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Théorie des corps

Prérequis : notions d’anneaux et de corps.
Sauf dans le théoreme de Wedderburn (théoreme 1.39), les corps sont supposés .

D)

Nous suivons pour une large part le chapitre III de [3] et les chapitres 15 et 18 de [6].

1.1. Caractéristique d’un corps

Soient K un corps (quelconque pour le moment). Soit
c:Z— K
I’unique morphisme d’anneaux défini par

n—nl=14+14+---41 si n>0.
n fois
C’est un morphisme d’anneaux dont le noyau est un idéal de Z, donc de la forme nZ. On a donc une inclusion
Z/nZ = Imo — K. Or un corps est un anneau intégre, donc nZ est un idéal premier. Autrement dit, ou bien n = 0
ou bien n = p est un nombre premier. En effet, si tel n’était pas le cas, la factorisation précédente fournirait des
diviseurs non nuls de 0 dans K.

Définition 1.1 — caractéristique d’un corps}

Sin = 0, on dit que le corps K est de caractéristique nulle.

Sinon, n = p > 0 est un nombre premier que 1’on appelle la caractéristique du corps K.

REMARQUE 1.1. (1) Sile corps K est de caractéristique p > 0, on a alors par définition p.1 = 0, mais
aussi, pour tout z € K, p.x = p.(l.z) = (p.1).x = 0.
(2) Sile corps K est de caractéristique nulle, alors (Z) = Z — K, donc K est infini. De plus, K contient un
corps isomorphe au corps des fractions de Z, a savoir Q.

On appelle sous-corps premier de K le plus petit sous-corps de K (contenant 1). C’est I’intersection de tous les
sous-corps de K.

— Si K est fini de caractéristique p > 0, le plus petit sous-corps de K est isomorphe & Z/pZ. On le note
aussi F,.
— Si K est de caractéristique nulle, alors le plus petit sous-corps de K est isomorphe a Q.

A

Attention, il se peut qu’un corps soit de caractéristique p > 0 sans étre de cardinal fini! Penser, par
exemple, au corps F,(X).
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1.2. Extension de corps, éléments algébriques

Définition 1.2 — extension de corps}

Soient K, L des corps, avec K C L. Autrement dit, ’inclusion ¢: K <— L est un morphisme d’anneaux.
On dit que L est une extension (de corps) de K.

REMARQUE 1.2. Comme tout morphisme de corps est injectif, se donner une extension revient a se donner deux
corps K, L et un morphisme de corps i: K < L; on identifie alors #(X) & un sous-corps de L.

EXERCICE DE COURS 1.1 (exemples d’extensions de corps). Citer des exemples varié€s d’extensions de corps.

EXERCICE DE COURS 1.2.
(1) Vérifier que si L est une extension de K, alors L est un K -espace vectoriel.

(2) On suppose que K et L sont des corps finis. Montrer que |L| = |K|", oit n = dimg L.

Si K est de cardinal fini ¢, sa caractéristique est nécessairement égale a un nombre premier p > 0. D’apres
I’exercice précédent, on a donc ¢ = | K| = p™. Par exemple, il n’existe pas de corps de cardinal 6. On retient que :

: | le cardinal d’un corps fini est une puissance d’un nombre premier, sa caractéristique.

Si K C L sont des corps tels que la dimension du K -espace vectoriel L soit finie, on pose
[L: K] =dimg L.
Lentier [L : K] s’appelle le degré de I’extension L sur K.

Le théoréme suivant est tres simple, mais sera bien utile dans la théorie des corps comme nous le verrons plus loin,
par exemple lors de la démonstration du théoreme 1.8.

,—[The’oréme 1.3 — théoreme de la base télescopique] \

Soient K C L C M des corps, (€;)icr, une base de L sur K, et (f;);jes, une base de M sur L. Alors
(€ifj)(i,j)yerxs est une base de M sur K.

En particulier, si les degrés sont finis, on a
[M:K]=[M:L|L:K].

REMARQUE 1.3. Si [M : K] est un nombre premier, il n’existe aucun corps L tel que
KcLCM et K#L, L#M.

EXERCICE DE COURS 1.3. Démontrer ce théoréme.

Dans tout ce qui suit, X' C L désigne une extension de corps.

,—[Déﬁnition 1.4 — partie génératrice} \

Soit A une partie de L. On dit que A engendre L sur K, et on écrit L = K(A), si L est le plus petit
sous-corps de L contenant K et A.

Si A={xy,...,x,}estfini, on note L = K(x1,...,x,).

L’extension est dite monogeéne s’il existe © € A tel que L = K (z).
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Soit z € L. On note K|[z] le sous-anneau engendré par K et . On a
Kz] C K(z).
On peut décrire K [z] et K (x) ainsi :

— Siy € Klz],alors y s’écrity = P(z) avec P € K[X],i.e.,y = apz"+---+aix+ag, avec ag, ay, ..., a, €
K.

— Siy € K(z), alors y = ggg avec P, Q) € K[X]etQ(x) # 0.

Autrement dit,

EXERCICE DE COURS 1.4. Vérifier ces assertions.

Attention, K[z] n’est pas en général isomorphe a I’anneau des polyndmes K [X], et K (x) n’est pas en
A général isomorphe au corps des fractions rationnelles K (X). En effet, on peut avoir Q(z) = 0 avec

Qe K[X]etQ # 0.

De facon précise, I’application suivante
p: K[X] — L, P+— P(x)

définit un morphisme d’algebres. On note I, sont noyau.
Il y a deux cas possibles.

,—[Déﬁnition 1.5 — élément algébrique et élément transcendant] \

1) SiI, = {0}, ondit que z est transcendant sur K . Le morphisme ¢ induit alors un isomorphisme
de K[X] sur K[x] qui se prolonge en un isomorphisme de K (X) sur K (z).

2) SiI, # {0}, on dit que x est algébrique sur K.

L’anneau K[X] étant principal, il existe un un unique polyndme irréductible unitaire P, tel que
I, = (Py).

Le polyndme P, est appelé le polynéme minimal de x sur K. Son degré est le degré de x sur K.

EXERCICE DE COURS 1.5. Vérifier que les nombres V2,4, /2 de C sont algébriques sur Q. Quels sont leurs
polyndmes minimaux ?

REMARQUE 1.4. 1) On peut montrer que les nombres réels e = exp(1) et 7 sont transcendants sur Q (mais
pas sur R évidemment).

2) Dans K(X), I’élément X est transcendant sur K.

EXERCICE DE COURS 1.6. Montrer que si  est transcendant sur K, alors K [x] 2 K[X] (en tant qu’anneaux)
et K (x) = K(X) (en tant que corps). En particulier, K [z] est distinct de K ().

,—[Théoréme 1.6 — différentes caractérisations des éléments algébriques} \

Soit x € L. Les propriétés suivantes sont équivalentes :
(i) z est algébrique sur K,
(ii) ona K[z] = K(x),

(iii) on a dimg K|z] < occ.
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EXERCICE DE COURS 1.7 (démonstration du théoréeme 1.6).

(1) Démontrer I’'implication (i) = (ii).

O Indication : considérer I’isomorphisme
s K[X]/(P) — Klz],

6l

-
ou P est le polyndme minimal de .

(2) Démontrer I’implication (ii) = (iii) a ’aide de I’exercice 1.6.
(3) Montrer que si dimg K[x] < 0o, alors le polyndme minimal P de x est irréductible et
dimg K[x] = [K[z] : K] = deg P.

En déduire I'implication (iii) = (i).

Dans les notations de 1’exercice précédent, le degré de P, égal a dimg K|[z], est appelé de degré de x sur K.

Définition 1.7 — extension finie et extension algébrique}

(1) Une extension de corps K C L est dite finie si dimg L = [L : K] < cc.
(2) Une extension de corps K C L est dite algébrique si pour tout x € L, x est algébrique sur K.

EXERCICE DE COURS 1.8. Déduire du théoreme 1.6 que toute extension finie est algébrique.

A

,—[Théoréme 1.8 — I’ensemble des éléments algébriques sur un corps est un sous—corps} \

Nous verrons plus loin que la réciproque est fausse : voir I’exemple 1.1!

Soit K C L une extension de corps. Posons
M = {x € L: x est algébrique sur K }.

Alors M est un sous-corps de L qui contient K.

EXERCICE DE COURS 1.9. Démontrer ce théoreme a 1’aide du théoreme 1.6 et du théoreme de la base téles-
copique (théoreme 1.3).

EXEMPLE 1.1. Soit
A = {z € C: z algébrique sur Q}.
Alors A est un sous-corps de C, algébrique sur Q, mais I’extension Q C A n’est pas finie. En effet, il existe des éléments

de A de degré arbitrairement grand, par exemple {/2, qui est de degré n, car le polynéme X" — 2 est irréductible sur
Q (en vertu du critere d’Eisenstein : voir le théoréme 1.32 plus loin).

,—[Déﬁnition 1.9 — corps algébriquement fermé dans un autre} \

Si K C L est une extension, on dit que K est algébriquement fermé (ou algébriquement clos) dans L si
tout élément de L, algébrique sur K, appartient a K.

Autrement dit, dans les notations du théoreme 1.8, ona M = K.
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EXERCICE DE COURS 1.10. Dans les notations du théoreme 1.8, montrer que M est une extension algébrique
de K, algébriquement fermée dans L.

Définition 1.10 — cloture algébrique d’un corps dans une extension]

On dit que M est la fermeture algébrique (ou la cloture algébrique) de K dans L.

EXERCICE DE COURS 1.11. Vérifier que les propriétés suivantes sont équivalentes :
(1) tout polynéme P € K[X] de degré > 1 admet une racine dans K,
(2) tout polyndme P € K[X] de degré > 1 est produit de polyndmes de K[X] de degré 1,
(3) les éléments irréductibles de K[X]| sontles X — z, avec z € K,

(4) siune extension K C L est algébrique, alorsona L = K.

,—[Déﬁnition 1.11 — corps algébriquement clos} \

Un corps K est dit algébriquement clos s’il vérifie I’'une quelconque des propriétés équivalentes de 1’exer-
cice 1.11.

En particulier, K est algébriquement clos s’il est algébriquement clos dans toute extension de K.

EXEMPLE 1.2. 1) Le corps C est algébriquement clos d’apres le théoreme de d’ Alembert-Gauss.

2) le corps A défini dans I’exemple 1.1 est lui aussi algébriquement clos. On montre aisément que A est dé-
nombrable (exercice!) ce qui, puisque R ne 1’est pas, prouve 1’existence dans R de nombres transcendants

sur Q.

Jean le Rond D’Alembert, né le 16 novembre 1717 a Paris ou il est mort le 29
octobre 1783, est un mathématicien, physicien, philosophe et encyclopédiste fran-
cais. Il est célebre pour avoir dirigé I’Encyclopédie avec Denis Diderot jusqu’en
1757 et pour ses recherches en mathématiques sur les équations différentielles et

les dérivées partielles.

Johann Carl Friedrich Gauss, né le 30 avril 1777 a Brunswick
et mort le 23 février 1855 a Gottingen, est un mathématicien, as-
tronome et physicien allemand. Il a apporté de trés importantes
contributions a ces trois domaines. Surnommé «le prince des ma-
thématiciens», il est considéré comme l'un des plus grands mathé-

maticiens de tous les temps.
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1.3. Corps de rupture et corps de décomposition

Soit K un corps. Compte tenu des notions précédentes, voici deux problemes bien naturels que nous allons ré-
soudre dans cette section :

— étant donné un polyndéme P € K[X], irréductible de degré d > 1, construire une extension dans laquelle P
admet une racine a, donc est divisible par X — a et, en particulier, n’est plus irréductible,

— étant donné un polyndéme P € K[X], construire une extension dans laquelle P se décompose en produit de
polyndmes de degré 1.

1.3.1. Corps de rupture.

Définition 1.12 — corps de rupture d’un polynome irréductible} \

Soient K un corps et P € K[X] un polyndome irréductible. Une extension L de K est appelée un corps de
rupture de P sur K si L est une extension monogene L = K (x) avec P(x) = 0.

Théoreme 1.13 — existence et unicité du corps de rupture] N

Soit P € K[X] un polyndme irréductible. Il existe un corps de rupture de P sur K, unique a isomorphisme
pres.

EXERCICE DE COURS 1.12. Montrer que le corps L = K[X]/(P) est un corps de rupture de P sur K.

L’exercice démontre la partie « existence » du théoréme. L’unicité découle quant a elle du lemme suivant.
— Lemme 1.14 \

Soient K, K deux corps, i: K — K un isomorphisme que 1’on étend de maniére unique en un isomor-
phisme, encore noté ¢, de K[X] sur K[X] en envoyant X sur X. Soit P € K[X] un polyndme irréductible.
Posons

P =i(P).
Soit L = K(x) (resp. L = K (&)) un corps de rupture de P sur K (resp. de P sur K) engendré par une
racine x de P (resp. une racine & de P). Alors il existe un unique isomorphisme ¢ de L sur L prolongeant
1, et vérifiant p(z) = Z.

EXERCICE DE COURS 1.13 (démonstration du lemme 1.14). L’objectif de cet exercice est de démontrer le
lemme ci-dessus.

(1) Vérifier que les morphismes suivants,
u: K[X]/(P) — L, a: K[X]/(P) — L,
définis par u(X) = z et iu(X) = 7 ot X désigne I’'image de X dans le quotient, sont des isomorphismes.
(2) En déduire que ¢ = i 0 i o u~" est I'isomorphisme recherché, ou
it K[X]/(P) — KI[X/(P)

est I’isomorphisme induit par .

EXERCICE DE COURS 1.14. Supposons que K = Q et P = X3 — 2. Trouver un corps de rupture L contenu
dans R. Les racines de P sont-elles toutes dans L ?

10
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1.3.2. Corps de décomposition. L’exercice précédent nous conduit a la définition suivante.

,—[Déﬁnition 1.15 — corps de décomposition d’un polynf)me} \

Soient K un corps et P € K[X] un polyndme (non nécessairement irréductible). On appelle corps de
décomposition de P sur K toute extension L de K telle que :

(1) dans L[X], P est un produit de polyndmes de degré 1, ou encore P a toutes ses racines dans L,

(2) le corps L est minimal pour ces propriétés, ou encore L est engendré par les racines de P.

\ J

,—[Théoréme 1.16 — existence et unicité du corps de décomposition] N

Pour tout polyndéme P € K|[X], il existe un corps de décomposition de P sur K, unique a isomorphisme
pres.

EXERCICE DE COURS 1.15. Montrer par récurrence sur le degré de P 1’existence d’un corps de décomposi-
tion de P sur K.

Comme précédemment, 1’unicité découle d’un lemme un peu plus précis.

— Lemme 1.17 <

Soient K, K eti: K — K comme dans le lemme 1.14, P € K[X] un polyndme quelconque et P = i(P).
Soit L (resp. L) un corps de décomposition de P sur K (resp. de P sur ). Alors il existe un isomorphisme
@ de L sur L prolongeant i.

EXERCICE DE COURS 1.16 (démonstration du lemme 1.17). Démontrer le lemme par récurrence sur [L : K].

@ Indication : considérer, si K # L, une racine « € L\ K de P et @ le polyndme minimal de z puis
utiliser le lemme 1.14.

EXERCICE DE COURS 1.17. Quel est le corps de décomposition du polyndéme P = X2 — 2 de Q[X]? Et du
polynéme P = X4 — 2 de Q[X]?
1.3.3. Cloture algébrique.

EXERCICE DE COURS 1.18. Soient K C L une extension, et M la fermeture algébrique de K dans L (voir
la définition 1.10). Montrer que si L est algébriquement clos, M 1’est aussi.

~— Théoreme 1.18 N

Soient K C L une extension algébrique, et o: K — M un morphisme de corps ou M est algébriquement
clos.

(1) 1l existe un morphisme 6: L — M prolongeant o.

(2) Si L est algébriquement clos et si I’extension o(K) C M est algébrique, tout morphisme de L
dans M prolongeant o est un isomorphisme.

11
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,—[Déﬁnition 1.19 — cléture algébrique d’un corps] \

Une extension K de K est appelée une cloture algébrique de K si K est algébriquement clos et si K est
algébrique sur K.

\ J

r—[Théoréme 1.20 - Steinitz} \

Soit K un corps.
(i) K possede une cloture algébrique.

(if) Si L et L’ sont des clotures algébriques de K, il existe un isomorphisme ¢ de L sur L’ tel que
¢(x) = x pour tout x € K.

\. J

La partie (ii) du théoréme 1.20 résulte du théoreme 1.18. Les démonstrations du théoreme 1.18 et de la partie (i)
du théoreme 1.20 sont assez délicates. Nous les présenterons si le temps le permet.
Par abus de langage, comme tenu du théoréme 1.20 (ii), on parle souvent de la cloture algébrique d’un corps.

Ernst Steinitz, (13 juin 1871 — 29 septembre 1928) est un mathématicien alle-
mand. Steinitz est né a Laurahiitte, province de Silésie, Royaume de Prusse. Il
fit ses études a 'université de Breslau, oi il passa sa thése en 1894, et a 'uni-
versité de Berlin. Il occupa ensuite des postes a Charlottenberg (devenu I’uni-
versité technique de Berlin), a Breslau, et a I'université de Kiel, ot il mourut en
1928. En 1910, Steinitz publie dans le journal de Crelle un article qui aura beau-
coup d’impact : Algebraische Theorie der Korper (Théorie algébrique des corps).
Dans cet article, il étudie la théorie axiomatique des corps commutatifs et définit
des concepts importants comme ceux de corps premier, corps parfait et degré de
transcendance d’une extension de corps. Il démontre que tout corps posséde une

cloture algébrique.

EXEMPLE 1.3. 1) Le corps C est algébriquement clos et de dimension 2 sur R. C’est donc la cloture algé-
brique de R.

2) Le corps A (voir I’exemple 1.1) est la cloture algébrique de Q. Comme A est dénombrable, il n’est pas
isomorphe a C.

REMARQUE 1.5. Tout corps algébriquement clos est infini.

1.4. Théorie des corps finis

1.4.1. Morphisme de Frobenius. Soit K un corps de caractéristique p > 0.

EXERCICE DE COURS 1.19.
(1) Montrer, a I’aide de la formule du bindme de Newton, que I’application F': K — K définie par
F(z) =a?
est un morphisme de corps. (On rappelle que p divise (IZ) pourtouti € {1,...,p—1})
(2) Montrer que si K est fini, alors F' est un automorphisme.

(3) Montrer que si K = F,, alors F' est I’identité.

Définition 1.21 — morphisme de Frobenius]

Le morphisme de corps F' de I’exercice 1.19 précédent est appelé le morphisme de Frobenius.

12
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Ferdinand Georg Frobenius, connu aussi sous le nom de Georg Frobenius, est
un mathématicien allemand, né le 26 octobre 1849 a Charlottenbourg (Prusse,
aujourd’hui sous-municipalité de Berlin) et mort le 3 aoiit 1917 a Berlin. Durant
la deuxiéeme moitié de sa carriere, la théorie des groupes a constitué 'un des
principaux intéréts de Frobenius. L'une de ses premiéres contributions a été la
redémonstration des théoremes de Sylow pour un groupe abstrait (la preuve ori-
ginelle de Sylow était formulée pour un groupe de permutations). La preuve du
premier théoreme de Sylow (sur I’existence des sous-groupes de Sylow) élaborée

par Frobenius est encore celle la plus enseignée de nos jours.

Ce morphisme joue un rdle tres important dans 1’étude des corps finis.

,—[Théoréme 1.22 — existence et unicité d’un corps fini de cardinal ﬁxé} \

Soient p un nombre premier, et n € N*. On pose ¢ = p”. Il existe un unique corps K, a isomorphisme
pres, de cardinal ¢; c’est le corps de décomposition du polyndme X? — X sur F,.

On le note F,.

EXERCICE DE COURS 1.20. L’objectif de cet exercice est de démontrer le théoreme 1.22.

(1) Dans cette question on s’intéresse a la partie «existence». Soient K le corps de décomposition du
polynome X7 — X sur F;,, et £ C K I’ensemble des racines de X9 — X.

(a) Montrer a I’aide du morphisme de Frobenius que k est un corps.
(b) Montrer que les racines de P = X7 — X sont simples. En déduire que |k| = ¢, et conclure.

(2) Soit K un corps a g éléments. En remarquant que tout élément de K est une racine du polynome X7 — X,
montrer que K est isomorphe au corps de décomposition du polynome X7 — X sur F,,.

1.4.2. Etude du groupe multiplicatif F;. On rappelle que la fonction d’Euler ¢: N* — N* associe a tout
nombre entier non nul n le nombre ¢ (n) de nombres entiers z tels que 1 < « < n et  est premier & n. Autrement dit,
©(n) est le cardinal du groupe multiplicatif (Z/nZ)*, ou encore le nombre de générateurs du groupe (Z/nZ, +).

EXERCICE DE COURS 1.21. Démontrer la relation pour tout n € N* :

n= Z o(d).
d|n

Théoréme 1.23 — le groupe multiplicatif F'; est cyclique}

Le groupe multiplicatif F est cyclique, et donc isomorphe a Z/(q — 1)Z.

EXERCICE DE COURS 1.22 (démonstration du théoréme 1.23). Posons £ = ¢ — 1. Pour tout diviseur d de ¢,
on note N (d) le nombre d’éléments de F; d’ordre d.

(1) Montrer: ¢ =3 N(d).
e

(2) Soient d un diviseur de £ et z un €lément de F} d’ordre d. En considérant le sous-groupe cyclique
H = (x) engendré par z, montrer que N (d) vaut 0 ou ¢(d).

(3) Démontrer le théoreme a 1’aide de 1’exercice 1.21.

13



M1 — Formation a I’Enseignement Supérieur Année 2025-2026

REMARQUE 1.6. (1) On ne sait pas, en général, trouver explicitement des générateurs de Fy, sauf des cas
particuliers (voir I’exercice 1.23).

(2) Le méme raisonnement que dans 1’exercice 1.22 permet de démontrer que tout sous-groupe fini d’un corps
commutatif est cyclique.

EXERCICE DE COURS 1.23. Déterminer les générateurs de ¥ pour p = 2,3,5,7,11, 31,43, 71.

(;) Indication : commencer par essayer les petits entiers =2, +3, . .. et se rappeler que si z et y sont

\/ d’ordre premiers entre eux, alors

ord(zy) = ord(z) x ord(y).

1.4.3. Les carrés de F,. Comme toujours, ¢ = p" est une puissance d’un nombre premier p > 0. On pose

F,={s*:zeF,}, (F;)?=F.NF,.

EXERCICE DE COURS 1.24 (les carrés de F ).
(1) On suppose p = 2. Montrer que Fg =F,.
(2) On suppose p > 2. Quel est le cardinal du noyau du morphisme de groupes
* *\2
F, — (F;)* 7

r 1'2

qg—1

et |(F})?| = 5

1
En déduire que |F2| = 4 ;

Proposition 1.24 — caractérisation des carrés}

On suppose p > 2. Alorsona:
q—1

ze(F;)? < 272 =1

EXERCICE DE COURS 1.25. Le but de I’exercice est de démontrer la proposition. Posons
—1
X:{xqu:quzl}.

—1
g et conclure a 1’aide de 1’exercice 1.24.

Montrer que X est de cardinal

EXERCICE DE COURS 1.26. Supposons que g = 7. Le nombre 2 est-il un carré de F,? Et 3?

Corollaire 1.25

On suppose p > 2. Alorson a :
1€ (F;)® < ¢=1mod4.

EXERCICE DE COURS 1.27. Démontrer le corollaire :
— comme application directe de la proposition 1.24,

— comme application du théoreme de Sylow.

14
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Théoreme 1.26 — un « petit » théoreme de Dirichlet]

Il existe une infinité de nombres premiers de la forme 4m + 1.

Johann Peter Gustav Lejeune Dirichlet, (13 février 1805, Diiren — 5 mai 1859,
Gottingen) est un mathématicien prussien qui apporta de profondes contribu-
tions a la théorie des nombres, en créant le domaine de la théorie analytique
des nombres et a la théorie des séries de Fourier. On lui doit d’autres avancées
en analyse mathématique. On lui attribue la définition formelle moderne d’une

fonction.

EXERCICE DE COURS 1.28. Démontrer le théoreme.

(;) Indication : considérer un facteur premier de (n!)? + 1 et utiliser le corollaire 1.25.

1.5. Irréductibilité des polynémes de K[X]

Rappelons que si A est un anneau factoriel de corps de fractions K = Frac(A), alors la connaissance des irréduc-
tibles de A[X] passe par celle de ceux de K[X].

1.5.1. Quelques rappels d’arithmétique dans un anneau A, et propriétés de A[X]. Soit A un anneau commu-
tatif unitaire. On rappelle qu’un élément p de A est dit irréductible sip ¢ A* et si

p=ab = (a€A"oubeA”),

A*={a€ A:Jbe A, ab=1}
est ’ensemble des inversibles de A.
On choisit un systeme de représentants & des irréductibles de A, ¢’est-a-dire un ensemble d’irréductibles de A tel
que pour tout irréductible ¢ de A, il existe p € & et u € A* inversible tels que ¢ = up.

r—[Déﬁnition 1.27 — anneau factoriel} <

L’anneau A est dit factoriel si
(1) A estintegre,

(2) touta € A\ {0} s’écrit sous la forme a = u ngvp(a), avec u € A*, v,(a) € Netles v,(a)
yas
sont tous nuls sauf un nombre fini,

(3) cette écriture est unique.

\. J

Rappelons aussi qu’un anneau A est dit principal s’il est intégre et si tout idéal de A est principal. Par exemple,
K[X] est principal si K est un corps (nous avons déja utilisé ce résultat). La réciproque est vraie !

Proposition 1.28 — I’anneau de polynémes A[X] est principal si seulement si A est corps

Soit A un anneau. Alors A[X] est principal si seulement si A est corps.

15
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En revanche, la factorialité se conserve.

Théoréme 1.29 — Gauss}

Si A est factoriel, alors A[X] est factoriel.

La démonstration (que nous omettons ici) utilise d’une part le fait que K[X], avec K = Frac(A), est principal
donc factoriel, et d’autre part la notion de contenu.
On rappelle que si P € A[X], P # 0, s’écrit P = a, X" + - - - a1 X + +ag, son contenu,
C(P) = ngd(a(Ja ey an)a
est le pged des coefficients de P. Il est défini modulo A*.

Définition 1.30 - polynome primitif |

Un polynéme P € A[X], P # 0, est dit primitif si c¢(P) = 1.

Le proposition suivante décrit les irréductibles de A[X].

,—[Proposition 1.31 — polynomes irréductibles de A[X ]} \

On suppose que I’anneau A est factoriel. Les polyndmes irréductibles de A[X] sont :
(1) les constantes p € A, irréductibles dans A,
(2) les polyndmes de degré > 1, primitifs et irréductibles dans K [X].

\ J

Compte tenu de la proposition précédente, il est donc important d’étudier les irréductibles de K[X] lorsque K est
un corps.

D)

Rappelons que si P € K[X] est irréductible de degré > 1, alors P n’a pas de racine dans K. En particulier, si K
est algébriquement clos, les polyndmes irréductibles de K [X|] sont exactement les X — a, avec a € K.

A

EXERCICE DE COURS 1.29 (polynomes irréductibles de R[X]). On suppose que K = R. Montrer que les
polynémes irréductibles de R[X] sont

On suppose désormais que K est un corps (commutatif) quelconque.

La réciproque est fausse en général! Par exemple, (X2 + 1)2 n’a pas de racines dans R mais est
réductible. Elle est toutefois vraie si deg P < 3.

— les polynémes X — a, avec a € R,

— les polyndmes de degré 2 sans racine réelle.

16
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1.5.2. Quelques criteres d’irréductibilité.

r—[Théoréme 1.32 — critere d’Eisensteinj N

Soient A un anneau factoriel et X = Frac(A) son corps de fractions. Soient P(X) = a, X" + - - + ao,
avec a; € A, et p € A un élément irréductible de A. On suppose

(1) pne divise pas a,,
(2) pour touti € {0,...,n — 1}, p divise a;,
(3) p? ne divise pas ay.

Alors P est irréductible dans K [X]. En particulier, si ¢(P) = 1 (par exemple si P est unitaire), alors P est
irréductible dans A[X].

Si ¢(P) # 1, le polyndme P peut-étre réductible dans A[X]. C’est le cas par exemple si A = Z,p =5
et P =2X + 10.

A

Ferdinand Gotthold Max Eisenstein, (16 avril 1823 — 11 octobre 1852) est un
mathématicien prussien. Comme Galois et Abel, Eisenstein est mort avant I’dge
de 30 ans, et comme Abel, sa mort est due a la tuberculose. Il est né et mort a
Berlin, Allemagne. Il fit ses études a I’ Université de Berlin ou Dirichlet était son
professeur. Gauss aurait déclaré : « Il n’y a que trois mathématiciens qui feront
date : Archiméde, Newton et Eisenstein. » Le choix par Gauss d’Eisenstein, lequel
s’était spécialisé dans la théorie des nombres et ’analyse, peut sembler étrange
a certains, mais il est justifié par le fait qu’Eisenstein avait prouvé facilement
plusieurs résultats jusqu’alors inaccessibles, méme a Gauss, comme d’étendre

son théoreme de réciprocité biquadratique au cas général.

EXERCICE DE COURS 1.30 (démonstration du critéere d’Eisenstein). Démontrer le théoréme 1.32.

@ Indication : supposer que P = QR est réductible, avec deg ) < deg P et deg R < deg P, et
projeter 1I’égalité dans B[X], ol B est ’anneau intégre A/(p) et obtenir une contradiction dans
L[X] ou L = Frac(B).

g | Attention, B[X] n’est pas a priori factoriel car B ne ’est pas !

EXERCICE DE COURS 1.31 (quelques applications du critere d’Eisenstein).
(1) Montrer que le polynéme P(X) = 3X* + 15X 2 + 10 est irréductible dans Z[X].
(2) Montrer que le polyndme P(X) = X2 + X + 2 est irréductible dans Z[X].

@ Indication : effectuer un « changement de variable » de la forme Y = X + a, avec a bien

choisi.
| _J

(3) Montrer que le polyndme X* + 1 est irréductible dans sur Z[X].

17
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(4) Soit p un nombre premier. Montrer que le polyndéme
xXplo. 1 x41

est irréductible dans Z[X].

@ Indication : on pourra poser X =Y + 1.

(5) Soita € Z, a = p{* ... p%r tel que 'un des «; soit égale a 1. Montrer que X™ — a est irréductible dans
Z[X].

(6) Pour quelle(s) valeur(s) de A le polyndme Y2 — X (X — 1)(X — ) est-il irréductible dans Q[X, Y] ?
(7) Le polyndme XY* + Y Z* 4+ ZX* est-il irréductible dans Q[X, Y, Z] ?

r—[Théoréme 1.33 — réduction modulo un idéal}

Soient A un anneau factoriel, K = Frac(A) et I un idéal premier de A. Soit
PX)=a, X"+ - +a1 X +ag
un polyndéme de A[X] et -
P=a, X"+ ---+a X +a
sa réduction modulo I, ¢’est-2-dire son image via la projection canonique A[X] — B[X],ou B = A/I

est un anneau intégre. On suppose que @, # 0 dans B. Alors, si P est irréductible sur B ou Frac(B), le
polyndéme P est irréductible sur K.

Attention, P n’est pas nécessairement irréductible dans A[X], comme le montre I’exemple du poly-
nome 2X € Z[X] avec I = (3).

A

EXERCICE DE COURS 1.32. Démontrer le théoréeme.

EXERCICE DE COURS 1.33 (applications du critere de réduction).
(1) Montrer que le polyndme X2 + Y2 + 1 est irréductible dans R[X, Y].
(2) Montrer que le polyndme X3 + 6982X?2 + 455X — 7351 est irréductible sur Z.

EXERCICE DE COURS 1.34 (le polyndme X? — X — 1, avec p premier, est irréductible sur Z). Soit p un
nombre premier.

(1) Soient K un corps de décomposition de P(X) = X? — X — 1 sur F),, et @« € K une racine de P.
Montrer que pour tout ¢ € {0,...,p — 1}, @ + ¢ est encore une racine de P dans K.

(2) On suppose dans cette question que P = QR est réductible dans F,[X], avec d = deg@ < p et
deg R < p. En remarquant que, dans K [X],

d
Q(X) = H(X—O{—ik),
k=1
avec iy, € {0,...,p — 1}, obtenir une contradiction.
@ Indication : considérer le terme en X%~ ! de Q.

(3) En déduire que le polynome X? — X — 1 est irréductible sur Z.

18



M1 — Formation a I’Enseignement Supérieur Année 2025-2026

Dans cet exercice, nous avons eu recours a une extensions de corps.

Dans la méme veine, nous allons voir maintenant quelques criteres d’irréductibilité qui utilisent des extensions de
corps, souvent commodes dans le cas des corps finis.

Théoreme 1.34 — un critere d’irréductibilité a I’aide d’extensions de degré au plus n/2, ou n = deg P

Soit P € K[X] de degré n > 0. Alors P est irréductible sur K si et seulement si P n’a pas de racine dans
les extensions L de K qui vérifient [L : K| < n/2.

EXERCICE DE COURS 1.35. Le but de I’exercice est de démontrer le théoreme.

(1) Supposons que P soit irréductible, et soit  une racine de P dans une extension L de K. Montrer que
[L:K]>n.

(2) Supposons que P = QR ne soit pas irréductible sur K, avec deg ) < n et deg R < n. En observant

que deg Q@ < n/2 ou deg R < n/2, trouver une extension de K de degré < mn/2 contenant une racine
de P.

(3) Conclure.

EXERCICE DE COURS 1.36.

(1) Montrer que le polynéme X* + X + 1 est irréductible sur Fs.
(2) En déduire que le polyndme X* + 8X?2 + 17X — 1 est irréductible sur Z.

Théoreme 1.35 — un critére de conservation de I’irréductibilité par extension de corps}

Soient P € K[X] un polyndme irréductible de degré n, et L une extension de degré m avec (m,n) = 1.
Alors P est encore irréductible sur L.

EXERCICE DE COURS 1.37. Démontrer le théoreme.

A

EXEMPLE 1.4. Le polyndme X2 + X + 1 est irréductible sur Q et Q(i).

Attention, sans I’hypothése (m,n) = 1, le théoréme est faux ! Par exemple X 4 1 qui est irréductible
sur Q (voir I’exercice 1.31) ne Iest plus sur Q(i) car X4 + 1 = (X2 +4)(X2 —i).

1.6. Polynémes cyclotomiques et applications
Soient K un corps et n € N*. On pose
P,(X)=X"-1¢€ K[X].
REMARQUE 1.7. La dérivée de P, est n X"~ 1. En particulier,
— si la caractéristique p de K ne divise pas n, alors P,, n’a que des racines simples,

— sipdivise n, alorsn = mpet X™ —1 = (X™ — 1)P par Frobenius donc P, a des racines multiples dans tout
corps de décomposition.

Dans toute la suite, on suppose que la caractéristique du corps K de divise par n.

)

On note
pn(K) ={C e K: (" =1}
19
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I’ensemble des racines n-iéme de ’unité dans K. C’est un sous-groupe de K™, de cardinal < n, donc cyclique ; voir
la remarque 1.6 (2).
Soit D,, = D,,(K) un corps de décomposition de P, sur K. On a

|tn (D) =n et p,(Dp) = Z/nZ.
De plus, comme i, (K') est inclus dans i, (D,,) on a
un(K)2Z/dZ

ou d est un diviseur de n.

,—[Déﬁnition 1.36 — racine primitive n-iéme de l’unité] .

Une racine n-iéme primitive de 1’unité est un élément ¢ de D,, tel que (™ = 1 et ¢ # 1 pour tout d < n.
Autrement dit, ¢ est un générateur du groupe p,,(D,,) de sorte qu’il y a ¢(n) racines primitives n-i¢me de
I’unité.

Leur ensemble sera noté 11X (Dy, ).

\. J

,—[Déﬁnition 1.37 — polyndéme cyclotomique} \

Le n-iéme polynéme cyclotomique ®,, i € D,,[X] est donné par :

(I)n,K = H (X - C)

Ceﬂ'r)z( (Dn)

\ J

Lorsqu’il n’y a pas d’ambiguité sur K, on écrira simplement ®,, pour ®,, .

EXERCICE DE COURS 1.38 (premieres propriétés des polyndmes cyclotomiques).
(1) Quel est le degré de @, ?
(2) Démontrer la formule
X" 1= H Bq(X).
d|n
Cette formule permet de calculer les ®,, par récurrence pour les petites valeurs de n.
(3) Calculer ¢, ®o, ..., Ps.

Proposition 1.38 — les polynomes cyclotomiques sur Q sont a coefficients entiers}

On a
D, 0 € Z[X].

EXERCICE DE COURS 1.39.
(1) Démontrer la proposition par récurrence sur n a 1I’aide de la formule de la question (2) de I’exercice 1.38.

(2) On revient au cas ou K est un corps quelconque. Soit o: Z — K le morphisme d’anneau canonique
(voir le paragraphe 1.1). Montrer, toujours par récurrence sur n, que ’on a :

D 1 (X) = 0(Pnq(X)).

En particulier, ®,, 7, s obtient a partir de ®.,, g par réduction modulo p.

Théoreme 1.39 — application : théoréme de Wedderburn]

Tout corps fini est commutatif.

20
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Joseph Henry Maclagen Wedderburn (1882—1948) est un mathématicien écos-
sais du XXeme siecle. Membre de la Royal Society, il avait commencé a 16 ans
ses études & l'université d’Edimbourg. Ses travaux portent sur les structures al-
gébriques et tout particuliérement la théorie des corps, dans laquelle il met en

évidence des exemples de corps non commutatifs.

EXERCICE DE COURS 1.40 (démonstration du théoreme de Wedderburn). On suppose que K est un corps
fini, pas nécessairement commutatif. On pose

Z ={a € K: ar = xzapourtoutx € K},
le centre de K. On note ¢ son cardinal.
(1) Vérifier que ¢ > 2, que Z est un sous-corps de K et que |K| = ¢™ avec n € N.
(2) On suppose dans cette question n. > 1, c’est-a-dire que K n’est pas commutatif.

(a) Posons
K,={ye K: yx = yzx}, K;=K,NnK".
On note w(x) I"orbite de € K* pour I’action de K* sur lui-méme par conjugaison. Montrer que

I'ona:
@) = 2 = L2
w = — =
Kr ¢¢-1’
pour un certain diviseur d de n.
n
-1
(b) Montrer que ®,,(q) divise a pour d # n.

gt -1
(c) Ecrire I’équation des classes, et en déduire que |®,,(q)| < ¢ — 1.
(d) En remarquant que pour toute racine n-ieme primitive ¢ de I’unité,
g —¢| >¢qg—1 (faire un dessin!),
obtenir une contradiction.
(3) Conclure.

Théoreme 1.40 — irréductibilité des polyndmes cyclotomiques sur ZJ

Le polyndme cyclotomique ®,,(X) € Z[X] est irréductible sur Z, donc sur Q.

REMARQUE 1.8. Nous avons déja vu ce théoreme dans des cas particuliers : le cas ol n = p est un nombre
premier ou encore le cas n = 8 (voir I’exercice 1.31).

EXERCICE DE COURS 1.41 (démonstration du théoréme 1.40). Soient K un corps de décomposition de ®,, sur Q,
¢ € K une racine primitive n-iéme de I’unité, et p un nombre premier de divisant pas 7.

(1) Montrer que ¢? est une autre racine primitive n-ieme de I’unité.
(2) Soient f et g les polyndmes minimaux sur Q de ¢ et (P respectivement. Montrer que
f.9 € Z[X]
et que f, g divisent tout deux ®,, dans Z[X].

(3) Le but de cette question est de montrer que f = g. On suppose que ce n’est pas le cas.

(a) Montrer que fg divise ®,,.

(b) Montrer que, dans Z[X],

g(XP) = f(X)h(X) avec h € Z[X].
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(c) En projetant I’égalité de la question (b) dans F,, obtenir une contradiction.

(4) Déduire de la question précédente que f admet toutes les racines primitive de I’unité comme racines. En
déduire que f = ®,,.

(5) Conclure.

Corollaire 1.41

Si ¢ est une racine primitive n-ieme de I’unité dans un corps de caractéristique nulle, son polyndme minimal
sur Q est ®,, et donc [Q(¢) : Q] = p(n).

EXERCICE DE COURS 1.42. Démontrer le corollaire.

EXERCICE DE COURS 1.43 (intersection de deux extensions de Q par des racines primitive de I’unité
« premieres entre elles »).

(1) Soit K C L une extension de corps, et K7, Ko deux corps intermédiaires. On note K1 K le sous-corps
de L engendré par K et Ko. Montrer :

[KlKQ : KQ] < [Kl . K}

(2) Montrer a I’aide de la question (1) que si « (resp. 3) est une racine n-ieme (resp. m-iéme) primitive de
I’unité dans C avec (m,n) = 1, alors

Q(a) NQ(B) = Q.
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Représentations linéaires des groupes finis

Prérequis : théorie des groupes (notions de groupe, groupe abélien, sous-groupe, morphisme de
groupe, action de groupes, produits direct et semi-direct), algebre linéaire et bilinéaire.

Dans ce chapitre et le suivant, nous allons nous intéresser aux sous-groupes finis du groupe linéaire GL(V)
ou V' est un espace k-vectoriel de dimension finie et k est un corps commutatif. Nous allons voir que tout sous-
groupe fini s’identifie naturellement a sous-groupe (fini) d’un groupe linéaire. Puis nous nous intéresserons au probleme
réciproque : quels sont les sous-groupes finis de GL(V') ? La question est difficile en général : on donnera des réponses
assez précises dans des cas particuliers.

Dans ce chapitre, nous allons nous intéresser aux représentations linéaires des groupes finis, c’est-a-dire aux
morphismes de groupes G — GL(V'), ot V est un espace vectoriel (de dimension finie le plus souvent) défini sur un
corps commutatif K et G est un groupe fini.

D)

Cette section suit pour une large part les premiers chapitres de [4].

Sauf mention explicite du contraire, K est de [caractéristique nullej.

2.1. Exemples importants de groupes finis

Comme il est bon d’avoir a I’esprit des exemples, nous commengons le cours par des exemples varié€s et concrets
de groupes finis qui se «plongent» naturellement dans un groupe linéaire.

On note &,, le groupe symétrique de degré n, c’est-a-dire le groupe des permutations de I’ensemble {1,...,n}.
On rappelle que ce groupe est muni d’un morphisme surjectif

e: 6, — {£1},

appelé la signature. Son noyau est formé des permutations paires o, i.e., £(0) = 1. C’est un sous-groupe de &,, de
cardinal n!/2, appelé le groupe alterné de degré n, et noté 2,,.

2.1.1. Le groupe cyclique I',,. Rappelons que le groupe cyclique T',, est le groupe d’ordre n formé des puissances
1,7, ...,r" 1 d’un élément 7 tel que 7™ = 1. C’est un groupe abélien, isomorphe & Z/nZ, qui peut étre réalisé comme
le groupe des rotations d’un plan euclidien orienté d’angle 2k7/n, k = 0,...,n — 1; c’est le groupe des rotations du
plan qui préservent un polygone régulier &, a n cdtés centré a I’origine O.

2.1.2. Le groupe diédral D,,. 11s’agit du groupe des isométries du plan affine qui préservent un polygone régulier
P an cotés centré a I'origine O. 11 contient les n rotations 1o axr/n» & = 0,...,n — 1 qui forment un sous-groupe
cyclique I, isomorphe a Z/nZ, et les n réflexions (ou symétries) par rapport aux droites passant par O et les sommets
ou milieux des cotés opposés du polygone (selon la parité de n). L’ordre du groupe diédral D,, est donc 2n. On note r
la rotation 7o 27 /r, €t s I'une des réflexions de D,,. On a

=1, s =1, srs=srs L =r"1,
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Les éléments de D,, sont ou bien de la forme 7%, k = 0,...,n — 1 (s’ils appartiennent au groupe cyclique T',,), ou

bien de la forme sr*, k = 0,...,n — 1 (s’ils n’appartiennent pas a I',,). On remarque que pour tout k = 0,...,n — 1,
k k

srFs = srFs™t = r=F d’ot (s7F)? = 1.
EXERCICE DE COURS 2.1.
(1) Montrer que le groupe I';, est distingué dans D,, et que I’on a un isomorphisme
D, =T, x2Z/2Z.

(2) Vérifier que 'ona D3 = G3.

EXERCICE DE COURS 2.2.

(1) On suppose que n est pair. Montrer que les réflexions forment deux classes de conjugaison et les rotations
forment 5 + 1 classes de conjugaisons.

(2) On suppose que n est impair. Montrer que les réflexions forment une seule classe de conjugaison et les
rotations forment "TH classes de conjugaisons.

2.1.3. Le groupe alterné 4. Rappelons que 2, est le groupe des permutations paires de {1,2, 3,4}. Il est iso-
morphe au groupe des rotations dans I’espace affine orienté R? qui préservent un tétraédre régulier dont 1’isobarycentre
est I’origine O.

Il possede 12 éléments :

— T’identité,
— 3 éléments d’ordre 2, x = (12)(34), y = (13)(24), z = (14)(23), qui correspondent aux refournements

(ou rotations d’angle 7 par rapport a un axe) du tétracdre relatives aux droites joignant les milieux de deux
arrétes opposées,

— 8éléments d’ordre 3, (123),(132),(234),(243),(124),(142),(134),(143), qui correspondent aux ro-
tations d’angle i%’“ et d’axe les droites joignant un sommet au barycentre de la face opposée.

Comme d’habitude, on a noté (a; . ..ax) le k-cycle de &,, qui envoie a; sur as, as sur as, ..., Gg—1
sur ag, ag, sur a; et fixe tous les éléments de {1,...,n} \ {a1,...,ar}.

EXERCICE DE COURS 2.3. Faire un dessin et vérifier toutes les assertions précédentes.

Onpose ¢ = (123), H = {1,¢,c*} et K = {1,2,9,2}.On a

cre T =z, cze b = Y, cyc - =ux.

EXERCICE DE COURS 2.4.
(1) Vérifier que H et K sont des sous-groupes de 2, et que K est distingué dans 2(4. Montrer que
Ay 2 K x H,
et que le produit n’est pas direct.

(2) Montrer qu’il y a quatre classes de conjugaison dans 2(4 que 1’on explicitera.

2.1.4. Le groupe symétrique G,4. Il s’agit du groupe des permutations de {1, 2, 3, 4}. Il est isomorphe au groupe
de toutes les isométries de R3 qui préservent un tétragdre régulier dont 1’isobarycentre est 1’origine O.
Il possede 24 éléments :

— T’identité,

— 6 transpositions, (12),(13),(14),(23),(24),(34),

— les 3 éléments d’ordre 2 de 24, x, ¥, 2,

— les 8 éléments d’ordre 3 de A4,

— 6 éléments d’ordre 4, (1234),(1243),(1324),(1342),(1423),(1432).
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A

Les permutations d’ordre 4 sont les plus difficiles a visualiser sous forme d’isométries !

EXERCICE DE COURS 2.5.

(1) Faire un dessin, vérifier les assertions précédentes et interpréter géométriquement les « nouveaux » élé-
ments, ¢’est-a-dire ceux de G4 \ 2.

(2) Combien y a-t-il de classes de conjugaison dans G4 ?
(3) Soient K = {1, z,y, 2z} et L = &3 le groupe des permutations de G4 qui fixe 4. Montrer que
64 ~ K xL.

2.1.5. Le groupe du cube. Considérons dans R? le cube %’ dont les sommets ont pour coordonnées (, 3, z) avec
x = %1,y = 1, z = £1. Soit Isom(%’) le groupe des isométries de R® qui préservent %, i.e., qui permutent ces 8
sommets.

Ce groupe peut étre décrit de différentes facons.

a) En faisant opérer Isom(%) sur I’ensemble des diagonales du cube. Soit & ’ensemble des grandes diagonales
du cube €. En notant A; les quatre sommets de coordonnées (1,41, 1) et B; les quatre sommets de coordonnées
(F1,F1, —1), ces diagonales sont les quatre droites (A4;B;), i = 1,2,3,4.

EXERCICE DE COURS 2.6.

(1) Déterminer le cardinal de Isom(%).

O Indication : on pourra faire opérer Isom (%) sur I’ensemble des sommets de € et déter-
miner le cardinal du stabilisateur d’un sommet. Il y a d’autres facons de faire !

(2) Montrer que Isom (%) opére sur I’ensemble 2, et que le morphisme de groupes induit par cette opération,
Isom(%) — &(2) = &4,
est surjectif. Quel est son noyau ?

(3) Montrer que I’on a
Isom (%) = &4 x Z/2Z.
Combien y a-t-il de classes de conjugaison dans Isom (%) ?

(4) Montrer que le sous-groupe de Isom(%’) formé par les rotations de R® qui préservent le cube % est
isomorphe a G.

b) A 'aide d’un tétraédre. On note .7 le tétragdre dont les sommets sont les points de coordonnées (1,1, 1),
(1,-1,-1),(-1,1,-1), (-1,-1,1).

g | T n’est pas un tétraedre régulier !

Onpose ' = (—1)7 = —7, ou I désigne I'identité de R®. Chaque sommet de % est ou bien un sommet de .7°
ou bien un sommet de .7”. Soit Isom(.7) le groupe des automorphismes de R? qui préservent .7.
Pour tout s € Isom(.7), on a

sT' = s(-T = (~DIsom(7) = (-)T = T,

et donc s préserve tous les sommets de &, donc préserve €. On en déduit que Isom(.7) C Isom(%).

EXERCICE DE COURS 2.7. En utilisant, par exemple, le cardinal de Isom (%), montrer que I’on a
Isom(%) = Isom () x {I,—1I}.
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Comme Isom(.7) = Gy, on retrouve que Isom(¢) = &4 x Z/2Z. En effet, bien que .7 ne soit pas régulier,
on peut montrer comme au paragraphe précédent que Isom(.7) = &, en considérant les automorphismes de R3 qui
préservent .7 .

c) A aide du groupe G3. Observons que le groupe Isom(%’) contient le groupe &3 des permutations de {x, y, 2z}
(on permute les coordonnées), ainsi que le groupe M d’ordre 8 formé de toutes les transformations

(x,y,2) — (xx, +y, £2).

EXERCICE DE COURS 2.8.
(1) Vérifier que I'on a Isom(%) = M x &3 (on retrouve ainsi que Isom (%) est d’ordre 8 x 6 = 48).

(2) Retrouver la décomposition Isom(%) = M x &3 a partir de la décomposition Isom(%) = &4 x Z/2Z
et de la décomposition G4 = K x G5 (voir I’exercice 2.5).

(3) A I’aide du groupe d’isométries du cube, interpréter géométriquement les 2-groupes de Sylow de G .
Combien y en a-t-il ?

Nous verrons a la fin de ce cours (section 3.5) d’autres exemples de groupes d’isométries de polyedres réguliers.

2.1.6. Le groupe alterné ;. Le groupe 2 est le groupe des permutations paires de {1,2,3,4,5}. Il est iso-
morphe au groupe des rotations dans I’espace affine orienté R® qui préservent un icosaédre régulier (20 faces, 12
sommets, 30 arétes) dont 1’isobarycentre est I’origine O.

Il possede 60 éléments :

— Il’identité,

— 15 double transpositions,
— 20 3-cycles,

— 24 5-cycles.

EXERCICE DE COURS 2.9. Soit Isom™ (.#) le groupe des rotations de R® qui préservent un icosaédre régulier
de R? centré en I origine.

(1) En faisant opérer Isom™ (.#) sur I’ensemble de sommets {A1,..., Ay}, montrer que le cardinal de
Isom™ (.#) est 60.

(2) Show that Isom™ (.#) is isomorphic to .

(;) Indication : remarquer que le groupe 25 opere dans un ensemble a 5 éléments formé de
groupes d’arrétes (chacun de ces 5 groupes contient 6 éléments : chaque groupe contient
des arétes ou bien paralleles ou bien perpendiculaires).

On rappelle que pour g une puissance d’un nombre premier, le groupe spécial linéaire sur le corps F, est défini
par :

SL,(F,) = {A € GL,(F;): det(A) =1}.
Posons
PSL, (F,) = SL,(F,)/Z(SL,(F,)),
oll Z(SLy,(F,)) est le centre de SL,, (F,).

EXERCICE DE COURS 2.10.
(1) Décrire le centre Z(SL,,(F,)

)-
(2) Quel est le cardinal de GL,,(F,) ? Et celui de PSL,,(F,) ? En déduire que le cardinal de PSLy(F5) et
de PSLy(Fy4) est 60.
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Théoréeme 2.1

On a les isomorphismes suivants :

A5 = PSLy(Fs) =2 PSLy(Fy).

EXERCICE DE COURS 2.11. L’objectif de cet exercice est de démontrer le théoréme 2.1.
(1) Montrer que F2 contient exactement 6 droites et décrire des générateurs de ces droites.

(2) Vérifier que le groupe SLo(Fs5) opére sur I’ensemble Z de ces droites et que le centre opeére trivialement.
En déduire un morphisme de groupes : PSLy(F5) — Gg.

11 1
A et B operent dans . comme (23456) et (123)(456) respectivement. En déduire 25 = PSLy(Fs).

(4) Rappelons que F4 est le corps {0,1,7,y} out 1 + x + 22 = 0 et 22 = y. En procédant comme dans
les questions précédentes avec cette fois 1’ensemble des droites de F? et les images dans PSLz(F) des

. 1 1 . .
matrices (i g) et (1 0), montrer ’isomorphisme A5 = PSLa(Fy).

= = . . 1 1 -1
(3) Notons A et B les images dans PSLa(F5) des matrices A = ( O> et B = < 0 > Montrer que

2.2. Définition, sous-représentations, morphismes et sommes directes

Soient V' un espace vectoriel défini sur le corps K, et GL(V) le groupe des automorphismes de V. Soit maintenant
G un groupe fini. On notera, comme d’habitude, 1 son élément neutre et (s, t) — st la multiplication dans G.

,—[Déﬁnition 2.2 — représentation linéaire d’un groupe ﬁni} \

Une représentation linéaire (ou, simplement, représentation) de G est un morphisme de groupes p: G —
GL(V) de G dans GL(V'). Autrement dit, a tout élément s de G, on associe un élément p(s) de GL(V)
de sorte que, pour tous s,t € G,

p(st) = p(s) o p(t).
En particulier, p(1) = I et p(s~!) = p(s)~! pour tout s € G, ot I désigne I’identité de V.

\. J

(On notera souvent p; au lieu de p(s) pour éviter 1’écriture peu élégante p(s)(x), s € G, x € V)

Lorsque p est donné, on dit que V est I’espace d’une représentation. Parfois, par abus et lorsqu’il n’y a pas
d’ambiguité sur p, on dit que V" est une représentation de G.

: Dans toute la suite, on se restreint au cas ol V' est de | dimension finie |, que I’on notera n. On dit que

n est le degré de la représentation (p, V).
EXEMPLE 2.1. (1) Une représentation de degré 1 de G est un morphisme de groupes p: G — C*, ou C*
est le groupe multiplicatif. Comme tout élément de G est d’ordre fini, les éléments p(s) sont des racines de
I"unité. En particulier p(s) est de module complexe 1.

Si p(s) = 1 pour tout s € G, on obtient la représentation dite triviale de G.

(2) Soient g I'ordre de GG, V' un espace vectoriel de dimension n = g et (e;);c une base de V' indexée par
les éléments de G. Pour s € G, on note ps; ’endomorphisme de V' qui envoie e; sur eg. Ceci définit une
représentation linéaire de G, appelée la représentation réguliere de G. Son degré est I’ordre du groupe.

EXERCICE DE COURS 2.12 (représentations de degré 1 du groupe cyclique). Quelles sont les représentations
de degré 1 groupe cyclique I';, (voir le paragraphe 2.1.1)?

EXEMPLE 2.2. (1) Le groupe diédral opere naturellement dans R? et donc dans C? (on étend par linéarité).
Cette opération induit une représentation de degré 2 de D,,.
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(2) Les groupes 214, &4, A5 et le groupe du cube Isom(%’) operent naturellement dans R? et donc dans C3. Ces
opérations induisent des représentations de degré 3 de 24, G4 et Isom(%).

,—[Déﬁnition 2.3 — représentations isomorphes] \

Soient p et p’ deux représentations du méme groupe G d’espaces respectifs V et V’. On dit que les re-
présentations p et p’ sont isomorphes (ou équivalentes) s’il existe un isomorphisme d’espaces vectoriels
7:V — V' tel que pour tout s € G,

TOops=p,oT.

En particulier, V et V/ ont méme dimension si p et p’ sont isomorphes.

EXERCICE DE COURS 2.13 (interprétation matricielle d’un isomorphisme de représentations). Soient
(e1,...,ep) une base de V, et (ef,...,e}) une base de V’. On note, pour tout s € G, R, et R, les matrices
de p; et p/, dans cette base. Interpréter matriciellement le fait que p et p’ soient isomorphes.

EXERCICE DE COURS 2.14.
(1) Soit (p°, V) la représentation réguliere de G. Vérifier que les images pY(e;) forment une base de V'
lorsque s parcours G.

(2) Réciproquement, soit p: G — GL(W) une représentation de G telle qu’il existe w € W tel que les
éléments ps(w), s € G, forment une base de W. Montrer que W est isomorphe 2 la représentation
régulicre.

On généralise I’exemple précédent de la représentation réguliere.
EXEMPLE 2.3. On suppose que G opere dans un ensemble fini X. Autrement dit, pour tout s € G, il existe une
permutation, 7,: X — X, x — s.z, de X telle que
lax =z, s.(tx)=(st).z, Vs,teG, xeX.
Soient V' un espace vectoriel possédant une base (e, ),cx indexée par les éléments de X. Pour s € G, soit ps 1’endo-

morphisme de V' qui envoie e, sur e, .. La représentation linéaire de GG ainsi obtenue est appelée la représentation par
permutations associée a 1’action de G sur X.

Soient p: G — GL(V) une représentation de GG, et W un sous-espace vectoriel de V. Supposons que W soit
stable (ou invariant) sous ’action de G, ¢’est-a-dire que ps (W) C W pour tout s € G.
L’endomorphisme induit p!" : W — W est alors un automorphisme de W et on a

pt =py opt’, Vs ited.

Par conséquent, I’application p" : G — GL(W), s — p"V définit une représentation linéaire de G.

\

Définition 2.4 — sous-représentation )

Dans les notations précédentes, si W est un sous-espace de V stable par I’action de G, la représentation
p" est appelée une sous-représentation de V.

EXEMPLE 2.4. Supposons que V soit la représentation réguliere de GG. Soit W' la droite de V' engendrée par
=Y e

On a ps;x = x pour tout x donc W est une sous-représentation de V', isomorphe a la représentation triviale.

)

Théoreme 2.5 — tout sous-espace stable admet un supplémentaire stable J

Soient p: G — GL(V') une représentation linéaire de G, et W un sous-espace de V' stable par G. Alors il
existe un supplémentaire W9 de W dans V' qui est stable par G.
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EXERCICE DE COURS 2.15 (démonstration du théoréme 2.5). L objectif de cet exercice est de démontrer le
théoréme.

(1) Soient W'’ n’importe quel supplémentaire W dans V (il en existe!) et p la projection vectorielle de V'
sur W de direction WW’. On pose

P’ = 1 Zpt opop; ', ougestlordre de G.
teG
(p° est une « moyenne » des conjugués de p par les éléments de G.)
Montrer que p° est une projection vectorielle de V sur W ; on note W9 sa direction.
(2) Montrer que pour tout s € G,
psop’ =p’ops.
(3) En déduire que WY est stable par G. Conclure.

REMARQUE 2.1 (une autre démonstration lorsque X = R ou C). Supposons que K = R ou C. Alors V est
muni d’un produit scalaire hermitien (x|y), i.e., (—|—) est linéaire & gauche, semi-linéaire a droite et défini positif.
Supposons de plus que (—|—) soit invariant par G, c¢’est-a-dire que pour tout s € G ettous z,y € V,

(ps(2)lps(y)) = (x]y).

On peut toujours se ramener a ce cas en remplacant (z|y) par > (p:(z)|p:(y)). Sous ces hypothéses, 1’orthogonal
teG

W9 = W+ fournit un supplémentaire stable par G. On a ainsi obtenu une autre démonstration du théoreme 2.5.
L’invariance du produit scalaire signifie que tous les éléments ps, s € G, sont des endomorphismes unitaires (i.e.,

: PP N -7 . ..
dont la matrice R dans une base orthonormée vérifie R;R: = I,, ot R} = R, est la matrice adjointe de Rj).
Il est bien connu que tout sous-espace stable par un endomorphisme unitaire admet un supplémentaire stable par cet
endomorphisme. Nous obtenons ici une version « simultanée » de ce résultat.

Soient x € V, que I’on écrit z = w + w° selon la décomposition V = W @ WP donnée par le théoréme 2.5.
Comme W et W sont stables par G, on a pour tout s € G,
ps(r) = ps(w) + pS(wO) :
S~ Y
ew ewo

de sorte que ps(w) est ps(w®) sont les composantes de ps(z) selon W et WO respectivement. 11 en résulte que les
sous-représentations W et WY déterminent entierement la représentation V.

Définition 2.6 — somme directe de sous-représentations]

Dans ces conditions, on dit que V' est la somme directe de W et W (en tant que représentation de G) et
onnote V =W & WY, On définit de méme la somme directe d’un nombre fini de sous-représentations.

EXERCICE DE COURS 2.16. Interpréter matriciellement le théoreme 2.5 et cette définition.

Définition 2.7 — représentation irréductible}

Soit p: G — GL(V) une représentation de G. On dit qu’elle est irréductible ou simple si V' # {0} et si
les seuls sous-espaces stables par G sont {0} et V.

D’apres le théoreme 2.5, une représentation est donc irréductible si et seulement si elle n’est pas somme directe de
deux sous-représentations non triviales.

Théoreme 2.8 — compléte réductibilité des représentations]

Toute représentation d’un groupe fini est la somme directe de représentations irréductibles.
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EXERCICE DE COURS 2.17. Démontrer ce théoréme par récurrence et a 1’aide du théoreme 2.5.

REMARQUE 2.2. En général, une décomposition V= W @ --- & Wy en somme directe de représentations
irréductibles n’est pas unique. Par exemple, si tous les p, sont égaux a 1, les sous-espaces W; sont tous des droites, et
la décomposition n’est certainement pas unique puisqu’il y a pléthore de décompositions de V' en somme de droites

vectorielles.

Toutefois, on peut montrer que le nombre de W; isomorphes a une représentation irréductible donnée ne dépend
pas de la décomposition choisie a 1’aide de la théorie des caractéres (voir le théoréme 2.13).

EXERCICE DE COURS 2.18. Le groupe symétrique &3 opeére dans C?® par s.(z1,79,73) =
(xs(l),xs(g), xs(3)) (permutations des coordonnées) et cela définit une représentation de G3 de degré 3. Cette
représentation est-elle irréductible ? Si non, trouver une décomposition de C3 en une somme directe de sous-
représentations de G3.

EXERCICE DE COURS 2.19 (représentations irréductibles de degré 1 et 2 du groupe diédral). On considere

le groupe diédral D,,.

(1) Trouver toutes les représentations de degré 1 de D,,. (On distinguera les cas selon la parité de n.)

(2) On construit dans cette question des représentations irréductibles de degré 2. Posons w = e¢27/™ On
rappelle que D,, opére naturellement dans C? (voir 1’exemple 2.2). Montrer qu’il existe une base % de

k 0 0 —k

C? telle que la matrice de r* dans cette base soit (u(;) w- k) et celle de sr* soit (w"' wo )

(3) Montrer que les formules suivantes définissent une représentation p" de D,, d’espace C2 pour tout
heN:

hk —hk
hk w 0 hiok 0w
pl(r):<0 w*hk)’ p(sr)z(whk 0 ), k=0,...,n—1,

ot I’on identifie, pour ¢ € D,,, p"(t) & sa matrice dans la base 2.
Ces représentations ne dépendent que de h mod n. De plus, p" et p"~" sont isomorphes. On peut donc
supposer que 0 < h < n/2.

(4) Montrer que p° et P2 (sin est pair) sont réductibles, et que les autres p", 0 < h < n/2, sont irréduc-
tibles et deux a deux non isomorphes.

(5) Interpréter géométriquement ce résultat  partir de la représentation naturelle de D,, dans R?, étendue a

C2 (voir I’exemple 2.2).

Nous verrons plus loin que les représentations irréductibles obtenues dans cet exercice sont les seules représenta-
tions irréductibles du groupe diédral D,, (voir I’exercice 2.41).

2.3. Lemme de Schur

La proposition suivante est tres célebre. Elle est connue sous le nom de Lemme de Schur.

,—[Proposition 2.9 — lemme de Schur] \

On suppose que le corps K est algébriquement clos. Soient p': G — GL(V7) et p?: G — GL(V2) deux
représentations irréductibles de G, et f une application linéaire de V; dans V5 telle que p2 o f = f o pl
pour tout s € G.

(i) Si Vi = Vaetsip! = p?, alors f est une homothétie.

(i) Si p! et p? ne sont pas isomorphes, alors f = 0.
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Issai Schur, né a Moguilev le 10 janvier 1875 et mort a Tel-Aviv le
10 janvier 1941, est un mathématicien d’origine russe qui a surtout
travaillé en Allemagne. Son nom est aussi transcrit Issai Chour

(transcription du russe en frangais).

7 £

EXERCICE DE COURS 2.20 (démonstration du lemme de Schur).

(1) Comme le cas f = 0 est trivial, on suppose que f # 0. Montrer que le noyau et I’image de f sont stable
par G ; en déduire la partie (i) du lemme de Schur.

(2) On suppose que V; = Vs et pb = p? de sorte que f est un endomorphisme de V;. Soit A une valeur
propre de f (il en existe!) et posons f' = f — M. A I’aide de la question (1), montrer que f' = 0 et
conclure.

,—[Corollaire 2.10 — une application technique du lemme de Schur]

Soit h € Z(V1, V) une application linéaire de V; dans V3, ot Vi, V5 sont des représentations irréductibles

de G. On pose
1 _
K== (o))" hoi.
9 e
(i) Si p* et p? ne sont pas isomorphes, alors h° = 0,

1
(ii) Si Vi = Vi etsipt = p?, alors h° est une homothétie de rapport — Tr(h), ot n = dim V;.
n

EXERCICE DE COURS 2.21. Démontrer le corollaire.

Voici pour terminer ce paragraphe une jolie application du lemme de Schur.

EXERCICE DE COURS 2.22 (les représentations irréductibles d’un groupe abélien sont de dégré 1). Soit G
un groupe abélien fini. Montrer a I’aide du lemme de Schur que toute représentation irréductible complexe de G
est de degré 1.
(Remarque : on peut aussi penser a la diagonalisation simultanée, sans le lemme de Schur, mais c’est la méme
idée sous-jacente.)

2.4. Théorie des caracteres

2.4.1. Caractere d’une représentation. Soit p: G — GL(V') une représentation de G. Pour tout s € G, on pose

Xp(s) = Tr(ps)

ol Tr(p;) est la trace de I’endomorphisme p, (c’est-a-dire la trace de sa matrice dans n’importe quelle base de V).

Définition 2.11 — caractére d’une représentation]

La fonction x,: G — C est appelée le caractere de la représentation p.
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La terminologie vient de ce que le caractére X, caractérise la représentation en un certain sens, comme nous le verrons
plus loin (voir le corollaire 2.14).

EXERCICE DE COURS 2.23. Soit y le caractere d’une représentation p de degré n. Montrer :
(i x(1) =

(ii) X(s_l) X (s) pour tout s € G,

(iii) x(tst~!) = x(s) pour tous s,t € G.

On appelle fonction centrale une fonction f: G — C qui est constante sur les classes de conjugaison, i.e.,
f(tst™1) = f(s), Vs,teG.

Le caracteére d’une représentation de G est donc une fonction centrale d’apres la propriété (iii) de I’exercice 2.23.

EXERCICE DE COURS 2.24. Soient p': G — GL(V}) et p?: G — GL(V4) deux représentations de G, et
X1, X2 les caractéres associés. Que vaut le caractére de la représentation p: G — V = V; @ V; définie par

ps(@1 + 22) = py(w1) + pi(22), Vs € G, (v1,72) € V1 X Vs,

en fonction de x1 et x2 ?

Il serait plus correct d’écrire V' = V; x Vo. Comme V3 x Vo = (V4 x{0})® ({0} x V2), on s’ autorise
é Pécriture V = Vi@ Vo et Vi =2 Vy x{0} et Vo = {0} x V5 sont des sous-représentations de V7 x Va.

EXERCICE DE COURS 2.25 (caractere de la représentation par permutations). Soit X un ensemble sur lequel
agit le groupe G. On note p: G — GL(V) la représentation par permutations associée a I’action de G (voir
I’exemple 2.3), et x son caractere. Montrer que pour tout s € G, x(s) est égal au nombre d’éléments de X fixés
par G, i.e.,

x(s) =#{x € X: s.x =z}

EXERCICE DE COURS 2.26 (représentation contragrédiante). Soient p: G — GL(V') une représentation de
G de caractere x, et V* le dual de V (i.e., V* = Z(V,C) est ’ensemble des formes linéaires de V). On écrit
(A, x) pour A\(z) siz € Vet A € V*. Montrer qu’il existe une unique représentation p*: G — GL(V™*) telle que

<p:(/\)ap5(x)>:<)‘7x>a VSGG,QJ‘GMAEV*.

On I’appelle la représentation contragrédiente ou duale de V. Quel est son caractere ?
2.4.2. Relations d’orthogonalité pour les caractéres. On note .7 (G, C) I’ensemble des fonctions de G dans C.

EXERCICE DE COURS 2.27. Vérifier que .% (G, C) est un espace vectoriel complexe et montrer que .% (G, C)
est de dimension finie g égale au cardinal de G.

Soient ¢: G — Cetvy: G — C deux fonctions définies sur G. On pose

(Bl) = Z¢

tEG

C’est un produit scalaire hermitien sur .% (G, C), comme on le vérifie aisément.
)

,—[Théoréme 2.12 — les caracteres des représentations irréductibles forment un systéme orthogonal]—

(1) Si x est le caractere d’une représentation irréductible, alors (x|x) = 1. Autrement dit, x est de
norme 1.

(2) Si x et x’ sont les caractéres de deux représentations irréductibles non isomorphes, alors
(x|x’) = 0. Autrement dit, x et x’ sont orthogonaux.
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Le théoreme implique que les caractéres des représentations irréductibles forment un systeme orthogonal dans
Z (@G, C). En particulier, ils forment une famille libre. Par conséquent,

I’ensemble des représentations irréductibles de G, a isomorphisme pres, est fini. Son cardinal est majoré
par g, le cardinal de G.

EXERCICE DE COURS 2.28 (démonstration du théoréme 2.12). L’ objectif de cet exercice est de démontrer le
théoréme. On commence par établir des relations matricielles qui découle du corollaire 2.10.
1 2
1,51 (t))lsn,jlgm et (7”1-2,3-2 (t))lgiz,jzsm
pt et p? dans des bases de V; et V5 respectivement, ol t € G'; la premigre est d’ordre n; = dim V4, la
deuxieme d’ordre no = dim V5.

(1) Dans les notations de ce corollaire, on note (r les matrices de

(a) Dans le cas (i) du corollaire 2.10, montrer que 1’on a
1 _ L
727“1’22,342@ 1)7‘}17]-1(25) :0’ vzl’ZQ’jl’jQ'
9 teG
(b) Dans le cas (ii) du corollaire 2.10, montrer que I’on a
1
1 _ 1 — Sijlzigetilsz
- Z Tz‘227j2 (t 1)7“1»11)]»1 (t) = 761’273’1 dj2;i1 =3§n . 7
9ica n 0 sinon.
ol §; ; est le symbol de Kronecker.
(2) On démontre dans cette question le théoréme.

(a) A I'aide de I’exercice 2.23 (ii), observer que si y est le caractére d’une représentation, alors pour
toute fonction ¢: G — C,

(6x) = ; S ottt = ; S ot x ().

teG teG

(b) Déduire de la question (1)(b) que I'on a (x|x) = 1 si x est le caractere d’une représentation
irréductible.

(c) Déduire de la question (1)(a) que I'on a (x|x’) = 0 si x et x’ sont les caracteres de deux repré-
sentations irréductibles non isomorphes.

,—[Théoréme 2.13 — «unicité » de la décomposition en somme de représentations irréductibles]—

Soit V' une représentation de (G, de caractére ¢. Supposons que V' se décompose en une somme directe de
représentations irréductibles

V=W & oW
Alors, si W est une représentation irréductible de G de caractere y, le nombre de i € {1,...,k} tels que
W soit isomorphe a W; est égal au produit scalaire (¢|x).
En particulier, le nombre de W; isomorphes a W ne dépend pas de la décomposition. Ce nombre est appelé
la multiplicité de W dans V.

Comme nous I’avons déja mentionné, la décomposition de V' en une somme directe de représentations
irréductibles n’est pas unique. L'unicité est seulement au sens précédent.

A

EXERCICE DE COURS 2.29. Démontrer le théoreme a I’aide de 1’exercice 2.24.
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Clairement, si deux représentations sont isomorphes, elles ont le méme caractere. De facon plus surprenante, la
réciproque est vraie aussi.

Corollaire 2.14 — deux représentations ayant le méme caractere sont isomorphes}

Deux représentations de G ayant le méme caractere sont isomorphes.

EXERCICE DE COURS 2.30. Démontrer le corollaire.

Soient x1, ..., Xxn les caracteres distincts des représentations irréductibles W1, ..., W}, de G (les W; sont donc
deux a deux non isomorphes). Rappelons que G a un nombre fini de représentations irréductibles, a isomorphisme pres.
Toute représentation V' de G est donc isomorphe a une somme directe

Le résultat précédent permet de réduire 1’étude des représentations a celle des caracteres des représen-
tations irréductibles.

V=mW & - mpWh, m; € N.
Le caractere ¢ de V est égale a mqx1 + - - - + mpxp d’ apres Iexercice 2.24 et, d’apres le théoreme 2.13,

mi = (¢lxi)-

De plus, les relations d’orthogonalité (voir le théoréme 2.12) donnent :

h
(6]¢) = Zm?.

Théoreme 2.15 — une représentation est irréductible si et seulement si son caractere est de norme 1

Si ¢ est le caractere d’une représentation V, alors (¢)|¢) est un entier positif, et on a (¢|¢) = 1 si et
seulement si V' est irréductible.

EXERCICE DE COURS 2.31. Démontrer le théoreme.

o

EXERCICE DE COURS 2.32 (multiplicité de la représentation triviale). Soit p une représentation de G' de
caractere x. Quelle est la multiplicité de la représentation triviale en fonction de x ?

On obtient ainsi un critere tres simple pour tester I’irréductibilité d’une représentation.

EXERCICE DE COURS 2.33 (cas de la représentation par permutations). Soient X un ensemble fini dans lequel
opere le groupe G, et p la représentation par permutations associée. On note  son caractére. Pour z € X, on note
G.x = {s.x: s € G} son orbite et c le nombre d’orbites distinctes de X .

(1) Montrer que c est égal a la multiplicité de la représentation triviale dans p. En déduire que (x|1) = c.
Que peut-on dire de plus si I’action est transitive, c’est-a-dire sic = 17

(2) Le groupe G opére dans X x X par s.(z,y) = (s.x,s.y),ou s € G, (z,y) € X x X. Quel est, en
fonction de Yy, le caractere de la représentation par permutations associée a cette nouvelle action ?

EXERCICE DE COURS 2.34 (décomposition de la représentation réguliére). Soit p la représentation réguliére
de G'; voir I’exemple 2.1 (2). Son degré est g, I’ordre du groupe G. On note X son caractére.

(1) Montrer que I’on a

{ X“(1) =g,
X%(s) =0if s # 1.
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(2) Montrer que toute représentation irréductible W de GG apparait dans la décomposition de la représentation
réguliere avec multiplicité m = dim W.

@ Indication : calculer (x%|x), ol  est le caractére de W et utiliser la relation de la

\/ question (2)(a) de I’exercice 2.28.

(3) On note W1, ..., Wy les représentations irréductibles distinctes (a isomorphisme pres) de G, de carac-
teres x1, . .., Xn et de degré nq, ..., n; respectivement. Montrer que

W 4eand =g,

etquesis # 1,

h
Z nixi(s) = 0.
i=1

REMARQUE 2.3. L’exercice précédent peut €tre utilisé pour trouver toutes les représentations irréductibles d’un
groupe (G. Supposons que 1’on ait construit des représentations irréductibles non isomorphes deux a deux de degrés
ni,...,nk. On cherche a savoir si elles donnent toutes les représentations irréductibles de G. Il suffit pour cela de
vérifier que

ni 4 4ng =g
EXERCICE DE COURS 2.35 (obtention de toutes représentations irréductibles du groupe diédral). Montrer que
les représentations irréductibles de degré 1 et 2 construites lors de 1’exercice 2.19 donnent toutes les représentations
de D,, (a isomorphisme pres). Déterminer les caracteres de ces représentations.

2.4.3. Fonctions centrales et nombres de représentations irréductibles. Rappelons qu’une fonction centrale
est une fonction f: G — C telle que f est constante sur les classes de conjugaison de G, ¢’est-a-dire que f(tst™1) =
f(s) pour tous s,t € G.

EXERCICE DE COURS 2.36 (encore une application du lemme de Schur). Soient f: G — C une fonction
centrale et p: G — GL(V) une représentation de G. Soit p, I’endomorphisme de V' défini par :

pr= Z f(@)pr.
teG
Montrer que si V' est irréductible de degré n et de caractere X, alors p est une homothétie de rapport

A= 3 Ft = L)

teG

Soit H I’espace vectoriel des fonctions centrales. C’est un sous-espace de ’espace .% (G, C) des fonctions de G
dans C. On note comme avant x1, ..., X1 les caracteres des représentations irréductibles de G.

EXERCICE DE COURS 2.37 (dimension de 1’espace des fonctions centrales). Montrer que la dimension de
I’espace H est égale au nombre de classes de conjugaison de G.

,—[Théoréme 2.16 — le nombre de représentations irréductibles est le nombre de classes de conjugaison]—

Les caracteres x1, . . ., X forment une base orthonormale de H.
En particulier, le nombre de représentations irréductibles de G est égale au nombre de classes de conjugai-
son de G.

EXERCICE DE COURS 2.38 (démonstration du théoréeme 2.16). Le but de cet exercice est de démontrer le
théoréme. Nous savons déja que les caracteres x1, . . . , x» forment une famille libre de H. Il reste donc a montrer
que cette famille est génératrice. Soit f € H tel que (f|x;) = 0 pour touti € {1,...,h}.

(1) Dans les notations de I’exercice 2.36, montrer que py = 0 pour toute représentation p de G

(2) Avec p = p© la représentation réguliére de G, en déduire que f(¢) = 0 pour tout t € G. Conclure.
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2.5. Exemples et tables de caracteres

Commencons par résumer les principaux résultats qui donnent une trame d’étude dans les exemples.

— Le nombre de représentations irréductibles est égale au nombre de classes de conjugaisons (théoreme 2.16).
» On commence donc par calculer le nombre de ces classes.

— Le caractere d’une représentation irréductible détermine entierement celle-ci (corollaire 2.14), et le caractere
est une fonction centrale.

» Des qu’on a construit une représentation irréductible, on calcule son caractére sur un représentant
de chaque classe de conjugaison.

— Pour vérifier qu’on a obtenu toutes les représentations irréductibles, on vérifie que I’on a

g:n%.l’_._i'_ni?

ol k < h est le nombre de représentations irréductibles qu’on a construit, et ny, ..., ny leur degré; voir la
question (3) de I’exercice 2.34.

— Pour vérifier qu'une représentation donnée de caractere x est irréductible, on peut s’assurer que 1’on a
(x|x) = 1 (théoreme 2.15). Le théoréme 2.16 peut servir a vérifier que la table est correcte : on vérifie
que les caracteres sont de norme 1 et deux a deux orthogonaux.

Le plus dur est donc en général de construire des représentations irréductibles, mais il n’est pas toujours
o nécessaire de les construire explicitement pour connaitre leur caractére comme nous le verrons sur des
exemples (voir I’exemple 2.6 entre autres).

Il n’y a pas de recette pour cela, mais nous avons déja vu quelques exemples.
Pour les groupes abéliens, voici un raffinement de I’exercice 2.22 qui donne une réponse compléte.

Proposition 2.17 — une caractérisation des groupes abéliens]

Le groupe fini G est abélien si et seulement si toutes ses représentations irréductibles sont de degré 1.

EXERCICE DE COURS 2.39. Démontrer la proposition a ’aide du théoreme 2.16 et de la question (3) de
I’exercice 2.34. Cela donne une autre démonstration de la partie « seulement si » vue lors de [’exercice 2.22.

EXERCICE DE COURS 2.40 (dual d’un groupe abélien). On suppose que G est un groupe abélien g. Soit G
I’ensemble des caracteres de représentations irréductibles de G. D’apres la proposition 2.17, G est I’ensemble des
morphismes de groupes x: G — C*.

(1) Montrer que G estun groupe abélien d’ordre g, ou la multiplication est donné par 1 X X2 Si X1, X2 € G.
Le groupe G est appelé le dual du groupe G.
(2) Pour tout s € G, ’application G- C*, x — x(s) définit un élément du dual G de G. On obtient ainsi

une application G — G. Montrer que cette application est un morphisme de groupes injectif.

(3) Conclure que G et G sont isomorphes.

Les caracteres irréductibles d’un groupe sont parfois donnés sous forme de table, appelée la table des caractéres.
Comme ces caracteres sont constants sur chaque classe de conjugaison, la table est donnée sur les classes de conjugai-
son; c¢’est donc un tableau a h lignes et h colonnes (avec h le nombre de représentations irréductibles qui est le nombre
de classes de conjugaison).

EXEMPLE 2.5. La table des caractéres du groupe cyclique I's est la suivante, ol w = e7/3; voir I’exercice 2.12.
1 r r?
xo |1l 1 1
x1|]1 w w?
x2 |1 w? w
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EXERCICE DE COURS 2.41. A I’aide de I’exercice 2.19, dresser la table des caractéres du groupe diédral Dg.

EXEMPLE 2.6 (table des caracteres du groupe symétrique G3). Le groupe symétrique Gz a 3 classes de conjugai-
sons : 1, les trois transpositions et les deux 3-cycles. Soitt = (12) etc¢ = (123).On a

t? = 1, A= 1, te = ct.

On en déduit qu’il y a seulement deux caracteres de degré 1 (dont la représentation sous-jacente est de degré 1) :
le caractere trivial y; et la signature o = <. Le théoréme 2.16 montre qu’il existe un autre caractere irréductible
(associé a une représentation irréductible); on le note 6. Si n est le degré de 6, alors la formule de la question (3) de
I’exercice 2.34 donne

1+14n?=6,

d’out n = 2. Les valeurs de 6 sur ¢ et ¢ peuvent se déduire de la relation

X1+ Xx2+20 = xea.,,

ol x &, est le caractere de la représentation réguliere de G3, et des relations de la question (1) de ’exercice 2.34.
On en déduit la table des caracteres de ©3 :

1 ¢ c
X1 1 1 1
2|1 -1 1
012 0 -1

Vérifions la cohérence de cette table avec le théoreme 2.15. La classe de 1 a un 1 élément, celle de ¢ a trois
éléments, (12), (23), (13), et celle de ¢ a deux éléments, (123), (132). Or,

(X1|X1):%(12x1+12><3+12><2):1,
(X2|X2):%(12 Xx14(=1)2x3+1%x2) =1,
(0|9):é(22><1+O><3—|—(—1)2><2):1,
(X1|x2):%(1x1+(—1)x3+1x2):0,
(X2|9):é(2><1+0><3+(—1)><2):0,

1
(Blx1) = 52 x 1+0x 3+ (1) x 2) =0,

ce qui est cohérent !

REMARQUE 2.4. Nous avons construit une représentation irréductible de &3 de degré 2 lors de 1’exercice 2.18.
Son caractere est donc 6, ce que I’on peut vérifier par ailleurs.

EXERCICE DE COURS 2.42 (table des caracteres du groupe alterné 2(4). On reprend les notations du para-
graphe 2.1.3.

(1) Montrer que 24 possede trois représentations irréductibles de degré 1 et expliciter ces représentations.

(2) En déduire la table des caracteres de 2(4. Donner une réalisation de la « quatrieme » représentation irré-
ductible de 214, et vérifier la cohérence de la table avec le théoreme 2.15.

EXERCICE DE COURS 2.43 (table des caracteres du groupe symétrique S4). On reprend les notations du
paragraphe 2.1.4.

(1) Déduire de la table des caracteres de G3 (voir I’exemple 2.6) que G4 possede deux représentations de
degré 1 et une représentation irréductible de degré 2.

(2) Montrer que la représentation naturelle de &4 dans C? est irréductible.

(3) En déduire la table de caracteres de Gg4.

On remarque que les caractéres de Sy sont a valeurs entieres (ce n’est pas le cas des groupes I's ou Ay par
exemple). Ceci est un fait général pour le groupe symétrique S, qui dépasse le programme.
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EXERCICE DE COURS 2.44 (table des caracteres du groupe du cube). Dresser la table de caracteres du groupe
du cube Iso(€) (voir le paragraphe 2.1.5) a I’aide de celle de &,.

2.6. Quelques remarques culturelles sur le groupe « Monstre »

La classification des groupes finis simples est connue; il existe 18 familles infinies dénombrables de groupes finis
simples, plus 26 groupes dits sporadiques qui ne suivent aucune régles apparentes. Le groupe Monstre ou groupe de
Fischer-Griess est le plus grand de ces groupes sporadiques.

Son ordre est

246 x 320 X 59 X 76 x 112 x 133 x 17 x 19 x 23 x 29 x 31 x 41 x 47 x 59 x 71
= 808017424794512875886459904961710757005754368000000000
~ 8 x 10°3.

Bernd Fischer, né le 18 décembre 1936 a Bad Endbach dans le Land de Hesse,
et mort le 13 aoiit 2020, était un mathématicien allemand. 1l est principalement
connu pour son théoréme de caractérisation des groupes de transpositions, qu’il

démontra en 1970.

Robert Louis Griess, né le 10 octobre 1945 a Savannah en Géorgie, est un ma-
thématicien américain spécialiste des groupes finis, connu pour sa construction

du groupe Monstre, le plus grand groupe sporadique.

Le Monstre a 194 classes de conjugaisons. Sa table des caracteres fut calculée en 1979, avant que 1’existence ou
I’unicité du Monstre fiit prouvée. C’est Bernd Fischer et Robert Griess qui conjecturérent son existence sur la base de
sa table de caracteres. Le calcul est fondé sur la supposition que le degré minimal d’une représentation fidele complexe
est 196 883. Le Monstre a ensuite été construit en 1982 par Robert Griess comme groupe de rotations d’un espace a
196 883 dimensions. John Conway a simplifié plus tard cette construction.

John Horton Conway, né le 26 décembre 1937 a Liverpool et mort le 11 avril
2020 a New Brunswick (New Jersey), est un mathématicien britannique. 1l s’est
intéressé aux théories des groupes finis, des noeuds, des nombres, des jeux et du

codage. Le 11 avril 2020, il meurt de la Covid-19 a New Brunswick, N.J.

Le groupe Monstre agit par automorphismes sur une certaine algebre vertex (une structure algébrique de dimension
infinie assez compliquée) dont la construction fut donnée par Igor Frenkel, James Lepowsky et Arne Meurman. Le
groupe Monstre apparait dans la conjecture monstrous moonshine qui relie la table de caractére de ce groupe a la
fonction modulaire ' j, et qui fut prouvée par Richard Borcherds en 1992 gréce a la théorie des algébres vertex.

1. i.e., une fonction holomorphe définie sur le demi-plan de Poincaré et invariante sour I’action du groupe modulaire SL2(Z).
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Richard Ewen Borcherds, né le 29 novembre 1959 au Cap en Afrique du Sud,
est un mathématicien anglais connu pour ses travaux en théorie des réseaux, des
groupes et des algeébres de Lie. Borcherds est particulierement connu pour son
travail reliant la théorie des groupes finis a d’autres secteurs des mathématiques.
En particulier, il inventa la notion d’algébre vertex, qui est utilisée dans la preuve
de la conjecture Conway-Norton a propos du monstrous moonshine. Ce résultat
est lié a la théorie des représentations du groupe Monstre, un groupe fini dont la
structure n’avait jusque-la pas été bien comprise.

En 1998, au 23eme congres international des mathématiciens a Berlin, il recoit

la médaille Fields.
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Structure des sous-groupes finis de GL(V)

Nous avons vu en exercice que tout groupe fini peut, a I’aide de la représentation réguliere, &tre réalisé comme
groupe d’automorphismes d’un espace vectoriel. Dans ce chapitre, on aborde le probléme inverse : étant donné un
espace vectoriel V' de dimension finie, quels sont les sous-groupes finis de GL(V)?

On s’intéressera tout particulierement au cas ou V' est un espace vectoriel de dimension finie sur R ou C. Autrement
dit, on va s’intéresser aux sous-groupes finis de GL,, (R) ou GL,,(C), ot n € N*.

EXERCICE DE COURS 3.1. Donner des exemples de sous-groupes finis de GL,,(R) et GL,,(C). Parmi eux,
quels sont ceux qui sont abéliens ?

3.1. Sous-groupes abéliens finis

Nous avons vu quelques exemples de sous-groupes abéliens finis de GL,, (C). Nous allons maintenant étudier leur
structure.

EXERCICE DE COURS 3.2. Soit G un sous-groupe abélien fini de GL,,(C) de cardinal |G| = g.
(1) A I'aide du théoréme de Lagrange, montrer que les matrices d’un tel groupe sont diagonalisables.

(2) Montrer qu’il existe une base de C™ dans laquelle on peut diagonaliser simultanément les endomor-
phismes canoniquement associés aux matrices de G.

(3) En déduire que G est isomorphe & un sous-groupe de (Z/gZ)".

La théorie des groupes abéliens (appelés également Z-modules) de type fini, qui est une variante de celle des
K-espaces vectoriels de dimension finie, permet de démontrer que tout sous-groupe de (Z/gZ)™ est le produit de
r € {1,...,n} groupes cycliques. Ainsi, de ’exercice précédent, nous pouvons déduire qu’il existe r € {1,...,n} et
des entiers dy, ..., d, € N* tels que :

G=7/dZx-Z/dZ.

EXERCICE DE COURS 3.3. Réciproquement, montrer que tout produit de € {1,...,n} groupes cycliques
se plonge comme sous-groupe (abélien fini) de GL,,(C).

En combinant les deux exercices précédents, nous venons de démontrer la proposition suivante.

Proposition 3.1 — les sous-groupes abéliens finis de GL,,(C) sont des produits de groupes cycliques

Les sous-groupes abéliens finis de GL,,(C) sont isomorphes a des produits de r groupes cycliques Z/mZ
avecr € {1,...,n}.
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3.2. Sous-groupes finis de GL,, (R)

Soient G un sous-groupe fini de GL,(R) et (—|—) un produit scalaire sur R™. La forme bilinéaire symétrique
(—|—)¢ définie par
(@ly)a = > (9xlgy), =,y €R",
geG
est définie positive et invariante par G de sorte que G est contenu dans le groupe orthogonal euclidien O(q¢ ) associé a
la forme quadratique g donnée par g () = (x|z)¢ pour tout x € R™.

EXERCICE DE COURS 3.4. Vérifier les assertions ci-dessus.

REMARQUE 3.1. Dans le cas complexe, on peut prendre un produit scalaire hermitien et on obtient alors que G
est contenu dans un groupe unitaire.

L’avantage est que les groupes orthogonaux (ou unitaires) sont compacts, ce qui n’est pas le cas du groupe linéaire
général. Si on ne s’intéresse qu’a la classe de conjugaison de G, a fortiori a son cardinal, on peut donc supposer que G
est contenu dans O,,(R) (ou U,,(C) dans le cas complexe).

EXERCICE DE COURS 3.5 (le groupe des rotations en deux dimension est abélien). Décrire le groupe spécial
orthogonal SO4(R) et rappeler pourquoi c’est un groupe abélien.

3.2.1. Cas n = 2. Lintersection H de G et de SO2(R) est au plus d’indice 2 (pourquoi ?). C’est un sous-groupe
du groupe abélien SO (R). Si m est I’ordre de H, toutes les rotations de H ont donc un angle 2kw/m, k € Z. On en
déduit un isomorphisme H = Z/mZ et H se réalise, par exemple, comme le groupe des rotations laissant stable un
polygone régulier a m c6tés (voir le paragraphe 2.1.1).

Si H est d’indice 2 et est engendré par un élément r d’ordre m, choisissons n’importe quel s € G\ H. Comme
s est une symétrie par rapport a une droite, srs = 7! et on en déduit que G est le groupe diédral D,, qui se réalise
comme le groupe des isométries laissant stable un polygone régulier & m c6tés (voir le paragraphe 2.1.2).

EXERCICE DE COURS 3.6. Vérifier les assertions ci-dessus. Conclure en décrivant tous les sous-groupes finis
de GL2(R).

3.2.2. Cas n = 3. Le cas n = 3 est plus subtil. Cherchons d’abord les cardinaux des sous-groupes finis de
SO3(R).

EXERCICE DE COURS 3.7. Rappeler la description géométrique des éléments de SO3(R).

Soit G un sous-groupe fini de SO3(R) de cardinal g > 2. On note X I’ensemble des points de la sphére unité S
de R? qui sont fixés par des éléments non triviaux de G, autrement dit X est I’ensemble des points d’intersection avec
la sphere unité de 1’axe des éléments non triviaux de G.

La stratégie est de classifier les groupes G possibles en faisant agir G sur X.

EXERCICE DE COURS 3.8. Montrer qu’il existe une action naturelle de G sur X et que 2 < | X| < 2(g — 1).

On veut maintenant estimer le nombre d’orbites de cette action. Pour cela on rappelle la formule de Burnside,
valable pour toute action d’un groupe fini G sur un ensemble fini X : le nombre k d’orbites est donnée par la moyenne
du nombre de points fixes des éléments de G :

1 .
k= i 2 IFix(s)l

seG
ol Fix(s) = {z € X: sz = z}.
Appliquons la formule de Burnside a I’action de notre sous-groupe fini G C SO3(R) sur I’ensemble X. Comme
toute rotation distincte de 1’identité dans G fixe exactement deux points de X, et que I’identité fixe tous les éléments
de X, la formule de Burnside donne 1’estimation suivante pour le nombre % d’orbites de cette action :

| X] -2
4= =
g

1
k= (20— 1)+ X)) =2 > 2.
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On a aussi grace a la majoration de 1’exercice 3.8,

En conclusion, k € {2,3}.

EXERCICE DE COURS 3.9. Montrer que si k = 2, alors G est cyclique.

EXERCICE DE COURS 3.10. On étudie dans cet exercice le cas k = 3. Notons w1, ws, w3 les trois orbites et
n1, N2, ng les cardinaux des stabilisateurs correspondants. On peut supposer que n; < ng < N3.

(1) A T’aide de la formule de Burnside et de la relation |w;| = £ montrer que
1 1 1 2
—+—+—=1+-.
ny Nz Ny g

(2) Montrer que n = 2, puis que ny € {2, 3}.

(3) Montrer que si ng = 2, alors |G| = 2n3 = | D).

(4) Sinon, montrer que 1’on est dans 1’un des situations suivantes :
o (n1,ng2,n3) =(2,3,3) et |G| = |Ay]| = 12,
e (n1,n9,n3) = (2,3,4) et |G| = |&4| = 24,
e (n1,n2,n3) =(2,3,5) et |G| = |A5| = 60.

Nous venons de déterminer les cas possibles. Remarquablement, tous les groupes apparaissant dans les exer-
cices 3.9 et 3.10 peuvent étre réalisés comme groupe d’isométries de certains polyedres réguliers et donc comme
sous-groupes finis de SO3(R) ; nous en avons déja vu certains.

Les cas obtenus sont décrits dans le tableau 1. La colonne «polyedre » indique qu’on peut obtenir ces groupes
comme des groupes d’isométries laissant stable une figure. Dans le cas I, on obtient les n rotations laissant stables un
polygone régulier a n cotés. Dans les cas II (groupe diédral), on rajoute a ces rotations les symétries d’axe les droites
joignant les milieux (ou sommets) du polygone, etc : voir la section 3.5 pour une description compléete des autres
polyedres et leurs symétries.

ny | ng|ns | |G| G polyedre
Ilglyg 9 |Z/9Z P,
m|2 1|2 |n/|2n| D, P,
mij 2 |3 1| 3|12 Ay tétraedre
IV| 2|3 ]| 4] 24 Sy cube (octaedre)
VI]2]3]5]60 A dodécaedre (icosaedre)

TABLE 1 — Valeurs possibles pour n;

3.3. Sous-groupes finis de GL,,(Z)

On trouve des groupes finis aussi grand qu’on veut dans GL,, (R) pour n < 3. Observons qu’ils sont « presque
abéliens », au sens qu’ils contiennent un sous-groupe abélien normal d’indice petit, ici < 60. On verra plus bas (voir le
théoreme 3.4) que c’est toujours le cas. D’une certaine maniere, si on veut plonger un groupe gros et compliqué dans
un groupe GL,,, il y a un prix a payer : n doit &tre grand !

Dans ce paragraphe, on étudie les sous-groupes finis de GL,,(Z) et nous allons voir qu’ils sont « petits ».

On pose
GL,(Z2)={Ac€GL,(C): Ac #,(Z)et A" ¢ #,(Z)}.

EXERCICE DE COURS 3.11 (le groupe GL,,(Z)). Montrer que :
GL,(Z)={A € #,(Z): det(A) € {-1,1}}.
Justifier que GL,,(Z) est un sous-groupe de (GL,,(C), x).
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,—[Proposition 3.2 — Lemme de Serre]

Soit p un entier premier plus grand que 3. Alors la restriction du morphisme
GL,(Z) — GL,(F,)

a un sous-groupe fini G est injectif.

La démonstration de ce lemme est 1’objet d’un probleme de la fiche d’exercices.

Jean-Pierre Serre, né le 15 septembre 19262 a Bages (Pyrénées-Orientales), est
un mathématicien frangais. 1l recoit de nombreuses récompenses pour ses re-
cherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Bal-
zan en 1985, de la médaille d’or du CNRS en 1987, du prix Wolf de mathématiques
en 2000, et le premier lauréat du prix Abel en 2003.

Corollaire 3.3 — majoration du cardinal d’un sous-groupe fini de GLn(Z)]

Le cardinal d’un sous-groupe fini de GL,,(Z) est majoré par
|GL,(F3)| = (3" —1)(3" —3")--- (3" = 3"71).

EXERCICE DE COURS 3.12. Démontrer le corollaire a 1’aide du lemme de Serre.

On déduit de cette étude que tout sous-groupe fini de GL,,(Z) est isomorphe & un sous-groupe de GL,,(F'3), ces
derniers étant en nombre fini.

3.4. Un théoreme de Jordan

Dans cette dernieére section, on va démontrer un résultat dfi a Jordan affirmant que, grosso modo, un sous-groupe
fini de GL,,(C) n’est pas trop compliqué.

Marie Ennemond Camille Jordan, né le 5 janvier 1838 a Lyon, dans le quartier
de la Croix-Rousse et mort le 21 janvier 1922 a Paris, est un mathématicien fran-
¢ais, connu a la fois pour son travail fondamental dans la théorie des groupes et

pour son influent Cours d’analyse.

Théoréeme 3.4 — J ordan—Schurj

Soit G un groupe fini de GL,,(C).
Alors G a un sous-groupe abélien normal d’indice < (v/8n + 1)27° — (v/8n — 1)27°.
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Le reste de la section est dédié a la démonstration de ce théoréme. Soit G un groupe fini de GL,,(C).

L’astuce de la moyenne permet de supposer G C U, (C). On va voir que les matrices de G proches de I forment
un sous-groupe abélien normal.

Commencons par prouver quelques lemmes élémentaires sur les matrices unitaires. On rappelle que deux matrices
unitaires qui commutent sont simultanément unitairement semblables a des matrices diagonales de valeurs propres des
racines de 1’unité.

On munit .#,,(C) de la norme L? définie par

[A]l =/ Tr(AA%),

qui est invariante par multiplication a gauche ou a droite par des matrices unitaires. C’est une norme multiplicative, et
si A est unitaire, alors ||A]| = /n.

EXERCICE DE COURS 3.13. Vérifier ces assertions.

Lemme 3.5

Soient A, B deux matrices unitaires et supposons ||[I — B|| < 2. Alors si A commute avec (A, B) =
ABA~'B~! alors A est B commutent.

EXERCICE DE COURS 3.14. Démontrer le lemme.

@ Indication : observer que A commute avec A~1(A, B) = BA~'B~!et BAB™!, puis diagonaliser
dans une méme base.

Lemme 3.6 — si A est B sont voisines de 1’identité, alors leur commutateur I’est encore plus

Soient A, B deux matrices unitaires. Alors

IT — (A, B)ll < V2|1 - Al - B

EXERCICE DE COURS 3.15. Démontrer le lemme.

Lemme 3.7 — si A est B sont suffisamment voisines de 1’identité, alors elles commutent]

Soient A, B deux matrices de G. Si ||[I — A|| < 1/v/2et ||I — B| < 2, alors A et B commutent.

EXERCICE DE COURS 3.16. L’objectif de cet exercice est de démontrer ce dernier lemme.
(1) On définit la suite de matrices B; par
Byp=B et Bi+1 = (A,B7)

Déduire du lemme 3.6 que lim = I. En déduire que B; = I pour ¢ assez grand.

11— 00

(2) Montrer par récurrence descendante que B; et A commutent pour tout 5. Conclure.

Notons alors H le sous groupe engendré par
{AeG:|I-A||<1/V2}.

Le lemme 3.7 assure que les éléments de H commutent deux a deux et donc que H est abélien. De plus, H est
clairement normal (la norme unitaire est invariante par conjugaison unitaire). Reste a évaluer son indice. Soit (R;); un
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systeme de représentant de G/H. Ils sont, comme on I’a vu, sur la sphere de rayon y/n de .#,,(C) = R2"’. D’autre
part, si¢ # j,ona

|R; — Rj|| > 1/V2

car sinon R, 1Rj € H. Notons %,; la boule de centre R; et de rayon 1/(2v/2). On a %; N %; = @. Autrement dit, on
a une réunion disjointe des Z; toutes contenues dans la couronne

C (Vi — 1/(2V2), /i + 1/(2V2).

Si v est le volume de la boule unité, on a donc

M > u(#:) =[G HI(1/2v2)" 0 < (Vi +1/(2v2) " v — (vVin — 1/(2v2)*" v,

%

EXERCICE DE COURS 3.17. Démontrer le théoreme de Jordan—Schur a 1’aide de 1’inégalité (1).

Par exemple, ceci donne une borne pour les cardinaux des groupes finis simples contenus dans GL,,(C). Notons
que ce théoreme reste valable remplagant C par un corps de caractéristique positive p pourvu qu’on se limite a des
groupes d’ordre premier a p. La démonstration est tout autre, et nettement plus technique !

3.5. Digression sur les cinq solides platoniciens

Un polyedre & est I’enveloppe convexe d’un nombre fini (non coplanaires) de points dans R*. En particulier, un
tel polyedre & est compact et d’intérieur non vide. On devrait dire polyédre convexe, mais comme on ne considérera
que le cas convexe, on omet ici I’adjectif.

Dans ce cours on considerera comme « intuitivement évidentes » les notions de sommets, arétes et faces, et no-
tamment le fait que les faces sont toujours des polygones (avec au moins 3 arétes), et que chaque sommet appartient
a au moins 3 arétes et au moins 3 faces. La question de les définir rigoureusement se pose notamment lorsqu’on veut
étendre ces notions en dimension arbitraire (2 partir de la dimension 4 peu de choses sont « intuitivement évidentes »
mais on va rester en dimension 3...).

Pour la proposition suivante on notera S, A, F' les nombres de sommets, arétes et faces d’un polyedre &7 donné.

Proposition 3.8 — relation d’Euler]

Pour tout polyedre &2, on a la relation
S—A+F=2.

Leonhard Euler, né le 15 avril 1707 a Bale (Suisse) et mort le 7 septembre 1783
(18 septembre dans le calendrier grégorien) a Saint-Pétersbourg (Empire russe),
est un mathématicien et physicien suisse, qui passa la plus grande partie de sa vie

dans I’Empire russe et en Allemagne.

Euler est considéré comme un éminent mathématicien du XVIII® siecle et
I’un des plus grands et des plus prolifiques de tous les temps. Une déclaration
attribuée a Pierre-Simon de Laplace exprime 1’influence d’Euler sur les mathé-
matiques : « Lisez Euler, lisez Euler, ¢’est notre maitre a tous ». Il était un fervent
chrétien, croyant en l’inerrance biblique, et s’opposa avec force aux athées

éminents de son temps.

EXERCICE DE COURS 3.18. Démontrer la proposition, en essayant d’imaginer que le polyedre est plongé
dans une piscine et qu’on le fait sortir petit a petit de 1’eau, de telle facon que les sommets sortent de I’eau un par
un...

Il existe une démonstration plus topologique, par récurrence sur le nombre d’arétes; voir par exemple [1, page
146].
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,—[Déﬁnition 3.9 — solide de Platon (polyedre régulier)] \

Un polyedre convexe est un solide de Platon (ou polyédre régulier) si :
(1) toutes ses faces sont des polygones réguliers convexes isométriques, c’est-a-dire superposables,
(2) aucune de ses faces ne se coupe, excepté sur les arétes,

(3) le méme nombre de faces se rencontre a chacun de ses sommets.

Solides de Platon. Depuis les mathématiques grecques, les solides de
Platon furent un sujet d’étude des géometres en raison de leur esthétique
et de leurs symétries. Leur nom, donné en 1’honneur du philosophe grec
Platon, rappelle une de ses théories, associant quatre d’entre eux aux
quatre éléments de 1’ancienne physique et le cinquieme a la quintessence
ou Ether.

Dans ce portrait, par Jacopo de’ Barbari, de Luca Pacioli, auteur
de De divina proportione, un dodécaedre régulier est représenté en bas a

droite.

A chaque solide de Platon, on peut associer un symbole (p, ¢) ot

p = le nombre de c6tés de chaque face (ou le nombre de sommets sur chaque face),
q = le nombre de faces se rencontrant a chaque sommet (ou le nombre d’arétes se rencontrant a chaque sommet).

Proposition 3.10

Si &2 est un solide de Platon, alors il n’y a que 5 possibilités pour le couple (p, ¢), qui sont (3, 3), (4,3),
(3,4), (5,3), (3,5).

EXERCICE DE COURS 3.19. Le but de I’exercice est de démontrer la proposition.
(1) Montrer la relation : 24 = Sq = Fp.

2) A I’aide de la formule d’Euler, obtenir que

L1110
p q¢ 2 A2

(3) Remarquer que p, g > 3 et en déduire que p, g < 5 et que p ou ¢ doit étre égal 3. Conclure.

11 se trouve que pour chacun des 5 couples (p, g) obtenus dans la proposition, il existe exactement un polyedre
régulier correspondant. Le théoréme suivant donne la liste de ces « solides platoniciens » (« &dre » est la racine grecque
pour «face», donc on peut dire « hexaedre » au lieu de « cube » mais ¢’est moins courant !)

r—[Théoréme 3.11 — théoréme de classiﬁcation} \

Il n’existe que 5 polyedres réguliers (les 5 solides de Platon) :

le tétracdre (4 faces),

— I’hexaedre ou cube (6 faces),

I’octaedre (8 faces),
le dodécaedre (12 faces),

I’icosaedre (20 faces).
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Le symbole (p, q), appelé le symbole de Schlifli, donne une description combinatoire du polyedre. Les symboles
de Schléfli des cinq solides de Platon sont donnés dans la table 2, et ces cinq solides platoniciens sont représentés dans
la figure 1.

polyédre régulier sommets | arétes faces symbole de Schlafli
Tétraedre régulier 4 6 4 triangles équilatéraux (3,3)
Hexaedre régulier (cube) 8 12 6 carrés (4,3)
Octaedre régulier 6 12 8 triangles équilatéraux (3,4)
Dodécaedre régulier 20 30 12 pentagones réguliers (5,3)
Icosaedre régulier 12 30 | 20 triangles équilatéraux (3,5)

TABLE 2 — Solides platoniciens

Soit & un polyedre (quelconque). Notons Isom(2?) le groupe des isométrie de R? qui préservent 2, c’est-a-dire
qui préservent les sommets de &7.

Nous avons déja observé le fait suivant sur des examples (voir la section 2.1) : on a un morphisme injectif
Isom(Z) — &,, ou n est le nombre de sommets du polyedre de Z.

On peut alors donner une définition des polyedres réguliers en terme d’isométries.

Définition 3.12 — polyedre régulier}

Un polyedre & est dit régulier si le groupe des isométries Isom(Z?) agit transitivement sur les drapeaux
de &, c’est-a-dire les triplets (s, a, f) ol s est un somment de &2, a une aréte et f une face avec s € a C f.

La condition de transitivité sur les drapeaux est tres forte, elle implique la transitivité sur les sommets, sur les
arétes et sur les faces. On en déduit que pour un polyedre régulier &2 donné :

— chaque face est isométrique a un méme polygone régulier,
— de chaque sommet est issue le méme nombre d’arétes,

— tous les sommets sont a méme distance du barycentre des sommets, appelé le centre du polyedre ; en parti-
culier & est inscrit dans une sphere.

On retrouve bien entendu les conditions de la définition 3.9.

On pourrait étre tenté de définir un polyedre régulier par la condition plus faible que toutes les faces sont isomé-
triques a2 un méme polygone régulier ; mais ceci n’exclurait pas par exemple les polyedres obtenus en juxtaposant deux
pyramides de base un polygone régulier a n = 3 ou 5 cdtés (pour n = 4, c’est un octaedre régulier, et pour n > 6, les

faces ne pourraient plus étre des triangles équilatéraux...). Ici le groupe d’isométrie (isomorphe au groupe diédral D,,
a 2n éléments) agit transitivement sur les 2n faces, mais pas sur les n + 2 sommets ni les 3n arétes.

g | Le dé a 10 faces, dont toutes les faces sont des triangles équilatéraux, n’est PAS un polyedre régulier !

On remarque que les 2°™ et 3*™ lignes du tableau 2 sont symétriques, ainsi que les 4°™ et 5°™° (la 1% est auto-
symétrique). Un polyedre régulier &2 admet en effet un polyedre dual également régulier, construit en prenant I’en-
veloppe convexe des milieux des faces de 2. On peut vérifier que le dual d’un polyedre admet le méme groupe
d’isométrie que le polyedre initial. Du point de vue des groupes d’isométries il y a donc essentiellement 3 solides
platoniciens :

— le tétraedre, qui est auto-dual,
— le cube et ’octaedre,
— le dodécaedre et I’icosaedre.
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Gl B¢

FIGURE 1 — Solides platoniniens

Ludwig Schldfli est un mathématicien suisse spécialiste en géométrie et en
analyse complexe. Il a joué un role clé dans le développement de la notion

d’espace de dimension quelconque.
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