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Évariste Galois, est un mathématicien français, né le 25 octobre 1811 à Bourg-

Égalité (aujourd’hui Bourg-la-Reine) et mort le 31 mai 1832 à Paris. Son nom a

été donné à une branche des mathématiques dont il a posé les prémices, la théorie

de Galois. Il est un précurseur dans la mise en évidence de la notion de groupe et

un des premiers à expliciter la correspondance entre symétries et invariants. Sa

« théorie de l’ambiguïté » est toujours féconde au XXIième siècle.

Marie Ennemond Camille Jordan, né le 5 janvier 1838 à Lyon, dans le quartier

de la Croix-Rousse et mort le 21 janvier 1922 à Paris, est un mathématicien fran-

çais, connu à la fois pour son travail fondamental dans la théorie des groupes et

pour son influent Cours d’analyse.

1

anne.moreau@universite-paris-saclay.fr
https://www.imo.universite-paris-saclay.fr/~anne.moreau/




Table des matières

Chapitre 1. Théorie des corps 5
1.1. Caractéristique d’un corps 5
1.2. Extension de corps, éléments algébriques 6
1.3. Corps de rupture et corps de décomposition 10
1.3.1. Corps de rupture 10
1.3.2. Corps de décomposition 11
1.3.3. Clôture algébrique 11
1.4. Théorie des corps finis 12
1.4.1. Morphisme de Frobenius 12
1.4.2. Étude du groupe multiplicatif F∗q 13
1.4.3. Les carrés de Fq 14
1.5. Irréductibilité des polynômes de K[X] 15
1.5.1. Quelques rappels d’arithmétique dans un anneau A, et propriétés de A[X]. 15
1.5.2. Quelques critères d’irréductibilité 17
1.6. Polynômes cyclotomiques et applications 19

Chapitre 2. Représentations linéaires des groupes finis 23
2.1. Exemples importants de groupes finis 23
2.1.1. Le groupe cyclique Γn 23
2.1.2. Le groupe diédral Dn 23
2.1.3. Le groupe alterné A4 24
2.1.4. Le groupe symétrique S4 24
2.1.5. Le groupe du cube 25
2.1.6. Le groupe alterné A5 26
2.2. Définition, sous-représentations, morphismes et sommes directes 27
2.3. Lemme de Schur 30
2.4. Théorie des caractères 31
2.4.1. Caractère d’une représentation 31
2.4.2. Relations d’orthogonalité pour les caractères 32
2.4.3. Fonctions centrales et nombres de représentations irréductibles 35
2.5. Exemples et tables de caractères 36
2.6. Quelques remarques culturelles sur le groupe « Monstre » 38

Chapitre 3. Structure des sous-groupes finis de GL(V ) 41
3.1. Sous-groupes abéliens finis 41
3.2. Sous-groupes finis de GLn(R) 42
3.2.1. Cas n = 2 42
3.2.2. Cas n = 3 42
3.3. Sous-groupes finis de GLn(Z) 43
3.4. Un théorème de Jordan 44
3.5. Digression sur les cinq solides platoniciens 46

3





1
Théorie des corps

Z
Prérequis : notions d’anneaux et de corps.

Sauf dans le théorème de Wedderburn (théorème 1.39), les corps sont supposés
�� ��commutatifs .

Nous suivons pour une large part le chapitre III de [3] et les chapitres 15 et 18 de [6].

1.1. Caractéristique d’un corps

Soient K un corps (quelconque pour le moment). Soit

σ : Z −! K

l’unique morphisme d’anneaux défini par

n 7−! n.1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n fois

si n > 0.

C’est un morphisme d’anneaux dont le noyau est un idéal de Z, donc de la forme nZ. On a donc une inclusion
Z/nZ ∼= Imσ ↪! K. Or un corps est un anneau intègre, donc nZ est un idéal premier. Autrement dit, ou bien n = 0

ou bien n = p est un nombre premier. En effet, si tel n’était pas le cas, la factorisation précédente fournirait des
diviseurs non nuls de 0 dans K.

Si n = 0, on dit que le corps K est de caractéristique nulle.
Sinon, n = p > 0 est un nombre premier que l’on appelle la caractéristique du corps K.

Définition 1.1 – caractéristique d’un corps

REMARQUE 1.1. (1) Si le corps K est de caractéristique p > 0, on a alors par définition p.1 = 0, mais
aussi, pour tout x ∈ K, p.x = p.(1.x) = (p.1).x = 0.

(2) Si le corps K est de caractéristique nulle, alors σ(Z) ∼= Z ↪! K, donc K est infini. De plus, K contient un
corps isomorphe au corps des fractions de Z, à savoir Q.

On appelle sous-corps premier de K le plus petit sous-corps de K (contenant 1). C’est l’intersection de tous les
sous-corps de K.

— Si K est fini de caractéristique p > 0, le plus petit sous-corps de K est isomorphe à Z/pZ. On le note
aussi Fp.

— Si K est de caractéristique nulle, alors le plus petit sous-corps de K est isomorphe à Q.

,
Attention, il se peut qu’un corps soit de caractéristique p > 0 sans être de cardinal fini ! Penser, par
exemple, au corps Fp(X).
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1.2. Extension de corps, éléments algébriques

Soient K,L des corps, avec K ⊂ L. Autrement dit, l’inclusion i : K ↪! L est un morphisme d’anneaux.
On dit que L est une extension (de corps) de K.

Définition 1.2 – extension de corps

REMARQUE 1.2. Comme tout morphisme de corps est injectif, se donner une extension revient à se donner deux
corps K,L et un morphisme de corps i : K ↪! L ; on identifie alors i(K) à un sous-corps de L.

EXERCICE DE COURS 1.1 (exemples d’extensions de corps). Citer des exemples variés d’extensions de corps.

EXERCICE DE COURS 1.2.

(1) Vérifier que si L est une extension de K, alors L est un K-espace vectoriel.

(2) On suppose que K et L sont des corps finis. Montrer que |L| = |K|n, où n = dimK L.

Si K est de cardinal fini q, sa caractéristique est nécessairement égale à un nombre premier p > 0. D’après
l’exercice précédent, on a donc q = |K| = pn. Par exemple, il n’existe pas de corps de cardinal 6. On retient que :

Z
le cardinal d’un corps fini est une puissance d’un nombre premier, sa caractéristique.

Si K ⊂ L sont des corps tels que la dimension du K-espace vectoriel L soit finie, on pose

[L : K] = dimK L.

L’entier [L : K] s’appelle le degré de l’extension L sur K.

Le théorème suivant est très simple, mais sera bien utile dans la théorie des corps comme nous le verrons plus loin,
par exemple lors de la démonstration du théorème 1.8.

Soient K ⊂ L ⊂ M des corps, (ei)i∈I , une base de L sur K, et (fj)j∈J , une base de M sur L. Alors
(eifj)(i,j)∈I×J est une base de M sur K.
En particulier, si les degrés sont finis, on a

[M : K] = [M : L][L : K].

Théorème 1.3 – théorème de la base télescopique

REMARQUE 1.3. Si [M : K] est un nombre premier, il n’existe aucun corps L tel que

K ⊂ L ⊂M et K 6= L, L 6= M.

EXERCICE DE COURS 1.3. Démontrer ce théorème.

Dans tout ce qui suit, K ⊂ L désigne une extension de corps.

Soit A une partie de L. On dit que A engendre L sur K, et on écrit L = K(A), si L est le plus petit
sous-corps de L contenant K et A.
Si A = {x1, . . . , xn} est fini, on note L = K(x1, . . . , xn).
L’extension est dite monogène s’il existe x ∈ A tel que L = K(x).

Définition 1.4 – partie génératrice
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Soit x ∈ L. On note K[x] le sous-anneau engendré par K et x. On a

K[x] ⊂ K(x).

On peut décrire K[x] et K(x) ainsi :

— Si y ∈ K[x], alors y s’écrit y = P (x) avec P ∈ K[X], i.e., y = anx
n+· · ·+a1x+a0, avec a0, a1, . . . , an ∈

K.

— Si y ∈ K(x), alors y =
P (x)

Q(x)
avec P,Q ∈ K[X] et Q(x) 6= 0.

Autrement dit,

K[x] = {P (x) : P ∈ K[X]} et K(x) =

ß
P (x)

Q(x)
: P,Q ∈ K[X], Q(x) 6= 0

™
.

EXERCICE DE COURS 1.4. Vérifier ces assertions.

,
Attention, K[x] n’est pas en général isomorphe à l’anneau des polynômes K[X], et K(x) n’est pas en
général isomorphe au corps des fractions rationnelles K(X). En effet, on peut avoir Q(x) = 0 avec
Q ∈ K[X] et Q 6= 0.

De façon précise, l’application suivante

ϕ : K[X] −! L, P 7−! P (x)

définit un morphisme d’algèbres. On note Ix sont noyau.
Il y a deux cas possibles.

1) Si Ix = {0}, on dit que x est transcendant surK. Le morphisme ϕ induit alors un isomorphisme
de K[X] sur K[x] qui se prolonge en un isomorphisme de K(X) sur K(x).

2) Si Ix 6= {0}, on dit que x est algébrique sur K.

L’anneau K[X] étant principal, il existe un un unique polynôme irréductible unitaire Px tel que
Ix = (Px).

Le polynôme Px est appelé le polynôme minimal de x sur K. Son degré est le degré de x sur K.

Définition 1.5 – élément algébrique et élément transcendant

EXERCICE DE COURS 1.5. Vérifier que les nombres
√

2, i, 3
√

2 de C sont algébriques sur Q. Quels sont leurs
polynômes minimaux?

REMARQUE 1.4. 1) On peut montrer que les nombres réels e = exp(1) et π sont transcendants sur Q (mais
pas sur R évidemment).

2) Dans K(X), l’élément X est transcendant sur K.

EXERCICE DE COURS 1.6. Montrer que si x est transcendant surK, alorsK[x] ∼= K[X] (en tant qu’anneaux)
et K(x) ∼= K(X) (en tant que corps). En particulier, K[x] est distinct de K(x).

Soit x ∈ L. Les propriétés suivantes sont équivalentes :

(i) x est algébrique sur K,

(ii) on a K[x] = K(x),

(iii) on a dimK K[x] <∞.

Théorème 1.6 – différentes caractérisations des éléments algébriques

7



M1 – Formation à l’Enseignement Supérieur Année 2025-2026

EXERCICE DE COURS 1.7 (démonstration du théorème 1.6).

(1) Démontrer l’implication (i)⇒ (ii).

�
Indication : considérer l’isomorphisme

ϕ : K[X]/(P )! K[x],

où P est le polynôme minimal de x.

(2) Démontrer l’implication (ii)⇒ (iii) à l’aide de l’exercice 1.6.

(3) Montrer que si dimK K[x] <∞, alors le polynôme minimal P de x est irréductible et

dimK K[x] = [K[x] : K] = degP.

En déduire l’implication (iii)⇒ (i).

Dans les notations de l’exercice précédent, le degré de P , égal à dimK K[x], est appelé de degré de x sur K.

(1) Une extension de corps K ⊂ L est dite finie si dimK L = [L : K] <∞.

(2) Une extension de corps K ⊂ L est dite algébrique si pour tout x ∈ L, x est algébrique sur K.

Définition 1.7 – extension finie et extension algébrique

EXERCICE DE COURS 1.8. Déduire du théorème 1.6 que toute extension finie est algébrique.

,
Nous verrons plus loin que la réciproque est fausse : voir l’exemple 1.1 !

Soit K ⊂ L une extension de corps. Posons

M = {x ∈ L : x est algébrique sur K}.
Alors M est un sous-corps de L qui contient K.

Théorème 1.8 – l’ensemble des éléments algébriques sur un corps est un sous-corps

EXERCICE DE COURS 1.9. Démontrer ce théorème à l’aide du théorème 1.6 et du théorème de la base téles-
copique (théorème 1.3).

EXEMPLE 1.1. Soit
A = {x ∈ C : x algébrique sur Q}.

Alors A est un sous-corps de C, algébrique sur Q, mais l’extension Q ⊂ A n’est pas finie. En effet, il existe des éléments
de A de degré arbitrairement grand, par exemple n

√
2, qui est de degré n, car le polynôme Xn − 2 est irréductible sur

Q (en vertu du critère d’Eisenstein : voir le théorème 1.32 plus loin).

Si K ⊂ L est une extension, on dit que K est algébriquement fermé (ou algébriquement clos) dans L si
tout élément de L, algébrique sur K, appartient à K.
Autrement dit, dans les notations du théorème 1.8, on a M = K.

Définition 1.9 – corps algébriquement fermé dans un autre
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EXERCICE DE COURS 1.10. Dans les notations du théorème 1.8, montrer queM est une extension algébrique
de K, algébriquement fermée dans L.

On dit que M est la fermeture algébrique (ou la clôture algébrique) de K dans L.

Définition 1.10 – clôture algébrique d’un corps dans une extension

EXERCICE DE COURS 1.11. Vérifier que les propriétés suivantes sont équivalentes :

(1) tout polynôme P ∈ K[X] de degré > 1 admet une racine dans K,

(2) tout polynôme P ∈ K[X] de degré > 1 est produit de polynômes de K[X] de degré 1,

(3) les éléments irréductibles de K[X] sont les X − x, avec x ∈ K,

(4) si une extension K ⊂ L est algébrique, alors on a L = K.

Un corps K est dit algébriquement clos s’il vérifie l’une quelconque des propriétés équivalentes de l’exer-
cice 1.11.
En particulier, K est algébriquement clos s’il est algébriquement clos dans toute extension de K.

Définition 1.11 – corps algébriquement clos

EXEMPLE 1.2. 1) Le corps C est algébriquement clos d’après le théorème de d’Alembert-Gauss.

2) le corps A défini dans l’exemple 1.1 est lui aussi algébriquement clos. On montre aisément que A est dé-
nombrable (exercice !) ce qui, puisque R ne l’est pas, prouve l’existence dans R de nombres transcendants
sur Q.

Jean le Rond D’Alembert, né le 16 novembre 1717 à Paris où il est mort le 29

octobre 1783, est un mathématicien, physicien, philosophe et encyclopédiste fran-

çais. Il est célèbre pour avoir dirigé l’Encyclopédie avec Denis Diderot jusqu’en

1757 et pour ses recherches en mathématiques sur les équations différentielles et

les dérivées partielles.

Johann Carl Friedrich Gauss, né le 30 avril 1777 à Brunswick

et mort le 23 février 1855 à Göttingen, est un mathématicien, as-

tronome et physicien allemand. Il a apporté de très importantes

contributions à ces trois domaines. Surnommé «le prince des ma-

thématiciens», il est considéré comme l’un des plus grands mathé-

maticiens de tous les temps.
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1.3. Corps de rupture et corps de décomposition

Soit K un corps. Compte tenu des notions précédentes, voici deux problèmes bien naturels que nous allons ré-
soudre dans cette section :

— étant donné un polynôme P ∈ K[X], irréductible de degré d > 1, construire une extension dans laquelle P
admet une racine a, donc est divisible par X − a et, en particulier, n’est plus irréductible,

— étant donné un polynôme P ∈ K[X], construire une extension dans laquelle P se décompose en produit de
polynômes de degré 1.

1.3.1. Corps de rupture.

Soient K un corps et P ∈ K[X] un polynôme irréductible. Une extension L de K est appelée un corps de
rupture de P sur K si L est une extension monogène L = K(x) avec P (x) = 0.

Définition 1.12 – corps de rupture d’un polynôme irréductible

Soit P ∈ K[X] un polynôme irréductible. Il existe un corps de rupture de P surK, unique à isomorphisme
près.

Théorème 1.13 – existence et unicité du corps de rupture

EXERCICE DE COURS 1.12. Montrer que le corps L = K[X]/(P ) est un corps de rupture de P sur K.

L’exercice démontre la partie « existence » du théorème. L’unicité découle quant à elle du lemme suivant.

Soient K, K̃ deux corps, i : K ! K̃ un isomorphisme que l’on étend de manière unique en un isomor-
phisme, encore noté i, deK[X] sur K̃[X] en envoyantX surX . Soit P ∈ K[X] un polynôme irréductible.
Posons

P̃ = i(P ).

Soit L = K(x) (resp. L̃ = K̃(x̃)) un corps de rupture de P sur K (resp. de P̃ sur K̃) engendré par une
racine x de P (resp. une racine x̃ de P̃ ). Alors il existe un unique isomorphisme ϕ de L sur L̃ prolongeant
i, et vérifiant ϕ(x) = x̃.

Lemme 1.14

EXERCICE DE COURS 1.13 (démonstration du lemme 1.14). L’objectif de cet exercice est de démontrer le
lemme ci-dessus.

(1) Vérifier que les morphismes suivants,

u : K[X]/(P ) −! L, ũ : K̃[X]/(P̃ ) −! L̃,

définis par u(X) = x et ũ(X) = x̃ oùX désigne l’image deX dans le quotient, sont des isomorphismes.

(2) En déduire que ϕ = ũ ◦ ī ◦ u−1 est l’isomorphisme recherché, où

ī : K[X]/(P ) −! K̃[X]/(P̃ )

est l’isomorphisme induit par i.

EXERCICE DE COURS 1.14. Supposons que K = Q et P = X3 − 2. Trouver un corps de rupture L contenu
dans R. Les racines de P sont-elles toutes dans L?
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1.3.2. Corps de décomposition. L’exercice précédent nous conduit à la définition suivante.

Soient K un corps et P ∈ K[X] un polynôme (non nécessairement irréductible). On appelle corps de
décomposition de P sur K toute extension L de K telle que :

(1) dans L[X], P est un produit de polynômes de degré 1, ou encore P a toutes ses racines dans L,

(2) le corps L est minimal pour ces propriétés, ou encore L est engendré par les racines de P .

Définition 1.15 – corps de décomposition d’un polynôme

Pour tout polynôme P ∈ K[X], il existe un corps de décomposition de P sur K, unique à isomorphisme
près.

Théorème 1.16 – existence et unicité du corps de décomposition

EXERCICE DE COURS 1.15. Montrer par récurrence sur le degré de P l’existence d’un corps de décomposi-
tion de P sur K.

Comme précédemment, l’unicité découle d’un lemme un peu plus précis.

Soient K, K̃ et i : K ! K̃ comme dans le lemme 1.14, P ∈ K[X] un polynôme quelconque et P̃ = i(P ).

Soit L (resp. L̃) un corps de décomposition de P surK (resp. de P̃ sur K̃). Alors il existe un isomorphisme
ϕ de L sur L̃ prolongeant i.

Lemme 1.17

EXERCICE DE COURS 1.16 (démonstration du lemme 1.17). Démontrer le lemme par récurrence sur [L : K].

�
Indication : considérer, si K 6= L, une racine x ∈ L \K de P et Q le polynôme minimal de x puis
utiliser le lemme 1.14.

EXERCICE DE COURS 1.17. Quel est le corps de décomposition du polynôme P = X3 − 2 de Q[X]? Et du
polynôme P = X4 − 2 de Q[X]?

1.3.3. Clôture algébrique.

EXERCICE DE COURS 1.18. Soient K ⊂ L une extension, et M la fermeture algébrique de K dans L (voir
la définition 1.10). Montrer que si L est algébriquement clos, M l’est aussi.

Soient K ⊂ L une extension algébrique, et σ : K !M un morphisme de corps où M est algébriquement
clos.

(1) Il existe un morphisme θ : L!M prolongeant σ.

(2) Si L est algébriquement clos et si l’extension σ(K) ⊂ M est algébrique, tout morphisme de L
dans M prolongeant σ est un isomorphisme.

Théorème 1.18
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Une extension K de K est appelée une clôture algébrique de K si K est algébriquement clos et si K est
algébrique sur K.

Définition 1.19 – clôture algébrique d’un corps

Soit K un corps.

(i) K possède une clôture algébrique.

(ii) Si L et L′ sont des clôtures algébriques de K, il existe un isomorphisme φ de L sur L′ tel que
φ(x) = x pour tout x ∈ K.

Théorème 1.20 – Steinitz

La partie (ii) du théorème 1.20 résulte du théorème 1.18. Les démonstrations du théorème 1.18 et de la partie (i)
du théorème 1.20 sont assez délicates. Nous les présenterons si le temps le permet.

Par abus de langage, comme tenu du théorème 1.20 (ii), on parle souvent de la clôture algébrique d’un corps.

Ernst Steinitz, (13 juin 1871 – 29 septembre 1928) est un mathématicien alle-

mand. Steinitz est né à Laurahütte, province de Silésie, Royaume de Prusse. Il

fit ses études à l’université de Breslau, où il passa sa thèse en 1894, et à l’uni-

versité de Berlin. Il occupa ensuite des postes à Charlottenberg (devenu l’uni-

versité technique de Berlin), à Breslau, et à l’université de Kiel, où il mourut en

1928. En 1910, Steinitz publie dans le journal de Crelle un article qui aura beau-

coup d’impact : Algebraische Theorie der Körper (Théorie algébrique des corps).

Dans cet article, il étudie la théorie axiomatique des corps commutatifs et définit

des concepts importants comme ceux de corps premier, corps parfait et degré de

transcendance d’une extension de corps. Il démontre que tout corps possède une

clôture algébrique.

EXEMPLE 1.3. 1) Le corps C est algébriquement clos et de dimension 2 sur R. C’est donc la clôture algé-
brique de R.

2) Le corps A (voir l’exemple 1.1) est la clôture algébrique de Q. Comme A est dénombrable, il n’est pas
isomorphe à C.

REMARQUE 1.5. Tout corps algébriquement clos est infini.

1.4. Théorie des corps finis

1.4.1. Morphisme de Frobenius. Soit K un corps de caractéristique p > 0.

EXERCICE DE COURS 1.19.

(1) Montrer, à l’aide de la formule du binôme de Newton, que l’application F : K ! K définie par

F (x) = xp

est un morphisme de corps. (On rappelle que p divise
Å
p

i

ã
pour tout i ∈ {1, . . . , p− 1}.)

(2) Montrer que si K est fini, alors F est un automorphisme.

(3) Montrer que si K = Fp, alors F est l’identité.

Le morphisme de corps F de l’exercice 1.19 précédent est appelé le morphisme de Frobenius.

Définition 1.21 – morphisme de Frobenius

12
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Ferdinand Georg Frobenius, connu aussi sous le nom de Georg Frobenius, est

un mathématicien allemand, né le 26 octobre 1849 à Charlottenbourg (Prusse,

aujourd’hui sous-municipalité de Berlin) et mort le 3 août 1917 à Berlin. Durant

la deuxième moitié de sa carrière, la théorie des groupes a constitué l’un des

principaux intérêts de Frobenius. L’une de ses premières contributions a été la

redémonstration des théorèmes de Sylow pour un groupe abstrait (la preuve ori-

ginelle de Sylow était formulée pour un groupe de permutations). La preuve du

premier théorème de Sylow (sur l’existence des sous-groupes de Sylow) élaborée

par Frobenius est encore celle la plus enseignée de nos jours.

Ce morphisme joue un rôle très important dans l’étude des corps finis.

Soient p un nombre premier, et n ∈ N∗. On pose q = pn. Il existe un unique corps K, à isomorphisme
près, de cardinal q ; c’est le corps de décomposition du polynôme Xq −X sur Fp.
On le note Fq .

Théorème 1.22 – existence et unicité d’un corps fini de cardinal fixé

EXERCICE DE COURS 1.20. L’objectif de cet exercice est de démontrer le théorème 1.22.

(1) Dans cette question on s’intéresse à la partie « existence ». Soient K le corps de décomposition du
polynôme Xq −X sur Fp, et k ⊂ K l’ensemble des racines de Xq −X .

(a) Montrer à l’aide du morphisme de Frobenius que k est un corps.

(b) Montrer que les racines de P = Xq −X sont simples. En déduire que |k| = q, et conclure.

(2) SoitK un corps à q éléments. En remarquant que tout élément deK est une racine du polynômeXq−X ,
montrer que K est isomorphe au corps de décomposition du polynôme Xq −X sur Fp.

1.4.2. Étude du groupe multiplicatif F∗q . On rappelle que la fonction d’Euler ϕ : N∗ ! N∗ associe à tout
nombre entier non nul n le nombre ϕ(n) de nombres entiers x tels que 1 6 x 6 n et x est premier à n. Autrement dit,
ϕ(n) est le cardinal du groupe multiplicatif (Z/nZ)∗, ou encore le nombre de générateurs du groupe (Z/nZ,+).

EXERCICE DE COURS 1.21. Démontrer la relation pour tout n ∈ N∗ :

n =
∑
d|n

ϕ(d).

Le groupe multiplicatif F∗q est cyclique, et donc isomorphe à Z/(q − 1)Z.

Théorème 1.23 – le groupe multiplicatif F∗q est cyclique

EXERCICE DE COURS 1.22 (démonstration du théorème 1.23). Posons ` = q − 1. Pour tout diviseur d de `,
on note N(d) le nombre d’éléments de F∗q d’ordre d.

(1) Montrer : ` =
∑
d|`
N(d).

(2) Soient d un diviseur de ` et x un élément de F∗q d’ordre d. En considérant le sous-groupe cyclique
H = 〈x〉 engendré par x, montrer que N(d) vaut 0 ou ϕ(d).

(3) Démontrer le théorème à l’aide de l’exercice 1.21.

13
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REMARQUE 1.6. (1) On ne sait pas, en général, trouver explicitement des générateurs de F∗q , sauf des cas
particuliers (voir l’exercice 1.23).

(2) Le même raisonnement que dans l’exercice 1.22 permet de démontrer que tout sous-groupe fini d’un corps
commutatif est cyclique.

EXERCICE DE COURS 1.23. Déterminer les générateurs de F∗p pour p = 2, 3, 5, 7, 11, 31, 43, 71.

�
Indication : commencer par essayer les petits entiers ±2,±3, . . . et se rappeler que si x et y sont
d’ordre premiers entre eux, alors

ord(xy) = ord(x)× ord(y).

1.4.3. Les carrés de Fq . Comme toujours, q = pn est une puissance d’un nombre premier p > 0. On pose

F2
q = {x2 : x ∈ Fq}, (F∗q)

2 = F2
q ∩ F∗q .

EXERCICE DE COURS 1.24 (les carrés de Fq).

(1) On suppose p = 2. Montrer que F2
q = Fq .

(2) On suppose p > 2. Quel est le cardinal du noyau du morphisme de groupes

F∗q −! (F∗q)
2 ?

x 7−! x2

En déduire que
∣∣F2
q

∣∣ =
q + 1

2
et
∣∣(F∗q)2∣∣ =

q − 1

2
.

On suppose p > 2. Alors on a :
x ∈ (F∗q)

2 ⇐⇒ x
q−1
2 = 1.

Proposition 1.24 – caractérisation des carrés

EXERCICE DE COURS 1.25. Le but de l’exercice est de démontrer la proposition. Posons

X = {x ∈ Fq : x
q−1
2 = 1}.

Montrer que X est de cardinal
q − 1

2
et conclure à l’aide de l’exercice 1.24.

EXERCICE DE COURS 1.26. Supposons que q = 7. Le nombre 2 est-il un carré de Fq ? Et 3?

On suppose p > 2. Alors on a :
−1 ∈ (F∗q)

2 ⇐⇒ q ≡ 1 mod 4.

Corollaire 1.25

EXERCICE DE COURS 1.27. Démontrer le corollaire :

— comme application directe de la proposition 1.24,

— comme application du théorème de Sylow.

14
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Il existe une infinité de nombres premiers de la forme 4m+ 1.

Théorème 1.26 – un « petit » théorème de Dirichlet

Johann Peter Gustav Lejeune Dirichlet, (13 février 1805, Düren – 5 mai 1859,

Göttingen) est un mathématicien prussien qui apporta de profondes contribu-

tions à la théorie des nombres, en créant le domaine de la théorie analytique

des nombres et à la théorie des séries de Fourier. On lui doit d’autres avancées

en analyse mathématique. On lui attribue la définition formelle moderne d’une

fonction.

EXERCICE DE COURS 1.28. Démontrer le théorème.

�
Indication : considérer un facteur premier de (n!)2 + 1 et utiliser le corollaire 1.25.

1.5. Irréductibilité des polynômes de K[X]

Rappelons que si A est un anneau factoriel de corps de fractions K = Frac(A), alors la connaissance des irréduc-
tibles de A[X] passe par celle de ceux de K[X].

1.5.1. Quelques rappels d’arithmétique dans un anneau A, et propriétés de A[X]. Soit A un anneau commu-
tatif unitaire. On rappelle qu’un élément p de A est dit irréductible si p 6∈ A× et si

p = ab =⇒
(
a ∈ A× ou b ∈ A×

)
,

où
A× = {a ∈ A : ∃ b ∈ A, ab = 1}

est l’ensemble des inversibles de A.
On choisit un système de représentants P des irréductibles de A, c’est-à-dire un ensemble d’irréductibles de A tel

que pour tout irréductible q de A, il existe p ∈P et u ∈ A× inversible tels que q = up.

L’anneau A est dit factoriel si

(1) A est intègre,

(2) tout a ∈ A \ {0} s’écrit sous la forme a = u
∏
p∈P

pvp(a), avec u ∈ A×, vp(a) ∈ N et les vp(a)

sont tous nuls sauf un nombre fini,

(3) cette écriture est unique.

Définition 1.27 – anneau factoriel

Rappelons aussi qu’un anneau A est dit principal s’il est intègre et si tout idéal de A est principal. Par exemple,
K[X] est principal si K est un corps (nous avons déjà utilisé ce résultat). La réciproque est vraie !

Soit A un anneau. Alors A[X] est principal si seulement si A est corps.

Proposition 1.28 – l’anneau de polynômes A[X] est principal si seulement si A est corps

15
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En revanche, la factorialité se conserve.

Si A est factoriel, alors A[X] est factoriel.

Théorème 1.29 – Gauss

La démonstration (que nous omettons ici) utilise d’une part le fait que K[X], avec K = Frac(A), est principal
donc factoriel, et d’autre part la notion de contenu.

On rappelle que si P ∈ A[X], P 6= 0, s’écrit P = anX
n + · · · a1X + +a0, son contenu,

c(P ) = pgcd(a0, . . . , an),

est le pgcd des coefficients de P . Il est défini modulo A×.

Un polynôme P ∈ A[X], P 6= 0, est dit primitif si c(P ) = 1.

Définition 1.30 – polynôme primitif

Le proposition suivante décrit les irréductibles de A[X].

On suppose que l’anneau A est factoriel. Les polynômes irréductibles de A[X] sont :

(1) les constantes p ∈ A, irréductibles dans A,

(2) les polynômes de degré > 1, primitifs et irréductibles dans K[X].

Proposition 1.31 – polynômes irréductibles de A[X]

Compte tenu de la proposition précédente, il est donc important d’étudier les irréductibles de K[X] lorsque K est
un corps.

Z
On suppose désormais que K est un corps (commutatif) quelconque.

Rappelons que si P ∈ K[X] est irréductible de degré > 1, alors P n’a pas de racine dans K. En particulier, si K
est algébriquement clos, les polynômes irréductibles de K[X] sont exactement les X − a, avec a ∈ K.

,
La réciproque est fausse en général ! Par exemple, (X2 + 1)2 n’a pas de racines dans R mais est
réductible. Elle est toutefois vraie si degP 6 3.

EXERCICE DE COURS 1.29 (polynômes irréductibles de R[X]). On suppose que K = R. Montrer que les
polynômes irréductibles de R[X] sont

— les polynômes X − a, avec a ∈ R,

— les polynômes de degré 2 sans racine réelle.

16
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1.5.2. Quelques critères d’irréductibilité.

Soient A un anneau factoriel et K = Frac(A) son corps de fractions. Soient P (X) = anX
n + · · · + a0,

avec ai ∈ A, et p ∈ A un élément irréductible de A. On suppose

(1) p ne divise pas an,

(2) pour tout i ∈ {0, . . . , n− 1}, p divise ai,

(3) p2 ne divise pas a0.

Alors P est irréductible dans K[X]. En particulier, si c(P ) = 1 (par exemple si P est unitaire), alors P est
irréductible dans A[X].

Théorème 1.32 – critère d’Eisenstein

,
Si c(P ) 6= 1, le polynôme P peut-être réductible dans A[X]. C’est le cas par exemple si A = Z, p = 5

et P = 2X + 10.

Ferdinand Gotthold Max Eisenstein, (16 avril 1823 – 11 octobre 1852) est un

mathématicien prussien. Comme Galois et Abel, Eisenstein est mort avant l’âge

de 30 ans, et comme Abel, sa mort est due à la tuberculose. Il est né et mort à

Berlin, Allemagne. Il fit ses études à l’Université de Berlin où Dirichlet était son

professeur. Gauss aurait déclaré : « Il n’y a que trois mathématiciens qui feront

date : Archimède, Newton et Eisenstein. » Le choix par Gauss d’Eisenstein, lequel

s’était spécialisé dans la théorie des nombres et l’analyse, peut sembler étrange

à certains, mais il est justifié par le fait qu’Eisenstein avait prouvé facilement

plusieurs résultats jusqu’alors inaccessibles, même à Gauss, comme d’étendre

son théorème de réciprocité biquadratique au cas général.

EXERCICE DE COURS 1.30 (démonstration du critère d’Eisenstein). Démontrer le théorème 1.32.

�
Indication : supposer que P = QR est réductible, avec degQ < degP et degR < degP , et
projeter l’égalité dans B[X], où B est l’anneau intègre A/(p) et obtenir une contradiction dans
L[X] où L = Frac(B).

,
Attention, B[X] n’est pas a priori factoriel car B ne l’est pas !

EXERCICE DE COURS 1.31 (quelques applications du critère d’Eisenstein).

(1) Montrer que le polynôme P (X) = 3X4 + 15X2 + 10 est irréductible dans Z[X].

(2) Montrer que le polynôme P (X) = X2 +X + 2 est irréductible dans Z[X].

�
Indication : effectuer un « changement de variable » de la forme Y = X+a, avec a bien
choisi.

(3) Montrer que le polynôme X4 + 1 est irréductible dans sur Z[X].

17
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(4) Soit p un nombre premier. Montrer que le polynôme

Xp−1 + · · ·+X + 1

est irréductible dans Z[X].

�
Indication : on pourra poser X = Y + 1.

(5) Soit a ∈ Z, a = pα1
1 . . . pαr

r tel que l’un des αi soit égale à 1. Montrer que Xn − a est irréductible dans
Z[X].

(6) Pour quelle(s) valeur(s) de λ le polynôme Y 2 −X(X − 1)(X − λ) est-il irréductible dans Q[X,Y ]?

(7) Le polynôme XY 4 + Y Z4 + ZX4 est-il irréductible dans Q[X,Y, Z]?

Soient A un anneau factoriel, K = Frac(A) et I un idéal premier de A. Soit

P (X) = anX
n + · · ·+ a1X + a0

un polynôme de A[X] et
P = anX

n + · · ·+ a1X + a0

sa réduction modulo I , c’est-à-dire son image via la projection canonique A[X] ! B[X], où B = A/I

est un anneau intègre. On suppose que an 6= 0 dans B. Alors, si P est irréductible sur B ou Frac(B), le
polynôme P est irréductible sur K.

Théorème 1.33 – réduction modulo un idéal

,
Attention, P n’est pas nécessairement irréductible dans A[X], comme le montre l’exemple du poly-
nôme 2X ∈ Z[X] avec I = (3).

EXERCICE DE COURS 1.32. Démontrer le théorème.

EXERCICE DE COURS 1.33 (applications du critère de réduction).

(1) Montrer que le polynôme X2 + Y 2 + 1 est irréductible dans R[X,Y ].

(2) Montrer que le polynôme X3 + 6982X2 + 455X − 7351 est irréductible sur Z.

EXERCICE DE COURS 1.34 (le polynôme Xp − X − 1, avec p premier, est irréductible sur Z). Soit p un
nombre premier.

(1) Soient K un corps de décomposition de P (X) = Xp − X − 1 sur Fp, et α ∈ K une racine de P .
Montrer que pour tout i ∈ {0, . . . , p− 1}, α+ i est encore une racine de P dans K.

(2) On suppose dans cette question que P = QR est réductible dans Fp[X], avec d = degQ < p et
degR < p. En remarquant que, dans K[X],

Q(X) =

d∏
k=1

(X − α− ik) ,

avec ik ∈ {0, . . . , p− 1}, obtenir une contradiction.

�
Indication : considérer le terme en Xd−1 de Q.

(3) En déduire que le polynôme Xp −X − 1 est irréductible sur Z.
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Dans cet exercice, nous avons eu recours à une extensions de corps.
Dans la même veine, nous allons voir maintenant quelques critères d’irréductibilité qui utilisent des extensions de

corps, souvent commodes dans le cas des corps finis.

Soit P ∈ K[X] de degré n > 0. Alors P est irréductible sur K si et seulement si P n’a pas de racine dans
les extensions L de K qui vérifient [L : K] 6 n/2.

Théorème 1.34 – un critère d’irréductibilité à l’aide d’extensions de degré au plus n/2, où n = degP

EXERCICE DE COURS 1.35. Le but de l’exercice est de démontrer le théorème.

(1) Supposons que P soit irréductible, et soit x une racine de P dans une extension L de K. Montrer que
[L : K] > n.

(2) Supposons que P = QR ne soit pas irréductible sur K, avec degQ < n et degR < n. En observant
que degQ 6 n/2 ou degR 6 n/2, trouver une extension de K de degré 6 n/2 contenant une racine
de P .

(3) Conclure.

EXERCICE DE COURS 1.36.

(1) Montrer que le polynôme X4 +X + 1 est irréductible sur F2.

(2) En déduire que le polynôme X4 + 8X2 + 17X − 1 est irréductible sur Z.

Soient P ∈ K[X] un polynôme irréductible de degré n, et L une extension de degré m avec (m,n) = 1.
Alors P est encore irréductible sur L.

Théorème 1.35 – un critère de conservation de l’irréductibilité par extension de corps

EXERCICE DE COURS 1.37. Démontrer le théorème.

,
Attention, sans l’hypothèse (m,n) = 1, le théorème est faux ! Par exemple X4 + 1 qui est irréductible
sur Q (voir l’exercice 1.31) ne l’est plus sur Q(i) car X4 + 1 = (X2 + i)(X2 − i).

EXEMPLE 1.4. Le polynôme X3 +X + 1 est irréductible sur Q et Q(i).

1.6. Polynômes cyclotomiques et applications

Soient K un corps et n ∈ N∗. On pose

Pn(X) = Xn − 1 ∈ K[X].

REMARQUE 1.7. La dérivée de Pn est nXn−1. En particulier,

— si la caractéristique p de K ne divise pas n, alors Pn n’a que des racines simples,

— si p divise n, alors n = mp et Xn− 1 = (Xm− 1)p par Frobenius donc Pn a des racines multiples dans tout
corps de décomposition.

Z
Dans toute la suite, on suppose que la caractéristique du corps K de divise par n.

On note
µn(K) = {ζ ∈ K : ζn = 1}
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l’ensemble des racines n-ième de l’unité dans K. C’est un sous-groupe de K∗, de cardinal 6 n, donc cyclique ; voir
la remarque 1.6 (2).

Soit Dn = Dn(K) un corps de décomposition de Pn sur K. On a

|µn(Dn)| = n et µn(Dn) ∼= Z/nZ.

De plus, comme µn(K) est inclus dans µn(Dn) on a

µn(K) ∼= Z/dZ

où d est un diviseur de n.

Une racine n-ième primitive de l’unité est un élément ζ de Dn tel que ζn = 1 et ζd 6= 1 pour tout d < n.
Autrement dit, ζ est un générateur du groupe µn(Dn) de sorte qu’il y a ϕ(n) racines primitives n-ième de
l’unité.
Leur ensemble sera noté µ×n (Dn).

Définition 1.36 – racine primitive n-ième de l’unité

Le n-ième polynôme cyclotomique Φn,K ∈ Dn[X] est donné par :

Φn,K =
∏

ζ∈µ×
n (Dn)

(X − ζ).

Définition 1.37 – polynôme cyclotomique

Lorsqu’il n’y a pas d’ambiguïté sur K, on écrira simplement Φn pour Φn,K .

EXERCICE DE COURS 1.38 (premières propriétés des polynômes cyclotomiques).

(1) Quel est le degré de Φn ?

(2) Démontrer la formule

Xn − 1 =
∏
d |n

Φd(X).

Cette formule permet de calculer les Φn par récurrence pour les petites valeurs de n.

(3) Calculer Φ1,Φ2, . . . ,Φ8.

On a
Φn,Q ∈ Z[X].

Proposition 1.38 – les polynômes cyclotomiques sur Q sont à coefficients entiers

EXERCICE DE COURS 1.39.

(1) Démontrer la proposition par récurrence sur n à l’aide de la formule de la question (2) de l’exercice 1.38.

(2) On revient au cas où K est un corps quelconque. Soit σ : Z ! K le morphisme d’anneau canonique
(voir le paragraphe 1.1). Montrer, toujours par récurrence sur n, que l’on a :

Φn,K(X) = σ(Φn,Q(X)).

En particulier, Φn,Fp
s’obtient à partir de Φn,Q par réduction modulo p.

Tout corps fini est commutatif.

Théorème 1.39 – application : théorème de Wedderburn
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Joseph Henry Maclagen Wedderburn (1882–1948) est un mathématicien écos-

sais du XXème siècle. Membre de la Royal Society, il avait commencé à 16 ans

ses études à l’université d’Édimbourg. Ses travaux portent sur les structures al-

gébriques et tout particulièrement la théorie des corps, dans laquelle il met en

évidence des exemples de corps non commutatifs.

EXERCICE DE COURS 1.40 (démonstration du théorème de Wedderburn). On suppose que K est un corps
fini, pas nécessairement commutatif. On pose

Z = {a ∈ K : ax = xa pour tout x ∈ K},
le centre de K. On note q son cardinal.

(1) Vérifier que q > 2, que Z est un sous-corps de K et que |K| = qn avec n ∈ N.

(2) On suppose dans cette question n > 1, c’est-à-dire que K n’est pas commutatif.

(a) Posons
Kx = {y ∈ K : yx = yx}, K∗x = Kx ∩K∗.

On note ω(x) l’orbite de x ∈ K∗ pour l’action deK∗ sur lui-même par conjugaison. Montrer que
l’on a :

|ω(x)| = K∗

K∗x
=
qn − 1

qd − 1
,

pour un certain diviseur d de n.

(b) Montrer que Φn(q) divise
qn − 1

qd − 1
pour d 6= n.

(c) Écrire l’équation des classes, et en déduire que |Φn(q)| 6 q − 1.

(d) En remarquant que pour toute racine n-ième primitive ζ de l’unité,

|q − ζ| > q − 1 (faire un dessin !),

obtenir une contradiction.

(3) Conclure.

Le polynôme cyclotomique Φn(X) ∈ Z[X] est irréductible sur Z, donc sur Q.

Théorème 1.40 – irréductibilité des polynômes cyclotomiques sur Z

REMARQUE 1.8. Nous avons déjà vu ce théorème dans des cas particuliers : le cas où n = p est un nombre
premier ou encore le cas n = 8 (voir l’exercice 1.31).

EXERCICE DE COURS 1.41 (démonstration du théorème 1.40). Soient K un corps de décomposition de Φn sur Q,
ζ ∈ K une racine primitive n-ième de l’unité, et p un nombre premier de divisant pas n.

(1) Montrer que ζp est une autre racine primitive n-ième de l’unité.

(2) Soient f et g les polynômes minimaux sur Q de ζ et ζp respectivement. Montrer que

f, g ∈ Z[X]

et que f, g divisent tout deux Φn dans Z[X].

(3) Le but de cette question est de montrer que f = g. On suppose que ce n’est pas le cas.

(a) Montrer que fg divise Φn.

(b) Montrer que, dans Z[X],

g(Xp) = f(X)h(X) avec h ∈ Z[X].
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(c) En projetant l’égalité de la question (b) dans Fp, obtenir une contradiction.

(4) Déduire de la question précédente que f admet toutes les racines primitive de l’unité comme racines. En
déduire que f = Φn.

(5) Conclure.

Si ζ est une racine primitive n-ième de l’unité dans un corps de caractéristique nulle, son polynôme minimal
sur Q est Φn et donc [Q(ζ) : Q] = ϕ(n).

Corollaire 1.41

EXERCICE DE COURS 1.42. Démontrer le corollaire.

EXERCICE DE COURS 1.43 (intersection de deux extensions de Q par des racines primitive de l’unité
« premières entre elles »).

(1) Soit K ⊂ L une extension de corps, et K1,K2 deux corps intermédiaires. On note K1K2 le sous-corps
de L engendré par K1 et K2. Montrer :

[K1K2 : K2] 6 [K1 : K].

(2) Montrer à l’aide de la question (1) que si α (resp. β) est une racine n-ième (resp. m-ième) primitive de
l’unité dans C avec (m,n) = 1, alors

Q(α) ∩ Q(β) = Q.
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2
Représentations linéaires des groupes finis

+
Prérequis : théorie des groupes (notions de groupe, groupe abélien, sous-groupe, morphisme de
groupe, action de groupes, produits direct et semi-direct), algèbre linéaire et bilinéaire.

Dans ce chapitre et le suivant, nous allons nous intéresser aux sous-groupes finis du groupe linéaire GL(V )

où V est un espace k-vectoriel de dimension finie et k est un corps commutatif. Nous allons voir que tout sous-
groupe fini s’identifie naturellement à sous-groupe (fini) d’un groupe linéaire. Puis nous nous intéresserons au problème
réciproque : quels sont les sous-groupes finis de GL(V )? La question est difficile en général : on donnera des réponses
assez précises dans des cas particuliers.

Dans ce chapitre, nous allons nous intéresser aux représentations linéaires des groupes finis, c’est-à-dire aux
morphismes de groupes G ! GL(V ), où V est un espace vectoriel (de dimension finie le plus souvent) défini sur un
corps commutatif K et G est un groupe fini.

Z
Sauf mention explicite du contraire, K est de

�� ��caractéristique nulle .

Cette section suit pour une large part les premiers chapitres de [4].

2.1. Exemples importants de groupes finis

Comme il est bon d’avoir à l’esprit des exemples, nous commençons le cours par des exemples variés et concrets
de groupes finis qui se «plongent» naturellement dans un groupe linéaire.

On note Sn le groupe symétrique de degré n, c’est-à-dire le groupe des permutations de l’ensemble {1, . . . , n}.
On rappelle que ce groupe est muni d’un morphisme surjectif

ε : Sn ! {±1},

appelé la signature. Son noyau est formé des permutations paires σ, i.e., ε(σ) = 1. C’est un sous-groupe de Sn de
cardinal n!/2, appelé le groupe alterné de degré n, et noté An.

2.1.1. Le groupe cyclique Γn. Rappelons que le groupe cyclique Γn est le groupe d’ordre n formé des puissances
1, r, . . . , rn−1 d’un élément r tel que rn = 1. C’est un groupe abélien, isomorphe à Z/nZ, qui peut être réalisé comme
le groupe des rotations d’un plan euclidien orienté d’angle 2kπ/n, k = 0, . . . , n − 1 ; c’est le groupe des rotations du
plan qui préservent un polygone régulier Pn à n côtés centré à l’origine O.

2.1.2. Le groupe diédralDn. Il s’agit du groupe des isométries du plan affine qui préservent un polygone régulier
Pn à n côtés centré à l’origine O. Il contient les n rotations rO,2kπ/n, k = 0, . . . , n − 1 qui forment un sous-groupe
cyclique Γn isomorphe à Z/nZ, et les n réflexions (ou symétries) par rapport aux droites passant par O et les sommets
ou milieux des côtés opposés du polygone (selon la parité de n). L’ordre du groupe diédral Dn est donc 2n. On note r
la rotation rO,2π/n et s l’une des réflexions de Dn. On a

rn = 1, s2 = 1, srs = srs−1 = r−1.
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Les éléments de Dn sont ou bien de la forme rk, k = 0, . . . , n − 1 (s’ils appartiennent au groupe cyclique Γn), ou
bien de la forme srk, k = 0, . . . , n− 1 (s’ils n’appartiennent pas à Γn). On remarque que pour tout k = 0, . . . , n− 1,
srks = srks−1 = r−k, d’où (srk)2 = 1.

EXERCICE DE COURS 2.1.

(1) Montrer que le groupe Γn est distingué dans Dn et que l’on a un isomorphisme

Dn
∼= Γn o Z/2Z.

(2) Vérifier que l’on a D3
∼= S3.

EXERCICE DE COURS 2.2.

(1) On suppose que n est pair. Montrer que les réflexions forment deux classes de conjugaison et les rotations
forment n2 + 1 classes de conjugaisons.

(2) On suppose que n est impair. Montrer que les réflexions forment une seule classe de conjugaison et les
rotations forment n+1

2 classes de conjugaisons.

2.1.3. Le groupe alterné A4. Rappelons que A4 est le groupe des permutations paires de {1, 2, 3, 4}. Il est iso-
morphe au groupe des rotations dans l’espace affine orienté R3 qui préservent un tétraèdre régulier dont l’isobarycentre
est l’origine O.

Il possède 12 éléments :

— l’identité,

— 3 éléments d’ordre 2, x = (1 2)(3 4), y = (1 3)(2 4), z = (1 4)(2 3), qui correspondent aux retournements
(ou rotations d’angle π par rapport à un axe) du tétraèdre relatives aux droites joignant les milieux de deux
arrêtes opposées,

— 8 éléments d’ordre 3, (1 2 3), (1 3 2), (2 3 4), (2 4 3), (1 2 4), (1 4 2), (1 3 4), (1 4 3), qui correspondent aux ro-
tations d’angle ± 2π

3 et d’axe les droites joignant un sommet au barycentre de la face opposée.

+
Comme d’habitude, on a noté (a1 . . . ak) le k-cycle de Sn qui envoie a1 sur a2, a2 sur a3, . . . , ak−1
sur ak, ak sur a1 et fixe tous les éléments de {1, . . . , n} \ {a1, . . . , ak}.

EXERCICE DE COURS 2.3. Faire un dessin et vérifier toutes les assertions précédentes.

On pose c = (123), H = {1, c, c2} et K = {1, x, y, z}. On a

cxc−1 = z, czc−1 = y, cyc−1 = x.

EXERCICE DE COURS 2.4.

(1) Vérifier que H et K sont des sous-groupes de A4 et que K est distingué dans A4. Montrer que

A4
∼= K oH,

et que le produit n’est pas direct.

(2) Montrer qu’il y a quatre classes de conjugaison dans A4 que l’on explicitera.

2.1.4. Le groupe symétrique S4. Il s’agit du groupe des permutations de {1, 2, 3, 4}. Il est isomorphe au groupe
de toutes les isométries de R3 qui préservent un tétraèdre régulier dont l’isobarycentre est l’origine O.

Il possède 24 éléments :

— l’identité,

— 6 transpositions, (1 2), (1 3), (1 4), (2 3), (2 4), (3 4),

— les 3 éléments d’ordre 2 de A4, x, y, z,

— les 8 éléments d’ordre 3 de A4,

— 6 éléments d’ordre 4, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2).
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,
Les permutations d’ordre 4 sont les plus difficiles à visualiser sous forme d’isométries !

EXERCICE DE COURS 2.5.

(1) Faire un dessin, vérifier les assertions précédentes et interpréter géométriquement les « nouveaux » élé-
ments, c’est-à-dire ceux de S4 \ A4.

(2) Combien y a-t-il de classes de conjugaison dans S4 ?

(3) Soient K = {1, x, y, z} et L ∼= S3 le groupe des permutations de S4 qui fixe 4. Montrer que

S4
∼= K o L.

2.1.5. Le groupe du cube. Considérons dans R3 le cube C dont les sommets ont pour coordonnées (x, y, z) avec
x = ±1, y = ±1, z = ±1. Soit Isom(C ) le groupe des isométries de R3 qui préservent C , i.e., qui permutent ces 8
sommets.

Ce groupe peut être décrit de différentes façons.

a) En faisant opérer Isom(C ) sur l’ensemble des diagonales du cube. Soit D l’ensemble des grandes diagonales
du cube C . En notant Ai les quatre sommets de coordonnées (±1,±1, 1) et Bi les quatre sommets de coordonnées
(∓1,∓1,−1), ces diagonales sont les quatre droites (AiBi), i = 1, 2, 3, 4.

EXERCICE DE COURS 2.6.

(1) Déterminer le cardinal de Isom(C ).

�
Indication : on pourra faire opérer Isom(C ) sur l’ensemble des sommets de C et déter-
miner le cardinal du stabilisateur d’un sommet. Il y a d’autres façons de faire !

(2) Montrer que Isom(C ) opère sur l’ensemble D , et que le morphisme de groupes induit par cette opération,

Isom(C ) −! S(D) ∼= S4,

est surjectif. Quel est son noyau?

(3) Montrer que l’on a
Isom(C ) ∼= S4 × Z/2Z.

Combien y a-t-il de classes de conjugaison dans Isom(C )?

(4) Montrer que le sous-groupe de Isom(C ) formé par les rotations de R3 qui préservent le cube C est
isomorphe à S4.

b) À l’aide d’un tétraèdre. On note T le tétraèdre dont les sommets sont les points de coordonnées (1, 1, 1),
(1,−1,−1), (−1, 1,−1), (−1,−1, 1).

,
T n’est pas un tétraèdre régulier !

On pose T ′ = (−I)T = −T , où I désigne l’identité de R3. Chaque sommet de C est ou bien un sommet de T
ou bien un sommet de T ′. Soit Isom(T ) le groupe des automorphismes de R3 qui préservent T .

Pour tout s ∈ Isom(T ), on a

sT ′ = s(−I)T = (−I)Isom(T ) = (−I)T = T ′,

et donc s préserve tous les sommets de C , donc préserve C . On en déduit que Isom(T ) ⊂ Isom(C ).

EXERCICE DE COURS 2.7. En utilisant, par exemple, le cardinal de Isom(C ), montrer que l’on a

Isom(C ) = Isom(T )× {I,−I}.
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Comme Isom(T ) ∼= S4, on retrouve que Isom(C ) ∼= S4 × Z/2Z. En effet, bien que T ne soit pas régulier,
on peut montrer comme au paragraphe précédent que Isom(T ) ∼= S4 en considérant les automorphismes de R3 qui
préservent T .

c) À l’aide du groupe S3. Observons que le groupe Isom(C ) contient le groupe S3 des permutations de {x, y, z}
(on permute les coordonnées), ainsi que le groupe M d’ordre 8 formé de toutes les transformations

(x, y, z) 7−! (±x,±y,±z).

EXERCICE DE COURS 2.8.

(1) Vérifier que l’on a Isom(C ) = M oS3 (on retrouve ainsi que Isom(C ) est d’ordre 8× 6 = 48).

(2) Retrouver la décomposition Isom(C ) = M oS3 à partir de la décomposition Isom(C ) = S4 × Z/2Z
et de la décomposition S4 = K oS3 (voir l’exercice 2.5).

(3) À l’aide du groupe d’isométries du cube, interpréter géométriquement les 2-groupes de Sylow de S4.
Combien y en a-t-il ?

Nous verrons à la fin de ce cours (section 3.5) d’autres exemples de groupes d’isométries de polyèdres réguliers.

2.1.6. Le groupe alterné A5. Le groupe A5 est le groupe des permutations paires de {1, 2, 3, 4, 5}. Il est iso-
morphe au groupe des rotations dans l’espace affine orienté R3 qui préservent un icosaèdre régulier (20 faces, 12
sommets, 30 arêtes) dont l’isobarycentre est l’origine O.

Il possède 60 éléments :

— l’identité,

— 15 double transpositions,

— 20 3-cycles,

— 24 5-cycles.

EXERCICE DE COURS 2.9. Soit Isom+(I ) le groupe des rotations de R3 qui préservent un icosaèdre régulier
de R3 centré en l’origine.

(1) En faisant opérer Isom+(I ) sur l’ensemble de sommets {A1, . . . , A12}, montrer que le cardinal de
Isom+(I ) est 60.

(2) Show that Isom+(I ) is isomorphic to A5.

�
Indication : remarquer que le groupe A5 opère dans un ensemble à 5 éléments formé de
groupes d’arrêtes (chacun de ces 5 groupes contient 6 éléments : chaque groupe contient
des arêtes ou bien parallèles ou bien perpendiculaires).

On rappelle que pour q une puissance d’un nombre premier, le groupe spécial linéaire sur le corps Fq est défini
par :

SLn(Fq) = {A ∈ GLn(Fq) : det(A) = 1}.

Posons

PSLn(Fq) = SLn(Fq)/Z(SLn(Fq)),

où Z(SLn(Fq)) est le centre de SLn(Fq).

EXERCICE DE COURS 2.10.

(1) Décrire le centre Z(SLn(Fq)).

(2) Quel est le cardinal de GLn(Fq)? Et celui de PSLn(Fq)? En déduire que le cardinal de PSL2(F5) et
de PSL2(F4) est 60.
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On a les isomorphismes suivants :

A5
∼= PSL2(F5) ∼= PSL2(F4).

Théorème 2.1

EXERCICE DE COURS 2.11. L’objectif de cet exercice est de démontrer le théorème 2.1.

(1) Montrer que F2
5 contient exactement 6 droites et décrire des générateurs de ces droites.

(2) Vérifier que le groupe SL2(F5) opère sur l’ensemble L de ces droites et que le centre opère trivialement.
En déduire un morphisme de groupes : PSL2(F5) ↪! S6.

(3) Notons Ā et B̄ les images dans PSL2(F5) des matrices A =

Å
1 0

1 1

ã
et B =

Å
1 −1

1 0

ã
. Montrer que

Ā et B̄ opèrent dans L comme (23456) et (123)(456) respectivement. En déduire A5
∼= PSL2(F5).

(4) Rappelons que F4 est le corps {0, 1, x, y} où 1 + x + x2 = 0 et x2 = y. En procédant comme dans
les questions précédentes avec cette fois l’ensemble des droites de F2

4 et les images dans PSL2(F4) des

matrices
Å
x y

x 0

ã
et
Å

1 1

1 0

ã
, montrer l’isomorphisme A5

∼= PSL2(F4).

2.2. Définition, sous-représentations, morphismes et sommes directes

Soient V un espace vectoriel défini sur le corpsK, et GL(V ) le groupe des automorphismes de V . Soit maintenant
G un groupe fini. On notera, comme d’habitude, 1 son élément neutre et (s, t) 7! st la multiplication dans G.

Une représentation linéaire (ou, simplement, représentation) de G est un morphisme de groupes ρ : G!
GL(V ) de G dans GL(V ). Autrement dit, à tout élément s de G, on associe un élément ρ(s) de GL(V )

de sorte que, pour tous s, t ∈ G,
ρ(st) = ρ(s) ◦ ρ(t).

En particulier, ρ(1) = I et ρ(s−1) = ρ(s)−1 pour tout s ∈ G, où I désigne l’identité de V .

Définition 2.2 – représentation linéaire d’un groupe fini

(On notera souvent ρs au lieu de ρ(s) pour éviter l’écriture peu élégante ρ(s)(x), s ∈ G, x ∈ V .)

Lorsque ρ est donné, on dit que V est l’espace d’une représentation. Parfois, par abus et lorsqu’il n’y a pas
d’ambiguïté sur ρ, on dit que V est une représentation de G.

Z
Dans toute la suite, on se restreint au cas où V est de

�� ��dimension finie , que l’on notera n. On dit que
n est le degré de la représentation (ρ, V ).

EXEMPLE 2.1. (1) Une représentation de degré 1 de G est un morphisme de groupes ρ : G ! C∗, où C∗

est le groupe multiplicatif. Comme tout élément de G est d’ordre fini, les éléments ρ(s) sont des racines de
l’unité. En particulier ρ(s) est de module complexe 1.

Si ρ(s) = 1 pour tout s ∈ G, on obtient la représentation dite triviale de G.

(2) Soient g l’ordre de G, V un espace vectoriel de dimension n = g et (et)t∈G une base de V indexée par
les éléments de G. Pour s ∈ G, on note ρs l’endomorphisme de V qui envoie et sur est. Ceci définit une
représentation linéaire de G, appelée la représentation régulière de G. Son degré est l’ordre du groupe.

EXERCICE DE COURS 2.12 (représentations de degré 1 du groupe cyclique). Quelles sont les représentations
de degré 1 groupe cyclique Γn (voir le paragraphe 2.1.1) ?

EXEMPLE 2.2. (1) Le groupe diédral opère naturellement dans R2 et donc dans C2 (on étend par linéarité).
Cette opération induit une représentation de degré 2 de Dn.
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(2) Les groupes A4, S4, A5 et le groupe du cube Isom(C ) opèrent naturellement dans R3 et donc dans C3. Ces
opérations induisent des représentations de degré 3 de A4, S4 et Isom(C ).

Soient ρ et ρ′ deux représentations du même groupe G d’espaces respectifs V et V ′. On dit que les re-
présentations ρ et ρ′ sont isomorphes (ou équivalentes) s’il existe un isomorphisme d’espaces vectoriels
τ : V ! V ′ tel que pour tout s ∈ G,

τ ◦ ρs = ρ′s ◦ τ.
En particulier, V et V ′ ont même dimension si ρ et ρ′ sont isomorphes.

Définition 2.3 – représentations isomorphes

EXERCICE DE COURS 2.13 (interprétation matricielle d’un isomorphisme de représentations). Soient
(e1, . . . , en) une base de V , et (e′1, . . . , e

′
n) une base de V ′. On note, pour tout s ∈ G, Rs et R′s les matrices

de ρs et ρ′s dans cette base. Interpréter matriciellement le fait que ρ et ρ′ soient isomorphes.

EXERCICE DE COURS 2.14.

(1) Soit (ρ0, V ) la représentation régulière de G. Vérifier que les images ρ0s(e1) forment une base de V
lorsque s parcours G.

(2) Réciproquement, soit ρ : G ! GL(W ) une représentation de G telle qu’il existe w ∈ W tel que les
éléments ρs(w), s ∈ G, forment une base de W . Montrer que W est isomorphe à la représentation
régulière.

On généralise l’exemple précédent de la représentation régulière.

EXEMPLE 2.3. On suppose que G opère dans un ensemble fini X . Autrement dit, pour tout s ∈ G, il existe une
permutation, τs : X ! X,x! s.x, de X telle que

1.x = x, s.(t.x) = (st).x, ∀ s, t ∈ G, x ∈ X.
Soient V un espace vectoriel possédant une base (ex)x∈X indexée par les éléments de X . Pour s ∈ G, soit ρs l’endo-
morphisme de V qui envoie ex sur es.x. La représentation linéaire de G ainsi obtenue est appelée la représentation par
permutations associée à l’action de G sur X .

Soient ρ : G ! GL(V ) une représentation de G, et W un sous-espace vectoriel de V . Supposons que W soit
stable (ou invariant) sous l’action de G, c’est-à-dire que ρs(W ) ⊂W pour tout s ∈ G.

L’endomorphisme induit ρWs : W !W est alors un automorphisme de W et on a

ρWst = ρWs ◦ ρWt , ∀ s, t ∈ G.
Par conséquent, l’application ρW : G! GL(W ), s 7! ρWs définit une représentation linéaire de G.

Dans les notations précédentes, si W est un sous-espace de V stable par l’action de G, la représentation
ρW est appelée une sous-représentation de V .

Définition 2.4 – sous-représentation

EXEMPLE 2.4. Supposons que V soit la représentation régulière de G. Soit W la droite de V engendrée par

x =
∑
s∈G

es.

On a ρsx = x pour tout x donc W est une sous-représentation de V , isomorphe à la représentation triviale.

Soient ρ : G! GL(V ) une représentation linéaire de G, et W un sous-espace de V stable par G. Alors il
existe un supplémentaire W 0 de W dans V qui est stable par G.

Théorème 2.5 – tout sous-espace stable admet un supplémentaire stable
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EXERCICE DE COURS 2.15 (démonstration du théorème 2.5). L’objectif de cet exercice est de démontrer le
théorème.

(1) Soient W ′ n’importe quel supplémentaire W dans V (il en existe !) et p la projection vectorielle de V
sur W de direction W ′. On pose

p0 =
1

g

∑
t∈G

ρt ◦ p ◦ ρ−1t , où g est l’ordre de G.

(p0 est une « moyenne » des conjugués de p par les éléments de G.)
Montrer que p0 est une projection vectorielle de V sur W ; on note W 0 sa direction.

(2) Montrer que pour tout s ∈ G,
ρs ◦ p0 = p0 ◦ ρs.

(3) En déduire que W 0 est stable par G. Conclure.

REMARQUE 2.1 (une autre démonstration lorsque K = R ou C). Supposons que K = R ou C. Alors V est
muni d’un produit scalaire hermitien (x|y), i.e., (−|−) est linéaire à gauche, semi-linéaire à droite et défini positif.
Supposons de plus que (−|−) soit invariant par G, c’est-à-dire que pour tout s ∈ G et tous x, y ∈ V ,

(ρs(x)|ρs(y)) = (x|y).

On peut toujours se ramener à ce cas en remplaçant (x|y) par
∑
t∈G

(ρt(x)|ρt(y)). Sous ces hypothèses, l’orthogonal

W 0 = W⊥ fournit un supplémentaire stable par G. On a ainsi obtenu une autre démonstration du théorème 2.5.
L’invariance du produit scalaire signifie que tous les éléments ρs, s ∈ G, sont des endomorphismes unitaires (i.e.,

dont la matrice Rs dans une base orthonormée vérifie RsR∗s = In, où R∗s = Rs
T

est la matrice adjointe de Rs).
Il est bien connu que tout sous-espace stable par un endomorphisme unitaire admet un supplémentaire stable par cet
endomorphisme. Nous obtenons ici une version « simultanée » de ce résultat.

Soient x ∈ V , que l’on écrit x = w + w0 selon la décomposition V = W ⊕W 0 donnée par le théorème 2.5.
Comme W et W 0 sont stables par G, on a pour tout s ∈ G,

ρs(x) = ρs(w)︸ ︷︷ ︸
∈W

+ ρs(w
0)︸ ︷︷ ︸

∈W 0

.

de sorte que ρs(w) est ρs(w0) sont les composantes de ρs(x) selon W et W 0 respectivement. Il en résulte que les
sous-représentations W et W 0 déterminent entièrement la représentation V .

Dans ces conditions, on dit que V est la somme directe de W et W 0 (en tant que représentation de G) et
on note V = W ⊕W 0. On définit de même la somme directe d’un nombre fini de sous-représentations.

Définition 2.6 – somme directe de sous-représentations

EXERCICE DE COURS 2.16. Interpréter matriciellement le théorème 2.5 et cette définition.

Soit ρ : G ! GL(V ) une représentation de G. On dit qu’elle est irréductible ou simple si V 6= {0} et si
les seuls sous-espaces stables par G sont {0} et V .

Définition 2.7 – représentation irréductible

D’après le théorème 2.5, une représentation est donc irréductible si et seulement si elle n’est pas somme directe de
deux sous-représentations non triviales.

Toute représentation d’un groupe fini est la somme directe de représentations irréductibles.

Théorème 2.8 – complète réductibilité des représentations
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EXERCICE DE COURS 2.17. Démontrer ce théorème par récurrence et à l’aide du théorème 2.5.

REMARQUE 2.2. En général, une décomposition V = W1 ⊕ · · · ⊕ Wk en somme directe de représentations
irréductibles n’est pas unique. Par exemple, si tous les ρs sont égaux à 1, les sous-espaces Wi sont tous des droites, et
la décomposition n’est certainement pas unique puisqu’il y a pléthore de décompositions de V en somme de droites
vectorielles.

Toutefois, on peut montrer que le nombre de Wi isomorphes à une représentation irréductible donnée ne dépend
pas de la décomposition choisie à l’aide de la théorie des caractères (voir le théorème 2.13).

EXERCICE DE COURS 2.18. Le groupe symétrique S3 opère dans C3 par s.(x1, x2, x3) =

(xs(1), xs(2), xs(3)) (permutations des coordonnées) et cela définit une représentation de S3 de degré 3. Cette
représentation est-elle irréductible? Si non, trouver une décomposition de C3 en une somme directe de sous-
représentations de S3.

EXERCICE DE COURS 2.19 (représentations irréductibles de degré 1 et 2 du groupe diédral). On considère
le groupe diédral Dn.

(1) Trouver toutes les représentations de degré 1 de Dn. (On distinguera les cas selon la parité de n.)

(2) On construit dans cette question des représentations irréductibles de degré 2. Posons w = e2iπ/n. On
rappelle que Dn opère naturellement dans C2 (voir l’exemple 2.2). Montrer qu’il existe une base B de

C2 telle que la matrice de rk dans cette base soit
Å
wk 0

0 w−k

ã
et celle de srk soit

Å
0 w−k

wk 0

ã
.

(3) Montrer que les formules suivantes définissent une représentation ρh de Dn d’espace C2 pour tout
h ∈ N :

ρh(rk) =

Å
whk 0

0 w−hk

ã
, ρh(srk) =

Å
0 w−hk

whk 0

ã
, k = 0, . . . , n− 1,

où l’on identifie, pour t ∈ Dn, ρh(t) à sa matrice dans la base B.

Ces représentations ne dépendent que de hmodn. De plus, ρh et ρn−h sont isomorphes. On peut donc
supposer que 0 6 h 6 n/2.

(4) Montrer que ρ0 et ρn/2 (si n est pair) sont réductibles, et que les autres ρh, 0 < h < n/2, sont irréduc-
tibles et deux à deux non isomorphes.

(5) Interpréter géométriquement ce résultat à partir de la représentation naturelle de Dn dans R2, étendue à
C2 (voir l’exemple 2.2).

Nous verrons plus loin que les représentations irréductibles obtenues dans cet exercice sont les seules représenta-
tions irréductibles du groupe diédral Dn (voir l’exercice 2.41).

2.3. Lemme de Schur

La proposition suivante est très célèbre. Elle est connue sous le nom de Lemme de Schur.

On suppose que le corps K est algébriquement clos. Soient ρ1 : G ! GL(V1) et ρ2 : G ! GL(V2) deux
représentations irréductibles de G, et f une application linéaire de V1 dans V2 telle que ρ2s ◦ f = f ◦ ρ1s
pour tout s ∈ G.

(i) Si ρ1 et ρ2 ne sont pas isomorphes, alors f = 0.

(ii) Si V1 = V2 et si ρ1 = ρ2, alors f est une homothétie.

Proposition 2.9 – lemme de Schur
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Issaï Schur, né à Moguilev le 10 janvier 1875 et mort à Tel-Aviv le

10 janvier 1941, est un mathématicien d’origine russe qui a surtout

travaillé en Allemagne. Son nom est aussi transcrit Issaï Chour

(transcription du russe en français).

EXERCICE DE COURS 2.20 (démonstration du lemme de Schur).

(1) Comme le cas f = 0 est trivial, on suppose que f 6= 0. Montrer que le noyau et l’image de f sont stable
par G ; en déduire la partie (i) du lemme de Schur.

(2) On suppose que V1 = V2 et ρ1 = ρ2 de sorte que f est un endomorphisme de V1. Soit λ une valeur
propre de f (il en existe !) et posons f ′ = f − λI . À l’aide de la question (1), montrer que f ′ = 0 et
conclure.

Soit h ∈ L (V1, V2) une application linéaire de V1 dans V2, où V1, V2 sont des représentations irréductibles
de G. On pose

h0 =
1

g

∑
t∈G

(ρ2t )
−1hρ1t .

(i) Si ρ1 et ρ2 ne sont pas isomorphes, alors h0 = 0,

(ii) Si V1 = V2 et si ρ1 = ρ2, alors h0 est une homothétie de rapport
1

n
Tr(h), où n = dimV1.

Corollaire 2.10 – une application technique du lemme de Schur

EXERCICE DE COURS 2.21. Démontrer le corollaire.

Voici pour terminer ce paragraphe une jolie application du lemme de Schur.

EXERCICE DE COURS 2.22 (les représentations irréductibles d’un groupe abélien sont de dégré 1). Soit G
un groupe abélien fini. Montrer à l’aide du lemme de Schur que toute représentation irréductible complexe de G
est de degré 1.
(Remarque : on peut aussi penser à la diagonalisation simultanée, sans le lemme de Schur, mais c’est la même
idée sous-jacente.)

2.4. Théorie des caractères

2.4.1. Caractère d’une représentation. Soit ρ : G! GL(V ) une représentation de G. Pour tout s ∈ G, on pose

χρ(s) = Tr(ρs)

où Tr(ρs) est la trace de l’endomorphisme ρs (c’est-à-dire la trace de sa matrice dans n’importe quelle base de V ).

La fonction χρ : G! C est appelée le caractère de la représentation ρ.

Définition 2.11 – caractère d’une représentation
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La terminologie vient de ce que le caractère χρ caractérise la représentation en un certain sens, comme nous le verrons
plus loin (voir le corollaire 2.14).

EXERCICE DE COURS 2.23. Soit χ le caractère d’une représentation ρ de degré n. Montrer :

(i) χ(1) = n,

(ii) χ(s−1) = χ(s) pour tout s ∈ G,

(iii) χ(tst−1) = χ(s) pour tous s, t ∈ G.

On appelle fonction centrale une fonction f : G! C qui est constante sur les classes de conjugaison, i.e.,

f(tst−1) = f(s), ∀ s, t ∈ G.

Le caractère d’une représentation de G est donc une fonction centrale d’après la propriété (iii) de l’exercice 2.23.

EXERCICE DE COURS 2.24. Soient ρ1 : G ! GL(V1) et ρ2 : G ! GL(V2) deux représentations de G, et
χ1, χ2 les caractères associés. Que vaut le caractère de la représentation ρ : G! V = V1 ⊕ V2 définie par

ρs(x1 + x2) = ρ1s(x1) + ρ2s(x2), ∀ s ∈ G, (x1, x2) ∈ V1 × V2,
en fonction de χ1 et χ2 ?

Z
Il serait plus correct d’écrire V = V1×V2. Comme V1×V2 = (V1×{0})⊕({0}×V2), on s’autorise
l’écriture V = V1⊕V2 et V1 ∼= V1×{0} et V2 ∼= {0}×V2 sont des sous-représentations de V1×V2.

EXERCICE DE COURS 2.25 (caractère de la représentation par permutations). Soit X un ensemble sur lequel
agit le groupe G. On note ρ : G ! GL(V ) la représentation par permutations associée à l’action de G (voir
l’exemple 2.3), et χ son caractère. Montrer que pour tout s ∈ G, χ(s) est égal au nombre d’éléments de X fixés
par G, i.e.,

χ(s) = #{x ∈ X : s.x = x}.

EXERCICE DE COURS 2.26 (représentation contragrédiante). Soient ρ : G ! GL(V ) une représentation de
G de caractère χ, et V ∗ le dual de V (i.e., V ∗ = L (V,C) est l’ensemble des formes linéaires de V ). On écrit
〈λ, x〉 pour λ(x) si x ∈ V et λ ∈ V ∗. Montrer qu’il existe une unique représentation ρ∗ : G! GL(V ∗) telle que

〈ρ∗s(λ), ρs(x)〉 = 〈λ, x〉, ∀ s ∈ G, x ∈ V, λ ∈ V ∗.
On l’appelle la représentation contragrédiente ou duale de V . Quel est son caractère?

2.4.2. Relations d’orthogonalité pour les caractères. On note F (G,C) l’ensemble des fonctions de G dans C.

EXERCICE DE COURS 2.27. Vérifier que F (G,C) est un espace vectoriel complexe et montrer que F (G,C)

est de dimension finie g égale au cardinal de G.

Soient φ : G! C et ψ : G! C deux fonctions définies sur G. On pose

(φ|ψ) =
1

g

∑
t∈G

φ(t)ψ(t).

C’est un produit scalaire hermitien sur F (G,C), comme on le vérifie aisément.

(1) Si χ est le caractère d’une représentation irréductible, alors (χ|χ) = 1. Autrement dit, χ est de
norme 1.

(2) Si χ et χ′ sont les caractères de deux représentations irréductibles non isomorphes, alors
(χ|χ′) = 0. Autrement dit, χ et χ′ sont orthogonaux.

Théorème 2.12 – les caractères des représentations irréductibles forment un système orthogonal
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Le théorème implique que les caractères des représentations irréductibles forment un système orthogonal dans
F (G,C). En particulier, ils forment une famille libre. Par conséquent,

+
l’ensemble des représentations irréductibles deG, à isomorphisme près, est fini. Son cardinal est majoré
par g, le cardinal de G.

EXERCICE DE COURS 2.28 (démonstration du théorème 2.12). L’objectif de cet exercice est de démontrer le
théorème. On commence par établir des relations matricielles qui découle du corollaire 2.10.

(1) Dans les notations de ce corollaire, on note
(
r1i1,j1(t)

)
16i1,j16n1

et
(
r2i2,j2(t)

)
16i2,j26n2

les matrices de
ρ1t et ρ2t dans des bases de V1 et V2 respectivement, où t ∈ G ; la première est d’ordre n1 = dimV1, la
deuxième d’ordre n2 = dimV2.

(a) Dans le cas (i) du corollaire 2.10, montrer que l’on a
1

g

∑
t∈G

r2i2,j2(t−1)r1i1,j1(t) = 0, ∀ i1, i2, j1, j2.

(b) Dans le cas (ii) du corollaire 2.10, montrer que l’on a

1

g

∑
t∈G

r2i2,j2(t−1)r1i1,j1(t) =
1

n
δi2,j1δj2,i1 =


1

n
si j1 = i2 et i1 = j2,

0 sinon.

où δi,j est le symbol de Kronecker.

(2) On démontre dans cette question le théorème.

(a) À l’aide de l’exercice 2.23 (ii), observer que si χ est le caractère d’une représentation, alors pour
toute fonction φ : G! C,

(φ|χ) =
1

g

∑
t∈G

φ(t)χ(t−1) =
1

g

∑
t∈G

φ(t−1)χ(t).

(b) Déduire de la question (1)(b) que l’on a (χ|χ) = 1 si χ est le caractère d’une représentation
irréductible.

(c) Déduire de la question (1)(a) que l’on a (χ|χ′) = 0 si χ et χ′ sont les caractères de deux repré-
sentations irréductibles non isomorphes.

Soit V une représentation de G, de caractère φ. Supposons que V se décompose en une somme directe de
représentations irréductibles

V = W1 ⊕ · · · ⊕Wk.

Alors, si W est une représentation irréductible de G de caractère χ, le nombre de i ∈ {1, . . . , k} tels que
W soit isomorphe à Wi est égal au produit scalaire (φ|χ).
En particulier, le nombre de Wi isomorphes à W ne dépend pas de la décomposition. Ce nombre est appelé
la multiplicité de W dans V .

Théorème 2.13 – « unicité » de la décomposition en somme de représentations irréductibles

,
Comme nous l’avons déjà mentionné, la décomposition de V en une somme directe de représentations
irréductibles n’est pas unique. L’unicité est seulement au sens précédent.

EXERCICE DE COURS 2.29. Démontrer le théorème à l’aide de l’exercice 2.24.
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Clairement, si deux représentations sont isomorphes, elles ont le même caractère. De façon plus surprenante, la
réciproque est vraie aussi.

Deux représentations de G ayant le même caractère sont isomorphes.

Corollaire 2.14 – deux représentations ayant le même caractère sont isomorphes

EXERCICE DE COURS 2.30. Démontrer le corollaire.

+
Le résultat précédent permet de réduire l’étude des représentations à celle des caractères des représen-
tations irréductibles.

Soient χ1, . . . , χh les caractères distincts des représentations irréductibles W1, . . . ,Wh de G (les Wi sont donc
deux à deux non isomorphes). Rappelons queG à un nombre fini de représentations irréductibles, à isomorphisme près.

Toute représentation V de G est donc isomorphe à une somme directe

V = m1W1 ⊕ · · · · · ·mhWh, mi ∈ N.

Le caractère φ de V est égale à m1χ1 + · · ·+mhχh d’après l’exercice 2.24 et, d’après le théorème 2.13,

mi = (φ|χi).
De plus, les relations d’orthogonalité (voir le théorème 2.12) donnent :

(φ|φ) =

h∑
i=1

m2
i .

Si φ est le caractère d’une représentation V , alors (φ|φ) est un entier positif, et on a (φ|φ) = 1 si et
seulement si V est irréductible.

Théorème 2.15 – une représentation est irréductible si et seulement si son caractère est de norme 1

EXERCICE DE COURS 2.31. Démontrer le théorème.

+
On obtient ainsi un critère très simple pour tester l’irréductibilité d’une représentation.

EXERCICE DE COURS 2.32 (multiplicité de la représentation triviale). Soit ρ une représentation de G de
caractère χ. Quelle est la multiplicité de la représentation triviale en fonction de χ?

EXERCICE DE COURS 2.33 (cas de la représentation par permutations). SoientX un ensemble fini dans lequel
opère le groupe G, et ρ la représentation par permutations associée. On note χ son caractère. Pour x ∈ X , on note
G.x = {s.x : s ∈ G} son orbite et c le nombre d’orbites distinctes de X .

(1) Montrer que c est égal à la multiplicité de la représentation triviale dans ρ. En déduire que (χ|1) = c.
Que peut-on dire de plus si l’action est transitive, c’est-à-dire si c = 1?

(2) Le groupe G opère dans X × X par s.(x, y) = (s.x, s.y), où s ∈ G, (x, y) ∈ X × X . Quel est, en
fonction de χ, le caractère de la représentation par permutations associée à cette nouvelle action?

EXERCICE DE COURS 2.34 (décomposition de la représentation régulière). Soit ρG la représentation régulière
de G ; voir l’exemple 2.1 (2). Son degré est g, l’ordre du groupe G. On note χG son caractère.

(1) Montrer que l’on a ß
χG(1) = g,

χG(s) = 0 if s 6= 1.
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(2) Montrer que toute représentation irréductibleW deG apparaît dans la décomposition de la représentation
régulière avec multiplicité m = dimW .

�
Indication : calculer (χG|χ), où χ est le caractère de W et utiliser la relation de la
question (2)(a) de l’exercice 2.28.

(3) On note W1, . . . ,Wh les représentations irréductibles distinctes (à isomorphisme près) de G, de carac-
tères χ1, . . . , χh et de degré n1, . . . , nh respectivement. Montrer que

n21 + · · ·+ n2h = g,

et que si s 6= 1,
h∑
i=1

niχi(s) = 0.

REMARQUE 2.3. L’exercice précédent peut être utilisé pour trouver toutes les représentations irréductibles d’un
groupe G. Supposons que l’on ait construit des représentations irréductibles non isomorphes deux à deux de degrés
n1, . . . , nk. On cherche à savoir si elles donnent toutes les représentations irréductibles de G. Il suffit pour cela de
vérifier que

n21 + · · ·+ n2k = g.

EXERCICE DE COURS 2.35 (obtention de toutes représentations irréductibles du groupe diédral). Montrer que
les représentations irréductibles de degré 1 et 2 construites lors de l’exercice 2.19 donnent toutes les représentations
de Dn (à isomorphisme près). Déterminer les caractères de ces représentations.

2.4.3. Fonctions centrales et nombres de représentations irréductibles. Rappelons qu’une fonction centrale
est une fonction f : G ! C telle que f est constante sur les classes de conjugaison de G, c’est-à-dire que f(tst−1) =

f(s) pour tous s, t ∈ G.

EXERCICE DE COURS 2.36 (encore une application du lemme de Schur). Soient f : G ! C une fonction
centrale et ρ : G! GL(V ) une représentation de G. Soit ρf l’endomorphisme de V défini par :

ρf =
∑
t∈G

f(t)ρt.

Montrer que si V est irréductible de degré n et de caractère χ, alors ρf est une homothétie de rapport

λ =
1

n

∑
t∈G

f(t)χ(t) =
g

n
(f |χ).

Soit H l’espace vectoriel des fonctions centrales. C’est un sous-espace de l’espace F (G,C) des fonctions de G
dans C. On note comme avant χ1, . . . , χh les caractères des représentations irréductibles de G.

EXERCICE DE COURS 2.37 (dimension de l’espace des fonctions centrales). Montrer que la dimension de
l’espace H est égale au nombre de classes de conjugaison de G.

Les caractères χ1, . . . , χh forment une base orthonormale de H.
En particulier, le nombre de représentations irréductibles de G est égale au nombre de classes de conjugai-
son de G.

Théorème 2.16 – le nombre de représentations irréductibles est le nombre de classes de conjugaison

EXERCICE DE COURS 2.38 (démonstration du théorème 2.16). Le but de cet exercice est de démontrer le
théorème. Nous savons déjà que les caractères χ1, . . . , χh forment une famille libre de H. Il reste donc à montrer
que cette famille est génératrice. Soit f ∈ H tel que (f |χi) = 0 pour tout i ∈ {1, . . . , h}.

(1) Dans les notations de l’exercice 2.36, montrer que ρf = 0 pour toute représentation ρ de G

(2) Avec ρ = ρG la représentation régulière de G, en déduire que f(t) = 0 pour tout t ∈ G. Conclure.
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2.5. Exemples et tables de caractères

Commençons par résumer les principaux résultats qui donnent une trame d’étude dans les exemples.

— Le nombre de représentations irréductibles est égale au nombre de classes de conjugaisons (théorème 2.16).

I On commence donc par calculer le nombre de ces classes.

— Le caractère d’une représentation irréductible détermine entièrement celle-ci (corollaire 2.14), et le caractère
est une fonction centrale.

I Dès qu’on a construit une représentation irréductible, on calcule son caractère sur un représentant
de chaque classe de conjugaison.

— Pour vérifier qu’on a obtenu toutes les représentations irréductibles, on vérifie que l’on a

g = n21 + · · ·+ n2k,

où k 6 h est le nombre de représentations irréductibles qu’on a construit, et n1, . . . , nk leur degré ; voir la
question (3) de l’exercice 2.34.

— Pour vérifier qu’une représentation donnée de caractère χ est irréductible, on peut s’assurer que l’on a
(χ|χ) = 1 (théorème 2.15). Le théorème 2.16 peut servir à vérifier que la table est correcte : on vérifie
que les caractères sont de norme 1 et deux à deux orthogonaux.

+
Le plus dur est donc en général de construire des représentations irréductibles, mais il n’est pas toujours
nécessaire de les construire explicitement pour connaître leur caractère comme nous le verrons sur des
exemples (voir l’exemple 2.6 entre autres).

Il n’y a pas de recette pour cela, mais nous avons déjà vu quelques exemples.
Pour les groupes abéliens, voici un raffinement de l’exercice 2.22 qui donne une réponse complète.

Le groupe fini G est abélien si et seulement si toutes ses représentations irréductibles sont de degré 1.

Proposition 2.17 – une caractérisation des groupes abéliens

EXERCICE DE COURS 2.39. Démontrer la proposition à l’aide du théorème 2.16 et de la question (3) de
l’exercice 2.34. Cela donne une autre démonstration de la partie « seulement si » vue lors de l’exercice 2.22.

EXERCICE DE COURS 2.40 (dual d’un groupe abélien). On suppose que G est un groupe abélien g. Soit “G
l’ensemble des caractères de représentations irréductibles de G. D’après la proposition 2.17, “G est l’ensemble des
morphismes de groupes χ : G! C∗.

(1) Montrer que “G est un groupe abélien d’ordre g, où la multiplication est donné par χ1×χ2 si χ1, χ2 ∈ “G.
Le groupe “G est appelé le dual du groupe G.

(2) Pour tout s ∈ G, l’application “G ! C∗, χ 7! χ(s) définit un élément du dual ““G de “G. On obtient ainsi

une application G! ““G. Montrer que cette application est un morphisme de groupes injectif.

(3) Conclure que G et ““G sont isomorphes.

Les caractères irréductibles d’un groupe sont parfois donnés sous forme de table, appelée la table des caractères.
Comme ces caractères sont constants sur chaque classe de conjugaison, la table est donnée sur les classes de conjugai-
son ; c’est donc un tableau à h lignes et h colonnes (avec h le nombre de représentations irréductibles qui est le nombre
de classes de conjugaison).

EXEMPLE 2.5. La table des caractères du groupe cyclique Γ3 est la suivante, où w = e2iπ/3 ; voir l’exercice 2.12.

1 r r2

χ0 1 1 1

χ1 1 w w2

χ2 1 w2 w
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EXERCICE DE COURS 2.41. À l’aide de l’exercice 2.19, dresser la table des caractères du groupe diédral D6.

EXEMPLE 2.6 (table des caractères du groupe symétrique S3). Le groupe symétrique S3 a 3 classes de conjugai-
sons : 1, les trois transpositions et les deux 3-cycles. Soit t = (1 2) et c = (1 2 3). On a

t2 = 1, c3 = 1, tc = c2t.

On en déduit qu’il y a seulement deux caractères de degré 1 (dont la représentation sous-jacente est de degré 1) :
le caractère trivial χ1 et la signature χ2 = ε. Le théorème 2.16 montre qu’il existe un autre caractère irréductible
(associé à une représentation irréductible) ; on le note θ. Si n est le degré de θ, alors la formule de la question (3) de
l’exercice 2.34 donne

1 + 1 + n2 = 6,

d’où n = 2. Les valeurs de θ sur t et c peuvent se déduire de la relation

χ1 + χ2 + 2θ = χS3
,

où χS3
est le caractère de la représentation régulière de S3, et des relations de la question (1) de l’exercice 2.34.

On en déduit la table des caractères de S3 :

1 t c

χ1 1 1 1

χ2 1 −1 1

θ 2 0 −1

Vérifions la cohérence de cette table avec le théorème 2.15. La classe de 1 a un 1 élément, celle de t a trois
éléments, (12), (23), (13), et celle de c a deux éléments, (123), (132). Or,

(χ1|χ1) =
1

6
(12 × 1 + 12 × 3 + 12 × 2) = 1,

(χ2|χ2) =
1

6
(12 × 1 + (−1)2 × 3 + 12 × 2) = 1,

(θ|θ) =
1

6
(22 × 1 + 0× 3 + (−1)2 × 2) = 1,

(χ1|χ2) =
1

6
(1× 1 + (−1)× 3 + 1× 2) = 0,

(χ2|θ) =
1

6
(2× 1 + 0× 3 + (−1)× 2) = 0,

(θ|χ1) =
1

6
(2× 1 + 0× 3 + (−1)× 2) = 0,

ce qui est cohérent !

REMARQUE 2.4. Nous avons construit une représentation irréductible de S3 de degré 2 lors de l’exercice 2.18.
Son caractère est donc θ, ce que l’on peut vérifier par ailleurs.

EXERCICE DE COURS 2.42 (table des caractères du groupe alterné A4). On reprend les notations du para-
graphe 2.1.3.

(1) Montrer que A4 possède trois représentations irréductibles de degré 1 et expliciter ces représentations.

(2) En déduire la table des caractères de A4. Donner une réalisation de la « quatrième » représentation irré-
ductible de A4, et vérifier la cohérence de la table avec le théorème 2.15.

EXERCICE DE COURS 2.43 (table des caractères du groupe symétrique S4). On reprend les notations du
paragraphe 2.1.4.

(1) Déduire de la table des caractères de S3 (voir l’exemple 2.6) que S4 possède deux représentations de
degré 1 et une représentation irréductible de degré 2.

(2) Montrer que la représentation naturelle de S4 dans C3 est irréductible.

(3) En déduire la table de caractères de S4.

On remarque que les caractères de S4 sont à valeurs entières (ce n’est pas le cas des groupes Γ3 ou A4 par
exemple). Ceci est un fait général pour le groupe symétrique Sn qui dépasse le programme.
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EXERCICE DE COURS 2.44 (table des caractères du groupe du cube). Dresser la table de caractères du groupe
du cube Iso(C ) (voir le paragraphe 2.1.5) à l’aide de celle de S4.

2.6. Quelques remarques culturelles sur le groupe « Monstre »

La classification des groupes finis simples est connue ; il existe 18 familles infinies dénombrables de groupes finis
simples, plus 26 groupes dits sporadiques qui ne suivent aucune règles apparentes. Le groupe Monstre ou groupe de
Fischer-Griess est le plus grand de ces groupes sporadiques.

Son ordre est

246× 320× 59× 76× 112× 133× 17× 19× 23× 29× 31× 41× 47× 59× 71

= 808017424794512875886459904961710757005754368000000000

≈ 8× 1053.

Bernd Fischer, né le 18 décembre 1936 à Bad Endbach dans le Land de Hesse,

et mort le 13 août 2020, était un mathématicien allemand. Il est principalement

connu pour son théorème de caractérisation des groupes de transpositions, qu’il

démontra en 1970.

Robert Louis Griess, né le 10 octobre 1945 à Savannah en Géorgie, est un ma-

thématicien américain spécialiste des groupes finis, connu pour sa construction

du groupe Monstre, le plus grand groupe sporadique.

Le Monstre a 194 classes de conjugaisons. Sa table des caractères fut calculée en 1979, avant que l’existence ou
l’unicité du Monstre fût prouvée. C’est Bernd Fischer et Robert Griess qui conjecturèrent son existence sur la base de
sa table de caractères. Le calcul est fondé sur la supposition que le degré minimal d’une représentation fidèle complexe
est 196 883. Le Monstre a ensuite été construit en 1982 par Robert Griess comme groupe de rotations d’un espace à
196 883 dimensions. John Conway a simplifié plus tard cette construction.

John Horton Conway, né le 26 décembre 1937 à Liverpool et mort le 11 avril

2020 à New Brunswick (New Jersey), est un mathématicien britannique. Il s’est

intéressé aux théories des groupes finis, des nœuds, des nombres, des jeux et du

codage. Le 11 avril 2020, il meurt de la Covid-19 à New Brunswick, N.J.

Le groupe Monstre agit par automorphismes sur une certaine algèbre vertex (une structure algébrique de dimension
infinie assez compliquée) dont la construction fut donnée par Igor Frenkel, James Lepowsky et Arne Meurman. Le
groupe Monstre apparaît dans la conjecture monstrous moonshine qui relie la table de caractère de ce groupe à la
fonction modulaire 1 j, et qui fut prouvée par Richard Borcherds en 1992 grâce à la théorie des algèbres vertex.

1. i.e., une fonction holomorphe définie sur le demi-plan de Poincaré et invariante sour l’action du groupe modulaire SL2(Z).
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Richard Ewen Borcherds, né le 29 novembre 1959 au Cap en Afrique du Sud,
est un mathématicien anglais connu pour ses travaux en théorie des réseaux, des
groupes et des algèbres de Lie. Borcherds est particulièrement connu pour son
travail reliant la théorie des groupes finis à d’autres secteurs des mathématiques.
En particulier, il inventa la notion d’algèbre vertex, qui est utilisée dans la preuve
de la conjecture Conway-Norton à propos du monstrous moonshine. Ce résultat
est lié à la théorie des représentations du groupe Monstre, un groupe fini dont la
structure n’avait jusque-là pas été bien comprise.

En 1998, au 23ème congrès international des mathématiciens à Berlin, il reçoit

la médaille Fields.
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3
Structure des sous-groupes finis de GL(V )

Nous avons vu en exercice que tout groupe fini peut, à l’aide de la représentation régulière, être réalisé comme
groupe d’automorphismes d’un espace vectoriel. Dans ce chapitre, on aborde le problème inverse : étant donné un
espace vectoriel V de dimension finie, quels sont les sous-groupes finis de GL(V )?

On s’intéressera tout particulièrement au cas où V est un espace vectoriel de dimension finie sur R ou C. Autrement
dit, on va s’intéresser aux sous-groupes finis de GLn(R) ou GLn(C), où n ∈ N∗.

EXERCICE DE COURS 3.1. Donner des exemples de sous-groupes finis de GLn(R) et GLn(C). Parmi eux,
quels sont ceux qui sont abéliens?

3.1. Sous-groupes abéliens finis

Nous avons vu quelques exemples de sous-groupes abéliens finis de GLn(C). Nous allons maintenant étudier leur
structure.

EXERCICE DE COURS 3.2. Soit G un sous-groupe abélien fini de GLn(C) de cardinal |G| = g.

(1) À l’aide du théorème de Lagrange, montrer que les matrices d’un tel groupe sont diagonalisables.

(2) Montrer qu’il existe une base de Cn dans laquelle on peut diagonaliser simultanément les endomor-
phismes canoniquement associés aux matrices de G.

(3) En déduire que G est isomorphe à un sous-groupe de (Z/gZ)n.

La théorie des groupes abéliens (appelés également Z-modules) de type fini, qui est une variante de celle des
K-espaces vectoriels de dimension finie, permet de démontrer que tout sous-groupe de (Z/gZ)n est le produit de
r ∈ {1, . . . , n} groupes cycliques. Ainsi, de l’exercice précédent, nous pouvons déduire qu’il existe r ∈ {1, . . . , n} et
des entiers d1, . . . , dr ∈ N∗ tels que :

G ∼= Z/d1Z× · · ·Z/drZ.

EXERCICE DE COURS 3.3. Réciproquement, montrer que tout produit de r ∈ {1, . . . , n} groupes cycliques
se plonge comme sous-groupe (abélien fini) de GLn(C).

En combinant les deux exercices précédents, nous venons de démontrer la proposition suivante.

Les sous-groupes abéliens finis de GLn(C) sont isomorphes à des produits de r groupes cycliques Z/mZ
avec r ∈ {1, . . . , n}.

Proposition 3.1 – les sous-groupes abéliens finis de GLn(C) sont des produits de groupes cycliques
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3.2. Sous-groupes finis de GLn(R)

Soient G un sous-groupe fini de GLn(R) et (−|−) un produit scalaire sur Rn. La forme bilinéaire symétrique
(−|−)G définie par

(x|y)G =
∑
g∈G

(gx|gy), x, y ∈ Rn,

est définie positive et invariante par G de sorte que G est contenu dans le groupe orthogonal euclidien O(qG) associé à
la forme quadratique qG donnée par qG(x) = (x|x)G pour tout x ∈ Rn.

EXERCICE DE COURS 3.4. Vérifier les assertions ci-dessus.

REMARQUE 3.1. Dans le cas complexe, on peut prendre un produit scalaire hermitien et on obtient alors que G
est contenu dans un groupe unitaire.

L’avantage est que les groupes orthogonaux (ou unitaires) sont compacts, ce qui n’est pas le cas du groupe linéaire
général. Si on ne s’intéresse qu’à la classe de conjugaison de G, a fortiori à son cardinal, on peut donc supposer que G
est contenu dans On(R) (ou Un(C) dans le cas complexe).

EXERCICE DE COURS 3.5 (le groupe des rotations en deux dimension est abélien). Décrire le groupe spécial
orthogonal SO2(R) et rappeler pourquoi c’est un groupe abélien.

3.2.1. Cas n = 2. L’intersection H de G et de SO2(R) est au plus d’indice 2 (pourquoi ?). C’est un sous-groupe
du groupe abélien SO2(R). Si m est l’ordre de H , toutes les rotations de H ont donc un angle 2kπ/m, k ∈ Z. On en
déduit un isomorphisme H ∼= Z/mZ et H se réalise, par exemple, comme le groupe des rotations laissant stable un
polygone régulier à m côtés (voir le paragraphe 2.1.1).

Si H est d’indice 2 et est engendré par un élément r d’ordre m, choisissons n’importe quel s ∈ G \H . Comme
s est une symétrie par rapport à une droite, srs = r−1 et on en déduit que G est le groupe diédral Dm qui se réalise
comme le groupe des isométries laissant stable un polygone régulier à m côtés (voir le paragraphe 2.1.2).

EXERCICE DE COURS 3.6. Vérifier les assertions ci-dessus. Conclure en décrivant tous les sous-groupes finis
de GL2(R).

3.2.2. Cas n = 3. Le cas n = 3 est plus subtil. Cherchons d’abord les cardinaux des sous-groupes finis de
SO3(R).

EXERCICE DE COURS 3.7. Rappeler la description géométrique des éléments de SO3(R).

Soit G un sous-groupe fini de SO3(R) de cardinal g > 2. On note X l’ensemble des points de la sphère unité S2

de R3 qui sont fixés par des éléments non triviaux de G, autrement dit X est l’ensemble des points d’intersection avec
la sphère unité de l’axe des éléments non triviaux de G.

La stratégie est de classifier les groupes G possibles en faisant agir G sur X.

EXERCICE DE COURS 3.8. Montrer qu’il existe une action naturelle de G sur X et que 2 6 |X| 6 2(g − 1).

On veut maintenant estimer le nombre d’orbites de cette action. Pour cela on rappelle la formule de Burnside,
valable pour toute action d’un groupe fini G sur un ensemble fini X : le nombre k d’orbites est donnée par la moyenne
du nombre de points fixes des éléments de G :

k =
1

|G|
∑
s∈G
|Fix(s)|,

où Fix(s) = {x ∈ X : sx = x}.
Appliquons la formule de Burnside à l’action de notre sous-groupe fini G ⊂ SO3(R) sur l’ensemble X . Comme

toute rotation distincte de l’identité dans G fixe exactement deux points de X , et que l’identité fixe tous les éléments
de X , la formule de Burnside donne l’estimation suivante pour le nombre k d’orbites de cette action :

k =
1

g
(2(g − 1) + |X|) = 2 +

|X| − 2

g
> 2.
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On a aussi grâce à la majoration de l’exercice 3.8,

k 6
4(g − 1)

g
< 4.

En conclusion, k ∈ {2, 3}.

EXERCICE DE COURS 3.9. Montrer que si k = 2, alors G est cyclique.

EXERCICE DE COURS 3.10. On étudie dans cet exercice le cas k = 3. Notons ω1, ω2, ω3 les trois orbites et
n1, n2, n3 les cardinaux des stabilisateurs correspondants. On peut supposer que n1 6 n2 6 n3.

(1) À l’aide de la formule de Burnside et de la relation |ωi| = g
ni

, montrer que

1

n1
+

1

n2
+

1

n3
= 1 +

2

g
.

(2) Montrer que n1 = 2, puis que n2 ∈ {2, 3}.
(3) Montrer que si n2 = 2, alors |G| = 2n3 = |Dn3

|.
(4) Sinon, montrer que l’on est dans l’un des situations suivantes :

• (n1, n2, n3) = (2, 3, 3) et |G| = |A4| = 12,

• (n1, n2, n3) = (2, 3, 4) et |G| = |S4| = 24,

• (n1, n2, n3) = (2, 3, 5) et |G| = |A5| = 60.

Nous venons de déterminer les cas possibles. Remarquablement, tous les groupes apparaissant dans les exer-
cices 3.9 et 3.10 peuvent être réalisés comme groupe d’isométries de certains polyèdres réguliers et donc comme
sous-groupes finis de SO3(R) ; nous en avons déjà vu certains.

Les cas obtenus sont décrits dans le tableau 1. La colonne « polyèdre » indique qu’on peut obtenir ces groupes
comme des groupes d’isométries laissant stable une figure. Dans le cas I, on obtient les n rotations laissant stables un
polygone régulier à n côtés. Dans les cas II (groupe diédral), on rajoute à ces rotations les symétries d’axe les droites
joignant les milieux (ou sommets) du polygone, etc : voir la section 3.5 pour une description complète des autres
polyèdres et leurs symétries.

n1 n2 n3 |G| G polyèdre
I g g g Z/gZ Pg

II 2 2 n 2n Dn Pg

III 2 3 3 12 A4 tétraèdre
IV 2 3 4 24 S4 cube (octaèdre)
V 2 3 5 60 A5 dodécaèdre (icosaèdre)

TABLE 1 – Valeurs possibles pour ni

3.3. Sous-groupes finis de GLn(Z)

On trouve des groupes finis aussi grand qu’on veut dans GLn(R) pour n 6 3. Observons qu’ils sont « presque
abéliens », au sens qu’ils contiennent un sous-groupe abélien normal d’indice petit, ici 6 60. On verra plus bas (voir le
théorème 3.4) que c’est toujours le cas. D’une certaine manière, si on veut plonger un groupe gros et compliqué dans
un groupe GLn, il y a un prix à payer : n doit être grand !

Dans ce paragraphe, on étudie les sous-groupes finis de GLn(Z) et nous allons voir qu’ils sont « petits ».

On pose
GLn(Z) = {A ∈ GLn(C) : A ∈Mn(Z) et A−1 ∈Mn(Z)}.

EXERCICE DE COURS 3.11 (le groupe GLn(Z)). Montrer que :

GLn(Z) = {A ∈Mn(Z) : det(A) ∈ {−1, 1}}.
Justifier que GLn(Z) est un sous-groupe de (GLn(C),×).
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Soit p un entier premier plus grand que 3. Alors la restriction du morphisme

GLn(Z) −! GLn(Fp)

à un sous-groupe fini G est injectif.

Proposition 3.2 – Lemme de Serre

La démonstration de ce lemme est l’objet d’un problème de la fiche d’exercices.

Jean-Pierre Serre, né le 15 septembre 19262 à Bages (Pyrénées-Orientales), est

un mathématicien français. Il reçoit de nombreuses récompenses pour ses re-

cherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Bal-

zan en 1985, de la médaille d’or du CNRS en 1987, du prix Wolf de mathématiques

en 2000, et le premier lauréat du prix Abel en 2003.

Le cardinal d’un sous-groupe fini de GLn(Z) est majoré par

|GLn(F3)| = (3n − 1)(3n − 31) · · · (3n − 3n−1).

Corollaire 3.3 – majoration du cardinal d’un sous-groupe fini de GLn(Z)

EXERCICE DE COURS 3.12. Démontrer le corollaire à l’aide du lemme de Serre.

On déduit de cette étude que tout sous-groupe fini de GLn(Z) est isomorphe à un sous-groupe de GLn(F3), ces
derniers étant en nombre fini.

3.4. Un théorème de Jordan

Dans cette dernière section, on va démontrer un résultat dû à Jordan affirmant que, grosso modo, un sous-groupe
fini de GLn(C) n’est pas trop compliqué.

Marie Ennemond Camille Jordan, né le 5 janvier 1838 à Lyon, dans le quartier

de la Croix-Rousse et mort le 21 janvier 1922 à Paris, est un mathématicien fran-

çais, connu à la fois pour son travail fondamental dans la théorie des groupes et

pour son influent Cours d’analyse.

Soit G un groupe fini de GLn(C).
Alors G a un sous-groupe abélien normal d’indice 6 (

√
8n+ 1)2n

2 − (
√

8n− 1)2n
2

.

Théorème 3.4 – Jordan–Schur
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Le reste de la section est dédié à la démonstration de ce théorème. Soit G un groupe fini de GLn(C).

L’astuce de la moyenne permet de supposer G ⊂ Un(C). On va voir que les matrices de G proches de I forment
un sous-groupe abélien normal.

Commençons par prouver quelques lemmes élémentaires sur les matrices unitaires. On rappelle que deux matrices
unitaires qui commutent sont simultanément unitairement semblables à des matrices diagonales de valeurs propres des
racines de l’unité.

On munit Mn(C) de la norme L2 définie par

‖A‖ =
»

Tr(AA∗),

qui est invariante par multiplication à gauche ou à droite par des matrices unitaires. C’est une norme multiplicative, et
si A est unitaire, alors ‖A‖ =

√
n.

EXERCICE DE COURS 3.13. Vérifier ces assertions.

Soient A,B deux matrices unitaires et supposons ‖I − B‖ 6 2. Alors si A commute avec (A,B) =

ABA−1B−1 alors A est B commutent.

Lemme 3.5

EXERCICE DE COURS 3.14. Démontrer le lemme.

�
Indication : observer queA commute avecA−1(A,B) = BA−1B−1 etBAB−1, puis diagonaliser
dans une même base.

Soient A,B deux matrices unitaires. Alors

‖I − (A,B)‖ 6
√

2‖I −A‖‖I −B‖.

Lemme 3.6 – si A est B sont voisines de l’identité, alors leur commutateur l’est encore plus

EXERCICE DE COURS 3.15. Démontrer le lemme.

Soient A,B deux matrices de G. Si ‖I −A‖ < 1/
√

2 et ‖I −B‖ < 2, alors A et B commutent.

Lemme 3.7 – si A est B sont suffisamment voisines de l’identité, alors elles commutent

EXERCICE DE COURS 3.16. L’objectif de cet exercice est de démontrer ce dernier lemme.

(1) On définit la suite de matrices Bi par

B0 = B et Bi+1 = (A,Bi).

Déduire du lemme 3.6 que lim
i!∞

= I . En déduire que Bi = I pour i assez grand.

(2) Montrer par récurrence descendante que Bi et A commutent pour tout i. Conclure.

Notons alors H le sous groupe engendré par

{A ∈ G : ‖I −A‖ < 1/
√

2}.

Le lemme 3.7 assure que les éléments de H commutent deux à deux et donc que H est abélien. De plus, H est
clairement normal (la norme unitaire est invariante par conjugaison unitaire). Reste à évaluer son indice. Soit (Ri)i un
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système de représentant de G/H . Ils sont, comme on l’a vu, sur la sphère de rayon
√
n de Mn(C) ∼= R2n2

. D’autre
part, si i 6= j, on a

‖Ri −Rj‖ > 1/
√

2

car sinon R−1i Rj ∈ H . Notons Bi la boule de centre Ri et de rayon 1/(2
√

2). On a Bi ∩Bj = ∅. Autrement dit, on
a une réunion disjointe des Bi toutes contenues dans la couronne

C (
√
n− 1/(2

√
2),
√
n+ 1/(2

√
2)).

Si v est le volume de la boule unité, on a donc∑
i

v(Bi) = [G : H](1/2
√

2)2n
2

v 6 (
√
n+ 1/(2

√
2))2n

2

v − (
√
n− 1/(2

√
2))2n

2

v.(1)

EXERCICE DE COURS 3.17. Démontrer le théorème de Jordan–Schur à l’aide de l’inégalité (1).

Par exemple, ceci donne une borne pour les cardinaux des groupes finis simples contenus dans GLn(C). Notons
que ce théorème reste valable remplaçant C par un corps de caractéristique positive p pourvu qu’on se limite à des
groupes d’ordre premier à p. La démonstration est tout autre, et nettement plus technique !

3.5. Digression sur les cinq solides platoniciens

Un polyèdre P est l’enveloppe convexe d’un nombre fini (non coplanaires) de points dans R3. En particulier, un
tel polyèdre P est compact et d’intérieur non vide. On devrait dire polyèdre convexe, mais comme on ne considèrera
que le cas convexe, on omet ici l’adjectif.

Dans ce cours on considèrera comme « intuitivement évidentes » les notions de sommets, arêtes et faces, et no-
tamment le fait que les faces sont toujours des polygones (avec au moins 3 arêtes), et que chaque sommet appartient
à au moins 3 arêtes et au moins 3 faces. La question de les définir rigoureusement se pose notamment lorsqu’on veut
étendre ces notions en dimension arbitraire (à partir de la dimension 4 peu de choses sont « intuitivement évidentes »
mais on va rester en dimension 3...).

Pour la proposition suivante on notera S, A, F les nombres de sommets, arêtes et faces d’un polyèdre P donné.

Pour tout polyèdre P , on a la relation
S −A+ F = 2.

Proposition 3.8 – relation d’Euler

Leonhard Euler, né le 15 avril 1707 à Bâle (Suisse) et mort le 7 septembre 1783

(18 septembre dans le calendrier grégorien) à Saint-Pétersbourg (Empire russe),

est un mathématicien et physicien suisse, qui passa la plus grande partie de sa vie

dans l’Empire russe et en Allemagne.

Euler est considéré comme un éminent mathématicien du XVIIIe siècle et

l’un des plus grands et des plus prolifiques de tous les temps. Une déclaration

attribuée à Pierre-Simon de Laplace exprime l’influence d’Euler sur les mathé-

matiques : « Lisez Euler, lisez Euler, c’est notre maître à tous ». Il était un fervent

chrétien, croyant en l’inerrance biblique, et s’opposa avec force aux athées

éminents de son temps.

EXERCICE DE COURS 3.18. Démontrer la proposition, en essayant d’imaginer que le polyèdre est plongé
dans une piscine et qu’on le fait sortir petit à petit de l’eau, de telle façon que les sommets sortent de l’eau un par
un...

Il existe une démonstration plus topologique, par récurrence sur le nombre d’arêtes ; voir par exemple [1, page
146].
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Un polyèdre convexe est un solide de Platon (ou polyèdre régulier) si :

(1) toutes ses faces sont des polygones réguliers convexes isométriques, c’est-à-dire superposables,

(2) aucune de ses faces ne se coupe, excepté sur les arêtes,

(3) le même nombre de faces se rencontre à chacun de ses sommets.

Définition 3.9 – solide de Platon (polyèdre régulier)

Solides de Platon. Depuis les mathématiques grecques, les solides de

Platon furent un sujet d’étude des géomètres en raison de leur esthétique

et de leurs symétries. Leur nom, donné en l’honneur du philosophe grec

Platon, rappelle une de ses théories, associant quatre d’entre eux aux

quatre éléments de l’ancienne physique et le cinquième à la quintessence

ou Éther.

Dans ce portrait, par Jacopo de’ Barbari, de Luca Pacioli, auteur

de De divina proportione, un dodécaèdre régulier est représenté en bas à

droite.

À chaque solide de Platon, on peut associer un symbole (p, q) où

p = le nombre de côtés de chaque face (ou le nombre de sommets sur chaque face),
q = le nombre de faces se rencontrant à chaque sommet (ou le nombre d’arêtes se rencontrant à chaque sommet).

Si P est un solide de Platon, alors il n’y a que 5 possibilités pour le couple (p, q), qui sont (3, 3), (4, 3),
(3, 4), (5, 3), (3, 5).

Proposition 3.10

EXERCICE DE COURS 3.19. Le but de l’exercice est de démontrer la proposition.

(1) Montrer la relation : 2A = Sq = Fp.

(2) À l’aide de la formule d’Euler, obtenir que
1

p
+

1

q
=

1

2
+

1

A
>

1

2
.

(3) Remarquer que p, q > 3 et en déduire que p, q 6 5 et que p ou q doit être égal 3. Conclure.

Il se trouve que pour chacun des 5 couples (p, q) obtenus dans la proposition, il existe exactement un polyèdre
régulier correspondant. Le théorème suivant donne la liste de ces « solides platoniciens » (« èdre » est la racine grecque
pour « face », donc on peut dire « hexaèdre » au lieu de « cube » mais c’est moins courant !)

Il n’existe que 5 polyèdres réguliers (les 5 solides de Platon) :

– le tétraèdre (4 faces),

– l’hexaèdre ou cube (6 faces),

– l’octaèdre (8 faces),

– le dodécaèdre (12 faces),

– l’icosaèdre (20 faces).

Théorème 3.11 – théorème de classification
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Le symbole (p, q), appelé le symbole de Schläfli, donne une description combinatoire du polyèdre. Les symboles
de Schläfli des cinq solides de Platon sont donnés dans la table 2, et ces cinq solides platoniciens sont représentés dans
la figure 1.

polyèdre régulier sommets arêtes faces symbole de Schläfli
Tétraèdre régulier 4 6 4 triangles équilatéraux (3, 3)

Hexaèdre régulier (cube) 8 12 6 carrés (4, 3)

Octaèdre régulier 6 12 8 triangles équilatéraux (3, 4)

Dodécaèdre régulier 20 30 12 pentagones réguliers (5, 3)

Icosaèdre régulier 12 30 20 triangles équilatéraux (3, 5)

TABLE 2 – Solides platoniciens

Soit P un polyèdre (quelconque). Notons Isom(P) le groupe des isométrie de R3 qui préservent P , c’est-à-dire
qui préservent les sommets de P .

Nous avons déjà observé le fait suivant sur des examples (voir la section 2.1) : on a un morphisme injectif
Isom(P)! Sn où n est le nombre de sommets du polyèdre de P .

On peut alors donner une définition des polyèdres réguliers en terme d’isométries.

Un polyèdre P est dit régulier si le groupe des isométries Isom(P) agit transitivement sur les drapeaux
de P , c’est-à-dire les triplets (s, a, f) où s est un somment de P , a une arête et f une face avec s ∈ a ⊂ f .

Définition 3.12 – polyèdre régulier

La condition de transitivité sur les drapeaux est très forte, elle implique la transitivité sur les sommets, sur les
arêtes et sur les faces. On en déduit que pour un polyèdre régulier P donné :

– chaque face est isométrique à un même polygone régulier,

– de chaque sommet est issue le même nombre d’arêtes,

– tous les sommets sont à même distance du barycentre des sommets, appelé le centre du polyèdre ; en parti-
culier P est inscrit dans une sphère.

On retrouve bien entendu les conditions de la définition 3.9.

On pourrait être tenté de définir un polyèdre régulier par la condition plus faible que toutes les faces sont isomé-
triques à un même polygone régulier ; mais ceci n’exclurait pas par exemple les polyèdres obtenus en juxtaposant deux
pyramides de base un polygone régulier à n = 3 ou 5 côtés (pour n = 4, c’est un octaèdre régulier, et pour n > 6, les
faces ne pourraient plus être des triangles équilatéraux...). Ici le groupe d’isométrie (isomorphe au groupe diédral Dn

à 2n éléments) agit transitivement sur les 2n faces, mais pas sur les n+ 2 sommets ni les 3n arêtes.

,
Le dé à 10 faces, dont toutes les faces sont des triangles équilatéraux, n’est PAS un polyèdre régulier !

On remarque que les 2ème et 3ème lignes du tableau 2 sont symétriques, ainsi que les 4ème et 5ème (la 1ère est auto-
symétrique). Un polyèdre régulier P admet en effet un polyèdre dual également régulier, construit en prenant l’en-
veloppe convexe des milieux des faces de P . On peut vérifier que le dual d’un polyèdre admet le même groupe
d’isométrie que le polyèdre initial. Du point de vue des groupes d’isométries il y a donc essentiellement 3 solides
platoniciens :

– le tétraèdre, qui est auto-dual,

– le cube et l’octaèdre,

– le dodécaèdre et l’icosaèdre.
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FIGURE 1 – Solides platoniniens

Ludwig Schläfli est un mathématicien suisse spécialiste en géométrie et en

analyse complexe. Il a joué un rôle clé dans le développement de la notion

d’espace de dimension quelconque.
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