sf → f + m⊥ is an isomorphism of affine varieties.

Proof. We have a contracting C∗-action on M ×Sf defined by:

t.(g, x) := (ρ(t−1)gρ(t), ρ̃(t)x) for all t ∈ C∗ g ∈M, x ∈ Sf .

The morphism α is C∗-equivariant with respect to this contracting C∗-action, and the C∗-action ρ̃ on f+m⊥.
This finishes the proof, thanks to the following fact, formulated in [48, Proof of Lem. 2.1]:

“a C∗-equivariant morphism α : X1 → X2 of smooth affine C∗-varieties with contracting C∗-actions which
induces an isomorphism between the tangent spaces of the C∗-fixed points is an isomorphism.” �

As a consequence of this result, we get the isomorphism:

C[Sf ] ∼= C[f + m⊥]M .

4.1.4. Hamiltonian reduction. The connected Lie group M acts on the Poisson variety g∗ by the coadjoint
action. The action is Hamiltonian and the moment map,

µ : g∗ → m∗,

is the restriction of functions from g to m. Since χ|m is a character on m, it is fixed by the coadjoint action
of M . As a consequence, the set

µ−1(χ|m) = {ξ ∈ g∗ | µ(ξ) = χ|m}

is M -stable.

Lemma 64. χ|m is a regular value for the restriction of µ to each symplectic leaf of g∗.
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Proof. Note that µ−1(χ|m) = χ+ m⊥. Then we have to prove that for any ξ ∈ χ+ m⊥, the map

dξµ : Tξ(G.ξ)→ Tχ|m(m∗)

is surjective. But Tξ(G.ξ) ' [g, ξ] while Tχ|m(m∗) = m∗. Since χ+ m⊥ is transversal to the coadjoint orbits
in g∗ (cf. Theorem 62), we have

g = [g, ξ] + m⊥.

Fix γ ∈ m∗ and write γ = x + x′, with x ∈ [g, ξ] and x′ ∈ m⊥, according to the above decomposition of g.
Then µ(x) = γ. �

Since the map
M ×Sf −→ χ+ m⊥

is an isomorphism of affine varieties (cf. Theorem 63),

Sf
∼= (χ+ m⊥)/M.

Therefore, by [94, Th. 7.31] or [77, Prop. 5.39 and Def. 5.9], we get a symplectic structure on Sf . In fact,
thanks to Lemma 64, we have shown that the symplectic form on each leaf on Sf is obtained by symplectic
reduction from the symplectic form of the corresponding leaf of g∗. The Poisson structure on Sf is described
as follows. Let π : χ+m⊥ � (χ+m⊥)/M ' Sf be the natural projection map, and ι : χ+m⊥ ↪→ g∗ be the
natural inclusion. Then for any f, g ∈ C[Sf ],

{f, g}Sf
◦ π = {f̃ , g̃} ◦ ι

where f̃ , g̃ are arbitrary extensions of f ◦ π, g ◦ π to g∗.

4.1.5. BRST reduction. The Hamiltonian reduction obtained in §4.1.4 can also be described by means of
the BRST cohomology (the letters BRST refers to the physicists Becchi, Rouet, Stora and Tyutin).

We briefly outline below the construction in the special case where f = fprin is a principal nilpotent
element, that is, such that Gf is of maximal dimension dim g − r, with r = rk g. See [10, §2.4] for more
details11, and see [17] for the construction in a more general setting; see also e.g. [9, Sect. 2].

One can suppose that fprin =
∑
i e−αi , where e−α1 , . . . , e−αr are the opposite simple roots vectors asso-

ciated with the simple roots α1, . . . , αr with respect to the triangular decomposition

g = n− ⊕ h⊕ n.

Then m is just the nilpotent subalgebra n.
Consider the Clifford algebra Cl associated with the vector space n⊕ n∗ and the non-degenerate bilinear

forms ( | ) defined by (φ + x|ψ + y) = φ(y) + ψ(x) for φ, ψ ∈ n∗, x, y ∈ n. Specifically, Cl is the unital
C-superalgebra that is isomorphic to Λ(n)⊗ Λ(n∗) as C-vector spaces, and

[x, φ] = φ(x), x ∈ n ⊂ Λ(n), φ ∈ n∗ ⊂ Λ(n∗).

(Note that [x, φ] = xφ+ φx since x, φ are odd.)
Define an increasing filtration on Cl by setting Clp := Λ6p(n)⊗ Λ(n∗). We have

0 = Cl−1 ⊂ Cl0 ⊂ Cl1 ⊂ · · · ⊂⊂ ClN = Cl,

where N = dim n =
1

2
dimGf , and

Clp.Clq ⊂ Clp+q, [Clp, Clq] ⊂ Clp+q−1.

As a consequence, the associated graded algebra,

C̄l := grCl =
⊕
p>0

Clp
Clp+1

,

is naturally a graded Poisson superalgebra. We have C̄l = Λ(n)⊗Λ(n∗) as a commutative superalgebra, and
its Poisson (super)bracket is given by:

{x, φ} = φ(x), {x, y} = 0, {φ, ψ} = 0, x, y ∈ n ⊂ Λ(n), φ, ψ ∈ n∗ ⊂ Λ(n∗).

11The lecture [10] only deals with the case where g = sln but the general case with principal f works similarly.
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Set

C̄(g) = C[g∗]⊗ C̄l.
Since C̄(g) is a tensor product of Poisson superalgebras, it is naturally a Poisson superalgebra. Set

Q̄ =
∑
α

(xα − χ(xα))⊗ x∗α − 1⊗ 1

2

∑
α,β,γ

cγα,βx
∗
αx
∗
βxγ ,

where {xα}α∈∆+
is the basis of n, with ∆+ the set of positive roots with respect to the above triangular

decomposition, {x∗α}α∈∆+ is its dual basis, and cγα,β is the constant structure, that is, [xα, xβ ] = cγα,βxγ .

Then (cf. [31]) we have {Q̄, Q̄} = 0. Because Q̄ is odd it forces

(ad Q̄)2 = 0.

Hence (C̄(g), ad Q̄) is a differential graded Poisson superalgebra. Its cohomology

H•(C̄(g), ad Q̄) =
⊕
i∈Z

Hi(C̄(g), ad Q̄)

inherits a graded Poisson superalgebra structure from that of C̄(g).
According to Kostant and Sternberg [75] the Poisson structure on C[Sf ] may be described through the

following isomorphism.

Theorem 65 ([75]). We have Hi(C̄(g), ad Q̄) = 0 for i 6= 0 and

H0(C̄(g), ad Q̄) ∼= C[Sf ]

as Poisson algebras.

Since C[g∗]G is the Poisson center of C[g∗], the natural map C[g∗]G → H0(C̄(g), ad Q̄) sending p to p⊗ 1
is a well-defined homomorphism of Poisson algebras. Moreover, the diagram

C[g∗]G

��

∼

xx

C[Sf ] H0(C̄(g), ad Q̄)
∼oo

commutes, which yields an isomorphism

C[g∗]G
'−→ H0(C̄(g), ad Q̄).

For an arbitrary nilpotent element f , the statement has to be rephrased as follows.

Theorem 66. Given an arbitrary nilpotent element f of g, the natural map C[g∗]G → H0(C̄(g), ad Q̄) sending
p to p⊗1 induces an isomorphism of Poisson algebras from C[g∗]G to the Poisson center of H0(C̄(g), ad Q̄) ∼=
C[Sf ].

Remark 67. In [20, Th. 11.1] we have stated an affine version of the above theorem. It stipulates that there
is an isomorphism of Poisson vertex algebras from C[J∞g]J∞G to the Poisson vertex center of C[J∞Sf ]. It

implies that the vertex center of the affine W -algebra W−h∨(g, f) at the critical level is isomorphic to the
Feigin-Frenkel center z(ĝ) (cf. Exercise 4).

4.2. Affine W -algebras and their associated varieties

This section looks at the associated varieties of affine W -algebras.

4.2.1. About the definition of W -algebras. Given a nilpotent element f of the simple Lie algebra g,
the universal affine W -algebra Wk(g, f) associated with g and f at level k ∈ C is defined by the quantized
Drinfeld-Sokolov reduction associated with (g, f) with coefficients in a ĝ-module M ([44, 63]). It means that
Wk(g, f) is defined by a certain BRST cohomology,

Wk(g, f) := H0(Ck(g), Q̂(0)),
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where Ck(g) := V k(g)⊗Fχ, Fχ is a certain vertex superalgebra12 which depends on f , and (Ck(g), Q̂(0)) is
a certain cochain complex which depends on f , too. Thus W(g, f) is naturally a graded vertex algebra (see

Exercices 9). We briefly denote by H•DS,f (V k(g)) the cohomology H0(Ck(g), Q̂(0)).

Rather than discuss this in full generality, we detail (cf. Exercise 10) the case where g = sl2 and f = fprin
is principal, which is already very informative. We refer to [10] for the more general case where g = sln and
f = fprin in principal, and to [63] for the most general case.

We call (affine) W -algebras any graded quotient of the universal affine W -algebra Wk(g, f). The affine
W -algebras generalize both affine vertex algebras and Virasoro vertex algebras. Indeed,

Wk(g, 0) ∼= V k(f),

and (cf. Exercice 10 (3)),

Wk(sl2, fprin) ∼= Virc(k),

provided that k 6= −2, where

c(k) := 1− 6(k + 1)2

k + 2
.

Exercise 9 (A preliminary result for the BRST reduction). Let V be a vertex superalgebra, that is, a vector
superspace V = V0 ⊕ V1 satisfying the same axioms as a vertex algebra except that, in the locality axiom,
the bracket [a(z), b(w)] stands for

[a(z), b(w)] = a(z)b(w)− (−1)|a||b|b(w)a(z).

Fix an odd element Q of V such that Q(n)Q = 0 for all n > 0.

(1) Show that Q2
(0) = 0.

(2) Show that the quotient
kerQ(0)

imQ(0)
is naturally a vertex algebra, provided it is nonzero.

Hints for Exercise 9. (1) Remember that Q is odd and, hence, that Q2
(0) =

1

2
[Q(0), Q(0)]. Then use the

Borcherds identity.
(2) Show that kerQ(0) is a vertex subalgebra13 of V , and that imQ(0) is a vertex ideal of it.

Exercise 10 (Definition of the W -algebra associated with sl2 and a principal nilpotent element). Set

e :=

(
0 1
0 0

)
, h :=

(
1 0
0 −1

)
, f :=

(
0 0
1 0

)
so that sl2 = spanC(e, h, f). The aim of this exercice is to define the W -algebra Wk(sl2, f) associated with
sl2 and f at level k ∈ C. Set n := Ce.

(1) Let Ĉl be the Clifford algebra associated with n[t, t−1]⊕ n∗[t, t−1] and the symmetric bilinear form
( | ) given by:

(etm|etn) = (e∗tm|e∗tn) = 0, (etm|e∗tn) = δm+n,0.

We write ψm for etm ∈ Ĉl and ψ∗m for e∗tm ∈ Ĉl, m ∈ Z, so that Ĉl is the associative superalgebra
with odd generators ψm, ψ

∗
m, m ∈ Z, and relations:

[ψm, ψn] = [ψ∗m, ψ
∗
n] = 0, [ψm, ψ

∗
n] = δm+n,0.

Define the charged fermion Fock space as

F :=
Ĉl∑

m>0 Ĉlψm +
∑
n>1 Ĉlψ

∗
n

.

Show that there is a unique vertex (super)algebra structure on F such that the image of 1 is the
vacuum |0〉, and

ψ(z) := Y (ψ−1|0〉, z) =
∑
n∈Z

ψnz
−n−1, ψ∗(z) := Y (ψ∗0 |0〉, z) =

∑
n∈Z

ψ∗nz
−n.

12It is the vertex algebra of neutral free superfermions associated with g1/2.
13The definition of vertex subalgebra is very natural, see [46, §1.3.4] for more details.
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Let V k(sl2) be the universal affine vertex algebra associated with sl2 at level k, and set

Ck(sl2) := V k(sl2)⊗F .
Define a gradation F =

⊕
p∈Z Fp by setting degψm = −1, degψ∗n = 1 for all m,n ∈ Z and

deg |0〉 = 0. Then set Ck,p(sl2) := V k(sl2)⊗Fp. Define a vector Q̂ of degree 1 in Ck,1(sl2) by:

Q̂(z) := (e(z) + 1)⊗ ψ∗(z).

(2) Verify that Q̂(n)Q̂ = 0 for all n > 0, and deduce from Exercice 9 that the cohomologyH•(Ck(sl2), Q̂(0))

inherits a vertex algebra structure from that of Ck(sl2), provided that it is nonzero.
The W -algebra Wk(sl2, f) associated with (sl2, f) at level k ∈ C is defined by:

Wk(sl2, f) := H0(Ck(sl2), Q̂(0)).

This definition of Wk(sl2, f) is due to Feigin and Frenkel. It can be generalized to any simple Lie
algebra g and to any nilpotent element.

(3) Assume that k 6= −2. Show that there exists a unique vertex algebra homomorphism

Virc(k) →Wk(sl2, f), where c(k) := 1− 6(k + 1)2

k + 2
.

It can be shown that the above homomorphism is actually an isomorphism.

Hints for Exercise 10. (1) The main thing to be verified is the locality axiom.

(2) Observe that Q̂ = (e(−1)|0〉+ |0〉)⊗ e∗(0)|0〉 and then compute Q̂(z)Q̂ = 0.

(3) This is a very difficult question! We give the necessary guidance. Set

L(z) = Lsug(z) +
1

2
h(z) + LF (z) =

∑
n∈Z

Lnz
−n−1,

where

Lsug(z) =
1

2(k + 2)

(
: e(z)f(z) : + : f(z)e(z) : +

1

2
h(z)2

)
and LF (z) =: ∂zψ(z)ψ∗(z) :,

and verify that Q̂(0))L = 0 so that L defines an element of Wk(sl2, f). Then check that L−1 = T ,

that L0 acts semisimply on Wk(sl2, f) by

L0|0〉 = 0, [L0, h(n)] = −nh(n),

[L0, e(n)] = (1− n)e(n), [L0, f(n)] = (−1− n)f(n),

[L0, ψ
∗
(n)] = (−1− n)ψ∗(n), [L0, ψ(n)] = (1− n)ψ(n),

and that the Ln’s verify the Virasoro relations.

4.2.2. Associated variety of quantized Drinfeld-Sokolov reductions. Return to the general case, and
let f be a nilpotent element of the simple Lie algebra g. The W -algebra Wk(g, f) is a chiral quantization of
C[Sf ]. Specifically, we have [37, 7] a natural isomorphism RWk(g,f)

∼= C[Sf ] of Poisson algebras, so that

X̃Wk(g,f) = Sf .

Moreover,

grWk(g, f) ∼= C[J∞Sf ],

so that Wk(g, f) is a quantization of C[J∞Sf ].
Let Wk(g, f) be the unique simple quotient of Wk(g, f). Then XWk(g,f) is a C∗-invariant Poisson subva-

riety of Sf . Since it is C∗-invariant, Wk(g, f) is lisse if and only if XWk(g,f) = {f}.

Theorem 68 ([7]). For any quotient V of V k(g), the associated scheme X̃H0
DS,f (V ) is isomorphic to the

scheme theoretic intersection X̃V ×g∗ Sf . So XH0
DS,f (V ) = XV ∩Sf .

As a consequence of Theorem 68 and Lemma 49, we get that:

• H0
DS,f (V ) is nonzero if and only if f ∈ XV ,
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• H0
DS,f (V ) is lisse if G.f = XV ,

• H0
DS,f (V ) is quasi-lisse if XV is contained in the nilpotent cone N and if f ∈ XV .

The simple W -algebra algebra Wk(g, f) is a quotient vertex algebra of H0
DS,f (Lk(g)), provided it is

nonzero. Conjecturally [63, 67], we have Wk(g, f) ∼= H0
DS,f (Lk(g)), provided that H0

DS,f (Lk(g)) 6= 0. (This

conjecture has been verified in many cases [3, 5].)

4.2.3. Lisse and quasi-lisse W -algebras. Theorem 68 implies that if Lk(g) is quasi-lisse and if f ∈ XLk(g),

then the W -algebra H0
DS,f (Lk(g)) is quasi-lisse as well, and so is its simple quotientWk(g, f) if H0

DS,f (Lk(g))

is nonzero. In this way we obtain a huge number of quasi-lisse W -algebras. Furthermoer, if XLk(g) = G.f ,
then XH0

DS,f (Lk(g)) = {f}, so that Wk(g, f) in fact lisse. Thus, Conjecture 59 in particular says that any

quasi-lisse simple affine vertex algebra produces exactly one lisse simple W -algebra.

Example 69. If k is an admissible level, then one knows that XLk(g) = Ok for some nilpotent orbit Ok
(cf. Theorem 52). Picking f ∈ O, we obtain that Wk(g, f) is lisse. Moreover, for any f ∈ O, we obtain that
Wk(g, f) is quasi-lisse.

Example 70. By Theorem 55, there are other lisse simple W -algebras, not coming from admissible levels.
Namely, fix g, k as in Theorem 55, and choose fmin ∈ Omin. Then Wk(g, fmin) is lisse. In [18], we actually

obtained a stronger result: if g = D4, E6, E7, E8 and if k = −h
∨

6 − 1 + n, where n ∈ Z>0, then Wk(g, fmin)
is lisse. In fact, for n = 0, we have that Wk(g, fmin) ∼= C and so Wk(g, fmin) is also rational.

The first example of simple affine W -algebra not coming from an admissible level was discovered by

Kawasetsu [69]. Specifically, Kawasetsu showed thatWk(g, fmin) is lisse for g = D4, E6, E7, E8 and k = −h
∨

6 .
Furthermore, for such g, k, Wk(g, fmin) is rational.

Conjecture 71. Assume that g belongs to the Deligne exceptional series and that k = −h
∨

6
− 1 + n, where

n ∈ Z>0. Then Wk(g, fmin) is rational if and only if k 6∈ Z>0.

Conjecture 71 for admissible k, that is, for g = A1, A2, G2, F4 is known by Kac-Wakimoto [67]. See
Conjecture 76 for another conjecture on the same theme.

4.3. Nilpotent Slodowy slices and collapsing levels for W -algebras

4.3.1. Singularities of nilpotent Slodowy slices. Given a nilpotent orbit O in g and an sl2-triple (e, h, f),
the nilpotent Slodowy slice associated with O and (e, h, f) is the intersection

SO,f := O ∩Sf ,

where Sf
∼= f + ge is the Slodowy slice of the sl2-triple (e, h, f). Note that the set SO,f is nonempty if

and only if f ∈ O. The singularities of nilpotent Slodowy slices play a significant role in the theory of
symplectic singularities. They are understood best for Gf a minimal degeneration of O, that is, Gf is open
in the boundary of O in O. (The boundary of O in O is precisely the singular locus of O as was shown by
Namikawa [87] using results of Kaledin and Panyushev [68, 88].)

The most well-known nilpotent Slodowy slices are those associated with the principal nilpotent orbit Oprin
and a subregular nilpotent element fsubreg for types A,D,E in which case they have the simple singularity
of the same type as G. This is the classical theory of Brieskorn and Slodowy ([92]). Kraft and Procesi
studied nilpotent Slodowy slices in the classical cases [71, 72] in order to determine the generic singularities.
More recently, Fu, Juteau, Levy and Sommers [47] have completed that work. They determined the generic
singularities of O when g is of exceptional type by studying the various nilpotent Slodowy slices SO,f at
minimal degenerations Gf .

Here are a few properties of nilpotent Slodowy slices. First, SO,f is equidimensional of dimension dimO−
dimGf . It is irreducible if and only if O is unibranch14 (this happens for instance if O is normal, which
is always true in type A [70]). In addition, its normalization have symplectic singularities in the sense of
Beauville [27] (see for instance [47, Sect. 1.2]).

14An irreducible variety X is unibranch at x if the normalization π : (X̃, x̃)→ (X,x) of (X,x) is locally a homeomorphism
at x.
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Remark 72. In view of Conjecture 59 we have checked that for all known cases where the associated variety
XLk(g) is contained in the nilpotent cone, that is, Lk(g) is quasi-lisse, then XLk(g) is a nilpotent orbit closure
which is besides unibranch. Therefore, the associated varieties of the corresponding quantized Drinfled-
Sokolov reductions are always irreducible (cf. §4.2.2). This is a sort of verification of our conjecture in this
context, although we do not claim that our list simple affine quasi-lisse vertex algebras is exhaustive.

4.3.2. Collapsing levels for W -algebras. Let g\ be the centralizer in g of the sl2-triple (e, h, f). Then g\

is a reductive algebra and it decomposes as g\ =
⊕s

i=0 g
\
i , where g\0 is the center of g\, and g\1, . . . , g

\
s are the

simple factors of [g\, g\]. Define an invariant bilinear form on g\i , for i = 0, . . . , s, by (cf. [66])

(x|y)\i := k(x|x)g − (κg(x, x)− κg0
(x, x)− κ 1

2
(x, x))/2, x, y ∈ g\i ,

where κg0
denotes the Killing form of g0, and κ 1

2
(x, y) := tr

(
adg1/2

(x) adg1/2
(y)
)
, for x, y ∈ g0, with adg1/2

(x)

the endomorphism of g1/2 sending y to (adx)y. Then there exists a polynomial k\i in k of degree one such
that

( | )\i = k\i ( | )i, i = 1, . . . , s,

where ( | )i is the normalised inner product of g\i . For i = 0, we choose for ( | )0 any non-degenerate bilinear

form of g\0.

Definition 73. We say that the level k is collapsing if Wk(g, f) ∼= Lk\(g
\), where

Lk\(g
\) :=

s⊗
i=0

Lk\i
(gi).

Equivalently, k is collapsing if

Wk(g, f)g
\[t] ∼= C.

For example, if Wk(g, f) ∼= C, then k is collapsing.

The notion of collapsing levels for the case where f = fmin is a minimal nilpotent element, that is,
fmin ∈ Omin, goes back to Adamaović et al. [2]. Their motivations come from the complete reducibility of
some categories of representations. There is a full classification of collapsing levels for f = fmin, including
the case where g is a simple affine Lie superalgebra. It can be summarized as follows ([2]): k is collapsing if
and only if k 6= −h∨ and p(k) = 0, where p is a polynomial of degree two with coefficients in Q.

Example 74. If g = sl(m|n), n 6= m, then k is collapsing if and only if (k + 1)(k + (m− n)/2) = 0. If g is of
type E6, then k is collapsing if and only if (k + 3)(k + 4) = 0, etc.

Furthermore, there is a full classification of pairs (g, k) such that Wk(g, fmin) ∼= C. It was obtained by
Arakawa and the author in [18], and then extended to the super case by Adamaović et al. in [2]. For the
non super case, the statement is the following.

Theorem 75 ([18]). Wk(g, fmin) ∼= C if and only if either g belongs to the Deligne exceptional series and

k = −h
∨

6
− 1, or g = sp2r, r > 2, k = −1

2
, or g = sl2 and k + 2 =

2

3
or

3

2
.

As noted previously, for g = D4, E6, E7, E8 and k = −h
∨

6
−1,Wk(g, fmin) ∼= C and soWk(g, fmin)g

\[t] ∼= C

is lisse. Kawasetsu’s description of the vertex algebraW−h∨/6(g, fmin) implies thatWk+1(g, fmin)g
\[t] is lisse

(and rational). See Example 70 and Conjecture 71 for related topics.

Conjecture 76. If Wk(g, fmin)g
\[t] is lisse for some k, then Wk+n(g, fmin)g

\[t] is lisse for all n ∈ Z>0.

To sum up, the minimal nilpotent case is quite well-understood. However, little or almost nothing is
known for collapsing levels for non minimal nilpotent elements. The main reason is that for an arbitrary
nilpotent element f , the commutation relations in Wk(g, f) are unknown, and so it is extremely difficult to
predict which levels are collapsing.

In this context, the notion of associated variety and the singularities of nilpotent Slodowy slices are proving
to be very useful tools to find new collapsing levels. Let us outline the main idea.
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It may happens that two nilpotent Slodowy slices SO,f and SO′,f ′ (in different Lie algebras) are isomor-
phic. In particular, it may happen that a nilpotent Slodowy slices SO,f is isomorphic to the nilpotent closure

O\ is the reductive Lie algebra g\. Many examples can be exhibited from [71, 72, 47]. If SO,f ∼= O\ and if O
and O\ are the associated varieties of some affine vertex algebras Lk(g) and Lk\(g

\), respectively, one may
ask whether the isomorphism of vertex algebras,

Wk(g, f) ∼= Lk′(g
′),

holds, that is, whether k is a collapsing level. Naturally, the knowledge of the associated varieties is far from
sufficient to ensure that given vertex algebras are isomorphic, but in some favourable cases we are able to
conclude, as we will show below.

Example 77. In order to illustrate our strategy, let us consider a relatively easy example which was actually
the starting point of our work on collapsing levels (this example came up from a question by Creutzig and
Kawasetsu).

If O = O(32,1) is the nilpotent orbit of sl7 associated with the partition (32, 1), and if Gf is the nilpotent

orbit of sl7 associated with the partition (3, 14), then it is not dificult to show that

SO,f = O(32,1) ∩Sf
∼= O(3,1),

where O(3,1) is the nilpotent orbit of sl4 associated with the partition (3, 1).

In this example, we observe that sl\7
∼= C× sl4, and we easily verify that

k\0 = k + 2 and k\1 = 3k + 14.

On the other hand, by Theorem 53 and Remark 54, O(32,1) is the associated variety of any simple affine

vertex algebra Lk(sl7) at (admissible) level k of the form k = −7 +
p

3
, with (p, 3) = 1, p > 7. Similarly,

O(3,1) is the associated variety of any simple affine vertex algebra Lk′(sl7) at (admissible) level k′ of the form

k′ = −4 +
p

3
, with (p, 4) = 1, p > 4.

The condition k\0 = 0 is equivalent to k = −14

3
= −7 +

7

3
. With such a k, k\1 = −8

3
= −4 +

4

3
. The

levels −7 +
7

3
and −4 +

4

3
are admissible for sl7 and sl4, respectively. A natural question arising from these

observations is whether

W−7+7/3(sl7, f) ∼= L−4+4/3(sl4),(12)

that is, whether −14

3
is a collapsing level. As an evidence of the above isomorphism one can check that

the central charges of the above vertex algebras coincide. Recall that the central charge of the simple affine
vertex algebra Lk(g) is

ck(g) :=
k dim g

k + h∨
.

On the other hand, the central charge of the simple affine W -algebra Wk(g, f) is

ck(g, f) := dim g0 −
1

2
dim g1/2 − 12

(
|ρ|2

k + h∨
− (ρ|h) +

k + h∨

4
|h|2
)
.

Here, we find that the central charge is −30 in both sides of (12). In this example, one can show that (12)
is indeed an isomorphism. This is a particular case of Theorem 80 below.

Once we have detected a possible collapsing level, as in the above example, one can sometimes conclude
using the asymptotic behavior of the normalized characters for admissible levels as discovered by Kac and
Wakimoto.

Proposition 78 ([65]). Assume that k is a principal15 admissible level, and assume that V is either the simple
affine vertex algebra Lk(g) or its Drinfeld-Sokolov reduction H0

DS,f (Lk(g)), with f an arbitrary nilpotent

15It means that k = −h∨ + p
q

, with (p, q) = 1, (q, r∨) = 1, and p > h∨. All admissible levels are principal for the types

A,D,E.
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element. Then,
χV (τ) ∼ A (V )eπiG (V )/12τ , as τ ↓ 0,

where A (V ) and G (V ) are two constants, called the amplitude and the asymptotic growth of V , respectively.
Recall here that the normalised character of V is given by

χV (τ) = TrV e
2iπτ(L0−c/24), Im τ > 0.

The amplitude A (V ) and the asymptotic growth G (V ) have been described combinatorially in [65] for
any V as in Proposition 78. For example, for a principal admissible level k, we have:

G (Lk(g)) =

(
1− h∨

pq

)
dim g and G (H0

DS,f (V )) = G (Lk(g))− dimGf.

The formulas for the amplitude are slightly more complicated. We omit them here.

Theorem 79 ([22]). Assume that k and k\ are admissible levels for g and g\, respectively, that f ∈ XLk(g)

(⊂ N ) and that

χH0
DS,f (Lk(g))(τ) ∼ χL

k\
(g\)(τ), as τ ↓ 0,

that is,

G (H0
DS,f (Lk(g))) = G (Lk\(g

\)) and A (H0
DS,f (Lk(g))) = A (Lk\(g

\)).

Then
Wk(g, f) ∼= H0

DS,f (Lk(g)) and Wk(g, f) ∼= Lk\(g
\).

In particular, Wk(g, f) is simple and k is a collapsing level.

In this way we discovered a large number of collapsing levels. Next theorem covers Example 77 (we have
similar results for son and spn).

Theorem 80. Let n be a positive integer that we write as n = mq + s, with m, q > 0 and s > 0. Assume
that (q, s) = 1 and that the partition associated with the nilpotent orbit Gf is (qm, 1s). Then

W−n+n/q(sln, f) ∼= L−s+s/q(sls).

In particular, k = −n+
n

q
is a collapsing level for sln.

Example 81. Let us now give a few examples in the exceptional types. Below, we have written the label in
the Bala-Carter classification of the nilpotent orbit Gf instead of f :

W−12+12/5(E6, A4) ∼= L−2+2/5(A1), W−18+18/3(E7, E6) ∼= L−2+2/13(A1),

W−18+19/12(E7, E6) ∼= L−2+3/4(A1), W−18+18/7(E7, (A5)′′) ∼= L−4+4/7(G2),

W−9+9/7(F4, B3) ∼= L−2+2/7(A1), etc.

All these examples are obtained by exploiting [7] and [47] to detect the levels, and then applying Theorem 79
to prove that the isomorphisms indeed hold.

4.3.3. Collapsing levels in Argyres-Douglas theory. As already noted, nilpotent Slodowy slices appear
as associated variety of W -algebras (cf. §4.2.2). It is also known that they appear as the Higgs branches
of the Argyres-Douglas theories ([23, 24]) in four-dimensional N = 2 superconformal field theories (see
e.g. [93]). These two aspects are connected by the fact that the Higgs branch of a four-dimensional N = 2
superconformal field theory T is conjecturally [28] isomorphic to the associated variety of the vertex algebra
corresponding to T via the 4d/2d-duality discovered in [29] (see Sect. 3.4). As is apparent from the previous
paragraph, nilpotent Slodowy slices and their singularities are further important to find collapsing levels.

In fact, we think that collapsing levels play an important role in the Argyres-Douglas theory ([22]). In
the 4d/2d-duality provided by the map Φ of Sect. 3.4, typical examples of vertex algebras corresponding to
the Argyres-Douglas theories are the vertex algebras,

L−h∨+h∨/q(g), W−h∨+h∨/q(g, f),

for g of type A,D,E, with (h∨, q) = 1. (It seems that the non-admissible case where (h∨, q) 6= 1 also occurs.)
Notice that such exemples have appeared in Theorem 80 and Example 81.
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As observed in [93], a given Argyres-Douglas theory can be realized in several ways. Since the map Φ
is well-defined, whenever this happens, it means that we have an isomorphisms between W -algebras. We
believe that such a phenomenon essentially reflects that the level is collapsing, provided that one of the W -
algebras in an affine vertex algebra. Actually, from the geometry of nilpotent Slodowy slices, it is sometimes
possible to predict isomorphisms between non-trivial W -algebras. For example, we conjecture that

W−7+7/3(sl7, f) ∼=W−4+4/3(sl4, f
′),

where f belongs to the nilpotent orbit of sl7 associated with the partition (3, 22) and f ′ belongs to the
nilpotent orbit of sl4 associated with the partition (22). We have checked that the central charges, the
amplitudes, the asymptotic growths, and of course the associated varieties coincide, but we are not able to
conclude for the moment since our Theorem 79 does not apply.

Unfortunately, our understanding of the Argyres-Douglas theory is limited for the moment, but it strongly
motivates our investigations on collapsing levels and their variants.
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