Fiche n°3 : réduction des endomorphismes ($2^{\text{ème}}$ niveau). (environ 3 séances)

TRIGONALISATION EFFECTIVE

Exercice 1 – trigonalisation d'une matrice avec valeur propre double. Soit

$$A = \begin{pmatrix} 5 & -17 & 25 \\ 2 & -9 & 16 \\ 1 & -5 & 9 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace propres de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 2 & \alpha & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

où α est un réel non nul.

Exercice 2 – trigonalisation d'une matrice avec valeur propre triple. Soit

$$A = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ -1 & 2 & -2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace propre de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} -1 & 0 & \alpha \\ 0 & -1 & \beta \\ 0 & 0 & \gamma \end{pmatrix},$$

où α,β sont des réels non tous les deux nuls, et γ un réel que l'on déterminera.

Exercice 3 – trigonalisation d'une autre matrice avec valeur propre triple. Soit

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace propre de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 2 & \alpha & \beta \\ 0 & 2 & \gamma \\ 0 & 0 & 2 \end{pmatrix},$$

où α est un réel non nul, et β, γ des réels non tous les deux nuls.

Trigonalisation et sous-espaces stables

Exercice 4 – trigonalisation et sous-espaces stables.

Soient E un \mathbb{C} -espace vectoriel de dimension non nulle n et $f \in \mathcal{L}(E)$ un endomorphisme de E. Montrer que, pour tout $k \in \{0, \dots, n\}$, il existe un sous-espace de E stable par f de dimension k. Ce résultat reste-t-il vrai en remplaçant \mathbb{C} par \mathbb{R} ?

CALCULS DE PUISSANCES DE MATRICES

Exercice 5- décomposition de Dunford dans un cas particulier.

Soient

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}),$$

et f l'endomorphisme de \mathbb{R}^4 canoniquement associé à A.

- 1. Calculer le polynôme caractéristique de A. Déterminer les valeurs propres et les vecteurs de A. La matrice A est-elle diagonalisable?
- **2.** Montrer que les sous-espaces $F = \text{Ker}((f-I)^2)$ et $G = \text{Ker}((f+I)^2)$ sont stables par f. On note f_F et f_G les endomorphismes induits par f sur F et G respectivement.

- 3. \spadesuit Trouver une base \mathscr{B}_F de F dans laquelle la matrice de f_F est de la forme $\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$, et trouver une base \mathscr{B}_G de G dans laquelle la matrice de f_G est de la forme $\begin{pmatrix} -1 & \beta \\ 0 & -1 \end{pmatrix}$, où α et β sont des réels non nuls.
- 4. Trouver une base \mathscr{B} de \mathbb{R}^4 dans laquelle la matrice de f est de la forme

$$B = \begin{pmatrix} 1 & \alpha & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & \beta \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Calculer A^k pour tout k ∈ N.
(Indication: remarquer que N = B - D, où D = diag(1,1,-1,-1), est une matrice nilpotente qui commutent avec D et utiliser la formule du binôme de Newton.)

Matrices nilpotentes

Exercice 6 – matrice nilpotente et forme de Jordan.

Soit

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix},$$

et posons $N = A - 2I_3$.

- 1. Montrer que $N^3 = 0$ et que $N^2 \neq 0$.
- **2.** Montrer qu'il existe une matrice inversible $P \in \mathcal{M}_3(\mathbb{R})$ telle que

$$N = PJP^{-1}$$
, où $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

(Indication: considérer l'endomorphisme f de \mathbb{R}^3 canoniquement associé à N et montrer qu'il existe $x \in \mathbb{R}^3$ tel que $(x, f(x), f^2(x))$ forme une base de \mathbb{R}^3 .)

 $\bf 3.$ En déduire que A est semblable à la matrice

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercice 7 – commutant d'une matrice nilpotente. Soit

$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

1. Calculer le *comumutant* $\mathscr{C}(N)$ de la matrice N dans $\mathscr{M}_3(\mathbb{R})$ défini par :

$$\mathscr{C}(N) = \{ M \in \mathscr{M}_3(\mathbb{R}) \colon MN = NM \}.$$

2. \spadesuit En déduire le commutant $\mathscr{C}(A)$ de la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ de l'exercice précédent dans $\mathscr{M}_3(\mathbb{R})$, où

$$\mathscr{C}(A) = \{ M \in \mathscr{M}_3(\mathbb{R}) \colon MA = AM \}.$$

Les exercices de cette fiche sont plus délicats mais aident à la compréhension de la diagonalisabilité et, plus généralement, des applications linéaires en dimension finie.