Fiche n°4 : déterminants

(1 à 2 séances)

GÉNÉRALITÉS SUR LE DÉTERMINANT

Exercice 1 – vrai ou faux

Les assertions suivantes sont-elles vraies ou fausses? Justifier l'assertion ou citer le cours si la réponse est «vraie», et donner un contre-exemple simple sinon.

- **1.** Pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$ on a $\det(A+B) = \det A + \det B$.
- **2.** Pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$ on a $\det(AB) = \det(A) \det(B)$.
- **3.** Pour tout $A \in \mathcal{M}_n(\mathbb{R})$ et $\alpha \in \mathbb{R}$ on a $\det(\alpha A) = \alpha \det(A)$.
- **4.** Si $A, B \in \mathcal{M}_n(\mathbb{R})$ sont semblables, on a $\det(A) = \det(B)$.

Exercice 2 – déterminant de matrices particulières.

- **1.** Que peut-on dire du déterminant d'une matrice nilpotente $A \in \mathcal{M}_n(\mathbb{R})$ (c'est-à-dire qu'il existe $N \in \mathbb{N}^*$ tel que $A^N = 0$)?
- **2.** Que peut-on dire du déterminant d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = I_n$?
- **3.** Que peut-on dire du déterminant d'une matrice antisymétrique $A \in \mathcal{M}_n(\mathbb{R})$ (c'est-à-dire que ${}^tA = -A$) lorsque n est impair?

Exercice 3 - déterminant d'une matrice triangulaire supérieure.

Calculer le déterminant des matrices carrées d'ordre n suivantes :

$$\begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & a_{n,n} \end{pmatrix}, \quad \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & & a_{2,n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & a_{n,n} \end{pmatrix}, \quad \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & & a_{2,n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & a_{n,n} \end{pmatrix},$$

la dernière est une matrice «triangulaire par blocs» d'ordre 2 et n-2.

Calculs de déterminants d'ordres petits

Exercice 4 – calculs explicites de déterminants d'ordre 2.

Calculer le déterminant des matrices suivantes.

$$\begin{pmatrix} 3 & 7 \\ 1 & -3 \end{pmatrix}, \quad \begin{pmatrix} 4 & -16 \\ 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} x & -y \\ y & x \end{pmatrix}, \ x, y \in \mathbb{R}.$$

Exercice 5 – calculs explicites de déterminants d'ordre 3.

Calculer le déterminant des matrices suivantes,

$$\begin{pmatrix} 21 & 34 & 8 \\ 1 & 3 & 2 \\ 13 & 1 & 5 \end{pmatrix}, \quad \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} -2 & -3 & 6 \\ 3 & 1 & 5 \\ 3 & 4 & -7 \end{pmatrix}.$$

Calculs plus avancés de déterminants

Exercice 6 - calcul d'un déterminant à l'aide d'opérations élémentaires.

Pour $(a, b) \in \mathbb{R}^2$, calculer le déterminant d'ordre n suivant :

$$\left|\begin{array}{ccccc} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{array}\right|.$$

(Indication : commencer par effectuer l'opération élémentaire $C_1 \leftarrow C_1 + \sum_{j=2}^n C_j$.)

Exercice 7 – utilisation du déterminant pour savoir si une matrice est inversible.

1. Calculer, pour $t \in \mathbb{C}$, le déterminant de la matrice suivante sous forme factorisée :

$$A_t = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{pmatrix}.$$

- 2. En déduire les valeurs de t pour lesquelles la matrice A_t est inversible.
- 3. Lorsque A_t n'est pas inversible, déterminer une base de $\operatorname{Ker} A_t$.

Exercice 8 – un calcul de déterminant pas récurrence.

Calculer le déterminant d'ordre n suivant :

$$\Delta_n = \begin{vmatrix} \alpha + a_1 & -1 & 0 & \cdots & 0 \\ a_2 & \alpha & -1 & & \vdots \\ a_3 & 0 & \alpha & \ddots & 0 \\ \vdots & \vdots & & \ddots & -1 \\ a_n & 0 & \cdots & 0 & \alpha \end{vmatrix},$$

où $\alpha, a_1, \ldots, a_n \in \mathbb{K}$. (Indication : on pourra établir une relation de récurrence entre Δ_n et Δ_{n-1} et raisonner par récurrence.)

♠ Exercice 9 – déterminant d'une matrice circulante.

On pose $j = \exp\left(\frac{2i\pi}{3}\right)$. On rappelle les relations : $j^3 = 1$ et $1 + j + j^2 = 0$.

1. Montrer que les vecteurs suivants forment une base de \mathbb{C}^3 :

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ j^2 \\ j \end{pmatrix}.$$

2. Soient $(a, b, c) \in \mathbb{C}^3$ et f l'endomorphisme de \mathbb{C}^3 canoniquement associé à la matrice *circulante* suivante :

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$

Calculer $f(u_1)$, $f(u_2)$, $f(u_3)$ et écrire la matrice de f dans la base (u_1, u_2, u_3) .

3. En calculant de déterminant de f de deux manières différentes, obtenir une factorisation de $3abc - a^3 - b^3 - c^3$.

Exercice 10 - déterminant de Vandermonde.

Alexandre-Théophile Vandermonde, né à Paris le 28 février 1735 et mort à Paris le 1er janvier 1796, est un mathématicien français. Il fut aussi économiste, musicien et chimiste, travaillant notamment avec Étienne Bézout et Antoine Lavoisier. Son nom est maintenant surtout associé à une matrice et son déterminant.

Soit $(x_1, \ldots, x_n) \in \mathbb{C}^n$. On appelle déterminant de Vandermonde le déterminant d'ordre n suivant :

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & \cdots & x_{n-1}^2 & x_n^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_{n-1}^{n-1} & x_n^{n-1} \end{vmatrix}.$$

L'objectif de cet exercice est de calculer $V(x_1,...,x_n)$, et de déterminer pour quels n-uplets $(x_1,...,x_n) \in \mathbb{C}^n$ ce déterminant est non nul.

1. Calculer $V(x_1)$, $V(x_1, x_2)$, $V(x_1, x_2, x_3)$.

- **2.** Que peut-on dire de $V(x_1, \ldots, x_n)$ si $x_i = x_j$ pour $(i, j) \in \{1, \ldots, n\}^2$ tel que i < j?
- 3. \spadesuit On fixe dans cette question des complexes x_1, \ldots, x_n deux à deux distincts.
- **3.1** Montrer que l'application $t \mapsto V(x_1, \dots, x_{n-1}, t)$ est une fonction polynomiale de degré n-1. Autrement dit, $V(x_1, \dots, x_{n-1}, T) \in \mathbb{C}[T]$ est un polynôme de degré au plus n-1 en la variable T.
- **3.2** À l'aide de la question 2, trouver n-1 racines distinctes du polynôme $V(x_1,\ldots,x_{n-1},T)$. En déduire une expression de $V(x_1,\ldots,x_{n-1})$ en fonction de x_1,\cdots,x_{n-1} et de $V(x_1,\ldots,x_{n-1},x_n)$.
- **3.3** Calculer $V(x_1, \ldots, x_{n-1}, 0)$ et obtenir, à l'aide d'une récurrence sur $n \in \mathbb{N}^*$, une expression de $V(x_1, \ldots, x_n)$ sous forme factorisée.
- **4.** Montrer que $V(x_1, \ldots, x_n)$ est non nul si et seulement si les complexes x_1, \ldots, x_n sont deux à deux distincts.

ÉTUDE DE PERMUTATIONS

Exercice 11 – étude d'une permutation particulière de $\{1, \ldots, 6\}$.

Soit

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 2 & 5 & 3 \end{pmatrix}.$$

- 1. Déterminer le nombre d'inversions de σ_1 . En déduire la parité de σ_1 .
- 2. Décomposer σ_1 (d'au moins une façon) en un produit de transpositions.
- **3.** Décomposer σ_1 en un produit de cycles à supports disjoints. Retrouver ainsi la signature $\varepsilon(\sigma_1)$ de σ_1 .
- 4. Reprendre les questions précédentes avec les permutations

$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 & 4 \end{pmatrix}$$
 et $\sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 2 & 3 & 5 \end{pmatrix}$.

 \spadesuit Exercice 12 – étude d'une permutation particulière de $\{1,\dots,n\}$.

Pour $n\in\mathbb{N}^*,$ déterminer la signature de

$$\sigma \colon \{1, \dots, n\} \quad \longrightarrow \quad \{1, \dots, n\}$$

$$i \quad \longmapsto \quad n + 1 - i.$$

On la déterminera de deux façons différentes : en calculant le nombre d'inversions de σ , et en décomposant σ en un produit de transpositions.