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Introduction

In this thesis, we are interested in several increasing filtrations on the Cartan subal-

gebra b of a complex simple Lie algebra g with triangular decomposition,
g=n_PdHhdn,,

that come from different contexts. Here, by increasing filtration we mean an increas-
ms0 F™h. We usually
require that for all m,n, [F™h, F"h] C F™"h but since b is abelian, this condition

is superfluous.

ing sequence (Fh),,>0 of subspaces of h such that h =

The different filtrations we consider are described in the next paragraph: one is the
principal filtration which comes from the Langlands dual of g (cf. Definition 1), one
is the symmetric filtration (cf. Definition 2) which comes from the symmetric algebra
and the Chevalley projection, two other ones, the enveloping filtrations (cf. Defini-
tion 3), come from the enveloping algebra and the Harish-Chandra projections, and
the last one is the Clifford filtration (cf. Definition 4) which comes from the Clifford
algebra of g associated with the inner product on g.

It is known that all these filtrations coincide. These results come from a combi-
nation of works of several authors [Roh08, AM12, Jos12a, Jos12b|. The remarkable
connexion between the principal filtration and the filtration coming from the Clifford
algebra was essentially conjectured by Kostant.

The goal of this thesis is to provide another proof of the existing relation between

g(m)

the symmetric filtration (%4 'h),, and the enveloping filtration (ﬁém)h)m, when g is

the simple Lie algebra sl,,; (type A,) or the simple Lie algebra sp,, (type C,), us-
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ing special paths in the weight lattice of the standard representation. Together with
Rohr’s result (cf. Theorem 1) it gives another proof of Joseph’s theorem (cf. Theo-
rem 2) in these cases. The strategy is outlined at the end of this introduction.

Let us now describe in more detail the several filtrations above mentioned.

The principal filtration

Let A C b* be the root system of (g,h), Il = {31, ..., 5} the system of simple roots
with respect to b = h@dn, and A, the corresponding set of positive roots. The root
system is realized in an Euclidean space RY with standard basis & = (g1, ...,ey). For

a € A, we denote by & its coroot. We fix a Chevalley basis {e,, €_q, BiyaeN, i=

1,...,r} of g, where e, is a nonzero a-root vector. In particular, [eg,,e_g,]| = B;
for i = 1,...,r. Let wy,...,w, be the fundamental weights, and <oy, ..., 0, the
fundamental co-weights, associated with [y, ..., §,, respectively.

Let By be an invariant non-degenerate bilinear form on g x g. It is a nonzero
multiple of the Killing form of g. Moreover, its restriction to h x b is non-degenerate.
Let Bg: h* — b be the induced isomorphism. For x € h* we denote by z* its image by
Bg. If g is simply-laced, that is, g is of type A, D, E, then for some nonzero scalar A,
w? = \w; forall i € {1,...,7}.

Let (e, h, f) be a principal sly-triple of g corresponding to the above triangular

decomposition, that is,

T T T
e:Zeﬁi, thZzﬁi, f:Zcie_Bi,
i=1 i=1 i=1

where ¢; is a nonzero complex number such that h = [e, f|. The elements e, h, f
are regular elements of g, which means that their centralizer in g have minimal
dimension 7.

One defines an increasing filtration (.#(™§),,~o of b by:
FMh = {zeh| (ade)™ 'z = 0}.

Notice that the dimension of the spaces .# (™} jumps at the exponents m = my, ..., m,
of g.

We can also describe the filtration (.%(™h),, as follows. The algebra s := Ce @
Cha@Cf = sl, acts on g by the adjoint action. Let g = €D_, V; be the decomposition
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of g into simple s-modules. We have dimV; = 2m; + 1 and dimV; N = 1 for any

1=1,...,r. Then
Fmy= P viny.

j7m]<m

If the exponents mq, ..., m, are pairwise distinct, we have for i =1,...,r,

Fmiy = PV;nh.
j=1

In most cases, the exponents myq, ..., m, are all distinct. The exception is the case of
the D, series, for even r and r > 4, when there are two coincident exponents (equal
tor—1).

Let g be the Langlands dual of g which is the simple Lie algebra defined by the
dual root system A = {4 ; a € A}. One may identify a Cartan subalgebra b of g
with b*. Let (¢, h, f) be the corresponding principal slp-triple of §, and let p be the

half-sum of positive roots. Note that

P:iwi: %il
i=1

The principal sly-triple (€, h, f) defines an increasing filtration (.#(™§),, of b:

I

F"h={zeh| (ade)" 'z =0} Ch=p"

Since § has the same exponents as g, the dimension of .Z (™} jumps at the exponents

m=mq,...,m,, too.

Definition 1 (the principal filtration). The principal filtration of b is the filtration
(F ™)., where
Fo 1 (Bé(ﬁ(m%»m

Since [, [¢,h]] = 0, we have p € ZWh and p* = Bi(p) € FWh.

The symmetric filtration

Let S(g) be the symmetric algebra of g. We have S(g) = S(h) @ (n_- + ny)S(g).
Let Ch: S(g) — S(h) be the Chevalley projection map which is the corresponding
projection onto S(h). Let S(g)? be the space of g-invariant elements of S(g). It is

3
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well-known that the image of S(g)® by Ch is S(h)", with W the Weyl group of (g, b).

Let V be a finite-dimensional simple g-module. Consider the map,
Ch@l: S(geV =S V.

We have (Ch ® 1)((S(g) ® V)8) C S(h) ® Vo, where (S(g) ® V)9 is the subspace of
invariants under the diagonal action of g, and Vo = {v € V | h.v =0 for all h € h}
is the zero-weight space of V.

In the case where V = g is the adjoint representation, the free S(g)?-module
(S(g) ® g)? is generated by the differentials dpy, ..., dp, of homogeneous generators
p1,- .-, pr of S(g)%. Such homogeneous generators are of degrees m; +1,...,m, + 1,
respectively, if we order them by increasing degrees. We also have in this case,
(Ch® 1)((S(g) ® g)%) C S(h) ® b, since the zero weight subspace of the adjoint
representation g is b.

Let (S™(g))m be the standard filtration on S(g) induced by the degree of elements.
The symmetric algebra S(h) is canonically isomorphic to C[h*]. Let ev, denotes the

evaluation map at p, that is,
EVp: S(f))gC[h*] _>Ca x = <p,ZE>,

where (-, -) is the pairing between h* and b.

Definition 2 (the symmetric filtration). Set for m € Z-o,
Z{h = (ev, ® 1) 0 (Ch® 1)((S™(8) ® 8)?).

We refer (. ém)b)m as the symmetric filtration of b.

This is indeed a filtration of b since a famous result of Kostant [Kos63| asserts
that the elements dp;(x),...,dp.(z) are linearly independent if and only if z € g* is
reqular, that is, its stablizer in g for the coadjoint action has minimal dimension r.
But it is well-known that p is regular.

More specifically, we have the following statement, proved by Rohr:

Theorem 1 (|[Roh08|). For any m € Zs,, we have:
Fh = Fy,
In other words, the symmetric filtration coincides with the principal filtration.

4
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Rohr obtained a more precise result, and explicitly described an orthogonal basis

with respect to By in h from the algebra of invariants (S(g) ® g)9, cf. [Roh08].

Remark 1. We have a similar statement for any representation V when g is simply
laced; see [Jos12b, §3.5].
The enveloping filtration(s)
Let U(g) be the universal enveloping algebra of g, and let
he: U(g) — U(h) = S(b)

be the Harish-Chandra map which is the projection map from U(g) to U(h) with

respect to the decomposition,

Its restriction to
U(g)" ={uecU(g) | (adh)u =0 for all h € h}

is a morphism of associative algebras. Moreover, it is well-known that the restriction
of he to the center Z(g) = U(g)? of U(g) is an isomorphism of commutative algebras
whose image is S(h)"e (J[HC51]). Here, the o-action on h*, which induces an action
of Clh*] = S(h), is given by:

woA=w(A+p)—p, for all A € h*, w e W,

and S(h)"> stands for the ring of W-invariants of S(h) for the the o-action.
In [KNV11], Khoroshkin, Nazarov and Vinberg established the following triangu-

lar decomposition:

Ulg) @V = (5(h) @ V)@ (pL(n-)(U(g) @ V) + pr(ny ) (Ulg) @ V),

where py, and pg are the two commuting g-actions on U(g)®V given by: pr(z)(a®b) =
ra®band pr(r)(a ®b) = —ar @ b+ a ® z.b for z € g, respectively. Consider the
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generalized Harish-Chandra projection,
he: U(g) @V — S(h) @V,

with respect to the above triangular decomposition. Khoroshkin, Nazarov and Vin-
berg showed that the image of the invariant part (U(g) ® V')? for the diagonal action
p = pr + pr, which is contained in S(h) ® V4, is the space of invariant under all the
Zhelobenko operators (cf. [KNV11, Theorem 1]).

We now consider again the special case where V' = g is the adjoint representation.
Then we get that (he ® 1))((U™(g) ® 9)%) C (S(h) ® g)? C S(h) ® b since, as noted
before, b is the zero weight subspace of the adjoint representation g. Let (U™(g))m
be the standard filtration of U(g).

Definition 3 (the enveloping filtrations). Set for m € Z-y,
5 = ((ev, ® 1) o (he ® 1)(U™(8) © 9)°),

Z5"h == ((ev, ® 1) o hie) (U™(g) ® g)").

We refer (ﬁém)b)m and (ngm)b)m as the enveloping filtration and the generalized

enveloping filtration of b, respectively.

It is not a priori clear that the sets L%(Jm)b, m > 0, exhaust § since we do not
know a priori whether ((ev, ® 1) o (hc ® 1))((U(g) ® g)?) is equal to h. Similarly,
we do not know a priori whether ((ev, ® 1) o he)((U(g) ® g)?) is equal to . This is

indeed the case. A stronger result is in fact true.

Theorem 2 (|Jos12a, Jos12b|). For any m € Zxo,
L%(Jm)b = My and %m)h = Z7my,

In other words, the enveloping filtration (resp. the generalized enveloping filtration)

coincides with the principal filtration.

Joseph’s theorem is a highly non-trivial result, especially in the non-simply laced
cases. Its proof is deeply based on the description by Khoroshkin, Nazarov and
Vinberg of the invariant spaces in term of Zhelobenko operators. This is an extremely

delicate proof.
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The Clifford filtration

We now turn to a filtration arising from the Clifford algebra. Let Cl(g) be the Clifford
algebra over g associated with the bilinear form B,. Recall that Cl(g) is the quotient
of the tensor algebra T'g by the bilateral ideal generated by elements x ® v — By(x, x)
for x € g. It is a quantization of the exterior algebra Ag.

Let

¢: (v,y,2) = By(x, |y, 2]) € Ag

be the invariant differential Cartan 3-form of g. It belongs to the basis

¢ € N*™(g), i=1,...,r

of the space of primitive invariants P(g) C (/A\g)?. By the Hopf-Koszul-Samelson

theorem, the algebra of invariants (/\g)? is itself an exterior algebra with generators

é1,- .., ¢p. Kostant proved that, similarly, the algebra of Clifford invariants Cl(g)? is

a Clifford algebra CI(P(g)) with respect to a scalar product induced from By, [Kos97].
Consider the direct decomposition of the Clifford algebra

Cl(g) = CI(h) @ (n_Cl(g) + Cl(g)n,),

where g is viewed as a subalgebra of Cl(g) using the canonical injection g < Cl(g).
The corresponding projection hcegq: Cl(g) — Cl(h) is called the odd Harish-Chandra
projection. By a non-trivial result of Bazlov [Baz09, §5.6] and Kostant (private com-
munication), the odd Harish-Chandra projection hc,qq maps the invariant algebra
Cl(g)? = CI(P(g)) onto h C Cl(h).

Definition 4 (the Clifford filtration). Set for m € Z,
FE = heoan (PP (@),

where (P?*™1(g)),, is the natural filtration on P(g) induced from the degrees of gen-
erators, and q : Ng — Cl(g) is the quantisaton map. We refer (9}(}?){])"@ as the
Clifford filtration of b.

It is a well-defined filtration on b thanks to the above quoted result of Bazlov-
Kostant.
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Theorem 3 (|[AM12]). For any m € N, we have
FZ80 = 2800 and - FJVh = ZGUN.

In other words, the Clifford filtration coincides with the enveloping filtration and with

the generalized enveloping filtration.

We have heoaa(q(¢)) = Bi(p) with ¢ = ¢;. Kostant conjectured that the images
of the higher generators ¢(¢;), i = 2,...,r, by the odd Harish-Chandra projection
can be described using the principal filtration.

Next theorem positively answers his conjecture:

Theorem 4 (Kostant’s conjecture [Baz03, Jos12a, Jos12b, AM12]). For any m € N*,
we have:
FEh = Fy

The conjecture was proved in type A by Bazlov [Baz03] in 2003, and then in
full generality combining the works of Joseph [Jos12a, Jos12b| and Alekseev-Moreau
[AM12] (see Theorems 2 and 3).

Main results and strategy

In this thesis we establish the equality between the symmetric filtration (Definition 2)
and the enveloping filtration (Definition 3) for g of type A or C:

Theorem 5. Assume that g is sl..1 or sp,,.. Then for any m € Zy,

Together with Rohr’s result (Theorem 1) and Alekseev-Moreau theorem (Theo-
rem 3), Theorem 5 gives another proof of Kostant’s conjecture for the types A and C,
while avoiding Joseph’s result (Theorem 2). As mentioned above, Joseph’s proof for
the non-simply laced cases (e.g., type C) is particular involved. Since the symmetric
filtration and the enveloping filtration are similarly defined, our approach is quite
natural. Our proof is based on explicit description of invariants: in the case where g
is sl,41 or sp,,., homogeneous generators of S(g)? can be described from the standard
representation. Our approach is then to describe the images by Ch® 1 and hc ® 1 of

their differentials and of the symmetrization of their differentials, respectively, using

8
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weighted paths in the crystal graph of the standard representation. It is very different
from both Rohr and Joseph approaches. We refer the reader to next chapter for more
details about weighted paths.

We hope that our method can be adapted to other contexts, for instance to
affine Lie algebras in types A and C' or to other particular representations different
from the adjoint representation. Remember that the symmetric filtration and the
enveloping filtration are both defined for the special case where V' = g is the adjoint
representation. One may ask if an analogue result can be extended to some other
finite-dimensional simple g-module V. Namely, one can ask whether the equality
FIVy = ZUVy holds for any m, where Z{™V; stands for (ev, ® 1) o (Ch ®
1))((S™(g) @ V)9), and .Z™V; for (ev, ® 1) o (he @ 1))((U™(g) @ V)?). It is known
that the equality does not hold for all simple g-module V' (a counter-example was
found by Anton Alekseev [Ale]), but it would be interesting to know which are the
representations for which it does; see also [Jos12b, §3.3] for related topics. Alekseev’s
counter-example suggests it is a hard problem, and general arguments cannot be
applied.

We summarize in Figure 1 how the connections between all filtrations described

above were established by different researchers.

Theorem 5, g = sl,; or g = sp,,

0N 0N TS

Joseph
Rohr N
[ Fmp ]

Kostant conjecture —>¢

[ 2w ]

Alekseev-Moreau

FIGURE 1 — Connections between several filtrations on the Cartan subalgebra b.

Strategy

We outline below our strategy to prove Theorem 5.
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Assume that g = sl,4; or g = sp,,. Then the exponents are m; = 1,my =
2,....m, =rifg=sl,y,and m; = 1,ms =3,...,m, = 2r — 1 if g = sp,,.. One
can choose homogeneous generators of S(g)? as follows. Set n = r + 1 if g = sl
and n = 2r if g = sp,,.. Let (m,C") be the standard representation of g. It is the
finite-dimensional irreducible representation with highest weight w;. Set for m € Z,,

P = —————tr o 7™t

(m+1)!

that is, p,,(x) = tr(x™*1(x)) for any = € g. It is an element of C[g] = S(g*).

!
Identifying g wit(lT g_l’—k 1’3ﬁr0ugh the inner product By, p,, becomes an element of
S(g). The elements pp,,,...,pm, are homogeneous generators of Clg]? = S(g)? of
degree my + 1,...,m, + 1, respectively. Their differentials, dps,...,dp,,, are ho-
mogeneous free generators of the free module (S(g) ® g)? over S(g)?. Moreover
(B 1) (dpmy),-- -, (B®1)(dpm,) are homogeneous free generators of the free module

(U(g) ® g)? over Z(g) = U(g)?® (cf. Proposition 1.2), where

1
B:S(g) —U(g), x1 - xTp+— — Z To(1) " To(k)

is the symmetrization map. Here, &, denotes the symmetric group of order k. We
present more general constructions of invariants in Section 1.1.

Let m € Z~¢. Since dp,, and (8 ® 1)(dp,,) are g-invariant,
dp,, = (Ch@ 1)(dp,)  and  dp,, = ((he® 1) 0 (8® 1))(dpp)

lie in S(h) ® b. Define the elements d_pm/,c and a;)mk of S(h) for k € {1,...,r} by:

Our main results are the following:

Theorem 6. Assume that g is sl,.1 or sp,,.. Let m € Z~y. For some polynomial
Qm € C[X] of degree m — 1 we have ev,(dp,, ) = Qum(k) for k=1,...,r so that

evp(dpn) = — ZQm

10
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Moreover Qy =1 if g = sl.y1, and Q1 = 2 if g = sp,,.

Remark 2. For m > 1, the polynomial Q,, is explicitly described by formula (2.4)
for sl..1, and by formula (2.7) for sp,,.

Theorem 7. Assume that g is sl.41 or spy,.. Let m € Zso. For some polynomial
Qn € C[X] of degree at most m — 1 we have evp(agmk) = Qm(k‘) fork=1,...,r so0
that

Moreover Ql =1ifg=-sl.q, and Ql =2 if g = sp,,.

Remark 3. For m > 1, there is no nice general description of the polynomial Qm m
term of r and m as for the symmetric case (see Remark 2). The polynomials Qs

are defined inductively by formula (3.5) for sl 11, and by formula (4.19) for sp,,.
We claim that Theorem 6 and Theorem 7 are sufficient to prove the main theorem:
Proposition 1. Theorem 6 and Theorem 7 imply Theorem 5.

Proof. Assume that g is sl..; or sp,,.. First of all, we observe that the exponents
mq, ..., m, are pairwise distinct in both cases. On the other hand, by a result of
Kostant mentioned above, the elements ev,(dp,, ), ..,ev,(dp,, ) are linearly inde-
pendent in h since p is regular [Kos63|. Thus, for any j € {1,...,7}, the vector space
generated by ev,(dp,,, ), ... ,evp(d_pmj) has dimension j. We denote it by V. Set for
J € Lo,

'
/LU] — Zk]wi and W7 = Spanc {wo’...,wj_]_}-
k=1

We have dim W; < j.
As a first step, let us show that for all j € {1,...,r},

Vy = Wi,

By Theorem 6, the inclusion VJ C Wi, holds. Assume that there is w € Win, \ \_/J
Write w in the basis ev,(dp,,,), ..., ev,(dp,, ):

w = Z a; ev,(dp,,,),

=1

11
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and let ¢ be the maximal integer i € {1,...,7} such that a; # 0. Since w € V;, ¢ > j.
But then w is in W,,, and not in W, _; by Theorem 6, which contradicts the fact
that w € W, because m; < my — 1. We have shown the expected equality of vector
spaces.

Let us now denote by VJ the vector space generated by evp(a]\?ml), e ,evp(a]\)mj)
for j € {1,...,r}. Our aim is to show that V; =V} for all j € {1,...,r}. By the
first step, it suffices to establish that V] = Wy, for all j € {1,...,7}. According
to Theorem 7, we have the inclusion Vj C Wy, for all j € {1,...,r}, and dim W,,,
has dimension j by the first step. Theorem 3 implies that v, = h, and so the
elements evp(a;)ml), . ,evp(a];mT) are linearly independent. In particular, each V;
has dimension 7, hence the expected equality f/] = Wy, forall j € {1,...,r}. This
finishes the proof. n

The rest of this thesis is devoted to the proofs of Theorem 6 and Theorem 7.

The proof of Theorem 6 is relatively easy and is completed in Chapter 2. In
contrast, the proof of Theorem 7 is much more involved and requires technical results
on weighted paths (see §3.1, §4.1) and an equivalence relation on the set of heights of
paths (§3.2, §4.2). The proof of Theorem 7 will be achieved in §3.3 for the type A
and in §4.3 for the type C.

The thesis will be organized as follows. Chapter 1 is about generalities on invari-
ants coming from representations. We introduce in this chapter our central notion of
weighted paths. Chapter 2 is devoted to the proof of Theorem 6. From Chapter 3
we focus on the proof of Theorem 7. In Chapter 3, we prove Theorem 7 in the case
where g = sl,..;. We start with some technical results on weighted paths and invari-
ants in the enveloping algebra. Then we prove the theorem using equivalent classes
on weighted paths. In Chapter 4, we prove Theorem 7 in the case where g = sp,,.. We
follow for the sp,, case the general strategy of Chapter 3. However new phenomenons

appear. Consequently, the proof is much more technical and new tools are needed.

Notations

Unless otherwise specified, we keep the notations used in the introduction further on
in the thesis.

12



Chapter 1

General setting and weighted paths in
crystal graphs

As it is explain in the introduction, our strategy is to use an explicit description of
generating invariants of (S(g) ® g)? and (U(g) ® g)® which can be done using the
standard representation for both sl,.; and sp,.. In this chapter, we start with a
more general context: we will see that (not necessarily generating) invariants can
be constructed from any finite-dimensional irreducible representation. In the case of
minuscule representations (cf. Definition 1.4), and more generally irreducible highest
weight representations whose all nonzero weight spaces have dimension one, one can
introduce the notion of weighted paths (see Subsection 1.2). This notion will occupy
a central place in the rest of the thesis. We will apply all these facts to the special
case where the simple highest weight representation is the standard representation of
sl and sp,,, that is, the simple highest weight representation associated with the

first fundamental weight c; (in both cases).

1.1 Invariant polynomial functions coming from rep-

resentations
Recall that A is the root system of (g,bh), that IT = {f,..., .} is the basis with

respect to h @ ny and A, is the corresponding set of positive roots. Let Q = > Zf;

=1

13



Chapter 1. General setting and weighted paths in crystal graphs

be the root lattice and set

Q4 = ZZ>0@'-
i=1

We define a partial order on h* by :
=N <= p—AE Q.

For (\, i) € (h*)?, we denote by [\, u] the set of v € h* such that A < v < p. Let
also . .
P = Z Zw; and Py = ZZ>0wi
i=1 i=1
be the weight lattice and the set of integral dominant weights, respectively. Note

that any p € P is written as
w=> (u By
i=1

Let A € P,. We write (my, V(\)) for the unique, up to isomorphism, finite-dimensional
irreducible representation of g with highest weight \. For p € h*,

VN, ={ve V)| m(z)v=p(x)v for all x € h}

is the p-weight space of V(). The set of nonzero weights of V(\) will be denoted by
P(\):
PQA) ={pe P V(N #{0}}.

Fix m € Z~q, and let

1
A m+1

Pm” = (m+1)
Thus p& is the element of C[g] = S(g*) defined by

1

P (y) = mtf(ﬂ(y)mﬂ)y yeg.

Furthermore, pl is a g-invariant element of C[g] of degree m+1, cf. [TY05, Lemma 31.2.3|.

Let # = (by,...,bq) be a basis of g, and let B* := (b],...,b}) be its dual basis.

14



1.1 Invariant polynomial functions coming from representations

d
Choose y € g. Then y = > bf(y)b; and so
i=1

WA(y)m+1 = Z ﬂ-)\(bil) ©0---0 Wk(bierl)b’?l (y) e b:m-H (y)a

1<,y im+1 <d
which implies the following lemma:

Lemma 1.1. We have:

1
N — 4 . * *
P = G ST tr(malby) oo malby, OB

Si1yeeim41<d

Identifying g with g* through B, p$) becomes an element of Clg*]® = S(g)? of
degree m + 1. Moreover, its differential dp%), defined by

d N
Opm,
dptV = b;
pm abz ® k>
k=1

is an element of (S(g) ® g)°.

Recall that 5: S(g) — U(g) is the symmetrization map. Let Z(g) = U(g)? be the
center of the enveloping algebra. The first part of the following proposition is due to
Kostant [Kos63].

Proposition 1.2. Assume that pfﬁb‘f, o ,pﬁ,’)} are homogeneous generators of S(g)?.

Then dpty), ..., dp%) are free homogeneous generators of the free module (S(g) ®g)°
over S(g)?, and (B ® 1)(dp%3), L (e 1)(dp£,f[2) are free homogeneous generators of
the free module (U(g) ® g)? over Z(g).

Proof. 1t suffices to prove the second part. Our arguments is adapted from Diximer’s
[Dix77]. Denoting = &1, we first observe that 3((S(g)®g)?) is equal to (U(g)®g)®,
since B is an isomorphism which commutes with the diagonal action of g. Then it
sends invariants to invariants.

Let M be the sub-Z(g)-module of (U(g) ® g)® generated by 5(dpm, ), . .., B(dpm.).
Then the graded module associated with the filtration induced on M is a sub-S(g)®-
module of (S(g) ® g)?, since S(g)? is the graded space associated with the filtration
induced on Z(g). It contains dp,,, ..., dpm,, and so it is equal to (S(g) ® g)?. On the
other side, the graded space of (U(g) ® g)? is contained in (S(g) ® g)9. Hence we get
that M = (U(g) ® g)°.

15



Chapter 1. General setting and weighted paths in crystal graphs

For the freeness, let K be the module of relations between 3(dpm,); - - ., 3(dpm,)
on Z(g), so that
K C Z(g)".

The filtration on Z(g) induces a filtration on K and the graded module associ-
ated with this filtration is contained in the module of relations on S(g)? between

dpm, - - -, dpm,, which is zero. Hence K = 0. O]

Example 1.3. In Table 1.1, we give examples where p%\f, e ,p%‘z are homogeneous

generators of S(g)? following [Meh88|.

Type A | dimV(A) | N decomposition in the basis €
A, w1 | r+1 r+1 W1:51—$(51+"'+5r+1)
B, wi | 2r+1 r w1 = €1

Cr T 2r r w1 = €1

D,,oddr | wy | 2r T wr = €1

G2 w1 7 3 w1 = —&€2 + €3

F4 w4 26 4 Wy = €1

E6 w1 27 8 w1 = %(58 — &7 — 56)

TABLE 1.1 — Examples of A\ for which Proposition 1.2 holds.

Definition 1.4. The representation V(X) is called minuscule if it is not trivial and
if P(\) = W\, where W.\ denotes the orbit of the highest weight A\ under the action
of the Weyl group W = W (g, ). In that case, we say that the dominant weight X is

minuscule.

Remark 1.5. The minuscule weights are fundamental weights and if A is minuscule,
then each nonzero weight space in V' (\) has dimension 1. Moreover, dim V' (\)y = 0.

The minuscule weights are given in Table 1.2.

Type | minuscule weights | NV decomposition in the basis &

A, | @, o r+l|mi=ci+tei— gler+ o+ e

B, Wy r @ =31+ +er)

Cr w1 r w1 —=¢&1

D, w1, Wr—1, Dy r wlzel,wnH:%(51+--'+5n)+t5t,t€{—1,0}
Es w1, We 8 wl:%(88—57—86),w6:%(88—57—86)4-85
E~ wr 8 wr = €g + %(68 — 67)

TABLE 1.2 — Minuscule weights

16



1.1 Invariant polynomial functions coming from representations

We fix from now on § € P, such that each nonzero weight space V' (4),, u € P(6),
has dimension one. Choose for any 1 € P(d) a nonzero vector v, € V(J),. By our
assumption, the set {v, | u € P(6)} forms a basis of V(§). For (A, u) € P(§)? and
b € A, define the scalar aA by:

m5(b)v, = Z af\b,LU,\. (1.1)

AEP(5)
Next lemma follows immediately from Lemma 1.1.

Lemma 1.6. For any m > 0, we have:

(6) 1 a(bil) a(b1m+1) b* b*
Py = (m + 1)' L R R St L BT L S A Tm41"
DAt 1 <A By ooty )
e p(s)ym+1

Assume now that Z = {e, i | @« € A,i = 1,...,r} is the Chevalley basis of g
(in a fixed order), so that

B = {cab_o, @ |aeNi=1,. 1}

with ¢, # 0 for « € A. We denote by d_pgz) and E;ij? the images of dpg) by Ch® 1
and (he® 1) o B, respectively, where B is # ® 1 as in the proof of Proposition 1.2.
When there will be no ambiguity about d, we will simply denote by p,., dpm, dp,,,
a]\)m the corresponding elements.

Let m > 0. Since dp®) and 5(dp®)) are g-invariant, d_pgi) and @Ez) liein S(h) @ b.
Define the elements d_p(é) and @S)k of S(h), for k € {1,...,r}, by:

m,k

—@) _ 1 ~10) —~0) 1 G —0)
dpy, :mzdpm,k@)wli? dp,,, :mzdpm,k@’w/i'
k=1 k=1
For k € {1,...,r}, we set
PO i= {u € P(O) | (. ) £ 0}, (1.2

Lemma 1.7. We have

(1) ), = Z Z <,Bh>...<u,6im><u,6k>w§1...wfm,

HEP(0) 1<in,ee s

17



Chapter 1. General setting and weighted paths in crystal graphs

—~(9) (bi;)
P 1 (b ) *
(2) dpm,k - § : E : a’ﬂjl Hig © * a’ujm,ujl <:uj1 ) ﬁk>hc< c bzm)
Bjqseees ,uijP((S) 1<i1 eyt <1
ki € POk

Proof. First of all, by Lemma 1.6, we have

(biy) (bi,,) o) * * *
m - | Z Z Z a"u'jl Hip t aﬂ]m?”ﬁerl g1 M1 bll o bim ® bk

k=1 gyt ) €PG) 1<i1im<d
ki € POk

(1) For \,p € P(6) and i € {1,...,71},

R I TR

Since dpfi) is g-invariant, its image by Ch ® 1 belongs to S(h) ® b, and we have:

) = (Ch® 1)(dp®)

[Z Z Z < 76@1)<Mwézm><:uvﬁvk>wflw§m®w2,

k=1 peP(8) 1<it,...,im <1

whence the statement.
(2) The image of dpd) by the map 3 is the following element of (U(g) ® g)%:

2 1)
Bdp)

1 ¢ (biy)

b.
- i1 (bipy) (bx) *
m! Z Z Z Qg hi = a“1m7“7m+1a/‘3m+1’%1b b ® bk'
k=1 1<i1,... i <d gy #jm+1€P(5)
i € POy

Since (6 ® 1)(dp?) is g-invariant, its image by hc ® 1 belongs to S(h) ® b and we

have:

3 = (he® 1) 0 B)(dp®)

Ly (biy) .
- % Z Z Z a“hl’“m e a/(ﬁbjm,u“ <M]17 6k>hc( R blm) (%9 w,ﬁg,

© k=1 1<, im <d Ky ooy, EP(S)
1j € PO

whence the statement.
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1.2 Weighted paths

1.2 Weighted paths

Let 6 € P,. Continue to assume that each nonzero weight space of V() has dimen-
sion one.

In this section we introduce paths in the crystal graph of 9, labelled by roots.
They will serve us to describe the invariants EES), m € Zyp.

The crystal graph of the integral dominant weight J, denoted by %'(d), is defined

as follows :
e ¢(0) contain #P(0) vertices,

e its arrows are labeled by the simple roots 5;,i € 1,...,r,

® an arrow g, i}(gk exists when 0, = d; — ;.

Ezxample 1.8. For g = sl,,; and g = sp,,, V() is the standard representation. The
crystal graph of 6 = w; is described in §2.1.1 for g = s[4, and in §2.1.2 for g = sp,,..

The reader is referred to these paragraphs for all notations relative to these examples.

Let m € Zsg and (u,v) € P(0)?. Let us introduce the set of paths of length m
starting at p and ending at v with steps in P(J).

Definition 1.9 (path). Let 2,,(u,v) be the set of sequences p = (p®, ..., p™) in
P(0) such that pV = p, p™+Y = v and for alli=1,...,m, u® — p+) ¢ AU{0}.
The elements of P, (u,v) are called the paths of length m starting at p and ending
at v. When p=v, we write 2, () for P (1, 1t).

Remark 1.10. For g = sl..; or g = sp,, with 6 = @, (cf. Example 1.8), the difference
of two different weights is always a root. So the condition pu® — p(+) € AU {0} is
automatically satisfied. Note that, furthermore, in these cases each root o € A can

be written as a difference of two weights.

Such paths have been considered in a more general situation in [LLP12] in con-
nection with Kashiwara’s crystal basis theory [Kas95].

Recall that the height of a positive roots « is

ht(a) = i ni,
i=1

if =) n; B € Ay. For o« € —A,, we define its height by ht(a) := —ht(—a).
We adopt the convention that ht(0) := 0.
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Chapter 1. General setting and weighted paths in crystal graphs

Definition 1.11 (height of a path). Let u € &,,(u,v). For anyi € {1,...,m}, set
hi(p)s = () — ).
Then we define the height of u by

ht(p) == (ht(p), ..., ht(w)m) € Z™.

For pn € Pp,(pt), we have " ht(u); = 0.

Definition 1.12 (weighted path). Let 2,,(u,v) be the set of pairs (1, @) where
p € Pn(p,v) and a = (@M, ..., a™) is a sequence of roots satisfying for any

j €{1,...,m} the following conditions:

1. if ht(p); # 0 then a9 = p) — LU

2. if ht(p); = 0 then o) € 11 and (u), a1y #£ 0.

We call the elements of @m(,u, v) the weighted paths of length m starting at p and
ending at v. When p = v, we write @m(u) for @m(,u,u). We denote by 1,, the
trivial path (u, @). It has by convention length 0.

We represent a weighted path (u, o) € P, (1, ) by a colored and oriented graph
as follows. The vertices are the weights u™), ..., u™*1) and the oriented arrow from
p) to it for j € {1,...,m} is labelled by the root a9,

Ezample 1.13. Assume that g = slg and 6 = w; (cf. Example 1.8). For i =1,...,6,
let &; € b* be the linear map defined by ¢;(h) = h; if h = diag(hy,...,hs). Let
Bi=¢e —eu, i €{l,....,5and & = &; — t(e1 + -+ + &), with i = 1,...,6 (see
§2.1.1 for more general notations about sl,.1).

Let pt = d3. Consider the weighted path (u, ) € @m(,u) with u = (93, d4, 96, 95, 5, 05, 03)
and a = (03, B4 + B5, —Bs, Bs, Ba, —B3 — P1). We have:

1. /,L(l) = 53, ht(,u)l = ht(53—64> = ht(€3—€4) = ht(ﬁg,) = 17 and Oé(l) = /1(1)—/1(2) =

03 — 04 = [,

2. /L(g) = (54,ht(,u)2 = ht((54 — 56) = ht(€4 - 56) - ht(ﬁél + ﬁ5> - 2, and 04(2) =

p® — p® = By + Bs,

3. ¥ = 86, ht(u)s = ht(dg — d5) = ht(eg — e5) = ht(—35) = —1, and a® =

pl¥ — p = 3,
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1.2 Weighted paths

4. ™ = 05, ht(p)s = ht(ds5 — &5) = 0; we observe that (u¥), &) # 0 for a € IT if

and only if o = B4 or a = f5; our choice is a® = 35,

5. u® = g5, ht(u)s = ht(d5 — d5) = 0; we observe that (u®, &) # 0 for a € IT and

only if a = 4 or a = [5; our choice is a® = B,

6. p® = 85, ht(p)s = ht(ds — d3) = ht(es — e3) = ht(—=p1 — B3) = —2, and

a® = —B5 — fy.

We have ht(u) = (1,2,-1,0,0,—2) and SO ht(p); = 0. We represent in Figure 1.1
this weighted path.

(51 52 (53 (54 55 56
o o
54 5

FIGURE 1.1 — An example of weighted path in slg.

Recall that 4 is the Chevalley basis {eq, i | « € A,i =1,...,7} of g and that
9" is its dual basis, identified with a basis of g through the inner product By. Namely,
B = {cqe_q, wg | e Aji=1,...,r}, with ¢, # 0. For 8 € I, we write ws the
fundamental weight corresponding to 3. Thus wg, = w;, ¢ = 1,...,r, but it will be

convenient to have both notations.
Pick p,v € P(0).

Definition 1.14. Let m € Z-o and (p,a) € P, v). Forj € {1,....m}, we
define the element b,y of & as follows:

1. if ht(p); # 0, set bua)j = Catr€_at) S0 that bl = Cali);
2. if ht(H)j =0, set bua)j = a9 so that b@’g)’j = wim.

Definition 1.15. Let (u,a) € P, v). We define the element by of U(g) by

21



Chapter 1. General setting and weighted paths in crystal graphs

where

(b,a),m) (b(,a),1)
Qg = a 2 a $
/= 1 K I M

In the case where u = v, we observe that 0, , belongs to Ul(g)".

Definition 1.16 (weight). Assume that = v. We define the weight of (u, a) to be

the complex number,

wi(p, ) := (ev, o he)(b,,q)-

We adopt the convention that wt(1,) = 1.

Example 1.17. Assume that g = sls and 6 = w;. Choose the the weighted path as in
Example 1.13. We have:

L. ht(p); = 1 # 0 and al) = B3 = g5—e, then D(pa)l = €ey—c; and b@,@@ = Ceycy,
9 ht(H)Q =20 and a® = B, + B = 4 — &6 then b(ﬁ’g)g = €c4—c, and b@,g),? =
684—867
3. ht(u); = =1 # 0 and a® = —B; = g6 — &5 then Dua)3 = €esee AN B, ) 5 =
Ceg—es s
4. ht(pu)s =0 and a® = @5 then Dipa)a = B5 and b?ﬁﬂ)/l = s,
5. ht(u)s = 0 and a® = B, then bipa)s = (4 and b@g),t’) = Wy,
6. ht(u)g = —2 # 0 and a!® = —f; — B4 = &5 — &3 then D(pa)6 = €es—e; and
s = €ormes
Moreover,
(b(u,a),6) (O(u,0),5) (bur.,1)
Apa = Ay 46 40 450 - 4@ o
= a5 al? o) oz aliie; W alia ) = (85, Bu) (65, Bs) = —1.
and
o = Qpabiian - Djas = —€es—cs€ei—eqCeo—es W5 Waes—cs
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1.2 Weighted paths

Ezample 1.18. Assume that g = spg and § = w; (cf. Example 1.8). For any i =
1,...,4, let &; € b* be the linear map defined by ¢;(h) = h; if h = diag(hq,..., hy
,—hi,...,—hg) € b. Let f; == ¢; — ;41 for i = 1,...,3 and 4 = 2¢4, and 0; =
&, 0; = —¢&;, for i = 1,...,4 (see §2.1.2 for more general notations about sp,,). We
represent in Figure 1.2 the weighted path (u,a) € @8(61) of length 7 starting and
ending at d; with

= (51754a54a54a51a51a63a61)7
= (61 — €4,2¢e4,P3,61 — €4, 1,63 — €1, —€1 — €3), and

ht(p) = (3,1,0,3,0, 2, 5).

=

i)

=g
w
S
N
=
firy

B3 I3}

Ot

oD o@

o a'®
FIGURE 1.2 — An example of weighted path in spg.

Thus, we have

* — J—
()1 = Cer—ea and b(g,g),l = Cey—c1)

*

o)z = €20 DA Do)z = 262y,

fg,g)ﬁ - w%a =ws and bz = Fs,

*

()4 = Cei—ey and b(ﬁ,g),l = Cey—e1;

zkﬁﬂ)f) = w%l = wl and b(ﬁag)vl = 617

*
(1,),6

* —
(p,),7 — C—e1—e3

= €eg—ey and b(ﬁ»ﬂ)ﬂ = €ey—e3;

and b(ﬁag),l = Certes-

Hence,
- (b(ﬂ,g)ﬁ) (b(ﬁ,g),ﬁ) (b(ﬁ,g),l)
Apa = @y 0 Q) yo) - Qe 0
_ (651+83) (651763) (Bl) (664761) (33) (267264) (654,51)
T Ogy—ey Agg,—e1 gy, 610y, —c4 V—cy,—e4P—cgeqs Aeser
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Chapter 1. General setting and weighted paths in crystal graphs

=1 x (=1) x (01, 41) x (—=1) x (04, F3) x 2 x 1

and

* _ *k * _ ~ ~
Uio = aﬁ,gb(&g)’l e b(ﬁ’g),7 = —2€, c,9:,W3€c, —c,T1Ccy—e;€—c|—c3-

Recall (1.2) that for k € {1,...,r}:

P(8) == {p € P(8) | {, Bi) # 0}.

We are now in a position to express the elements d_pmk and a;mk in term of weighted

paths as follows:

Lemma 1.19. Let m € Z~g and k € {1,...,r}. We have:

d_pm,k: Z Z (1 5k>ua>

HEP(8)r (1a)€ Pm(p)
ht(p)=0

o= > > (. Bhe(d],,).

HEP(S), (E,Q)E:’fi’m(ﬂ)

Therefore, we have:

evp(dpp) = > > wilpa)(u, B,

BEP()r (1,0)€Pm (1)
ht(p)=0

evy, dpmk Z Z Wt(/jﬂg) <M7Bk‘>

HEPO)k (p,0)€ Prm () B

Proof. Recall the standard fact that for « € A and p € P(9),

7T5(ea)v,u S V<6)u+a = (CU;Hraa

with the convention that v, = 0 if u + a € P(5). The equality V()10 = Cvpta

holds because of our assumption that all weight spaces have dimension one. Therefore,

afffj)#O=> (h=v+a and v+ae P(9)).
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1.2 Weighted paths

Forie {l1,...,r} and p € P(6),

7T§<Bi>vu = (u, Bz‘)%

Therefore,
Bz) #0 < (v=p and (u,53;) #0).

According to Lemma 1.7, we have:

TN (bl) *
A= D D g, -alm) (g Behe(b], ),

and it is enough to sum over p; := (5, ..., ) € P(6)™ and i := (i1, ...,im) €
{1,...,r}™ such that

(biy) ; 3
aujll,#jz - #J::,)/m #0 and <le’ Br) 70

Fix such (4, 4;) and set for j € {1,...,m},

#(1) = Mgy M(Q) = s M(S) = Mgy SRR 'u(m) = Ko Iu(m-‘,-l) = Hjis
W) a if b =ceea, a €A,
5 if bij = 57 ﬁ € H7
and

W= gy

Then p € P(0), and (p,a) € P.,(11). Moreover, following Definition 1.15, we get:

bua)j = bip,_;, for j=1,...,m,
(b(,u a), m) (b<p4 ), 2) (b(# a), 1) . . . .
pa = A i) yom) -+ Q@) 4@ Cue) 0 and bu_ = Ouabua)n - b(&g)m_lb(&%m’

whence the expected formula for a]\o,m Bt

W= > > {pBhe(d],,).

HEPB)k (p,a)€ Prm ()
Then the formula for ev, (&Em ) is obvious by definition of wt(u, @) (cf.Definition 1.16).
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Chapter 1. General setting and weighted paths in crystal graphs

Let us now turn to d_pffb)k and ev,(dp,, ;). By Lemma 1.7, we have:

Dh= > s B - (s B ) (s B 0, - w0

MEP((S)]C 1<iy,..., I KT

To each i := (i1,...,iy) € {1,...,7}" such that
(1t Biy) - (s Bi) # 0
we attach the weighted paths (u,a) € P, (1) with
p=-o=pm =y and V=g for j=1,...,m.

Since all weighted paths (p, a) € P (1) with ht(y) = 0 are of this form, we get the
desired statement. Indeed, for such paths, b7 , € U(h) = S(b) thus he(b ) = b7, .

) Y

Note that for paths (u, a) € P, (1) such that ht(p) = 0, we have

wt(p, @) = (M) a™) (ot )L (ot ),

and the aU)’s run through the set

I, :=A{p e IL[ (u, B) # 0}

Hence we get,

1.3 Operations on weighted paths

We keep the notations of previous sections. We study in this section some useful

operations on the set of weighted paths. Let (m,n) € (Zs)? and (), u,v) € P(4)3.

Definition 1.20 (concatenation). Let (u,a) € Pn(\,pu) and (1, o) € P, v).
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1.3 Operations on weighted paths

We define the sequences p* pi' and o ' by:

(m+1) g /’[‘/(1)7 L. Ju/(nJrl))’ g*gl = (a(1)7 ... 7a(m)7 O{/(l)7 - ,al(n)>'

=
=

ok = "

The pair (p, o) * (i, o) := (u*p',axa') defines a weighted path of Prin( A v) that
we call the concatenation of the paths (u,a) and (1, ).

Lemma 1.21. Let (u,a) € Pon(\, 1) and (W, o) € P, v).

1. We have
* * *
(pa)x(p' ) — bf,g bg’,g"
2. If \=pu=v,
* o * *
hC(b(M a)*(ﬁl7gl)) = hC(pr[)hC(bH/,g/)
and
wh(p* p ) = wt(p, a) wi(p', o)
Proof. (1) From Definition 1.15, we have
b* (bw a)m) (bw o), 1)6* *
M(m+1) plm) == M(Q) (D) (00,1 = P(p,0),mo
b* o (b(g’»g’)yn) (b (w! vg)yl) * b*
ot = Q) ) - Qe i) Qe O ol e
Thus,
bob, = (b(u,0),m) (bw a)1) 4 b (b aty,n) ( W han) b
walp o = Qyomin) yomy e Q) ) (M )1 (,0);m@ i) oy =+ ey p) O a1+ O ar)n
o (b(g’,g/)yn) (b (g’,g/)vl) (b(g,g),m) (b(g,g)vl) * b* b* *
- a‘u/(”“'l)ﬂul(”) T a‘u/(z)“u/(l) a”’(1)7u(m) T a‘u,(Q)hu,(l) (ﬁyg)’l e (ﬁ7g)7m (ﬁ’vg/)zl e (Hlvgl)vn7
and
b* o (b(ﬂ/,g/),n) ( (;4 al), 1) (b(u ), ) (b(ﬂ,g),l)b* * * b*
! axe! = Q) oy e Q) p) Gy omy s @) o) Oua),t s Oua)m O o)1 O o) ne
Since ™+ = /M) then we have the desired equality.
_ (m+1) _ ,,(1) * L * *
(2) Assume A = p then p = pt. Let by, = a&gb(ﬁgm - baym For any

h € b, we have

m

(ad )b} 0 = Y apablays - B buay s - Uuaym

i=1
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Chapter 1. General setting and weighted paths in crystal graphs

= a0 = 31 = pTD) () = (Y = D) (R, = 0.
j=1 j=1

Thus, b}, € U(g)". Similarly we have bl € U(g)". The restrictions to U(g)" of hc

and of (ev, o hc) are homomorphisms of algebras. Therefore,

hC(b?ﬁvg)*(Hlvg/)) = hC(bZ7gb;(;/7g/) = hC(b;,g)hC(b*/7 /),

and

wt(p* g, ax @) = (ev, 0 he) (b, a)e(u o) = Wt @) wt(p/, o).

Definition 1.22 (Cutting a vertex). Let m € Z~1, (u,v) € P(§)* andi € {2,...,m}.

Let (p, o) € Pn(M, 1) and assume that (1, @) is a weighted path with no ramification'.
We define the sequences p#' and o' as follows:

1. Ifht(p);1 # 0, ht(p); # 0 and oY + a9 £ 0, then we set:

= (Y L

a = (oW ... Y 4 @ o+

(i+1)’ N (m-‘rl))

)

L al™),

The pair (p, )#' = (u#*, o#") defines an element of Prn_1(\, ).

2. If ht(p)i—1 # 0, ht(p); # 0 and oY 4 o) =0, then we set:

pr = (M(l), . ,Iu(i—l) _ Iu(i+1)’ N ’M(erl))

a® = (oW, ... a7V o) o),

Y

The pair (p, )#" == (u#', a*') defines an element of Prn_a(\, ).

3. If ht(p); = 0, then we set:

PRI

= (D, D Gy,

o= (aW, oY oD ),

1 By path with no ramification, it means that any vertex u(?) is related by an arrow to at most two
other vertices.

28



1.3 Operations on weighted paths

The pair (u, )t = (H#i,g#i) defines an element of @m_l()\, 1).

Our definition cannot be applied for a vertex u® such that ht(p);—1 = 0 and

i-1) _

ht(p); # 0. So we cannot cut such a vertex p(V. In such situation s 1w so we

can cut the vertex (1 instead. We illustrate in Figure 1.3 the operation of “cutting

the vertex 1(3” in the three above situations.

RO I CORC) a® e 43 O o @) a® 4 a®)
(1) e . s « e . o @
@ SN o@
put) a® p? @ p® gyl a® -
a® @ T > a® @ 0@ 4o
@O @ L® @) 3) (SO RSNES
(2) M’ - Iug 5 M= ,,#?,) N M’:a—<_‘,u(2) = ,u(4)
a® @) ) )
1) (2) ) 1) (2)
M al) p a? ®3) #3 M al) p a®
(3) ® ® Oa 77777 N ° . ® M(4)
a(4) /’L(B) = Iu(4) 04(4)

FIGURE 1.3 — Cutting the vertex p(®)

Let m € Z+y and (u,v) € P(0)?. For i := (iy,...,%,) € Z™, set

P, v); = {(1t,0) € P, v) | ht(p) =i }.

The elements of 22, (11, v); share the same vertices and only the labels of the “loops”
(i.e. the labels ) such that 9 = pU*+Y) may differ. We obtain the following
partition of 2, (1, v):
Pn(v) = || Plpv)ic
iczm
The set @m(u, v); is empty for almost all i. We endow the set Z™ with the lexico-
graphical order . The zero element is 0 = (0, ...,0). We denote by ZI, (respectively,
Z,) the set of elements in Z™ greater (respectively, strictly greater) than 0 for the
lexicographical order.
Note that if 7 € Z7, then he(bj, ) = 0 and wt(u, a) = 0.
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Chapter 1. General setting and weighted paths in crystal graphs

Definition 1.23 (turning back). Let i € Z such that 7" i; = 0. Let q(i) be the
smallest integer q of {1,...,m} such that i, <0, and let p(i) be the largest integer p
of {1,...,q(i)} such thati, ; >0. Thusi is as follows:

Z = (7:1, e vip(i)—27 Z.p(i)—la 0, B ,O, 'Lq(z) 7iq(1)+17 e ,Zm)
—— ~~

>0 >0 <0

For a path p of height i, we will say that @) is the position of the first turning
back.

Note that p(i) is always strictly greater than 1 for such i.
Lemma 1.24. Let m € Z~y, (p,v) € P(0)%, i € {2,...,m} and (p,a) € Pron (A, ).
1. If ht(p)i—1 # 0, ht(p); # 0 and o= + o =0, then:
Ao = (Ca(i—l))Qa(H7g)#i.
with cyi-1) as in Definition 1.14.
2. If ht(u); = 0, then:

CLHﬂ = </,L ' , ‘ >a(,u,a)#i'

Proof. Recall that (75,1 (§)) is a representation with highest weight § and (v)xep(s)
is a fixed basis of V(d). For A\, u € P(d) and b € b,

m5(b)v, = Z aE\lﬁLv}\.
)

AeP(S

1. If oY + a® =0 then oY = —a® and Y = u+Y . We have,

#i . 1 i—1) __ i+1 m+1
. 1 i—2 i+1 m
ot = (oM, a2 Q) )
Thus,
(b(u,a),m) (ca@e o) (Chi-ne_y6-1) (b(u.a).1)
Apa = Apm+r) yom) - Cuarn 0 Do -1 UGN
= w iy pl+D N p®p

o (b(g,g),m) (b(g,g),i-H) (b(gyg),i—Q) (b(g,g)yl)
Ap,a)#i = yomt1) yom) -+ Qv a0 - -2 - Qe 0 -
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1.3 Operations on weighted paths

On the other hand,

(e,a(i)) (e,a(z‘ﬂ)) o
@1y 0 @y -1 Vplit) = To (e_a)ms(e_at-1)vyi-1

= 7T5([6_a(i) , 6_06(1'71)])"011(1'71) + 7T5(€_a<i71>6_a(i))Uuu;l).
Assume that x(~Y — o € P(§). Then

since a® = —al~1 and =Y = 40D Note that Y — ) = 2,00 — () ¢
P(0) if and only if =Y = u®. Thus we get o~ = 0, which is a contradiction
with the condition a"™" # 0. Hence u(~Y — o) ¢ P(§) and

(e,a(i)) (e,&(i—l)) .
au(i+1),”(i)au(i)7u(i—1)vu(i+1) = 775([6704(2')7 6704(1'—1)])1)#(1'—1)

Therefore,
 (ua),m) (cyme_om) (e e @) (O(u,0),1)
Apa = Qpomt) yom) = Cuarn) 6 Gy ,6-1) R I
] — ] — b e m) (b a),t ) (b @ 172) (b a 1)
o (i-1) ~(i-1)\  Cwa), (100) i1 (10, (1a),
= Co(i) Coli-1) (1 e >a’u(m+l)7u(m) c e e Q- -2 ey o)
2 i—1) ~(i—1
= (cau-0)? (Y, a0 ) gy

— (Ca(i—l))Qa(H7g)#i,
since (u=Y, @ty =1,
2. If ht(p); = 0, we have pl = () and,

lu#i e (Iu(l)7 L ’Iu(ifl)’ M(iJrl)’ o ,M(m+1)),

a? = (W, Y oD am),

Then
(b(u,a),m) 5,(1) (b(u,a),1)
Apo = @ ((r%fl))m CORRE a(?m)) @ - a <(z>ﬁ)g)<1>
== I S I M H S
o (b(g,g)ym) (b(g,g%Hl) (b(g,g),ifl) (b(g,g),l)
A(p,a)#i = A ymt1) yom) -+ Cyava) a0 Ay -0 0 Gy 0
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Chapter 1. General setting and weighted paths in crystal graphs

On the other hand,

(@) — (5@ — (D 50
au(m)’u(i)vu(m)—m(a )Uﬂ<¢)—<ﬂ , >'U‘u(i).

Thus

(b(u,a),m) (@) (b(w,a),1)
Cpa = A mi1y yom) == D vn) 6 - @) 00
== 2 M 1 s I M

_ we)m) Bty (u® d(i)>a(b(g,g>,i—1) PRLORNEY
- u(m+1)7u(m) te u(i+2)7u<i+1> ’u/ ) H‘<i)7ll/<i71> te H/(2)7/J'(1>

= <M(i)7 d(i)>(l(ﬁ7g)#i.

32



Chapter 2

Proot of Theorem 6

In this chapter we first collect useful notations and data about the roots and weights
in types A and C (cf. Section 2.1). Using this, we prove Theorem 6 for g = sl
(cf. Section 2.2), and for g = sp,, (cf. Section 2.3). The preliminary results used for
the proof in both cases are important not only for Theorem 6 itself, but will be also
crucial in the proof of Theorem 7 in the study of weighted paths with loops (see §3.2.4
and §4.2.4). Lastly, we introduce in Section 2.4 the notion of admissible triple for the
type C. This notion will be useful in Chapter 4 to prove Theorem 7 for g = sp,,.

2.1 Roots and weights

2.1.1 In type A

Assume that g = sl,,;. We may realize g as the set of (r + 1)-size square traceless
matrices. Let h be the Cartan subalgebra consisted of all diagonal matrices of g, and
b be the set of all (r 4 1)-size diagonal matrices. Let e = diag(1,...,1) € h. One
may identify h* with {\ € (§)*| A(e) = 0}. Let B the scalar product on b defined by
B(X,Y) = tr(XY) and denote by B its restriction to h. B induces an isomorphism
B! : (h)* — . Moreover, it induces an isomorphism {X € (h)*| A(e) = 0} — b, which
is equal to B with the identification {\ € (§)*| A(e) = 0} = h*.

We define a scalar product B* on b* by B*(\,u) = B(BH(\), B(1)). It is clear
that B*(\, 1) = (X, B4(u)), where (-,-) is the natural pairing between h* and h. As

there is no risk of confusion, we will also denote in the sequel by (-,-) the scalar
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Chapter 2. Proof of Theorem 6

product on b, b, h* and h*.

Set {Ey1,...,Ery1041} is a basis of h, where E;; denotes the elementary ma-
trix associated with the coefficient (i,j), and {e1,...,&,41} its dual basis. We have
(€i,€5) = 045, and Bi(e;) = E; ;. Then the root system of (g,h) is A ={g; —¢; | i #
7} € {\ € (h)*] Me) = 0}, the dual system is A = {F;; — E;; | i # j}, and we
make the standard choice of Ay = {g; —¢; | i < j} for the set of positive roots. The
set of simple roots is Il = {f4,..., 5.}, where 51 = &1 —e9,..., 5, =& —&,41. The

fundamental weights are

wi=(e1+-+&)— (14 +erp1), 1=1,...,7

l
r+1
The fundamental co-weights are

l
+1

w; = (Eig+-+E;)— (Biva+-+ Erirm), i=1,...,r

We have B*(e; —¢;) = E;; — E;j and B¥(w;) = 53, i = 1,...,r. The (& — &;)-root
space of g is spanned by the root vector e., ., := Ej;. Take By the invariant non-
degenerate bilinear form on g defined by By(X,Y) = tr(X,Y). Its restriction to b is
equal to B. Since tr(E; jEy;) = 6;,0;;, in the notation of Section 1.1 (after Lemma

1.6), we have:

Céi—Ej = 17 Z ;A j
The irreducible representation V' := V(w) is the standard representation
g — End(C™), X (v Xv).

The nonzero weights of V' (wy) are {1, ...,d,41} with

1
0; = ¢&; — r+1);s =1,..., 1.
€ T+1(61+ +ert1) i r -+

Moreover, V5, = Cuv;, for i = 1,...,r + 1, where (vy,...,v,41) is the canonical basis
of C™*!. We have
egi,sjvk = EILJ'U]C = (53-,;6111.

In other words,

(esi—sj)
eai—ajvk == aéi,ék V; = 5j,kvi'

34



2.1 Roots and weights

Hence

(€e1-23) )
aEi,Elk 7= 5i,l6j,k and so asigk K=,

We represent in Figure 2.1 the crystal graph € (o).

Bl 62 Bk 67’— 1 6r
61 62 63 5k 5k+1 57“7 1 57“ 5r+1

FIGURE 2.1 — Crystal graph of § = @, for g = sl,.4;.

2.1.2 In type C

Assume that g = sp,.. We may realize g as the set of matrices A of .#5,.(C) such

that JA + AJ = 0, where
0 I
J = ,

and for n € Z-y, #,(C) stands for the set of n-size square matrices. Thus an element

Zy  Zy
Zs —Zt )’

where Z; € #,(C) and Z,, Z3 are symmetric. Let h be the Cartan subalgebra

x € g is a matrix of the form :

Ei; 0 .
consisted of all diagonal matrices of g. Write E; = ( 0’ 5 ), fore=1,...,r.

Set {E;}1<i<r is a basis of b, and {e;,...,e,} its dual basis. Take for B, the non-
degenerate invariant bilinear form (X,Y") — %tr(XY). The set of roots of (g, b) is
A ={te £ej,£2 |1 <i<j<r, 1<k <r}. We make the standard choice of
Ay ={e;xe;,2, |1 <i<j<r, 1<k <r}, with basis Il = {f,...,5,}, where
Bi i =¢;—¢€ip fori=1,...,r—1and B, = 2¢,. Denote by BZ the coroot of the simple
root ;. Using the non-degenerate invariant bilinear form By, one may identify, as

for sl,.,1, the Cartan subalgebra b of g with h* and we get
Bl =&1—&2 ... Br—l =E&r—1—E&p, Br:5r.
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Chapter 2. Proof of Theorem 6

The fundamental weights are:
w; = €1+ -+ &y, z'zl,...,r.
The fundamental co-weights are:

@i:€1+"‘+€i, for i:l,,..,?”—l

1
and @, = 5(51 +-Fe).

Note that the half-sum of positive roots is

T T

p=wit-twm=) (a1+-Fe) =) (r—it+ls

i=1 =1

For a € A, the a-root space of g is spanned by the root vector e, as defined below
[Car05] :

Cei—e; = Ei,j - Ej+r,i+r7
Ceite; = Eijir + Ejitr,
Ccime; = Ligrj + Ejiri, 1S<I<jS,
€2e, = Eijiyr, 1< <,

€_9e; = Biyriy, 1<i<
The constant structures are the following (we write only the nonzero ones):

Core;r Cojmey) = Cerep, (1 F k),
Ce;—e;y Cep— s,] = —Cg—¢; (] 7& k)?
€e €i—Ej) 65]+5k] e€i+€k (k 7é 2)7

€e €i—E€j5) eE]-‘rEZ] 26267;7

N (k 7£ ])7 (2‘1)

€e €i—€j e?aj] eal—i-a] )

Cei—e;> 6—51—5k]

[

[

[

[

[6 —ajae—sz—ej] —26—25]-;
[

[

[Ceimejr €o2e,] = —€cic;,
[

esﬂrs] , 6— €j fek] esifak (k 7é ])7
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2.1 Roots and weights

|:€€Z‘+€j7 67253'] = €ei—¢;H

[62617 6—5i—5j] = Cei—j (] 7é l)

In the notation of Section 1.1 (after Lemma 1.6), we have:

Cogi—e; = 1 i # J,

The irreducible representation V' := V(@) is the standard representation

g — End(C*?), X (v Xv).

The nonzero weights of V(w,) are {6y,...,0,,01,...,0,}, where

5i:5i7 (5i:—8i, izl,...,r.
Moreover,
Ve, =Cv;, i=1,...,r, and V__ =Cuy,, i=1,...
where (vy,..., 0, V14, ..., Vs, is the canonical basis of C*".

We have, for k=1,...,r and i # 7,

Ce;—e; Uk = (Ei,j - Ej—l—r,i-i—r)vkz = 5j7kvia
Ce;—e; Vktr = _5i,kvj+r7

€cite; Vkir = 0j1V; + 04 105,

Ceite; Uk = 0,

€—g;—c; Uk = 5k,jvi+r + 5i,kvj+r7
€—g;—e;jVk+r = 0,

€2, Vktr = 0 ks,

e2e, U = 0,

€_2¢, Uk = (5i,kvi+ra

7T7
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Chapter 2. Proof of Theorem 6

€2, Vkr = 0.

Hence
(ec;—e;) (ee,—e;)
. i l _

Qe e, - 5i,l§j,k7 a—ej,—ak - _5j,l(5¢,k7
(eEpLE‘) (Efeifa‘)

Uy le)” = 01105k + 0500k, A_cpe, = 03105k + 0105k,
(e2¢,) (e—2¢)
ci—€i 6i,k7 e 6i,k-

In particular,

€e;—¢ (ec‘i—s') (esi ;) (e—si—a-) €2¢. €_2¢,
§i7gk ¢ = 17 —Sjv_]Ei = _L aa,—ijj = 17 —€i,Ej U= 17 <‘(:i12_25)i - 17 (—sjaz) =1
(2.2)
We represent in Figure 2.2 the crystal graph €' (o).
b Do Br-1 Br Br-1 Broso o b
— > o > —e-------- *— > —eo > —o > > —@-------- *——>—e—>—o
61 52 (53 57‘—1 51” 57» (57«_1 (ST_Q 53 (52 (51

FIGURE 2.2 — Crystal graph of § = @, for g = sp,,.

Recall that Bg: h* — b is the isomorphism induced from the non-degenerate bilinear

from B,;. We have:

S f_—
w; =w;, t=1,...,r—1, and w, =2w,.

2.2 Proof of Theorem 6 for g = sl

We assume in this section that g = sl ;. We keep the notations of §2.1.1.
Let § = wy. Then P(6) = {d1, - , 0,41} For k€ {1,...,7}, set

P(6)y, := {p € P(6)|{p, Br) # O}.

For k € {1,...,7}, we have (cf. Figure 2.1): (1, Bx) # 0 & p = 0 or 1 = Opy1.
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2.2 Proof of Theorem 6 for g = sl

Hence,

P(0)x = {0k, Orr1}-
Note that (&, 8) = 1 and (6441, Bx) = —1. For € P(4), set
={Bell|{up)#0}.

We have:

H5k = {ﬁk*hﬁk}v k= 27 a7 1_[51 = {61}7 r+1 {ﬁr}

According to Lemma 1.19 and (1.3), we get

eVp (d_pm k)

Z H% W) — Z H<5k+1ad(i)><07@a<i>>

a€(Ils, )™ i=1 (ae(Ils, )™ i=1

i

since w; = w; for all i = 1,...,7, g being simply laced.

Lemma 2.1. 1. Foranyje{l,...,r+1},

r .
<p,5j>:§—]+1.

2. Forke{l,...,r+1},

k r
<p,’@k>:§(7’—k+1), <pa@k_7vﬂk71>:§_k+1a

where by convention wy = w11 = 0.

Proof. Recall that the half-sum p of positive roots is equal to w; + ... + w@,.

(1) We have
—A ifk <y
<wk,€j>:<€1+“‘+€k— 1(€1+"‘+€q~+1),€]’>:
t — A k>
Hence,
g T k
pu— pu— 1—

(2.3)
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Chapter 2. Proof of Theorem 6

: 1 r(r+1) r
=r—j+1- =——j+1
EE A y I
(2) We have
() = (1 o+ e = (e + e )
={part o te) —{p et ten))
k r k r+1 r
S G )
§:<2 AL s DI i
Jj=1 7=1
:k‘g—l—g—k+1)_ ko (r+1)(5+5—r—1+1)
2 r+1 2
=—(r—k+1).

Then for k € {2,...,r}, we have

(p, @ — @r_1) = (P, D) — (P, k1)

(k—1)
2

k
=S —k+1)- w—k+m:g—k+1
For k = 1, we have

<p,@1—?vﬂ0>:——1+1:

N3

On the other hand,
r r
{p, 71 — o) = (p, 1) = 5(7“ —1+1)= >
For k =r + 1, we have

T r
<p,7vﬂr+1—zbr> 25—(T+1)+1:—§
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2.2 Proof of Theorem 6 for g = sl

On the other hand,

.« . . r r
<'07w7"+1 - wT) = _<p7wr> = _§<T —r+ 1) = —5

Therefore the equality still holds for k =1 and &k = r + 1. ]
Lemma 2.2. For some polynomial T, € C|X] of degree m,
> [0k a)p @0w) = Tu(k),  VEk=1,....r+1.
ae(lly, ) i=1
Moreover, the leading term of T, is (—X)™.

Proof. Assume first that & € {2,...,7}. Then II5, = {Br_1, 5} and (6, Br) =
— (8, Br—1) = 1. So by Lemma 2.1,

> 6 apwaw) =) <m> (=1)"p, @) (p, o)™

ag(ll;, )™ i=1 i=0

If k =1, then II5, = {4} and (61, 51) = 1. So, by Lemma 2.1,

Z ﬁ@b@(i)ﬂp, W) = (p,co1)" = (g)m = (g —k+ 1)m
ac(Ils,)

m =1
1

with & = 1.
If k =7+ 1, then Il5.,, = {B.} and (6,11, 3,) = —1. So, by Lemma 2.1,

m

Z H<5T7d(l)><pa @a(i)> = (_1>m<p7 ﬁ7’>m

ae(ll;,)m i=1

with k =7+ 1.
Hence, setting T,,(X) := (5 — X + 1)™ we get the statement. O

We are now in a position to prove Theorem 6 for g = sl ;.
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Chapter 2. Proof of Theorem 6

Proof of Theorem 6 for g = sl..1. Let m € {1,...,r}. By Lemma 2.2 and (2.3), we

have for any k € {1,...,r},

Hence,

O(X) = m(—X)™ 4 W.H (2”) (= X)i ((g + 1)”” . (g)m_) (2.4)

is a polynomial of degree m — 1, and we get

eVP dpm - ( ! Z dpmk ® wk)

1 _
Z dpmk Wk = % Qm(m?vﬂk

T k=1 T k=1

Moreover, ()1 = 1.

2.3 Proof of Theorem 6 for g = sp,,

We assume in this section that g = sp,,. We keep the notations of §2.1.2.
Set

P(8) == {p € P(8) | {, Bi) # 0}.

Note that, for k € {1,...,7 — 1}, we have: (i, Bp) # 0 < 1 = 6, ft = Opp1, ft = Op,
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or fi = 0p41. For k =7, we have: (u,3,) # 0 < p =6, or u = 0,. Thus, we have
P<5)k:{5k>5k+173kagk+l}a k'Il,...,T—l, and P( ) _{67"75 }

For u € P(6), set
M, = {8 €| {3 £0}.

Let p = d;. Note that, for k =2,...,r,

s, = {Br—1, 06} and Tl = {Br-1, Bk}

For k=1,
H51 = {61} and Hgl = {61}

According to Lemma 1.19 and (1.3), we get for k € {1,...,r — 1},

eVP(d_pm,k)
= H(élm ()><P, O[(1)> Z H 5/€+17 a(1)>
a€(lls, )™ i=1 (ae(ls, )™ i=
+ Z H<3k+17 ()><p7 a()>_ Z H 6k7 p,w ()>' (2'5)
ae(lly, ) i=1 (ag (Tl )m i=1
For k =,
eVP<d_pm 'r)
= H(draa( )><pa a(z)) - H(Sr,d(i)ﬂp, wi(i)>‘ (2.6)
ae(ll, )™ i=1 (ae(TTy )™ i=1

Lemma 2.3. 1. Foranyje{l,...,r}, (p,e;) =r—j+1.

2. Forke{l,...,7},
5 _k d ¢
<p,wk):§(27"—k—l—1), (p, oy, —w;_q) =r—k+1,

where by convention wh = 0.
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Proof. 1. We have

0 ifk<j

<wk‘75j> - <51 +oe +5k75j> -

Hence,

107 8] E wkagj

1 ifk >

1:r—j—|—1.

2. For ke {l,...,r—1},

<p’wlﬂc> <p7wk> (p,€1+
Zg(T—I—(r—k—i—l):

For k =r

. 1
<107 wlﬁ) = 2<p7 w'r‘) = 2<p7 5(51 + -

fu+¢):g@r—r+1)

We see the equality still holds for k = r.
Then for k € {2,...,r — 1}, we have

i

(p,w} —wh_,) = ”

7wk> <p7 wk—1>

E—
2r—k+1)— (
For k = 1, we have

1

For k = r, we have

<p7 wf‘ - wr71> = <p7 ?IJE) B <,0,?IJ

44

k

+8k>=ZT—j+1

J=1

k

+&r))

1)(2r—(k—1)+1):r—/<:+1.

I+)=r=r—1+1.

1)
_1(27’—(7"—1)4—1)
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:g(r+1)— (r+2)=1=r—r+1
Therefore the equality still holds for k =1 and k& = r. O

Lemma 2.4. For some polynomial T, € C[X] of degree m, we have

> 6k a) o,k ) = Tulk)

a€(Ily, )™ i=1

and

forallk e {1,...,1}.

Proof. Assume first that k € {2,...,r}, then Il5, = {B—1, B}, 5, = {Br—1, Br} and
(Os By = — {0k, Br—1) = — Ok, Br) = (01, Bro1) = L.

We have,
- — (m ‘ i m—i
> Tkl =) ( ) (—1)p, =k 1) (p, =)
ae(ll;, )™ i=1 i—0 \ !
= (_<p7 wlﬂc—1> + <107 wl%;))m
={p, o — )" =(r—k+1)",
and

If k= 1, then H51 = {61},1_[31 = {61} and <61761> = _<51761> =1. SO,

Z H 01, w0y = (poo)" =r)"=r—-k+1)™,

e H(;lmz 1
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with £ =1, and

S TI0na) 0 800) = ()" = (0" = ()" k41
(L ym i=1

ac

I

with k£ = 1. Hence, setting 7,,,(X) := (r — X + 1)™ we get the statement. O
We are now in a position to prove Theorem 6 for g = sp,,.

Proof of Theorem 6 for g = sp,,.. It easily seen that p,, = 0 if m is even, then there
is no loss of generality assuming that m € {1,3,...,2r—1}. By Lemma 2.4 and (2.5)
and (2.6), we have for any k € {1,...,r — 1},

eVo(dpp) = Tn(k) = To(k + 1) + (=1)" T (k 4+ 1) — (=1)" T, (k)
)™ T (k) + (=)™ = )Ty (k+ 1)™

since m is odd.
For k =,

eVp(Apy ) = Tn(r) — (=1)"Tu(r)
= (1= (=1D)")Ta(r) =2(1)" =2,

again since m is odd. On the other hand,

evﬂ(d_pm,r) =2= 2(Tm(7") - Tm(T’ + 1))
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_2< m1+m ( >r+1"” Y ( > X)i> (2.7)

is a polynomial of degree m — 1, and we get

1 <~
eVp(dpm) = evp(% Z dpm,k ® wlﬁg)

Moreover, () = 2. ]

2.4 Admissible triples

We continue to assume that g = sp,,., and we continue to use the notations of §2.1.2.
We introduce in this section the notion of admissible triple in order to classify roots

and weights with respect to the crystal graph of § = w;.

Definition 2.5 (admissible triple). A triple («, p,v) is called admissible if (u,v) €
(P(0))? ae€ Ay and o = p — v. Such triples are classified by different types as

follows:

Type I : for somei € {1,...,r},
(o, i, v) = (224, 6:,6:),

Type I1 : for some i,5 € {1,...,r}, i # 7,

(o, 1, v) = (5 + €4, 6, 0,),
Type III a : for somei,j € {1,...,r}, i #j,

(a, p,v) = (i — &5, 0:,05),
Type III b : for some i,5 € {1,...,r}, i # 7,

(o, pu,v) = (8, — 5j,5j,3i).

47



Chapter 2. Proof of Theorem 6

We illustrate in Figure 2.3 the types of admissible triples in g.

type I
-—> ° ® > * - ——e
01 0; 0, o 0, d; 0; 01
type 11

type II

FIGURE 2.3 — The types of admissible triple (o, i, v) in g = sp,,..

Remark 2.6. If a is a long root then there is unique p € P(§) such that p—a € P(9),
and if « is a short root then there are exactly two weights u € P(J) such that

pu—a € P(9). In other words, if « is short root then there are two admissible triples
(o, j1, V) containing .

For «y in the root lattice @), we say that ~ has sign + (respectively, —, 0) if v > 0
(respectively, v < 0, v = 0). The following lemma will be particularly useful in the
proof of Theorem 4.1.

Lemma 2.7. Let (v, i1, ) be an admissible triple. Let us consider an admissible triple

(cv, i, V') which verifies the following conditions:

(1) either o —y € A, or a =7,

(i) V' - v.
a
1 V!
i
W v

The triples which satisfy the above conditions (i) and (ii) are the following, de-
pending on the type of (v, p,v):

1. (Type I) If (7, u,v) = (2e4, 05, 0;) with i € {1,...,7}. Then the triples (a, i', ')
satisfying the conditions (i) and (i) are:
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(o, i/, V) condition a—ry sign of o —
(81' + Ek, 67,7514) Z < ]{; € — &; _
<€i _€k75i75k’) 1< k _<€i+€k’) _

2. (Type II) If (v,p,v) = (gi +€,0:,0;), with i,j € {1,...
triples (o, i/, V') satisfying the conditions (i) and (ii) are:

, 7}, i # 5. Then the

(cv, 1, V") condition a— sign of o — y
(2e4, 84, 0;) j<i € —€j —
(6i + ek, 05,0k) | < k,k#1i Ek — €; —
(6j+ €k, 0;,0k) | J <k <i Ep — & +
(ej+ ek, 0;,0k) |1 <k,j<k Ep — € —
(&?j—l—sl,&j,&) j<i 0 0
(ex + 60,08, 00) | k< j<i €k — € +
(e +€i,0k,0;) | k#4,j<i,j<k| ep—c¢ —
(ei — €k, 04, 0k) | 1<k —(ex +€5) —
(6j — €k, 65,0k) | J <k —(ex +€5) -

3. (Type 11 a) [f (77”7 V) = (gi - €j76i75j); with Za] € {17 cee ,T}, 1 < ] Then
the only triple («, (', V") satisfying the conditions (i) and (ii) is:

condition | o —y | sign of a« — 7y

€5 — €k —

(o, i/, )
(&‘ - 5k75z’,5k)

1<k <y

4. (Type 1L b) If (v, p,v) = (g, — €4,0;,0;), with i,j € {1,...,r}, i < j. Then
the triples (o, p', V') satisfying the conditions (i) and (ii) are:

(o, i/, V) condition | o —-y | sign of a — 7y
(e + €k, 04,01) | 1<k €k +€j +
(i — €k, 0i,0k) | 1<j<k|egj—eg +
(€i — €k 05,0k) | 1<k <j|e;j—ey -
(€i—¢€5,0i,05) | 1<] 0 0
(e —€5,0,05) | k<i<j|epr—e +
(e —€5,01,05) | i<k<j|epr—e -
(er —€i,05,0k) | i<k <j|er—e& -

1. Let (v, p,v) has type I, v = §; — 6; = 2¢; with ¢ € {1,...

search for positive roots a where the conditions (i) and (ii) hold as follows:

,r}. We will
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e Assume (a, i/, ') has type I, @ = 0, — 0, = 2¢;. Then either o — v ¢ A
or « = 7. If & = then the condition (ii) is not satisfied. Hence there is
no (a, i/, ') of type I that satisfies the conditions of the lemma if (v, i, v)
has type 1.

e Assume («, /', ') has type II. Write a = &, — 0;, with k # [. Hence
a—”y:(Sk—Sl—(SijL&-

is a root if and only if 6, = &; or §; = §;.

« If 6, = 0; then o = &; — ¢, satisfies the condition of the lemma if i < .
In this case, « — vy = 0; — &, € —A,.

* If 6, = 0; then o = 8 — &; does not hold condition (ii).

e Assume (a, i/, V') has type III (a). Write v = 0, — §; with k < [. Hence
a—vzék—él—éﬁ—&

is a root if and only if §; = ¢;. If it is so, then a — v = 0; — 0, € —A,.
e Assume (a, i/, v') has type III (b). Write a = 6, — d;, with k > [. Hence

@—Vzgk—gl—51+3i

is a root if and only if 6, = ;. We have a = 6, — §; does not satisfy
condition (iii). Hence there is no (a, i/, V") of type III (b) that satisfies the
conditions of the lemma if (v, 4, ) has type L.

2. Let (v,p,v) has type I, that is v = & — 0; = & +¢;, with i,j € {1,...,7},
i # j. We will search for positive roots o where the conditions (i) and (ii) hold

as follows:

e Assume (a, ', 1') has type I, a = 6, — 0. Hence
Oé—7=5k—gk—5i+gj

is a root if and only if 6, = §; or 5, = Sj.
« If 6, = 0; then a = &, — 0y, satisfies the condition of the lemma if I < k.
If it is so, then o — vy = §; — 0 € —A .

« If 9, = 0; then o = &5, — 3]- does not satisfy condition (ii).
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e Assume (a, /', ') has type II. Write a = 6, — 0; = & + ;. Hence
=7 =¢gte —¢& —¢€

is a root if and only if e, = ¢;, e = €5, 61 =€, &1 = €.
« If e, = ¢;, we have a = ¢; + ¢, = §; — 9, satisfies the condition of the
lemma if j < [. In this case « —y = ¢, —¢; € —A,.
* If e, = €; is the case, then a = ¢; + ¢, = 9, — 0, satisfies the condition
of the lemma if j < [, and « — v = ¢, —¢; € A, for j < [ < 4, and
a—vye—-A, fori<y j<l.
« If ¢, = ¢; is the case, then o = g5, +&; = 0, — 0; satisfies the condition of
the lemma if j < 4. In this case, « — vy =¢, —¢; € A} for k < j < i, and
a—vye—-A, forj<i,j<k.
x If 6, = &; then a = &, + &; = &, — 9; does not satisfy condition (ii).
Moreover, o = ¢; —0; with i > j also satisfies the conditions of the lemma.
If it is so, then o = 7.
o Assume (a, ¢/, ') has type III (a). Write a = 6 — ;, = ¢, — g, with k < [.
Hence
a—Y=¢€p—€ —€& —€j
is a root if and only if e = ¢; or g = ¢;.
x If e, = &;, we have o« = ¢; — ¢, = §; — 6, with ¢ < [. In this case
a—vy=—(eg+¢;) € —AL.
x If e = ¢, then @ = ¢; — g = 0; — 0; with 7 < [. In this case o — 7 =
—(e1+¢;) € —A,.
e Assume (a, i/, v') has type III (b). Write o = 6, — 6; with k > I. Hence
a—y=20—0 —0&+9;
is a root if and only if §; = Sj. If it is so, then a = &, — 5]- does not satisfy
(ii).
3. Let (v, p,v) has type I, that is vy = 6, — §; = ¢, —¢;, with 4,5 € {1,...,r},
i < j. The admissible triples of root o = p/ — 1/ that satisfy the conditions of

the lemma could not be from type I, type II or type III (b) since v’ is less than
;. And so (a, ¢/, V') has type III (a).
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Assume o = 9, — 9, = g, — g; with k < [ < j Hence
a—’7:€k—€l—€i+€j

is a root if and only if ¢ = ¢; or g, = ¢;.

x If e, = ¢; then a = ¢; — g; satisfies the condition of lemma if i <[ < j. In

this case, a — 7y =¢; —g € —A,.

« If ¢, = ¢; then a = ¢;, — ¢, does not satisfy the condition (ii).

. Let (7, ,v) has type I, that is v = &§; — 0; = &; — &5, with 4,5 € {1,...,7},

i < j. We will search for positive roots o where the conditions (i) and (ii) hold

as follows:

e Assume (a, i/, v/') has type I, o = 6, — 0}, = 2¢5, then
Oz—’)/ZQEk—Ei—FEj

is a root if and only if £, = ¢;. If it is so, then o = 6; — &; does not satisfy
condition (ii).

e Assume (o, g/, v') has type II. Write a = 6, — &; = &5 + & with [ > 4.
Hence

a—77=¢&t+e —€5+¢

is a root if and only if ¢, = ¢; or ¢, = ¢;.
« If e = &;, we have a = ¢; + &, = 0; — 0; satisfies the lemma if [ > i. In
this case o —y = ¢, +¢; € Ay
 If e, = ¢; is the case, then o = €, +¢; = 05, — 6, does not satisfy condition
(ii).

e Assume (a, i/, V') has type III (b). Write a = ¢, — ¢; with k < [. Hence
a—yzgk—el—ei%—ej

is a root if and only if e, = ¢; or g, = ¢;.

x If ¢, = ¢;, we have a = ¢; — g, = 6; — 0; with ¢+ < [. In this case
a—y=¢cj—g€Ayfori<j<l,anda—7v€—-Ay fori<l<j.

x If &, = ¢ is the case, then a = ¢, —¢; = 0, — d; with k < 7. In this case,

a—y=¢,—¢c €Ay fork<i<j,anda—vye—-A; fori<k<j.
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Moreover, o = 9, —d; with 7 < j also satisfies the conditions of the lemma.

If it is so, then o = 7.
Assume (a, i/, ') has type III (b). Write a@ = 6, — 6; with k > I. Hence

Oé—’)/zgk—gl—gj—i‘gi
is a root if and only if 6, = Sj or §; — 6.
« If 0 = 5j then o« = 5]- — ¢, is satisfies the condition of the lemma if
i<l<j. Inthiscasea —y =208, — 9 € —A,.
x If 6, = 0; is the case, then a = &, — &; does not satisfy condition (ii).

]
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Chapter 3

Proof of Theorem 7 for sl

This chapter is devoted to the proof of Theorem 7. The reader is referred to Chapter
2, §2.1.1, for all relative notations to g = sl.,1, r > 2 and 0 = w;. We start with
some technical results on weighted paths (cf. Section 3.1) that will be used to prove
Theorem 3.1 below. This theorem is important since it allows us to make an important
reduction in the sequel. Namely, it will be enough in many situations to consider only
weighted paths (u, ) € @m(u) such that u® < pu for any ¢ € {1,...,m}, that is,
entirely located “on the right hand side of x”. We introduce in Section 3.2 equivalent
classes (cf. Definition 3.6) on the set of weighted paths: §3.2.2 deals with paths without
zero while §3.2.4 deals with paths with zeroes (see Definition 3.8 for the notion of path
with, or without, zeroes). The proof of Theorem 7 is achieved in Section 3.3.

The results of this chapter will play an essential role in the next one, too, when

dealing with the sp,, case since we will roughly follow the same strategy.

Throughout this chapter, it is assumed that g = sl 1,7 > 2 and 6 = w;. We

retain all relative notations from previous chapters.

3.1 A preliminary result

The goal of this section is to prove the following result that will allow us to consider

only certain weighted paths. It is a very important step.

Theorem 3.1. Let m € Zo, pn € P(6) and (u,a) € Pn(p). Assume that for some
ie{l,...,m}, p = p. Then wt(p,a) = 0.
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According to Theorem 3.1, it will be enough in many situations to consider only

weighted paths (p, o) € P.,(1) such that u® < p for any i € {1,...,m}.

3.1.1 Some reduction lemmas

We establish in this paragraph reduction results in order to show Theorem 3.1 in

§3.1.2.

Lemma 3.2. Let m € Zsg, (1, v) € P(0)%, v € Ay and (i, a) € P, 1) such that
ht(p); = 0 for any i. Assume that v = p' — v/, with p',v" € P(0), and that v' < p
foralli e {1,...,m+1}. Note that i/ = v’ since v € A,.

1. Letie{1,...,m+1}. Ifht(p); > 0 then either o' —y & A or o —y € —A .
Moreover, if e —~y € —A_, then () and v = v —a' still satisfy the above

conditions with ' in place of .
2. For allu € U(g), we have he(by, ,e_u) = 0.

Proof. 1. Write v = ¢; — €4, with j < k. The hypothesis says that for all i €
{1,...,m} such that ht(p); > 0 then o¥ = ¢;, — &, with j; < k; < k. Hence

a(l)—fy:é?ji—&?ki—aj—l—sk

is a root if and only if j; = j. If it is so, then a® — v = ¢, — &, is a negative root
since k > k;. Moreover, +' := g, — ¢, still verifies the condition of the lemma.

2. We prove the assertion by induction on m. Set,

(b(gﬂ)»m)

A= ) yomt1y:

Assume m = 1. If ht(u); > 0 then by Part 1 either a) —~y ¢ A, and
he(by, ,e—u) = he(ae,me_yu) = he(ae e mu) = 0,
or o) —y = —+/ with v € A, and

he(br, ,e—yu) = he(ae,me_yu) = he(ae_e,mu) + he(ad’e_yu) = 0,

where o' € C.
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If ht(u); = 0, then
he(by, ,e4u) = he(aw,we_yu) = he(ae_w,mu — aly, Wam)e_u) = 0.

In both cases, we obtain the statement.

Let m > 2 and assume the statement true for any m’ € {1,...,m — 1}. Write
(poa) = (¢, ) * ((u™), utm ), ™) where (1/,a’) has length m — 1. Note that
the weighted (1',a’) and v satisfy the conditions of the lemma.

There are two cases:

e ht(u), > 0.

By Part 1 either o™ —~ & A, then by induction hypothesis, we get

he(by, ge—qu) = he(abyy o €qmme—yu) =he(abyy o e—yeqmu) =0,

or o™ —~ = —+'" with v/ € AL, and by induction,

he(b), ge—yu) = he(abyy o €qme—yu)

= he(ab}, e e omu) +he(ad'by, e yu) =0,

where o’ € C, since the path (u/,a’) and 7' still satisfy the conditions of the
lemma by (1).

e If ht(u), = 0, then by induction hypothesis, we get

he(by, ,e—u) = he(aby,

1 ot Wy (m) € 1)

= he(aby, ,

16y T mU — a7, (ﬂa(m))bz,jg,eﬂu) =0,

whence the statement.

Lemma 3.3. Let u € P(0), m € Zs1, 1 € ZT and (p,a) € Po(p1);. Set p = pli)
and q := q(i).

1. Assume p = q and PV 4 aP) £ 0. Then

wt(p, @) = wt(p, @)*.
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2. Assume p = q and oP~Y) + o) = 0.

(a) If iy ="---=1iy,_o=0, orif p=2, then

wi (g, a) = ht(a?V) w(g, a)*”,

(b) Otherwise,
wi(p,a) = (B(@) + 1wi(s ).

3. Assume p < q. Then i, =0 and o®) €114, = {B € 11| (u?, B) # 0}.
(a) If (1P &Py =1, then
Wi, @) = (p, Do) Wh(p, @) #7.
(b) If (1@ &Py = —1, then

W1 @) = (~{p, ain) + Dwh(p, )7,

Proof. 1. Note that aP~V + o) £ 0 implies i, ; + i, # 0. Write

o pe=1 =1
******* SR lbll e epe—— .—<—=M(p) = N(q)
CV” /*L(erl) a(p)

Si — sl 46— (e_ @) (e_ a-1)  (e__a-1)_,&) d 1
ince g = sy and § = @1, @ (1) ) @000 Gty i AR Ne-n 40 are a

equal to 1, and so

b?ﬁ7g) = b?ﬁ/ o) €alp—1)EL(p) bz(H// o)

= (0(r.0) €atv) €at-D b o) F N1 0@ V(0 €atv-1) £a®) V{1 arr))

= b?ﬂ/,g/)ea(p) ea(p—l)b?”//7g//) —+ b?ﬂa@)#p'

The weighted path (;/,a’) and the positive root v = —a(®) verify the conditions of
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Lemma 3.2. Hence by Lemma 3.2, we get
he (b(u o) €a®) €qlr— 1)b w, //)) == 0,

and so

wt(p, @) = wt(p, @),

2. (a) Assume first that i3 = --- = 14,0 = 0 and p # 2 (that is, p > 2). Write

() = (1, ) (P70, 1), aPD) s (P, pP* ), 0Py 5 (u”, )

as in Part 1. Here (¢, a’) is a concatenation of loops.

aP—2)

pO = =) e

° M(P) - u(q)

a@ (@t ol?)

e

(e_o») (e_qr-1)

In particular b ) o 18 0 S(h). Then, because a L) ) = Gy 1) = 1, we have
b;,g = b>(ku’ a/)ea(pfl)e_a(p 1 b( "o
(p—1
= b(ﬂ a/)e_a(p 1) €y (p— 1)b( "ol —’_b(ﬂ o) p ) ?}L”,g’/)

since al?) = —aP~_ Since b7, , is in S(h),

hC(bz(H/,g/)e_a(pfl)ea(p—l)bz(H//’g//)) = b?ﬁ’,g’)hc( —a—1)€Eqh(—1 b( //)) 0.
Therefore,

o) (u )) = <u(p—1)’d(p 1)> (r— 1)hc(b( )#P)

he(b), ) = a% Vhe (b,

Since
v, (6070) = {p, a0 = hi(a D),

we get the expected equality:

wt(p, @) = ht(a"~) wt(p, )",
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If p =2, we have

~ (1
bz’g = €,1)E_,L0) bZ//,g// == (eia(l)ea(l) + Oé( ))bZ//’gu,

where (p”, ") is a weighted path of length m — 2. Then we conclude as in the first

situation.
(b) Assume that we are not in one of the situations of (a). Write

(o) = (i, ) % (P71, 5P, aP=D) s (P pPH) 0Py« (p”, o)

/ (p—1) (p—1)
f::::::g:::::g:g o 0P = 1,(9)
[ M(erl) a®) — _q—1)
Note that a' = 1)l %@ 1 Ty h
ote that @ v Le-0 %@+ ye = 4 LD WE have
b?ﬁ,g) = b?ﬁ/7g/)€a(p71)€a(p) b?ﬁﬁ’gﬁ)
* * * ~ (p—1) 1%

= b(ﬁl7g/)€_a(pfl)€a(pfl)b(ﬁzl7g//) + b(ﬁl,g/)a(p )b(ﬁnvg//) (31)
since al?) = —a®~Y_ The weighted path (¢/,@’) and the positive root y = aP~

satisfy the conditions of Lemma 3.2. Hence by Lemma 3.2, we get

hC(qu’g)) = hC(bz(#/’g/)Ové(p_l)bz(“//7g//)) .

Let a® € o such that i, > 0 and (a(®), @~} £ 0. Observe that
(o) aP=Dy = (1) — s+ 5Dy £

if and only if £+ = u®= thus o is unique (see Figure 3.1).
For all other roots o) € o/ with t # s, if 4, > 0 then (o, @®~Y) =0, and so

< (p—1)

?g,g),t « PV

—
=« ()t

Otherwise, b7, ), = w?au)) € b thus we also get bf,, ., a1 = -1 b i)~ We see
that &®~Y commutes with all roots in o, except with a(®.
Write
() = (1, ah) * (), p&HD), ) % (), @),
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3.1 A preliminary result

where (u;,@3) is a concatenation of loops and (p],a}) has length s — 1. Note that

the weighted path (¢!, a/) may be trivial.

a(P—2)

alstl)
o ol®) o(P=1)
Y . J Iu(p)

,,,,, > - - - ;izs) M(s—l—l) ; M(p—l)

FIGURE 3.1 — Path in case (2) (b)

Note that a( (SH(;))(S) =1, and we get

* < (p—1) 7,
b(u’,g/)a p b( "

W'’

:b?‘

* < (p—1) 1%
,u/ a/)ea(s) b(ﬁé»glz)Od b(ﬁll7g//)

= by 0t
b(ﬂ o ( (pfl)ea(s) - <a(3)7d(p*1)>ea(s))b?ﬁéjgé)b?ﬁ/xa//)

= g 1)b(

a(s)ap 1)b(ﬂ27 )bzk "ol

(a®, aP=Dypr

* *
#1:2/1)604(5)b(ﬁ/2’gl2)b( "oty T (ﬁl17g/1)6a(s)b(ﬁlg7g/2)b( "oy

since &P~ commutes with all roots of o/ and /. Observe from Figure 3.1, {(a(®), 4P~V =
—1 and the weighted path

(S)7N(S+1))7a(s)) % (H,TQ,Q) % (H/,7Q,/> _ (H,7Q,) % (H//7g//)

() * ((u
is nothing but (u, @)#?. Thus,

(a8 0 gy = (@770 = () GPTINBE, n = (@77 DB, e

Remark that
(p, &) = ht(a) = ht(a?Y).

Hence,
wi(p, ) = (he(@® ) + Lywi(p, ).

3. Write
(o) = (i, ) % (P, 1@, a®= D)« (P, pPH) o) (1, a”),
where (4, ) and (1", ") have length p — 2 and m — p, respectively.
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Chapter 3. Proof of Theorem 7 for sl

Let supp(«), the support of a € A, denotes the set of § € II such that («,cog) # 0.
We have

* (—ea( —1)) ~ * ~ *
(me) = "0 i (1 v, O‘(p)>b(g’,g’)€a<”*”wa(p)b(g”,g”)
(*ea( —1)) . . —1) -
= (:LM(pflf“u(p) <M P 704(p)>(b>(kﬁ/7g/)wa(p) ea(p—l)b?ﬁlf7g//) - <O[(p )7 wa(p)>b>(kﬁl7g/)€a(p—1) b?ﬁ”,g//))

= <:u’(p)7d(p)>(@a(17) - <a(p71)’wa<p)>)b?ﬁvg)#p7

since
(—ea( *1)) * * *
a#(p_liﬂ(p)b(E,,g,)ea(p_ub(ﬁu,gn) = b(g,g)#p
and ©,,(» commutes with all roots in o/. Indeed, the support of /), for j = 1,..., p—

2, does not contain the simple root a/(?).
If (1 a®) =1 then (a?~Y &, ) = 0, and so

Wt (i, @) = {0, Do )W, @) 7.

If (4 a®) = —1 then (a®? Y & ) =1, and so

wt(p, @) = (—{p, Do) + 1)wt(p, @) 7.

Ezample 3.4. Assume that g = slg, § = @y, i € ZT. Let (u, ) € P1(85); with

n = 52753755755755756755752) = (52753755755755756755752)7

= (g2 — €3,63 — €5, 35, B5,65 — €6,E6 — €5,E5 — 52)

(
a=(a®,a® 0B o® o6 = oD o6 = @) o)
(
i=(1,2,0,0,1,—1,-3).

Bs
B
a® a2 a(®
02 03 05 6
o™ )
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3.1 A preliminary result

In this path a®=1) + o) = 0. Thus,

(653 52) (62 55) (655 56) (56 55) Bs (655 63) (553 52)
aﬂ,g = Qe e3 Qey é5 Qes 6 Qeg g5 ai;, 5)5 £5 5)5a55,€3 Qej,eo

(G B0 ) = 1.

(E E)(es—s) 3 3 (55—5)(65—5) D he
A(p,a)#r = a5yl a2 a£§?5)5a£§f5)5as5,?3 sy 2, = (05, 85) (05, B5) = 1

By Lemma 3.2 we have,

he (b)) = Guahc (€t €a) 0D a®) € Enw €am)
he (e, €0 575646 €45) ) + hC(eau)ea(2>@5@5556a(7>)

= he(e <1)556a<2>w5w56a<7>) (a?, Bsyhe(eqm €qz T5T5e 4 )
= (85 — (@', B5)) he(eqm eqe D356 ),

since hc(ea(l)ea(2>w5fb5ea(s) ea(s)) =0and 55 commutes with o). Note that 55 = a0,
(@@ B5) =1 and e )€, @ Tswse,m = b’(*ﬁﬂ)#p . Hence,

Wi, 0) = (t(a) + 1)w(yr, ) 7.

3.1.2 Proof of Theorem 3.1

As a direct consequence of Lemma 3.3, we get the following result.

Proposition 3.5. Let yu € P(0), m € Zsy, i € Z7; and (p, o) € P (1 )i- In
particular, Z;n:l ij = 0. Set p:=p(i) and q := q(i). Then for some scalar K, w

have:

wt(p, ) = K, owt(p, a)??.

In particular, wt(p, o) = 0 if wt(p, @)#? = 0.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let (u1,a) be as in the theorem and set i := ht(u). First of

all, we observe that if i € Z7;, then he(by ,) = 0 and so the statement is clear.

<0
We prove the statement by induction on m. Necessarily, m > 2. If m = 2, then
the hypothesis implies that ¢ € Z; and so the statement is true.
Assume m > 3 and that for all Welghted paths (¢, /) € P (1), with m’ < m,

such that for some ¢ € {1,...,m'}, /) = i, we have wt(y/,o/) = 0. If i € Z; the
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Chapter 3. Proof of Theorem 7 for sl

statement is true. So we can assume that i € Z7. Then necessarily i € Z. Let p,q
be as in Proposition 3.5. We observe that the weighted path (u, a)¥P satisfies the
hypothesis of the theorem and it is not empty. Hence by our induction hypothesis
and Proposition 3.5, we get the statement. Notice that for m = 3, 7 is necessarily of
the form (iy,iz,43) with iy > 0, 43 < 0, i3 > 0 and iy + iz + i3 = 0 so (p, a)*? has
length 2, and we can indeed apply the induction hypothesis. O

3.2 An equivalence relation on the set of weighted

paths

For ¢ € {—1,0, 1}, denote by €Z.( the set {en | n € Z_o}. Denote by &, (respec-

~ A

tively, &) the union of all sets Z,,,(u) (respectively, &, (1)) for p running through
P(6).

3.2.1 Definitions and first properties

Definition 3.6. We define an equivalence relation ~ on P by induction on m as

follows.

1. If m = 1, there is only one equivalence class represented by the trivial path of
length 0.

2. For m = 2, we say that two paths (p, ) and (p',a’) in P, with ht(p) =i
and ht(y') = ¢, are equivalent, if there is (e1,e2) € {0,1}* such that i €

512#9 X EQZ?Q and Zl S €1Z?Q X €QZ>;Q.

8. Form > 3, we say that we say that two paths (p,a) and (¢, ') in P, with
ht(p) =i and ht(p') = @', are equivalent, if the following conditions are satisfied:

(a) there is (e1,...,em) € {—=1,0,1}"™ such that i € [[;",&iZwo and i €
H:'ll EiZ?‘Q:

(b) the paths (p, @)**D and (1, o/)#*) are equivalent, where p(i) is as in
Definition 1.23.

For (u,a) € P, denote by (1, )] the equivalence class of (1, ax) in P, with, respect

to ~, and denote by &, the set of equivalence classes.

64



3.2 An equivalence relation on the set of weighted paths

We observe that the equivalence class of (u,a) € P only depends on the se-
quence ht(u). Hence, by abuse of notation we will often write [ht(u)] for the class of

(1, @) (this will be not anymore the case in type C').

FExample 3.7. 1. Assume m = 2. We have only two equivalence classes:
[0, 0] and 1, —1].

We represent below weighted paths whose heights are in [0,0] and [1, —1] re-

spectively:

N,
M(l) *—> ———@ /‘L(z)

( —
1 iz

2. Assume m = 3. We have six equivalence classes:
[0,0,0], [o0,1,-1], [2,-1,-1], [1,-1,0], [1,0,—1], |[1,1,—2].

We represent below weighted paths whose heights are in the above respective

classes.
11
i2 '
IRWAL Q—Zf—. u® 0 o 5 )
(1) — (2) i3 7 - 7
u i 3 (3) 2
P e g C) u
i3 12
(1) i 2
[ " 2 1 ! 1 g - 3
— > o > o
— PEIe ) e 4 M)
1 19 3 13

For m = 3, the equivalence classes are determined only by condition (a) of

Definition 3.6. This does not hold anymore from m = 4.

3. Assume m = 4. The following four weighted paths have pairwise not equivalent
heights. The heights of I, and I, (also Iy and I,) satisfy condition (a) of
Definition 3.6 but not the condition (b), so they are not equivalent. Here, I,

refers as the equivalent class of the corresponding path.

65



Chapter 3. Proof of Theorem 7 for sl

i —> 1] —>
i3 — 13 —>
14 14
I 1
A 2 % %
— iy ¢ i3 2 ! i 3 i3 —
I 1

The equivalence classes in Z* are

0,0,0,0], [0,0,1,—1], [0,1,0,—1], [0,1,—1,0], [1,—1,0,0],[1,0,—1,0],

[0,

[1 O O ] [2,—1,—1,0], [2?_1707_1]7 [171707_2]7 [170717_2]7 [1717_270]7
[ , 1, ], [0 1,1,—2] [2,0,—1,—1], [1,1,—1,—1], [1,—1,1,—1], [1,1,1,
1,2 2], 12,1, -2,-1], [2,-1,1,-2], [3,—1,—1,—1].

They are indeed the only pairwise non-equivalent classes. The verifications are
left to the reader.

Definition 3.8 (paths with zeroes and without zero). Let m € Z~y and 1 € &,,. The
number n of zero values of i := ht(u) does not depend on (¢, ') in L. We will say
that I has n zeroes. The positions of the zeroes only depend on 1. If n =0, we will

say that I has no zero.

By definition, the position p(i) of the first turning back does not depend on i € L.
Similarly, the integer ¢(z) does not depend on i € I. Denote by p(I) and ¢(I) these
integers. Furthermore, the class of (y, a)#?@ only depends on I. Denote by I this
equivalence class.

For m' € Z~q, denote by ¢(I') := m/’ the length of I' for some equivalence class
I' € &, . We have (1) = m, ((I*) = m — 1 if i, +i, 1 # 0, {(I#) = m — 2 if

1y + 1,1 = 0, etc.

3.2.2 Elements of &,, without zero

We study in this subsection the elements of &, without zero. If I has no zero, note

that, necessarily, p(I) = ¢(I) and I* has no zero, too.

Remark 3.9. If I has no zero then for any weighted path (u, ) € P, i€ P(6),
such that ht(u) € I, we have

ht(a9) =i; forall j=1,...,m,
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3.2 An equivalence relation on the set of weighted paths

since g has type A, where ht(u) = (i1, ..., 7m).
Remark 3.9 will be used repeatedly in the sequel.

Example 3.10. For m = 4, there are 7 equivalence classes without zero:

3,—1,-1,-1], [1,-1,1,-1], [2,-1,1,—2], [1,1,—1,—1],
[1,2,-1,-2], [2,1,-2,-1], [1,1,1,-3].

Lemma 3.11. Let I € &, without zero, and set p := p(I).

1. There is a polynomial Ay € C[Xy,..., X,,_1] of total degree < 5] such that
for alli = (i1, ... i) €1 and for all (u,a) € Py, with ht(p) = i,
Wt(,u,g) = Al(ily . ,?;mfl).

(Here, |x] denotes the largest integer < x.) Moreover, Ax is a sum of mono-

mials of the form X; ... X;, 1 <j1 <---<j<m.

2. The polynomial Ax s defined by induction as follows. We have

Ap—1(Xy) = Xy,
Ap_1,-11(X1, Xo) = X1 + Xo, Apa—9(X, Xo) = X

Assume m > 4.

(a) If ip_1 +1i, # 0, then
A(X1, o K1) = A (X, Xy, X1+ Xy oo, X ).
(b) If ip_1 +1i, =0 and p = 2, then
Ad(Xy o X 1) = Xp 1 A (X, X0, Xy Xom1)-
(c) Ifi,—1 +1i, =0 and p > 2, then
Ar(Xy, oo Xe1) = (X + DA (X, X0, X, -, Xo).
FExample 3.12. For m = 4, we have:

Ap 11— = X1+ Xo + X3, Ap_11,-1=X1 X3, Ap_11,-9 =X+ Xy,
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Chapter 3. Proof of Theorem 7 for sl

Anp- = Xi( X+ 1), Apa-1-39=X1, Apii-g =X,
A[2’27_37_1] = X1+ X9+ Xs.

Proof. We prove all the statements together by induction on m.

Assume m = 2. The only equivalence class in without zero is [1, —1]; p([1, —1]) = 2
and i; +1iy = 0. Let (p, ) € P, with ht(u) ~ (1,—1). By Lemma 3.3 (2) (a) we
have wt(p, ) = ht(&")) = 4;. Hence,

Ap (X)) =X,

satisfies the conditions of the lemma.

Assume m = 3. There are two equivalence classes without zero: [2, —1, —1] and
[1,1,-2]. By Lemma 3.3 (1), for any (u,a) € Py with ht(p) ~ (2,—1,—1), we
have wt(u, @) = 71 + 4y and for any (u,a) € Py with ht(p) ~ (1,1, -2), we have

wt(p, ) = 4;. Hence
Ap 1,1 (X1,X0)=X1+ X, and Ap,-2 (X1, X0) =X,

satisfy the conditions of the lemma.

Let m > 4 and assume the proposition true for any m’ € {2,...,m — 1} and any
I'c &, LetI€ &, and (p,0) €L

Assume that i,_1 + i, # 0. Then ht(x)#? is in I* and by Lemma 3.3 (1),
wt(p, ) = wt ((H7 g)#p). By our induction hypothesis, there is a polynomial A €
C[Y1, ..., Y o] of total degree < |5 such that

wi(p @) = wb (11,0 #0) = A (ir, . dpr + o).

Hence the polynomial
Al(Xb . ,Xm_l) = AI#(Xla e ,Xp_Q,Xp_l —|— Xp, e 7Xm—1)

satisfies the conditions of the lemma.
Assume that 4,1 + i, = 0. Then ht(p)#?® is in I*.
« If p =2, then by Lemma 3.3 (2)(a), we have:

wt(p, @) = 1 wt((u, @) #7D).
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3.2 An equivalence relation on the set of weighted paths

By our induction hypothesis, there is a polynomial Ayx € C[Y1,...,Y;, 3] of total
degree < [™2] such that

#p(I) )

Wt(:uag> - iplet ((Ha Q) - Z‘pflAAF‘?* (7;17 s 7Z‘p727 Z‘erla s 7Z‘m71)-

Hence the polynomial
Al(Xla e 7Xm71) = prlAl# (Xl, . ,Xp,Q, Xp+17 e 7Xm71>

satisfies the conditions of the lemma.
« If p> 2, then by Lemma 3.3(2)(b), we have:

wt(p, @) = (ip1 + V)wt((u, @) #7D).

By our induction hypothesis, there is a polynomial A € C[Y1,...,Y,, o] of total
degree < [™2] such that

Wt(u,g) = (Z.p—l -+ ]_)Wt ((H, g)#p(l)) = (ip—l + ]')Al# (il, c. ,ip_g, ip+17 - ;im—l)'

Hence the polynomial
Al(Xl, N 7Xm—1) = (Xp—l + 1)Al#(X1’ Ce ,Xp_g, Xp+1, N 7Xm—1)

satisfies the conditions of the lemma. ]

3.2.3 A key lemma

The following result will be used in the proof of Lemma 3.14. Since it is a very

classical fact, we omit the proof.

Lemma 3.13. Let d € Z>o and N € Z~q. There is a polynomial Sq € C[X]| of degree

d+ 1 such that
N

D it = S4(N).

=1

Namely, if By, Bo, Bs, ... are the Bernouilli numbers, then Sy is given by:

d
1 d+1\ - .
Sa(X) = mZ( : >BdeH ,

=0 \ J
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where By = 1, By = % and Bj = Bj for j = 2. In particular, the leading term of

Xd+1
Sa(X) is T and Sq(0) = 0.

Lemma 3.14. Let m € Z~q, d € Zs, and 1 € &, without zero. Set p := p(I). Let
d=(dy,...,dpn_1) withd; + -+ dyn_1 = d. Then for some polynomial T,; € C[X]
of degree < d +m — deg Ay, we have

Vke{l,....,r+1}, > i iime = (k).

(1,2)€ P (5,),
BE[Sy41,0,], ht(p)€L

where the integer i;, for j =1,...,m — 1, denotes ht(u);. In particular, if for some

ke{l,...,r+1}, the set {(p, ) € P61 | i€ [6r41, 0], ht(p) € I} is empty, we
have Ty1(k) = 0.

By Lemma 3.11, we get

. . j : ./ Ay,
AL(Z17... ;mel) e Cd/’lll ...flmm_l ,

d'=(dy e, )

where |d'| < deg A;. Thus,

Z .dy A1 . . . Z .dy dm—1 .d A
d/

(1,0) € P (83, (1,0) € P (83,),
RE[S 41,051, pELS,41.85],
ht(p)€l ht(p)€el

Z Z .d1+d dm—1+d,
= Cd/ 7/11 E “ .. me—l m—t
d/

(r0) € P (83,
BE[Sy 41,080,
ht(p)€L

=Y Ca Tyara(k),
d/

where Ty, 4 is a polynomial of degree < |d| + |d'| + m — deg A; < d + m. Hence the

lemma implies that

d 1 . .
E it AL, )

(ﬁ»g)e-@m(5k>v
BELSr41.5,],
ht(p)€l

is a polynomial on k of degree < d + m.

Proof. We prove the lemma by induction on m. More precisely, we prove by induction

on m the following;:
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3.2 An equivalence relation on the set of weighted paths

For all I € &, without zero and all d € Z>y with dy + - -+ + dy,—1 = d.
Set
Vke{l,...,r+1}, Ty(k):= > i gdmt

(1) € P (8y,),
1€y 1 1,05], ht(p) €L

Then there exists some polynomial T4y € C[X| of degree at most d+m — deg A; such
that
Tua(k) = Tax(k),

for all k € {1,...,r + 1}. In particular, if for some k € {1,...,r + 1}, the set
{(1,@) € Pn(6x) | 1 € [0, 0], M) € I} is empty, we have Tyx(k) = 0.

The case m = 1 is empty. Assume m = 2, and let I € & without zero.

The only equivalence class in & without zero is [1,—1], so I = [1,—1] and
p([1,-1]) =2. Let k € {1,...,7}. Thentheset {(11,a) € Po(dx) | p € [,41,0x], ht(p) ~
(1,—1)} is nonempty. It is empty for k = r + 1.

Let d =dy € Z>y.

We get
r+1—k
2. i = if=Sar+1—k).
()€ Py (8)) i1=1

€IS, 41,651, ht(w)~(1,—1)

By Lemma 3.13, the polynomial
Td,[l,fl] (X) = Sd(T + 1— X),

has degree d +1 = d + 2 — deg Apy,—y) since A; _(X1) = Xi;. Hence, for any
ke{l,...,r},
> i" = Tup,- (k).

(1,9)€ P2 (5))
PE[Sr 41,0, ht(p)~(1,—1)

Moreover, the set {(u,a) € Py (62) | 4 € [0r41,0x], ht(p) ~ (1, —1)} is empty if and
only if £ =r 41, but Ty, _11(r + 1) = Sq(0) = 0. Therefore the equality still holds.
This proves the claim for m = 2.

Assume m > 3 and the claim proven for any m’ € {1,...,m — 1}.

Let I € &, without zero, set p := p(I), and let d = (dy,...,d,—1) with dy +
o4 dyy =d. Let k € {1,...,r + 1} such that the set {(u,a) € Pr(6r), | U e
[0:41,0x] and ht(x) € I} is nonempty. Then the set {(4/,a') € Prn1(61), | IS
[6-41,6x] and ht(g') € I*} is nonempty, too.
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* Assume that i, 1 +14, > 0.
Let p € [6,41,6%] such that i := ht(u) € L.

1= (7;17 s 7ip717 ip>ip+1a - 77fm)
o
Set ¢’ := ht(pu#?),
./ ./ ./ -/ -/ -/
= (el gy iy 5Ty )

/
p—1

{1,...,r+1—k—dy—---—i _,} Hence, there are precisely r +1—k— (i} +---+i, ;)

elements i € Z™ such that i € I and i#? = ht(u#?). The heights i := ht(u) € I can

where i, | =i, 1+i, > 0. Theni, | > i and 80 i, 1 = 4, ;-+4 with i runs through

be expressed in term of ¢ as follows:

. ./ . -/
11 =1, ey lp—2 :Zp—27
. ./ . . .
lp—1 = 1y T 1, i = —1,
. . ./ . . ./
lpr1 = Zp? ceey m—1 = Y9,
where 4 runs through {1,...,7 +1 -k — 4} — -+ — i} (see Figure 3.2 for an
illustration).
.% ......... = = ...... .
0% pe=n u®) Ora1
zl ......... lp72 2p71
.................... — =
i Z';;—Q i;;—l =lp—1+ip i
e ST ————¢---oooIXxIIooIIIs
i; =ipt1 —1

FIGURE 3.2 - i =ht(u) and ¢’ := ht(4#P) for the case ip_1 + i > 0

By Lemma 3.13 we get,

Tyx(k)
= > D ) R A e A e G ) K RN (AP L

(12 )€ Py 1 (5y) ISISTHLITE
IS GRS | I S T |

ht(u)eI#
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dp_1
- ¥ S @) (i) Z(dp.‘l)u;_l)dp—l-w (i (i)

(e )EPr 1 (8)) 1SISTHl—k Jj=0
BE[Sr41.6,] B S "R |
ht(p/)er#

= > (= 1) (@)% - (ify_o) P2 (i) - (i) ™t
(' a')ePm _1(5y)
HE[Sr41,0k]

ht(p')eI#
dp_1 J
—1 i s ) )
X Z ( Pj >(1J’D_1)dp1 ]Sdp+j(7“+1—k—l’1 _..._Z;_l)
7=0
dp_1
dy— .
do /1 \d . dr_o /1 N\d . dyp— 1 . d,_1—
= Z (_1)17(2/1)1...(1;72);72(Z;)p+1...(l’m72) 1 <1; )(2;71)1713
(02" YeEP _1(51) =0
SOl
dp+j .
1 — (dp+j+1\ 5 , ‘ L
D =
dp—1dp+j . . |
B Zl(dp_1><dp+y+1>él Z Z (dp+j+1-=1)
- . . ‘ '
v e pE AN l P ol
n€ldypyy.6]  lal=dp+iti=i
ht(u)eI#

> (_1)2dp+j+1*l*qp(7a 11— k)qp (Z‘/l)d1+(h . (i;il)dp—l‘i’Qp—l*j(Z'/p)dp+l .. (Z"m_Q)dm—l
J

_ + ) '
SxulS <dp1> <dp +i+ 1)1?1 5 (dp+7+1—1) (1)t
j=0 1=0 dp+j+1\ J ! al...q!

IS
IS

geNP
lgl=dp+j+1—1
TS I ) e (i),
(e EPm _1(5y)
RELS,41:8,]
ht(p)el#

Set d' = (dy +q1,. .. dp1 4+ Gp1 — Jydpi1y .o ydm1), with |d| =d —d, + d, + j +
l1-l—-g¢g—j3j=d+1—-1—-¢q,<d+1-gq,, and

Typ(k) = Y (@)™ (i) I (i) (i, )t

(') EPy, _1(5k)
HE[Sy41,05]
ht () e1#

U

p—1 dp+j

. L [yt (dy+j+1) 7
n® =2 20 j+1(j)( ro )

=0 [=0

<
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Chapter 3. Proof of Theorem 7 for sl

(dy+j+1-1)! — -
< 3 B T, (62

lal=dp+j+1-1

By the induction hypothesis applied to m — 1 and I, there exists a polynomial
Tyy# of degree < d+1—¢q, + (m —1) —deg A = d — ¢, + m — deg Ay, since
deg Apx = deg Ay by Lemma 3.11, such that T 14 (k) = Tgl’,l#<k) for all £ such that
{(¢, ) € Ppui(0k), | 1 € [6541,0k] . ht (') € T#} is nonempty.

Set

Zldzﬂ B\ (Gp+i+1\ g
Tax(X 0l0d+]—|—1 j !

(d +]—|—1—l>. o
X Z pql!__,qp! (—1)2ht 1=t (] — B) Ty 1 (X)),

Then by the induction hypothesis and (3.2), we have Tyy(k) = Ty1(k ) and Tyg is a
polynomial of degree < d + m — deg Ay for all k such that {(u,a) € Zn(0k), | p €
[6r41, 0], ht(p) € I} is nonempty.

It remains to verify that 7, 1(k) = 0 when the set

{(11.0) € Pon(Bk) | 1 € [6r41,64] and ht(p) € I} (3-3)

is empty. In this case, le(k) = 0 by the definition. The Set (3.3) is empty if
{(W,a) € Prn1(61) | W € [6r41,6:] and ht(y') € I¥} = @. But our induction
hypothesis says that, in this case,

Td,l(k) = Td’,l#(k’) =0,

for any d' € ZZ;'. Otherwise, this means that the set {(u/,a/) € D1 (1) | uoe
[6:+1,6x] and ht(y') € I¥ } is nonempty and so for any i’ € I¥ and for any (1, o) €
P,n_1(6),) such that ht(y') = 4, we have ¢y +--- 41, | = r+ 1 — k. In that event,
T41(k) = 0 by the construction.

* Assume that i, + 17, < 0.
Let p € [0,41, %] such that i := ht(u) € L.

1= (Zb sy lp1,tps tp 1y - 7Zm)'
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3.2 An equivalence relation on the set of weighted paths

. ./ ./ ./ ./ ./
A (SRR AP IS AR S

1 — ¢ with ¢ runs
ht(p) € I can be

where i, =i, 1 +1i, < 0. We have 4, < i), <0, and s0 i, = i
through {1,...,r+1—%k —4} —---—4 _;}. Hence, the heights i :

expressed in term of ¢’ as follows:

/
p—

. ./ . ./
7/1 :Zl, ceey 'l/p_2 :Zp_2,

. s . . -/ .
p—1 =1, lp =1, 1 —1,

. ./ . ./
Zerl = Zp, ey tm—1 = Zm—27
: ¥ y :
where i runs through {1,...,7 +1—F%k —d} —--- — 4} (see Figure 3.3 for an
illustration).
H ....................................... = = ...... .
(Sk M(pfl) M(p) 5T+1
i1 2 ip—2 Ip—1
) iiiiciiiiiiisiissississanes
ip+1 ip
i i i o i
) i iiiciiiiiisissisiiseassnens — S e - - ——— == Fmmmmm— =
.7/ ¢ m 4 - - - - - - - ( ________
ip = lp+1 Ty = ip—1tip —1

FIGURE 3.3 — i = ht(p) and i’ := ht(u#P) for the case i,_1 + i, < 0
© P p

(k)= ) Yo ) (i) i iy = ()T (i)

(e )EPm_1(6) LSiSrtlck
BESr41,0,] T T hp—1
ht(p/)e1#

Then we conclude exactly as in the first case.
To verify that Ty1(k) = 0 when

{(1.2) € Pou(6i) | p € [0r11,0] and ht(p) € I} = 2,

the arguments are the same as for the case ¢,_; + 4, > 0 so we omit details.

* Assume that 7,_1 + 14, = 0.
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Chapter 3. Proof of Theorem 7 for sl

Since I has no zero, we necessarily have m > 4. Let pu € [0;41,0%] such that

i:=ht(p) € L

0= i1y b1, 0py bty - - oy Iim)-
7
Set i’ := ht(u#?),
-/ -/ -/ -/ ./ -/
8= (el gy iy 15Ty o)
g L .
where 7| = i,41. Set 4, 1 =i then i, = —i with 4 runs through {1,...,r +1 -k —
-/ -/ . - . -I
iy — -+ — i, o}. Hence, the heights i := ht(u) € I can be expressed in term of i’ as
follows:
. -/ . -/
Zl == Zl’ e eey Zp72 == Zp72,
ip1 =1, 1= —1,
. . ./ . . ./
Zp+1 — Zp_l, ey Zm_l — Zm_37
: y y :
where i runs through {1,...,7 +1 -k — 4} — -+ — i, _,} (see Figure 3.4 for an
illustration).
.% ......... = = ...... .
O ,u(p_l) ,u(p) Opi1
21 ......... ,Lp72 Zp71
.......... — =
i ip—2 i
SR Se e o e e
Ip—1 = tp+1 -t

FIGURE 34 - i= ht(p) and i = ht(ﬁ#p) for the case i,—1 + i, =0

By Lemma 3.13 we get,

Ty(k) = > Yo @) () (@) (=) (i) (i)

(1o )E€Pp, 1 (5p) 1SiSrHlsk
1ELSr41,5k]
ht(p')e1#

= > ENTE)T (i) PR () Y @)t

1<i<r+1—k

iy =iy g

(w',a')EPp, —1(5) 7 )
BENS,1,0] —if—il
ht(p')e1#
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3.2 An equivalence relation on the set of weighted paths

=Y D) ()P (i)™ Sy (r L k=i == 1))

(w',a")eP _1(5))
pElSr41:9k]
ht(p/)el#

= Yoo (@) (i) (i)

(12" )EP 1 (8)
pElSy41:0k]

ht(p')€1#
dp_1+dp
1 " dp—l + dp + 1> ~ )
X . Bi(r+1—k—4¢ —...—¢ )lp-1tdptl—y
dp—1+dp+1 ]g(] < 7 ]( 1 D 2)
dp*l'f'dp .
. — 3 dp1+dp+ 1\ T (dpr +dy+1—j)!
dp—1+d,+1 = j J P ol
@:drjfl‘*'dp‘*'l—j
X (*1)dp*1+2d"+1_j_q”*1(7“ +1— k)t Z (Z"l)d1+tn . (Z';)_2)dp72+qp72 o (i;ﬂ_3)d’"*1,

(12 )EP 1 (5))
HE[S,41,0%]
ht(p/)el#

Set C_l/ = (dl +Q1, Ce ,dp,Q -+ Qp727dp+17 ce ,dm,1>, with |C_i/| =d- dp,1 — dp -+ dp,1 +
dy+1—-—7—¢q-1<d+1—¢q,_1, and

Typ(k) = Y (@)™ ()T (i, )™

(') ePm _1(5y)
BE[S,41,0k]
ht (') €1#

Then

d,_1+d
~ 1 P P rd, d 1\ ~ d,_ d 1—9)!
Td,l(k): Z (p 1+.p+ >Bj Z (p 1+ dp + 7)

dp_1+dp+1 =0 ] q1!---q1)—1!

genp—1
lgl=dp_1+dp+1—j

(—1)do 12l (4 ] k)q"fljjdgl#(k)- (3.4)

By the induction hypothesis applied to m — 2 and I, there exists a polynomial
Ty of degree < d+1—¢q, 1 + (m —2) —deg Ayx = d — g1 +m — deg Ay, since
deg Ap# = deg Ay — 1if i,y +14, = 0 by Lemma 3.11, such that T}y 1» (k) = Td’,l# (k)
for all k such that {(u, ) € Pn(04), | i € [0r41,6x], ht(p) € I} is nonempty.

Set

dp—l+dp .
1 dp—1+d,+ 1\ =~ (dy—1+d,+1—7)!
Tax(X) = o——— At > <p 7 )Bj > o
p—1 D =0 j et qi: ... qpfl.

lgl=dp_1+dp+1—j

X (=1) P2ttt (p ] — )T (X).
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Chapter 3. Proof of Theorem 7 for sl

Then by the induction hypothesis and (3.4) we have Tyy(k) = Tyx(k ) and Ty is a
polynomial of degree < d +m — deg Ap for all k such that {(y,a) € Z2,,(6), | p €
[6r41, 0], ht(p) € I} is nonempty.

It remains to verify that T,3(k) = 0 when the Set (3.3) is empty. In this case,
Ty1(k) = 0 by definition. The Set (3.3) is empty if {(W,a) € Prn_1(61) | Woe
[641,01] and ht(y') € I} = @. But our induction hypothesis says that, in this case,
Tax(k) =Ty (k) =0

for any d’ € Zgﬁl. Otherwise, this means that for any i’ € I” and for any (W,a) e
P u_5(0y) such that ht(y') = 4, we have #; +--- 41, , = r+ 1 — k. In that event,
T41(k) = 0 by the construction. O

3.2.4 Elements of &, with zeroes

We consider in this subsection the elements of &, with zeroes.

Let (m,n) € (Z~o)?*, with n € {0,...,m}, and I € &, with n zeroes in positions
ji < -+ < jn. This means that p0) = p0t) for [ = 1,...,n. Let i € I, and let
7 be the sequence of Z™ ™ obtained from ¢ by removing all zeroes. Denote by I the
equivalence class of 7 in Z™ ™. This class only depends on I and has no zero.

Let (f1,&) € P with ht(f) € I. Thus (f1, &) has no loop. Define weighted
paths whose height is in I from (fz,&) as follows. Set j := (ji,...,J,) and let § :=
(BN, ..., BM) be in

Lo =160 % X Wy

Define (fi, @);,3 to be the weighted path of length m obtained from (ji, &) by “gluing
the loop” labelled by 8" at the vertex p) for i =1,....n

Thus for such a 8 € Hu@ the height of the weighted path (f, Q)l%é is in I. More-
over, all (y, o) € P, Withiht(ﬂ) € I are of this form.

Example 3.15. Remember from Section 2.2 that

H5k = {kala 6k}7 k= 27 e T H51 = {61}7 H5r+1 = {ﬁr}

Assume that » > 4. Let I € &5 be the class [1,0,1,0,—2]. Then I has 2 zeros in
positions 2 and 4 and I = [1,1, —2]. We represent below the weighted path

(f1, &) = ((02,04,05,02), (B2 + B3, Ba, — B2 — B3 — Bu)) € P3(8)
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3.2 An equivalence relation on the set of weighted paths

whose height (2,1, —3) isin i, and the four weighted paths (g, Q) (2,4);(84,85) (E, Q) (2,4);(84,84)
([, ) (2,4);(85,85) and (fi, &) (2,4);(85,8,) Whose height is in I obtained from it:

a® 04 a®
r—r——0——0
92 = Js
o =, ol =4
a® a® o) = g5 o) ( ?a(:s) a® =4
a®) al®
a® = s o? =p3
aD ( ?a@) a®) = g5 oD ( ?aw) a® =py
a® a®)

Lemma 3.16. Let m € Z~o and I € &, with n zeroes in positions ji,...,Jn (N <
m). There is a polynomial By of degree n such that for all (fi,&) € P (61),
ke{l,...,m+ 1}, such that ht(f1) € I

Y owt ((g, g)l-;é) = Bu(k)Ag(in, - i 1),
where ht(fi) = (71, ... ,im—n-1). Moreover, we have
Bu(X) =Y O, 1) X
=0

where C’l(o) = (—1)" and Cl(j) € ClXy,...,X;n_n_1] has total degree < j for j =
1,...,n. In particular, if n = 0, we have By(X) = 1.

Proof. First of all, observe that if n = m then the result is known by Lemma 2.2. At
the extreme opposite, if n = 0, then the result is known by Lemma 3.11.

We prove the lemma by induction on m. By the above observation, the lemma
is true for m = 1 and m = 2. Let m > 3 and assume the lemma true for any
m' e{l,...,m—1}.

Set p := p(I) and ¢ := ¢(I).

x First case: i, = 0. Then p = j; for some [ € {1,...,n}. Assume that u(V) = g
and p®) = §,, then s = k + S0~ i,

Set j = (j1,.-.,Jn) and let 3 := (BM, ..., 3™) be in II (). Assume first that

I=
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Chapter 3. Proof of Theorem 7 for sl

s €42,...,r}, we have

o =60 % X LGy X e X X6
= I X - XL Gy X s, X X
= IL,60 X -+ X TL Gy X {Bs1, B} X -+ X M im-

Choose 3, = (B, ... Beot, ..., B™) and B, = (BW, ..., By, ..., B™) for some ) €

IT,o. Then by Lemma 3.3 (3) and Lemma 2.1 (2), we have
((2 @)jis, ) = (—{p, Do) + 1)wt («E Q)zé)#p>
= (~(p, ) + wt (((1,8);)7)
wt ((78);5,) = (0, Ban)wt (7 @))%
= (p.mawt (((78);)7)
Moreover

Il
/|\
N

V)
|
—
<
|
—~
w
|
=
+
=
~__

+

—_

+

NI

—~

=

|
»

+

=

~_

—~

=

|2

S

)

N—

Ris
=
N~

If s=7r+1, then
M0 =00 X - x {Bea} X - X gn)-

For some 3 € IL ;) and Then by Lemma 3.3 (3) and Lemma 2.1 (2), we have
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3.2 An equivalence relation on the set of weighted paths

:<__k Z’t+2>“’t< (2, &) ;8)* )

Hence
r i
> wt (@ a)s) = (5 — k= i 2) wt (1 @);0)*7)

where j' := (ji,...,J1-1,J141,---,Jn). So, the induction hypothesis applied to I

gives,
> wt ((E»Q)l‘@): (——k Zzt+2> (k) A (@, Tmene)-

Note that in this case I = I and

p—1 p—1
Z't = ~t
t=1 t=1
Thus we get,
r G
> wt ((8)) = <§ — k- Z@+2> By () Ag(, . i)
561_[#(1) t=1
Set

Bi(X) = (g X - pZit + 2) By (X).

By our induction hypothesis applied to I*, By has degree n, its leading term is
(—1)"X™ since I* has n — 1 zeros, and the coefficient of By(X) in X7, j < n, is a
polynomial in the variable 7y, ...,%,_,_1 of total degree < n — j. This proves the
statement in this case.

* Second case: p = ¢ and and 4,1 + 7, # 0. Then necessarily, n < m. Then by
Lemma 3.3(1), we get
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Chapter 3. Proof of Theorem 7 for sl

—_—

Let (u,a) € P, (61,) such that ht(u) € I Observe that the class of ht(u#?) does not

depend on such a (i, a). Moreover, for any 3 € IL ),

where j' = (j{,..., ;) is the sequence of positions of zeroes of ht(u#?). Therefore by

our induction hypothesis and Lemma 3.11, we get

> wt(((@))™) = D wi (@ a?)yy)

ell (; eIl .
8 el Bell 1)

= Bl#<k)Ai‘# (”Zl, e ,zp(l#)_l + zp(l#)7 /Zm_l_n)
= Bl#<k')Ai(€1> R 75m7n71)-

Since I* and I have the same number n of zeroes, by setting
Bl = Bl#,

we get the statement by induction hypothesis.
* Third case: p = ¢ and ¢y_1 + 7, = 0. First assume that iy = --- =17, =0 or
that p = 2. Then by Lemma 3.3(2)(a), we get

> owt((@a)s) = Do dprwt (7)) ).

where Z’ is the sequence of positions of the zeroes of ht(H#p). So, by induction

hypothesis Lemma 3.11, we obtain, arguing as in the second case, that

S wt () *) = > wi(pfr,af),)

BEIL (5 BEI (1)

= prlBl#(k)Aﬁ (ila e 7517(1#)—27 ip(l#)-%l’ melfn)

= Bl# (k’)Ai(il, e ,%m_n_l).
Since I and I have the same number n of zeroes, by setting
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3.2 An equivalence relation on the set of weighted paths

we get the statement by induction hypothesis.
If we are not in one of the above situations, then by Lemma 3.3 (2)(b) and
Lemma 3.11 and the induction hypothesis we conclude similarly. Namely, here we

get that

et (ip,1 + 1>Bl#(k)Ai# (51, “e ’ip(l#)*Q’ ip(l#)Jrl, imflfn)

== Bl#(k)Ai(il, e ,Zm,n,l),
and we set By := Bpx. Since I and I7 have the same number n of zeroes, we get the
statement by induction hypothesis. O]

Ezxample 3.17. Let I € &5 be the class [1,0, 1,0, —2] that has 2 zeroes in positions 2
and 4 as in Example 3.15. Then I = [1,1, —2]. Let (f1, &) be the weighted path,

(Ba Q) = ((5167527 5j75k)7 (5k - 5@752 - 6]'75]' - 576)) € t??3(5’4)7

whose height is in I. Set j = 12,4} and let § € H#@ with Hu@ = {Bi_1, B} X
{Bj-1,B;}. We have

Z wt ((27 Q)lé) =wt (<E’ Q)(QA)?(Biflyﬁjfl)) +wt ((27 Q)@A);(ﬁi—l,ﬁj))
BEN )

+wt (/1 @) 2068 1)) + Wt (@6 1.6,))

With the same arguments as Lemma 3.3 (3), we have

wt (1, &) 2ay48,1,8-13) = (—(ps @ic1) + 1)(—(p,w0j-1) + D)wt(fi, &);
wt (7, &) @ay(si-1.8,1) = (=P @im1) + 1) ({p, @) )wt(fi, @);

wt (22, @) 2.4)48,8,11) = (s @) (—(p, Tj—1) + 1)wt(fz, @);

Wt (1, @) @ay48.8)) = ({0, 0:)) ((p, ;) ) Wh(fi, @)

I ..
BeM G
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Chapter 3. Proof of Theorem 7 for sl

= (G-i+2(E—j+2) wi(a)
=

(

k=0 +2)(r—k—1 — i+ 2)wt(fi, &)
((g_zl+2)(§—zl—22+2)) KO+ (= <r+4>+2u+22>k1+k)f1 (21,%)

2
Z Cé (Zl, ZQ)k A (21,22)
=0

By setting

2
= E Z1722

we get that By, is a polynomial of degree 2 with leading term X? and the coefficient
of B,(X) in )Ej, j < 2, is a polynomial in the variable 77,7, of total degree < 2 — j.
Thusi

> wt (1 8)8) = Bulk)Ag(in, 7).

en
B W@

Corollary 3.18. Let m € Z~g andn € {0,...,m}. LetI € &, withn < m zeroes in
positions ji, ..., jn, and I as in Lemma 3.16. Then for some polynomial T € C[X]
of degree at most m, for all k € {1,...,r+ 1},

X X wi(@a)s) =nm).

iel PEIL j (B&)EPm_n(k),

= pElSpq1.6k] ht()=i
If n = 0 or it I has no zero, then 77 is the polynomial provided by Lemma 3.14.
If n = m, then I = [0] and 771 = T, is the polynomial provided by Lemma 2.2. So, in
these two cases, the statement is known. Also, our notations is compatible with the

notation of what follows Lemma 3.14.

Proof. Let k € {1,...,r +1}. By Lemma 3.14 and Lemma 3.16, we have,

Z Z Z Wt <(E7®Z%é> = Z Bi(k)A; (i1, - - tm—n—1)

i€l BEI j (#8)€Pm_n(5), (B8)€ Py —n (5%,
= A€[S,41,05] ht()=2 BE[Sy41,0k], ht()€EL

= > ST e )R A et

(B&)€ Py —p(3g),  J=0
BE[Sr41,0k], ht(R)EL
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3.3 Proof of Theorem 7

- Z Z Z Cd]~d1" mmrzl llk]A (Zlv'”’zm—n—l)'

(ir8)€ Py —n (8), J=0 dj=(d1,-dm_n_1),
AE[6, 41,851, ht(R) €T dittdm—p_15n—J

Set
T _ ~dq ~dy—n—1 ~ ~
Td'i - z : 41 “'Zm—'r?—lAi(lla'--alm—n—l)-

]7
(E:é)eg}’mfn(ék)v
[E€[6741,0,], ht(R)EL

Then by Lemma 3.14, there are some polynomials 7, ; of degree at most (n — j) +
d; 1
(m —n) =m — j, such that

n
LAY — 1J -
E E § wt ((E,Q)J;g) = E : E : Ca,jk de,l(k)'
ic i BEIl ; (5,8)€ Py _n(6y), j=0 d;=(dy,....dpm—_n—1);
L BE[Sy41,0,], bt ()=1 dit-tdm_p_1Sn—j

Moreover, if j < n, then T ; has degree < m — j. By setting
d; 1

_ Z Z cd,jXﬂ'dei(X),

]:0 Qj:(dl 77777 dm—n—1),
di+tdpm _p_1<n—j

we have that 77 is a polynomial of degree at most m — j + 7 = m. O]

3.3 Proof of Theorem 7

The following result is a consequence of Corollary 3.18.

Lemma 3.19. Let m € Z~o, There is a polynomial T, in C[X] of degree at most m
such that for all k € {1,...,r+ 1},

(1) € P (81,)
pE[611,0%]

Proof. By Corollary 3.18, we have for all k € {1,...,r + 1},

> owilwa)=)Y_ > wilwa) =) Ti(k).

(1,2) € P (5y,) Ie€n  (1,0)ePm(5y), Ieém
pelSr41,0,] #E[Sr41,0,], ht(i) €L
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Chapter 3. Proof of Theorem 7 for sl

Set

Tn:=>» TieClX

1eém

By Corollary 3.18, 71 has degree at most m. Therefore T., has degree at most m and

satisfies the condition of the lemma. m
We are now in a position to prove Theorem 7

Proof of Theorem 7. By Lemma 1.19, we have

ev,(dp, ) Z > wilp, ), B

HEP(O)k (p,a)€ P (1) B

Remember from Section 2.2 that for kK =1,...,r,

P(0)r = {0k, Or41}-

Hence,

evo(dp) = Y. wipa)— > wi(ga),

(1.0) € Prm (61 (1:0) € P (1 41)

where y is entirely contained in [6,1,d]. Let T, be as in Lemma 3.19 and set
Q= To(X) = T (X + 1). (3.5)

Then Qm is a polynomial of degree at most m — 1, and we have

—~ 1 1 < —~ 1« »
ev,(dp,,) = ev, (% dem,k ® w,ﬁ) = Zevp <dpm7k) w,ﬁf = Qmw,ﬁc
T k=1 T k=1 T k=1
Moreover, Ql =1 O
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Chapter 4

Proof of Theorem 7 for spo,.

The purpose of this chapter is to prove Theorem 7 for sp,,.,r > 2. We follow the
general strategy of the sl case. However, since the simple Lie algebra sp,,. is non
simply-laced, it induces new phenomenon and the proof is much more technical and
new tools are needed. Consequently, the results are highly non-trivial generalizations
of what we proved in the previous chapter.

Throughout this chapter, it is assumed that g = sp,,,r > 2, and § = w;. We

retain all relative notations from previous chapters.

4.1 A preliminary result

The goal of this section is to prove the following result for sp,, and § = w;.

Theorem 4.1. Let m € Zo, pp € P(6) and (p,a) € Pn(1). Assume that for some
ie{l,...,m}, p = p. Then wt(p,a) = 0.

According to Theorem 4.1, it will be enough in many situations to consider
weighted paths (u, ) € P.,(1) such that p@ < p for any i € {1,...,m}. We
will prove the statement, in Section 4.1.4, by induction on the length m of the path.

Let p € P(8), m € Zs, i € Z% and (p,0) € Prn(p)i- Set p = p(i), ¢ := q(i)
and let s € {1,...,p — 2} be a positive integer.

In sl,,, according to Lemma 3.2, for all positive roots a!®) € «a, we have that

either a® + o) is not a root or a negative root. Hence for all u € U(g), the
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Chapter 4. Proof of Theorem 7 for sp,,

Harish-Chandra projection on (b}, ,e,mu) is zero. Nonetheless, this is not the case
for sp,,..

Lemma 2.7 shows that, under some conditions, there exists a positive root a®) €
a, such that either al® +a® € A, or al® = —a). In this situation, the cutting
vertex operation induces several new paths. The details of this phenomenon will
appear in Lemma 4.3 and Lemma 4.4.

However, if for all s either a!® +a® ¢ AU {0} or a® + a® € —A,, then
Lemma 3.2 can be applied and one can argue as in sl,..;. Hence, there is a scalar
K#P such that:

wt(p, @) = K#Pwt(p, ) *.

This scalar is described in Lemma 4.2.
For the sake of simplicity, we first consider the case when p = ¢ and assume that

the weighted path (u, ) € P, (11); has 10 loop.

4.1.1 Case p = q without loop

In this paragraph, let y € P(5), m € Zsy, i € ZT, and (u,a) € ,@m(u)i Set
p = p(i), ¢ == q(i).

Lemma 4.2. If for all s € {1,...,p—2} either o'® +a® ¢ AU{0} or a® +al?) €
—Ay, then there is a scalar K#P such that:

wt(p, @) = K" Pwt(p, ),

where K#P is described as follows:

1. If oP=D 4 a® £ 0, then

K#P — P
()’

where Kgipa) is a constant which only depends on constant structures (§2.1.2).

2. Assume a® Y 4 o) =

(a) If p =2, then
K7 = (Ca(1))2 ht(éz(l)).

(b) Otherwise,
K#? = (cqwn)® (ht(a"V) = ¢,1),
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4.1 A preliminary result

where

Cpo1 = Z <Oé(jk)’d(p*1)>’ (4.1)

alk) egp—l

with

Qa, = {Oé(jk) caljr<p—1ke(l,...,n), [ea(jm,d(p’l)] # 0},

s

and c 1) be as in Definition 1.14.

Proof. 1. Assume oP~Y 4 o) £ 0. Write

~

o) = (i) % (@D, 1P, o=y s ((u®, pPH), o)) 5 (1, ),

M(p-i—l) a®

(@ o) (Chp-1€_qp-1))
o e o **77 We have,

Set a = @ 1) ) ) 1)

* _ * *
b(#,g) - ab(g’,g’)ea(p‘”ea(p)b(g”,g”)

* * * *
- ab(g’,g’)ea“’) ea(”‘”b(g”,g”) + Cma(p‘”70<(”)b(g’,g’)ea(p‘l)nw(p)b(g”,g”)

(o C_a@) (Chp-1€_4(p-1))
M<P+1)7M(P) 'u,(P)”u,(P*U *

_ * *
= ab(ﬁf,g/)ea(m 6a<p—1)b(ﬁ//,g~) + N1 o) ot D0 D) ) (w)#P

‘u,(p"'l)“u,(p_l)

By the assumption, the weighted path (H’ ,’) and the positive root —a®) verify the

conditions of Lemma 3.2. Hence

hC(b@/ﬂ/)ea(p) €n(p—1) b@,,’g,,)) =0.

Co@_a@) Cop—1°_op-1))

a a
. (p+1) ,(p) (p)  ,(p—1)
By setting K7? = n_ AR b we get
y & B (e aP=D ol T T e T ) Ve 8
@ o+ L, (o-1)

wt(p, o) = Kzipg)wt(ﬁ, a)?P.

2. Assume a® Y 4+ o® = (. Thus we have a1 = —q®),
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Chapter 4. Proof of Theorem 7 for sp,,

(a) Assume p = 2. Write

(1, 2) = (™, 1), D) (0, 1), @) % (1", 0",

(C @¢€_,@) (e me
" " . fe% [e% e —a
where (p", o ) has length m — 2. Set a := NI RN ICTR. We have
* < (1)) 1%
bﬁ, = aea<1>6_a<1>b (W) = a(e_a(l)ea(l) + a )b(ﬁu’gu)

= a@_a(l)ea(l)b(ﬁmg//) +a bzkﬁ/’g/)d(l)b)(kﬁu a'’)
since a® = —a®. From Lemma 1.24 and Lemma 3.2 we have,
he(b), o) = a AWhe(b],u 4n) = (cam)® @Vhe(bf, 4 4)-

Since

we get:
Wt (1, @) = (com)? ht (@) wt(p, @) #?,

where (u”,a") is a weighted path of length m — 2.

(b) Assume p > 2. Write

as in (1).

el il o ?) = 1,(9)
o Iu(p-i-l) a® = _q-1)

(come_am)) (Com-1€_sp-1))

Set = a6 00 D6 -1 . Hence

b(ﬁ = ab €qalp—1)€ a(p)b o)

= ab 7% a/)e—a(P DEq(p—1 b( " o) -+ Clb /)Od UbEZ//’gu),

() = (1, ) (P, 1), a®=D) o (P, pFD), 0Py o (1, 0

since a?) = —aP~1) By assumption, the weighted path (¢, ') and the positive
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4.1 A preliminary result

root a1 satisfy the conditions of Lemma 3.2. Hence,

hC( )) = ahC(b?u/7g/)Ov{(pil)bzul//’g//)). (42)

*
(e

For all other roots o' € o/, where ¢ ¢ j, &P~ commutes with "),

(e_,-2) (e_, )

/ l— ...
Set a’ = @ -1 yo-2) " Ay )¢

We get

*

~(p—1 / ~(p—1
b?ﬁ’,g’)a(p )b?ﬁ”,g”) =ae ) et Ealin) T ea(p72)a(p )b(ﬁu,g”)

=d'equ) equn (d(p_l)eaum - (Oé(j"),d(p_l)>€a(jn>> o= Dy
_ alea(l) et d(P—l)ea(jm e r-2) b@”,g”)
_ a/<04(jn), d(p_1)>6a(1) e el Cap-2) bZ‘i,,vg,,)
=d'e,a) e (d(p_l)ea(jnfl) — (aln-1), é‘(p_l))ea(j"*l))
X eqtin) * Eatr- by o)
_ a/<04(jn), d(p_1)>€a(1) e €alin) T Eglp-2) b?ﬁ”,g”)
=d'e,a) eyt Ové(p_l)eaunfl) T €lin) T €a(p-2) b@”,g”)
. a/<a(jn_1), @(p—1)>ea(1) ey T Calin) '€a(p—2)b>(k " o)

/ in) x(p—1
—d'(a) aPDye el T Calin) * Calo-2) D gir)-

We continue the process, and we get

@’Q,)d(p—l)b@,@/) — a/d(p—1)€a<1) e ) T Clin)  Calo-2) b?ﬁ”,g”)
_ a’(a(jl), d(p—1)>6a<1) e ) Clin) ea(p72)b>(kﬁ”,g”)
— = (alin1), d(p_1)>ea<1) e ) Clin) 'ea(l’*2>b>(kﬂ”,g”)
_ a/<oz(j"), d(ﬁ—1)>€a(1) e Calin) 'ea(P*Q)b?E“,g")
= (&P — (a1 =Dy ... (qln) gp=1)y) (4.3)
X @ eq) €U T Ealn)  Cao-2) Dl o)
= (@Y — (a) gDy ... — (qUn) gP=Dy) b?u’,g/)b@”,g”)’

since &P~ commutes with all roots o' € o and t ¢ j.

By Lemma 1.24 and (4.2) we have

he(p, @) = (Cae-0)? (@77 = cpo1)he(b, pyer)-

91



Chapter 4. Proof of Theorem 7 for sp,,

Hence,
w(p, @) = (caw-n)*(ht(@?V) = ¢, 1)wi(p, a)*.

]

Lemma 4.3 (a'® +a®) € A,). Assume that for some s € {1,...,p—2}, a® +al?) €

A, . In this case,

wi(p, @) = K#Pwt(p #p+ZK Wt (p, ),

where K#P is a scalar as in Lemma 4.2, K** are some constants which only depend
on constant structures, and (p, @)™ := (u**,a**) is a concatenation of paths defined

as follows.

1. If a® = Sj —0; and o' =6, — &;, with k < j < 14, then

() = (i, ) % (0, 6;), (@) + o)) % (37, ) x (", "),

where (**, &™) is a path of length < p — s between 0; and 0; whose roots &**

are sums among (P~ . alstD),
2. If a®) =6, — §; and o'®) = §; — 6;, with j <1 < i, then

(u,g)*a — (Hlvg/) *(

=
*
=]
b
l *
s}
N—
VS
It
t
N—

where (1™, &**) is a path of length < p — s — 1 between 0; and d; whose roots

& are sums among (a®=V, ... a5t o) 4 @),

3. Ifa® =g, — 3j and o'®) = §; — &, with i < jand i <, then

(/%Q)*a _ (H,7Q/) *(

=
*
Q
R
l X
Q
N——
I
It
§
SN—

where (i**, &) is a path of length < p — s — 1 between d; and Ej whose roots

a* are sums among (aP~Y .. altD o) 4 @),

4. IfaP) =§; — Sj and o) = §; — &, with i < j <1, then

(ILL’Q)*O, — (/_,L,,Q/) % (E*Q’Q*a) * (E”,g//),
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4.1 A preliminary result

~ka X ka

where (i**, &™) is a path of length < p — s — 1 between 0; and Sj whose roots

a** are sums among (o= . abtD o) 4 o)),

5 If o =§; — 0; and o'®) = §, — §;, with k < i < j, then

(s @)™ = (1, ') % (K, 6:), (@ + a®)) % (7, &) = (4", o),

where ([i**, &**) is a path of length < p — s between §; and §; whose roots whose

roots & are sums among (P~ ... alstD).

In all those cases,

(
(

and N is the number of possible paths of (i**,a*).

/72,) = ((/‘L(l)7 AR 7/’6(871)7 ILL(S))7 (a(1)7 R 70{(871)))7

I'=

Q") = (D, D) (@P D alm)),

I'=

Proof. Let —a® o) € A, such that a® 4+ o® € A,. By Lemma 2.7 the only

possibilities for a® and o(® are:
e a® =3, —§ and o®) = 6, — 3;, with k < j < i,
e o :Sj —¢; and a® = d; —Sl, with j <[ <1,
o oV =3, _Sj and a®) = §; — Sl, with 2 < [,
[ ] a(p) :& —g‘] and OZ(S) — 61 _517 Wlth 7/ <] < l7
e P =3, —Sj and a®) = ¢, — 0, with k£ <7 < j.

1. Assume that a® = Sj —¢; and a® = §;, — &;, with k < j < 1.
Write

(,U,Q) :(Hlagl) * ((M(S) = O, ,u(SJrl) = Sia SR 7/L(p71)7 :u(p) = gja ,u(erl) = 5@)7

where
7M(s) = 1), (a(1)7 o ’a(s—l)))7
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Chapter 4. Proof of Theorem 7 for sp,,

have length s — 1 and m — p respectively.
In this case, @) = pG+) = 4P~ and so a1 4+ P < 0. Note that a®

commutes with all roots a®) for ¢t < p, except with a®~1 and a(®).

Set

_Came_am) (Cap-ne_qe-1)  (Cuetneg+) (€€ o)
@ -= 0 1) 40 Lym -1 @ s+2) s+ Dpistn) )
*> > ° ° o ———— - - >
51 5k 6]' 51 57" 57~ 51 (5]'
gl a(s) a(5+1> Oé(pfl)
e — S—
o’ aP)

O/ a<5> + a(l’) a([)—l) O(Z(s—&-l)

FIGURE 4.1 — The case for a® = Sj —4; and a®) = §, — 9;.

We have,

*

(1,0 €a(s) Eqls+1) * * * €, (p—2) € (p— 1)€a<p)b "o

= ab@/’g/)

* >k
= ana(p—l),a(p) b(ﬁl7g/)ea(s)ea(s+1) LR ea(p—Q) €a(p—1)+a(p) b(ﬁll7g//)
*
—I—ab 1 0')€al®) Eqlst1) * ea(p—Q)ea(p)ea(p—l)b(ﬁ/l7g//)

_ poH#D 1k
= Kia)ua

#p >k *
= K b*u ay#r T ab(ﬁl7gl)ea(s)ea(p) €ols+1) * * * Colp—2) ea(pfl)b(ﬁ//’g//)

* *
)#p + ab(ﬁlﬁg/)ea(s)ea(s-kl) cr €q(p—2) €4 (p) ea(p—l)b(ﬁll7g//)

#p *
() b(ﬁ@

)#p + az(na(s)7a(p)bzku/7g/)ea(s)+a(p)ea(erl) crt Ca(p—2)Chp— 1)b " o)

+ b €a) €n(s)En(s+1) =+ €L (p—2) ea(p—l)b?ﬁl/7g//))

_ #P * * *
- K(u,g)b(u,g)#” T aN6(9),00) D 01)€al®) 4ol Cals+D) ** * Cal=2) Ealo=1) Dy 4

+ab?ﬁl’g/)ea(p)ea(s)ea(erl) © € (p—2) Eylp— 1>b Wl
where Ktha) is as in Lemma 4.2(1).
The v;eighted path (4/,a’) and the positive root —a® verify the conditions of
Lemma 3.2. Hence,
he (b

’
“ ?g

,)6a(p)6a(s)€a(s+1) . €n(p—2) € (p— 1)b W, u)) = 0,
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4.1 A preliminary result

K#p (b, ayn)

+ an,s) OC(p)hc(b (1 ,0')Cald)+a® Eals+1) ** * Eap=2) Cap-1 b( //)) (4.4)

Note that a(® + o) = ¢, — €j = 0 — 0;. Observe also that the target of a1 ig
d; = —¢;, and the source of a(**V is §; = —g;. We have a(*V) + ... 4 oY = —¢, +
gj = 0; — 0;, while the source of aP*1) is §; = ¢; so that PtV ... 4 o™ = ¢, —¢; |
with 71 < k <.

Because of the configuration, for all ¢ € {1,...,s—1}, a® = §;,—8;,,, =€), —€j,.,,
with j; < jiy1 <k <i,andforallt € {s+1,...,p—1}, o) =6;,—6;,., = ., — s,
with j < jiy1 < jie < i. Hence, ((67,0,-1,0p-2,...,0542,6;), (@D, ... al5)) is a
path from ¢; to ¢; (see Figure 4.1 for an illustration).

So we have to “reverse the order” of e +1) - €y p-1 in (4.4), in order to get

€qr-1) - * €u(s+1). Doing this, it induces several new paths and we denote by N the
number of those paths. Let (i**,&*), a = 1,..., N, denote the paths from d; to ¢;
whose roots are sums among the roots (04(7’_1), e ,@(SH)). More precisely, for each

a € {1,..., N} there exists a partition (P, ..., P, ) of theset {p—1,..., s+ 1} such

that
are (s+j Z o

teP;
for j=1,...,n,.

Furthermore, set

()™ = (1, @) % (0, 05), (@) + a®)) o (32, @) * (1", o).

We have

wt(p, @) = K{77 wi(p, a #”+ZK oW (i, )™,

where K a‘ja are some contants.

2. Assume that o —(5 —9; andas):(S — 0y, with j <1 < i.
Write

() =(p, o) () = 65, p=™ =5, p®7D 1P =5, @t = §)),
(a(s)7 a(sﬂ), o 704(%1)7 a(p))) * (M ’g//%
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where
(#',a') = ((M(l)a T =6 () 7@(3_1)))7

(") = (") = 6y ™), (@Y, al™)),

I'=

I'=

have length s — 1 and m — p, respectively.

.- . ® . —————e— - * - -
51 53 5[ 57, (5r 57’ 51 51 5j
o al®) s+ (=1
-
[E——— pap——
O[” a(p)

FIGURE 4.2 — The case for o® = 0; — 6; and al®) = §; — 0.

Observe that in this case a? P 4+ a® < 0 and o® commutes with all roots
a® t < p, except with a® Y and a(®.
Set
(came o) (Chm-1€_qpr-1)) (Coste_o(s+1)) ()€ ()

=0 1), Yym) -1 Tl et Do+ 1

Doing the similar calculation as in case (1), we get
* _ #p *
hC(b(E,Q)> = K(g,g)hc(b(g,g)#p>

+ angys) o) hC(b?H,’g/)ea(s)_,_a(p) Colst1) * " Eolp—2) ea(pfl)b@n’gu)), (4.5)

where K(f”g) is as in Lemma 4.2(1).

Note that a® + a® = ¢ — &, = §, — ;. Observe that the target of a1
is 0; = —¢; and the source of a**Y is §; = —¢g; so that a® + o) 4+ ol+D 4
o+ alPV) = —¢g + g, = §; — §;, while the source of aP*V) is §; = ¢; so that
a®Pt) ...+ oM = ¢, — ¢, with j; < j < [. Because of the configuration, for all
tef{l,...,s—1}, oW =g; — 6,
te{s+1,....p—1}, a¥ =6;, —6;,., =¢j,., —€j,, with j < jy41 < js < . Hence,
((67,0p-1,0p-2, -, 0512, 01,6;), (aP~V ... alsTD) ol 4 aP))) is a path from §; to d;

(see Figure 4.2 for an illustration).

= €j, — €41, With jy < jiy1 < 7 <[, and for all

So we have to “reverse the order” of e, )y €ns+1) =+ €qw-1 in (4.5), in order to
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get eur-1) - * - €u(s+1) Eu(s) Lo - Doing this, it induces several new paths and we denote
by N the number of those paths. Let (i*,&*), a = 1,..., N, denote the paths from
d; to 6; whose roots are sums among the roots (a(p_1>, Coabt) ) 4 a(p)). More

precisely, for each a € {1,..., N} there exists a partition (Py,...,P,,) of the set

{p—1,...,5+1,s,p}, where s and p are always in the same partition, such that
(&*a)(s+]’fl) _ Z Od(t)
teP;

for j=1,...,n4.

Furthermore, set

Hence,

where K Zﬁa) are some constants.

3. Assume that a® = §, — 0; and al®) =§;, — &, with ¢ < L.
Write

(p=1)

(Hv Q) :<Hlvg/) * ((IU’(S) = 0i, U(SJrl) = (_51, S
a”),

(a(s)7 sty ) a(p))) <H

where
(W ) = ((u0, .., pb 0 = 6); (@M, ale)),

noon p+1 < m—+1 p+1 m
(1 a") = ((u#* =35, pt" D) (@Y, al™)),
have length s — 1 and m — p, respectively.
Set
_ Came_am) (Cap-ne_qp-1) (st e_gs+1) (€€ o)
@:= a4 ) 4 ) e-1) @st2) plst1) Qi) 4 (s)
We have

b?ﬁ,a) = aba/ o) €als) ** €q(p—1)EL(p) bzku// a’)

_ K#pb* a)#r +a b ,U, a/)ea(s) a(p)ea(p—l)bzkunyg//),
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where K#P is as in Lemma 4.2 depending on the different cases for a®=1) and o).

° o ° . ——————— - - ——o
51 57, 5] 51 5r (57~ (51 5] 6@
o al® Q5+ a1
() - e gl el . a—
o’ a®)
o 1) o(+1) a® 4 a®
T e ———————————————————————— ——————————————————
o
! (s) (s+1) (p—2) (p—1)
@ = - St
Q// a(p)
o aP=1) al®) 4 a®) abth o=2)
o .
,,,,&;,,,,

FIGURE 4.3 — The case for a?) =35, — d; and al®) =68, — 3.

Assume that there exists a positive root a®, with ¢t < p — 1 and o # (¥, such
that ¥ + a® € A. By Lemma 2.7 we observe that there is at most one root a®
that satisfies such condition (see Figure 4.3). In this case, a®) + a® € —A, and

s<t<p-—1.
If the root a®) exists, then a® commutes with all roots a(® for u < p, except

with a®D a® and o®). We have

bl ) €at® ** * €a) €atr—0 b o)
= {010 *** (€a €at) T Na®) o o) fa®)) * * €ato-1D{ur g
= bl 0y Ca €als) "~ €alt) * a1 D o)
+ M) a0 V(61 €al) 1a® Eatsr1) * * €atr—1) Dy o)
+ N0 00 D 0)als) ** * €alt-0 €40 o) * * * Eao-1 D g-
The weighted path (p/,@’) and the positive root v = —a® verify the conditions

of Lemma 3.2, and also the weighted path (1/,a') x (@), u®); (), alt=D))
and the positive root —(a® + a(P)). Hence,

he(bly 0y €a® *** €a) Catr-1 U am) = T 0w e (Bl o) €ato) 1) Eats+ *** Eam-1b{ur om))-
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4.1 A preliminary result

Otherwise, thls means that a® commutes with all roots a™ for u < p, except

with @1 and a®). We have

* *
b(ﬁ/7g/)€a(s) cr € (p) Eqp—1) b(NN a’)

* *
= b(ﬁlvg/)ea(p)ea(s) c € (p— 1)b w’ o) -+ N (s) a(p)b a( )+a(p)€a(s+1) Oé(pfl)b(ﬁ//’g//)-

Observe that the weighted path (i, ) and the positive root v = —a® satisfy the

conditions of Lemma 3.2. Thus,

hc(bzkﬁ’,g’)ea@) ©€h(p) Eq(p—1) bzkﬁll7gll)) = na(s)’a(p) hC(bzkH/7g/)€a(s)+a(p) Cols+1) ea(p—l)bzﬁll7g//)) .

According to the above computation, we have

he ( (,U«,a)) K hC(b#a)#p)

+ana(s)p[(p)hC(b(u/7g/)€a(s)+a(p)ea(s+1) € (r— 1)b w, //)). (46)

Note that ol + aP) = g, +¢; = §; — §;. Observe that the target of aP~V) is

0; = —¢; and the source of a*tY is §, = —¢g; so that a® + a® + bt 4 ... 4
aP™ = ¢+ =6 -9 = & — ;. Note also that the target of a*= is §;
and the source of aP*V) is §;, while o™V = pr=) —§, = §; — =Y o) =

0y — pt2 = e+ — 6 and o® +alP) = §; — 5 = § — 4. Hence7 we see that
(6, =Y, 5 6,65); (=D, ol o) 4+ o)) is a path from §; to d;.

An important remark is that different situation of a?~Y and a® will give different

sequences of roots in a path from 9; to Sj. If aP~Y = —a) (which is possible in this
case) then we have a1 = 3]- —0; = 0; — d;. Note that al®) 4o = ¢ +ej =90, — 4.
Observe that the source of a*t is §, = —g; and the target of aP=2) g <_5j = —¢;

so that aP™) 4+ o) +a® 4 o+ 4. 4 a2 = ¢, 4 ¢, = § + §;. Note also
that the target of a*~Y is §;, while the source of aP*V) is §;. Hence, we see that
((6, PV, .00, 85); (@D a®) + @ aP=2))) is a path from §; to §; as well (see
Figure 4.3 for an illustration).

So we have to “reverse the order” of e, ) o €qs+1) -+ €41 0 (4.6), in order to
get €qm-1) * *  Eqls+1) €q(s)1am (OF to get another order as mention above). Doing this,
it induces several new paths and we denote by N the number of those paths. Let
(@™, &), a=1,..., N, denote the paths from J; to 5- whose roots are sums among
the roots (a1, ... ot a8 +aP). More precisely, for each a € {1,..., N} there

99



Chapter 4. Proof of Theorem 7 for sp,,

exists a partition (Py,..., P, ) of the set {p —1,...,s+ 1,s,p}, where s and p are

always in the same partition, such that

(*as—i—]l Za

teP;

for j = 1,...,n, Note also that this partition is not necessary in the sequential

order. Furthermore, we set

Hence,

wi(p, ) = K#Pwt(p #”Jrsz ywt(p, ),

where K#P as in Lemma 4.2 depending on the different cases for a®= and o?, and

K (*Sa) are some constants.

4. Assume that a® =§, — 0; and al®) =§, — 8, with i < 7 <l
Write

(p-1)

")

(»)

() =(p', @) * (1) = 65, pHD =6, pP7)
a

(Oé(s)’ sty ) a(p))) (H

where

p+1 < m—+1 p+1 m
(", a") = ((u' 0 ) (@D, at™),
have length s — 1 and m — p respectively.
Set
o lame_ ) (cup-ne_yp-1) (e s41)€_(s+1) (C ()€ ()

@-= 0 1) 40 Lym -1 TG s2) st Qs s

We have
(Na = ab €als) ** Eqlp— l)ea(p)b ")
— K#pb(u a)#p + a b a(s) a(p) ea(p—l)bzu//’g//),

where K#? is as in Lemma 4.2 depending on the different cases for a?=1) and a®.
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> N ® e ST . * ——e
(51 57, 5] 5l 57’ (57« (5[ 5]' (51
o o ol® o (s+1) o@D
i TTTTTTTTTTTTTTTTTTIIIII oIt/ b a—
o a®)
0] a(ﬁ7]> ()é<“+]> (l(s) —+ a(p)
T e e m m e m m s s e mm——mm e ——— - ————————) pap—
g//
@) o al®) als+1) aP=2)  4-1)
e e— e e e mmmem =
ZIZZZ:Z e —
g// a(p)
Q/ ()L(p71> (l’,(s> —+ a([)) (X(S“Fl) (Y(P*2>
- ) ) -~ — — — m m — m m —m m —m——m - - - —— ——e

FIGURE 4.4 — The case for a(®) =§; — 0; and al®) = d; — 0.

Assume that there exists a positive root a®, with ¢t < p — 1 and o # o, such
that a® 4 a® € A. By Lemma 2.7 we observe that there is at most one root a®
that satisfies such condition (see Figure 4.3). In this case, a®) +a® € —A, and
s<t<p-—1

In the same manner as in case (3), we get

he(b(,q) = f‘(#phc(b;@#p)

+ ana(s)7a(p) hC(bzkH/’g/)ea(s)_i_a(p) ea(5+1) ... ea(p—l) b?ﬁ”v@”))' (47)

Note that o) + a® = ej —e = 0; — . Observe that the target of a1 ig

9; = —&; and the source of a®tV is §;, = g so that al® + a® 4+ o+ 4 ... 4
aP) = ¢+ =9 —6 = & — ;. Note also that the target of a*~V is §;
and the source of a®tb ig gj, while aP~1) = P~ —§, = §;, — =Y olst) =

& — pt = g+t — 5 and o® + o = §; — § = §, — §;. Hence, we see that
(6, =2, w2 D 6,,65); (alP=Y L et a9 4 alP))) s a path from §;
to &;. Observe that this case is similar as the case (3) and so there exist different
sequences of Toots in a path from §; to &; as well (see Figure 4.4 for an illustration).

So we have to “reverse the order” of e, ) o €n+1) =+ €41 in (4.7), in order to
get €qm-1)  +* Eu(s+1)€q(s) 1o (OF to get another order as mention above). Doing this,
it induces several new paths and we denote by N the number of those paths. Let
(p**,a*), a=1,..., N, denote the paths from §; to Ej whose roots are sums among
the roots (a1, ... at*) ol @), More precisely, for each a € {1,..., N} there
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exists a partition (Py,..., P, ) of the set {p —1,...,s+ 1,s,p}, where s and p are

always in the same partition, such that

(as+]1 Za

teP;

for j = 1,...,n, Note also that this partition is not necessary in the sequential

order. Furthermore, we set

Hence,

Wt(ﬂ’ ) K#th #p + ZK )*a)7
where K#P is as in Lemma 4.2 depending on the different cases for a1 and a®,
and K b

are some constants.
(o)

5. Assume that o?) = §, — 0; and al® = §, — d;, with k <7 < j.
Write

() =(p', @) % () = G, pTD =65, ™D ) =5, ot
(O[(S),O{(S+1),...,Oé(p_l),aé(p)>) *(H o),

<.

where

have length s — 1 and m — p respectively. Set

 lame_ ) (cup-ne_yp-1) o (e s+1)€_ (s+1)) (e ()€ ()
C= e we e pe-n @ (s+2) 1) Dpistn) )
We have
*
b(ﬁ,a) ab €als) " Culpo— l)ea(p)b "ol

= K#pb(u Q)#p +a b(ﬁlvgl)eﬂé(s) s Calp) ea(P*”b@”g”)’

where K#? is as in Lemma 4.2 depending on the different cases for aP~") and o).
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o« > >O—> - ° * > > —— >
01 O 0; (5]‘ Op Or 6]’ 0

Q/ a(s) a(SJ"I) Oé(pfl)
il i o SEE—— ey ol R R e R R R —_—

,,,,,,,,, —
a” a®)

o ol +al) oD alsth)

—— > - e~ — m — — m m m m —mm o m— o —— - - == — o

FIGURE 4.5 — The case for o) =§; —§; and al®) = §;, — §;.

Assume that there exists a positive root o), with t < p — 1 and ¥ # o(®), such
that a® 4 a® € A. By Lemma 2.7 we observe that there is at most one root a®
that satisfies such condition (see Figure 4.3). In this case, a®) +a® € —A, and
s<t<p-—1

By doing the same reasoning as in case (3), we get

hC(b(,u7 )) K#phc< Ha)#p)

—l—ana(s) OC(p)hc(b(u a/)ea(s)+a(p)6 (s+1) = * * €4(p—2) €4 (p—1 b( ” u)) (4.8)

Note that a®) 4+ al?) = g, — ¢, = 6, — ;. Observe that the target of P~
is 9; = —&; and the source of a**V) is §; = &; so that o™ + ... 4+ oP~D =
gj+e =05 — 0 = 6 — 5- Note also that the target of a®) + o is §;, while
P = b — 5, = § — p® Y and oY = §; — ptY = gt — 5, Hence,
((6;, =1, @2 . ,,u(s“),gj); (@D, ..., altD)) is a path from & to §; (see Fig-

ure 4.5 for an illustration).

So we have to “reverse the order” of e, 1) - e,0-1 in (4.8), in order to get
€qr-1) * * * Eu(s+1y. Doing this, it induces several new paths and we denote by N the
number of those paths. Let (2™, &™), a = 1,..., N, denote the paths from d; to 3]-
whose roots are sums among the roots (a?~Y, ... at*Y). More precisely, for each

a € {1,..., N} there exists a partition (P, ..., P, ) of the set {p—1,..., s+ 1} such

that
ar@ (S+] Z a

teP;
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for j=1,...,n, Fix

(, @) = () % (O, 67), (@) 4+ aP))) 5 (u*, a*®) % (1, a”).

We thus get

wh(n, @) = K#7w(p MZK L)),

where K#? is as in Lemma 4.2 depending on the different cases for a9 and a®,

and K xa ) are some constants. O

Lemma 4.4 (o'®4-a® = 0). Assume that for some s € {1,...,p—2}, a®+al?) = 0.

In this case,

wt(p, a) = K#wt(p, 0)# + (ht(a™) — (o~ ZK(th [ ),

where K#P is a scalar as in Lemma 4.2, K (*;ig) are some constants which only depend

on constant structures, and (u,a)** := (u**, a**) is a concatenation of paths defined

as follows.

1. If a® = Sj —0; and a'®) = oy —0;, with i > j, then

(H? Q)*a — (Hlvg/) *

*(l?Q*a) * (H//,g//)7

=

where (i**,&**) is a path of length < p — s between &; and d; whose roots &**

are sums among (aP=Y . al+h),

2. If o =§; — 0; and o' = §; — §; =y, with i < j, then

(1, 0)™ = (', a') x (

*a’;*a> (H //)7

=

where (ji**,&*") is a path of length < p — s between d; and d; whose roots &**

are sums among (a(P—1)7 o ,oz(5+1)),

In all those cases,
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4.1 A preliminary result

(E”’Q”) = ((/“'L(p+1)’ T 7/”L(m+1))7 (a(p-‘rl)’ s ’a(m)))’
and N s the number of possible paths of (g*a,g*a),

Proof. Let —a®, o) € A, such that a® + a® = 0. By Lemma 2.7 the only

possibilities for a® and o(® are:
o o) = Sj —9; and o = dj — 0;, with j < .

1. Assume that o®) = 0; —0; = —a® | with j < i.
Write

(o) =(i', @) % () = 65, pCH =65, plP™ D @) =55, P4 = ),

)
(a(s)’ a(s+1)7 o ,a(’"l), a(p))) * ( " g”),

=

where
Loy = (Yt ) = 6); (0, el Y)),

//,Q”) = ((:u(erl) = 61'7 cee 7M(m+1)); (Oé(erl), R ,Oé(m)>),

(
(

have length s — 1 and m — p respectively.

I'=

=

> > O ——O——— > —H>—— O —H—@
51 J 4 57" (57« 51 (53
o NO) Qs+ o (=1
N .
- -
O[// a(p)

FIGURE 4.6 — The case for a?) = Sj —4; and a®) = 9 — 5i.

Observe that in this case a® 1 4+ o < 0 and a® commutes with all roots a(?)
for t < p, except with a®~1) and o(®.
Set

 leyme_am) (e p-ne_ m-1) (e s+ne_g(s+1)) (€ ()
@= A ) e ) o1 O ) ) Qs )

105



Chapter 4. Proof of Theorem 7 for sp,,

We have
*
(ng) = abtﬁ/’g/)ea(s)ea(sﬁ»l) C‘{(p Q)ea(p l)ea(p)b ", //)
= a(na@—l),a(mba/,gr)ea(s)ea(sﬂ) €ar—2) €ar—1) 1o D o)
+ b u o) €q(5)Cnls+1) = * * €o(p—2) € (p) ea(p—l)b u//7g//))
#p
- K( b*“ a #P + a’b(u Q ) a(s) ea(p) ea(5+1) a(p_Q) ea(p_l)b)(ku”’g")
—K#p b* —i—ab e e e by
/"/O‘ #p a(P) a(3> a(5+1) a<p72) a(pil) (H//,g//)
+ ab OZ )ea(a+1) a(p72)6a(p71)bz<u”,g”)?
since a?) = —a(®) and K#p is as in Lemma 4.2 (1).
Note that &) commutes with all roots in o/, except with a*=D. Write

(H/’g/) = (H;,gll) * ((M(S—l),M(S))’ a(s—l))‘
With the same arguments as (4.3), we get

bl @ = (69 — (oD, 6)) by

(0',e) wie')s
since &*) commutes with all roots in o, except with a(*=1),
Thus,
_ P
b = Klpaliparte T @ b an€aw a Catetn) * * Catr-2 €atr-1 by 1)

+a (d(s) _ <Oz(5 1) v(8)>)b(u, o) Cals+D) * a(p72)ea(p71)b>(kﬁll7g//).

The weighted path (x',a’) and the positive root v = —a® verify the conditions

of Lemma 3.2. Hence we have

he(b,a) = K#p (b, ayn)
+a (d( ) < (S 1) (5)>)hC<b>{H/7g/)€a(s+1) L] ea(p—l)bfﬁl/7g//)). (49)

Observe that the target of a/P~b ig 9, and the source of abtD is §; = —¢;, so that
atth) . D) = —¢, 4 g; = §; — §;. Meanwhile the target of a*~Y is §; and
the source of aP*Y is §; = &; so that aP+Y) ... + o™ =¢; — ¢, , with j; < j < i.

Because of the configuration, for allt € {1,...,s—1}, o) =6;,—6,,,, = €, —€j,.1,
with ji < ji1 <j <d,andforallt € {s+1,...,p—1},a® =65, —6;,., = ¢€j,., —<j,,
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with j < ji1 < je < i. We see that ((07,0p—1,0p—2,...,052,8;), (a1, .. alstD))
is a path from §; to J; (see Figure 4.6 for an illustration).

By reversing the order in the roots, a**1 ... o~ we obtain a path from d; to
0;. The operations to permute all roots induce several new paths and we denote by
N the number of those paths. Let (2™, &™), a=1,..., N, denote the paths from J;
to &; whose roots are sums among the roots (=Y, ... a*TV). More precisely, for
each a € {1,..., N} there exists a partition (Py,..., P, ) of theset {p—1,...,s+1}

such that
(&*a)(s+j71) _ Z Oé(t)

tEPj

for j =1,...,n, Furthermore, we set

(H?Q)*a — (/_/7QI) % (,&*a7é*a) % (HH7Q”>'

Hence,

N
wt(p, @) = K77 wt((p, )#7) + (he(a) — I K Wi, )™,
a=1

where K (*501) are some constants.

2. Assume that a® = §, — 0; and al®) =§;, — d;, with 7 < j.
Write

() =(', o) * (1 = 6, D = 6, gD, @ = 5 p D = 5);
(CY(S)7 a(8+1)7 o ’a(p—l), a(p))) * (H//a g//)7

where

have length s — 1 and m — p respectively.

Set
_ ame_ym) (cup-ne_yp-1) (et _gs+1)) (Cyr€_ o)
a:=0a, ) 40 ) e-1) O ) o) Qs ()
We have
>k >k >k
b(u’g) = ab(u/7gl)6a(s) c ot Chp-1) €L (D) b(u//’g//)
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— K#pb(u Q)#p +a b a(s) €a» ea(p—l)b?ﬁ//7gl/),

where K#? as in Lemma 4.2 depending on the different cases for a1 and a®.

—> e > &> — @
51 ; J or &, by di
o als) ot a1
e oo ——
o a®)
o 1) s+l

FIGURE 4.7 — The case for a®) =3, —0; and a(®) = §; —9;.

Assume that there exists a positive root o¥, with t < p — 1 and a® # o!®), such
that a® +a® € A. By Lemma 2.7 we observe that there is at most one root a*
that satisfies such condition (see Figure 4.7). In this case, a®) + a® € —A, and
s<t<p-—1.

If the root a®) exists, then a® commutes with all roots a(® for u < p, except

with a® D, a® and o®). We have

* *
b(ﬁ',g')ea(s) c € ea(p—l)b(ﬁl/7g//)
* *
- b(ﬁ”g’)ea(s) T (ea(l’) ea(t) + na(t)ya(f’) ea(t)-}-a(p)) e ea(p_l)b(ﬁll7g”)
* *
= b(#/’g/)ea(p)ea(s) )t €alp—1) b(#// ) + b # a/ ( ). Cqt) * " ea(p—l)b(#//7g//)

+ na(t)7a(p) bzﬂg’vg’)ea“) cr o Ct—1) ea(t)+a(p) o ea(p—l)b(ﬁuﬂg//),

since a® = —a¥).

The weighted path (4, @) and the positive root v = —a® verify the conditions
of Lemma 3.2, and also the weighted path (1, /) * (1!, ..., u); (o), ... a(=D))
and the positive root —(a® + a®). The arguments are similar as (4.3) and so we
omit the details. We get

k k
hc(b(ﬁ,@)ea(s) SRR () ea(p—l)b u// a//))

= (d( s) _ < (s— 1) < 8)>) hC(b(M ) Cals+D) * a(p—l)b?ﬁ//7g//)).

108



4.1 A preliminary result

If the root oY does not exist, then a” commutes with all roots a® for u < p,

except with a1 and a(®. We have

* *
b(ﬁljg/)ea(s) RN SN ea(p—l)b o)

= b?ﬁlya/)ea(p) €als) ** €q(p—2)€q(p—1 b( "o + b(M o) ( ). . ea(p—l)b?ﬁl/7gll),
since a® = —al®). Observe that the weighted path (#/',@') and the positive root
v = —a® satisfy the conditions of Lemma 3.2. The arguments are the same as (4.3),

and we get

* *
hC(b(H/’g/)ea(s) R N () €a(p—1)b 'u// a//))

— (d(s) _ <a(5—1) x ))) hc(b (W a/)ea(s+1> a(p—l)bzkﬁll’g/l)).
On account of the above computation, we get

hC( (H a)) K phC(b*ua #p)
+a (d( ) _ <Oé(s 1),d(s)>)hC(bz{“/7g/)6a(s+1) €a(p— l)b W, //)). (410)

Observe that the target of a1 is 0; = —¢&; and the source of a5t ig d; = €5, S0
that ot +...4+aP~Y = ¢, 4¢, = §;—6; = §;—0;. Note also that the target of a(*=1
is 0;, while a®Y = P~V — ¢, = §; — =Y and o) = §; — pb+D = gD — 5.
Hence we see that ((6;, g1, 5=, ... ,,LL(S+2), 6;); (aP=V ... alTV))) is a path from
8 to 0, (see Figure 4.7 for an illustration).

So we have to ‘“reverse the order” of e (s+1) - - € -1 in (4.10), in order to get

€qr-1) * * * Eo(s+1). Doing this, it induces several new paths and we denote by N the
number of those paths. Let (2*, &™), a = 1,..., N, denote the paths from d; to J;
whose roots are sums among the roots (a?~Y ... a(+*Y). More precisely, for each
a € {1,..., N} there exists a partition (P, ..., P, ) of theset {p—1,..., s+ 1} such

that
(d*a)(s-‘rj—l) _ Z Oé(t)

tep;

for j =1,...,n,. Furthermore, we set

(1, Q)™ = (i, Q) * (@, &) * (1", ).
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Hence,

Wt(/“%g) = K#th(H7 g)#p + (ht(d(S)) < - Oé Z K(y, a)Wt M, & ) )

where K#P is as in Lemma 4.2 depending on the different cases for a/?~" and o

and K (*:a) are some constants. O

Ezample 4.5. Assume that g = spyy, 6 = @y, 2 € ZT,.

1. Let o —5 —0; = — e, and a®) =6, — 6, = e + &5, with k < j < .
Setk:2,j:3,z:6,wehave

o) = —g3—¢5, D =gy+tes, aP+a® =g —es

Let ( ) S :@8(51) with

/1‘ (617 527 567 557 547 537 567 547 61) - (617 €2, —E€6, —E5, —E&4, —E3,E6,E4, 61)7
~ (a,0® = 0 o 4@ 46 Z 4D 4@ _ 4@ 4@ 4®)
= (61— €2,62 + €6, €5 — €6, €4 — E5,E3 — €4, —E3 — E6,E6 — €4,E4 — €1)
— (1,5,1,1,1,—4, -2, -3).
We get
(ca(m)e—a(m)) o a(651—64) o 1 (654—66) o 1 (663+E6) o 1 (654—53) o _1
M(m+1)7u(m) — Ye1.eq - 5 €4,E6 - 5 €6,—€3 —€3,—€4 3
(€cs—eq) (ecg—ec5) (e—eg—ep) (e )
a—zi,jgs = -1, a’—;?,—sge =—1, a—ses,iz o= 1, af—:zfgl = 1,
(Cor=1) 4o C_alp-1)_o®) (ecgteq)
(P +1)_pu(p—1) =020 =1, N1 a) = Nae) o0 = —1,
na(5)7a(p) - ]-7 na(3)’a(4) - na(4)7a(5) - na(3)+a(4),a(5) - _1
Thus,

(Ca(p)efa(p)) (Ca(Pfl)e,a(Pfl))
w0y L) -1

(Coatp=1) 40 €_ap—1) _o))
@, 1)y -1)

Qo =1, and K/'”

e A — 1.

) = = Nae-1) o

110



4.1 A preliminary result

We have by (4.4)

_ P
he (b)) = KLy he (b, aysr) T Guaftate) a®he(eam €at) 1am) €a® a) €a® an €a®)
_ p#p
= K(#,g)hc(ba,g)#p) + 0p,0M0(9) 4 NC(€41 €4 ) ) €al®)€a(3)€a(5) €aM Ex(®)

+ ag,gna(ﬂ 704(17) na<3) 704(4) hC (ea(l) ea(5)+a(17) 6()5(3) +a(4) ea(5) 604(7) ea<8) )

_ po#p
= K(u,g)hc(b@,g)#p) + 0p,0M0(9) 4 NC(E4(1 €4) 4l Eal®)€a() €43 €4(M Ex(®) )

+ 14,3 0@ NE (€41 E(5) 100 €45) €4(3) a1 €aln€a(s))

+ a&,gna(-s) 704(17) na(3) 704(4) na<3) +a(4) ,a(5) hC (ea(l) ea(-s) —‘,—a(p) ea(3>+a(4) —|—a<5> ea(7) ea(g) )

— K#P

(Nag) hc( ZLL,Q)#P) + aﬁ,gna(s) 704(1’) hC (ea(l) 6a(5)—|—a(17) 6a<5) 6a<4> ea(3) ea(7> ea(g) )

+ aﬁ,gna(s) 704(1’) na(4) ’a(s) hC (6a<1) ea(3)+a<17) 6a<4)+a(5) ea(3) ea(7) 60[(8) )
T Ap,aM0 () o) e (3) o hC(eau) Cals) +a®) €a5) €a(3) 444 Ea(n €a<8>)

+ aﬁ,gna(s) ,Q(P) na(?’) ’a(4) na(3)+a(4) 7a(5) hC (ea(l) ea(s) +a(1’) ea(3)+o¢(4) +a(5> ea(7) ea(s) ) 9
since ® commutes with a®. Hence,

Wt(ﬁ, g) = Wt(ﬁ7 g)#p — Wt(ea(l)ea(s)+a(p) €0,(5) € (4) € (3) € (T) €a(8))
+ WE(E4(1) €a() o) Ca®) +a() €a3) Eq(N) E(s) )
+ W (€4(1) €4 () +a(P) €a(® €a®) 4o €a(N Eal®))

— WE(E0(1) €0 (5) 40 €a®) +a®) +al®) M €q(®) )-

2. Let Oé(p) :gj — (51 = —&; — &g, and Oé(s) = 5]' _Sz =¢&j + &4, Wlthj < 1.
Set 7 = 2,1 =15, we have

oz(p) = —&9 — €5, Oé(s) = &9 + €5, Oé(s) = —Oé(p).

Let (u,a) € P+(6,); with

on = 51, 52; 557 547 637 627 657 51) - (51782a —E&5, —&4, —E€3, —E2, &5, 61)7

o 0@ = o) o® 0@ o) = o@D o6 — 4 o)

(
(

= (61 — €9,69 + 5,64 — €5,63 — €4,E9 — €3, —E3 — 5,65 — €1),
(

i=(1,6,1,1,1,—6,—4).
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We get,
al) =1, gl — ) glee) o g glae) ) L)
(e—e3—5) _ 1 gearal) 1 (Ca=1) 4aP) C_atp=1) o)) _ (ecsie;) _ 1
—E€5,82 ) 2,€1 ) ‘u(p+1)7u(p—1) £5,—€3 )
Mg (5) 0(6) = Np3) 4(4) = M) o) = Ne@) 4o o5) = — 1.
Thus,
(Ca(me,a(p))a(ca@—me,a(p—m)
1 —1
Qpa = —1 and K(u o) = Matr=1) o) “(:a():ji:a(:e(ii:)ja(p)) =1.

@, +1) -1

We have by (4.9),

hc(b(g,,)) K(#p hC(b* #p) + a,m( (s) 1)hC( €(1) €4, (3) € (4) €4, (5) ea(7))

= K(#p hc(b* #p) + a“a( ) 4 1)hC( €o(1) € (4) €y, <3>ea<5)ea(7))
+ uaNa @) 4@ (47 + 1)he(€40006) 1o €a® am )

= K#p hC( *#a #p) + aua( a® + 1)hc(ea(1)ea(4)ea<5>ea<3) ea(7))
+ QpaMa® o (& ) 4 1)hC( a(1)ea(5)€a<3)+a(4)€a<7))
F a0 0@ NG 4o o6 (d(s) + 1)he (€a<1)6a(3)+a(4)+a(5)€a<7))

= K(#p hc(b* #p) + a“a( (s) -+ 1)hC( €a) €L (5)EL4) EL®B3) €a(7))

+ pala@ o (d(s) + 1)hc (ea(1)6a(4)+a(s) ea@)eam)
+ Ap,aMa(3) o) ( (s) + 1)hC( € (1) ea(5)€a<3)+a(4)€a<7))

+ @g,gna(i”),a(‘l) a®) +a@), a(5>( (s) -+ 1)hC(€a<1)ea(3)+a<4)+a(5)€a(7)),

since a® commutes with a3 . Hence,

W (/_L ) (ht(d( )) + D)Wt(€n1)€45) €04 En(3) € (1) € (®) )
+ (ht(al ) L)w
+ (ht(a'®

(ht( ) )Wt €a)Ca(B3) 1o 13 Eq(n ea(S))

wit(p, a) =

2 Ea(®) +a(5) Eq(3) €q(1) €a(®) )

Q(

t(e
)Wt(ea(l)e (5)€a(3) @) Eq(T) Ey, (8))
(e
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4.1 A preliminary result

3Leta(p1—5—5— a® and a® =6; — 6, =¢; — gy, with i < j < L.
Set i =2, j =3, [ =4, we have

aP ™D =gy —g3, —aP =g3—g5, ¥ =g3—¢4, aP+aP =g gy
Let ( ) S @7(52) with

,U 527 547 557 547 537 627 637 62) = (527 €4,Ep5, —E4, —E€3, —E2, —E3, 62)7

e 9,a®, a® a® o® — oD o© — 40 D)

(
(af
(€2 —€4,64 — €5,65 + €4,63 — €4,62 — £3,63 — €9, —€3 — £2),
=(2,1,4,1,1,—1,-8).

Thus a,, = —1 and
KE7 = (cavn)? (mt(aP™) — ¢,
= ht( (5)) - <€2 — €4,&2 — 53> - <53 —E4,E2 — 53>

= ht(a®).
Doing the similar calculation as above examples, we get

Wt(ﬂ, Q) = ht( (5)) Wt(ﬁ, g)#p — Wt(ea(s) €a(®) £ @) €a(2) € (3) € (4) ea(7))
+ 2 Wt(ea(5)+a(s)+a(p) €4(2) € (3) € (4) eam)
+ Wt(€a1) 40 €a(® €a® +als) +a® Ealm)
— WH(E43) 10 10 €a@ +al) +a®) Ea(n

— WE(E43) Lo 103 €a@ Eq(s) La®) Eq(D)

_|_
+

=

t(ea®) 105 a3 La®@) 1als) 1a®) Eql

=

|
=

t(E02) 1@ 1a) a3 Eals) La®) Eq)

|
=

t ea(2)+a(4) +a(5) ea(J) +a( )+a(?) ea(7)

|
=

t ea(2)+a(3) +a(4)+a(5) ea(s)+a(19) ea(7)

— wt

(
(e )
( )
( )
t(E0) 40 €a® €al® +a()+a® €a)
( )
( )
( )
(Ea® +a® +a® +a® +als) +a® ol )-
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4.1.2 Case p = q with loops

We now consider in this subsection the weighted path of lengths m with n loops.
We assume in this paragraph that n < m. If n = m, then we can argue as in the
symmetric case (see Section 2.3) and the weight of the paths is known by Lemma 2.4.

Let i € ZT; and (pu, ) € @m(,u)i with n loops in the positions j; < ... < j, with
n < m. This means that for l = 1,...,n, p) = p+1) o) ¢ IT and bia)

_
o) = Watn:

Lemma 4.6. Let m € Z-o, p € P(0), i € ZT; and (u,a) € @m(,u)L Assume
that the weighted path (u,a) has n loops in the position ji,...,jn, 0 <n < m. Let
Jias- -5 Ji e integers of {1,...,5 — 1}, for I = 1,...,n, such that supp(a(jll’t))

contains the simple root o). Hence,

where

=1 3f ¢ €{1,-d—13,

C/N

a(]l) €supp(a

and (fi, &) is the weighted path of length m —n obtained from (u,a) by “removing all
loops” from the path. In particular, if n =0, we have K=1.

Proof. First of all, if n = 0, then the results are known by Lemma 4.2, Lemma 4.3
and Lemma 4.4. Assume that the weighted path (u,a) has n loops in the position

J1y- -+ Jn. Write

(1, 0) = ((M(l)’ o ,M(jl), lu(lerl) o ,M(jnJrl)), (a(l)’ o ,a(jl), Oé(jﬁl), o ,Oé(j”)))*(ﬂﬂ,g”),

(E//,Q”) _ ((/J,(j"+1), o 7u(m+1)>7 (Oé(j"+1)7 . ,a(m))))7

and (p”, o) has length m—j,. We have i;, = 0 and al) e 1I. Foreach j;,l € 1,...,n,
denote by j; 1, ..., jj » the integers of {1,..., j;—1} such that simple root aU) appears

in the support of (VL)) thus [ea(jm,wi(jl)] = —(a(jl»t),wi(m}ea(j;’t) # 0. Hence,

i f # . .
€ 61 0@ o) #* W60 €, Gl In other words, @/ (;,, commutes with e, where s # Jis
fori e {1,....,n},t e {1,...,n'}.

Set

L (b(g,g),jn) (b(g,g),jnfl) . (b(g,g),jl) a’(g@),l)
=0 Gnt1) yGn) un) gn-0 " QG+ G0 T G L
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In the same manner as in (4.3), we have

_ B R *
= A€ " W G T W Ga) waumb(

() o)
(ot ! : ) 4 f f g
= “(wa(m - <0‘(J1’1)’wa<m> —{a”tm ’wa(11)>)ea(1) ) T ) V)
(ot i’ f Gl) 3
=a(w ;) — <0‘(Jl’1)=wa<n)> — o @l )
¢ ¢ Uynr) "
X (wa(m - <a(321),wa(J2)) — a2 7wa(12)>)6a(1> "W O )
_ (4 # Glnr)
= a(@,,) - (i 1)vwa<n)> (@t @ )
ﬂ (jl’n/ ) jj
X (@ ) — <O‘(]21)=wa(j2>> o @)
i’ (]; ! ) f
X X (wa<jn) - <0‘(]"’1)7wi<jn>> — (o 7wa<in)>)ea(1) "'b@”,g”)
n
_ k) ~(j # (G ) —f *
— H <M<yk),a(ak>><wa(jk) _ Z (alke ,wa(jk)>)b@@,
Jk=1 it €10, ik =13,
a(jk)esupp(a(j;c,t))
Hence we get the statement. O

Ezxample 4.7. Let r = 8, i € ZT; and (pu,a) € e@m(&)g with

(1) =(1', ') = (1", "),

where

(W, a') = ((61, 02,06, 06,05, 05, 03, 06), (€1 — €2, €2+ €6, B6, €5 — €6, B5, €3 — €5, —€3 —€6) ),

and (p", Q") = ((56, 00, (@@ ,a(m))) is a weighted path without loop.
We have

1 1

jl = 37 a(]l) = ﬂG? = wﬁﬁ = Wg,

@,gm
J2 =9, a(jz) = [, bz(&g),jg = w%’S = wgv

Let jj, be integers of {1,..., 5 — 1}, where [ = 1,2, such that Supp(a(jl/at)) contains

the simple root aU). Thus,

ji,l =2, jé,l =2 and Jé,z = 4.

It means that @} does not commute with o®, and @} does not commute with a(?

and a®,
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Set
CL/ _ (eegteg) (eeg—e3) (Bs) (ecg—e5) (Bs) (e—eg—cg) (Ecg—cq)
- Yeg,—e€3 —E€3,—€5 '—E5,—E5 ' —E5,—E6 —EB5,—E5 ~—EG,E2 €2,€1
Hence,
?ﬁ’g) = alea(l)ea(2)@6ea(4)ﬁ5€a(6) ea(p)b* o)

=d (@6 — (Oé(2), fbﬁ)) €0(1) €4(2) €4(4) TT5E4(6) 6a<p>b (")

=da (ULJG — <05(2)7 @6>) (@5 — <a(2) ©s) ?ﬁ ) €4(1) €4(2) €, (4) €4, (6) ea(p)b?ﬁll7g//).
Then

(E? Q) = ((61) 627567357537 56)7 (a(l)u 06(2), Oé(4), a((j)u Oé(Y))) * (Hﬂ)g/,)'

Thus

ey = A8 0% (56 — (), 6)) (5 — (o, 5) — (), &5

= <:u(3)’ d(3)><ﬂ(4)7 d(4)>(7vﬂ6 - <a(2)’ @6»(@5 - <a(2)’ 7vﬂ5> - <a(4)’ @5>)bzﬁﬁ,g)

Set

~

K = (u®,a®) (u,a") ((p, w6) — (@@, @6)) ({0, @5) — (a?,05) — ('), 255)).

Hence
wt(p, ) = Kwt(g, Q).

4.1.3 Case p < q with loops

We continue to assume m € Zsi, p € P(0), i € ZT) and (u,a) € Pon(1);. We
consider in this subsection the weighted paths with p < ¢, where p = p(i) and
q = q(i). Thus, i, =0 and o € IT,,) = {B € 11| (u®, BY £ 0}.

Lemma 4.8. 1. Assume u® € {41,...,6,}.

(a) If (u®),aW) =1, then

116
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(b) If (), a®)) = =1, then

2. Assume p® € {6,,...,6,}.
(a) If (u®),aW)) =1, then

wi(p, @) = ((p, Daw) — Dwi(p, a).

(b) If (u® &)y = —1 | then

Wt(ﬁL?Q) = (2 o <p7 wi(p)))“’t(ﬂ? Q)#p‘

Proof. Write

() = (i, @) % (P70, p®), @) (P, p®*Y), @) % (4", 0"),
where (1/,a’) and (1", ") have length p — 2 and m — p, respectively. Since p < ¢,
then i, = 0 and a® € I,y = {B € I | (u®, B) # 0}.

1. Assume u(p) € {61,...,6.}.
We have p?) = §; for some j = 1,...,r and a?) = 3; or ;1.

a(P)
o pP=1) a1
————————— Yo
QU 5j
Observe that for s = 1,...,p — 2, the support of a® does not contain the simple
root ?), and so b?ﬁ,g),swi(m a@) bz‘ua s In other words, wi(m commutes with all

roots in /. This case is similar as the sl, 1 case (cf. Lemma 3.3 (3)). By doing the

same kind of reasoning, we get

wh(p, @) = (u®, 6% (<p, @) — (a7, wi@») wh(, ).

(a) If (u®, a®)) = 1 then a?) = B;, for some j = 1,...7, and so (a® V) o’

a(p)

) = 0.
Hence,

Wt(ﬁ7 g) = <p7 wi(p))‘yt(ﬁy Q)#p
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(b) If (u® &Py = —1 then a® = B; 4, for some j =2,...7, s0 (aP~Y, wi(p)> =1.
Thus,
Wt(H? a) = (—(p, wi(p)> + 1)Wt(ﬂa Q)#p-

2. Assume that u® € {5,...,6,}.
We have ) = 3 for some j =1,...,r and a?) = Bj or Bj_1. Let s be an integer

in {1,...,p — 2} such that the support of a® contains the simple root a®, then
either i, = 0 or iz # 0.

alsl o) — g, als—t a® — B,
o Q&) - z Qﬁ&) -
————— - = - e -
j 05 dj-1 05

FIGURE 4.8 - Path in case p < g and u(?) =§;

It i, =0, then b7, ,) . = wi(s) € U(h), and so @’ ,, commutes with b

lad 14,a),8°
Otherwise, there is at most one root a'®) with i, # 0 such that o? ) € supp(a®)

: # il f
(see Figure 4.8), and so W, () Cals) F €W, Hence @’

(» commutes with b¢, .
except with ().
Write
(s a) = (i, ah) * (), ), a9) 5 (1), ).

Doing similar calculation as (4.3), we get

* = (p) < (p) (Ca(p_l)e—a(l’_l)) * # *

(pa) — <:u , O >a'u(p),“(p—1) (El7g/)ea(p—l)wa(p)b(E”’Q”)
@) <), CarmDCa-1) ()€ o)) x i g
= (u',a'") u®) pup=1) s+ p(s) (ﬁllagll)ea(s>b(ﬁ/27g/2)ea(p71)wa(p)b(ﬁ,,7g,/)
o <o) Car-neae-0) (e o) (8 ) b\ (p-1) 4

B <:U’ @ >a'u<p)““(p71> aM(S+1)7M(S> W) <Oé 7wa(p)> <Oé 7wa(p)>

* * *
X b(ﬁ/l ,gll)ea(s)b(ﬁé7g/2)ea(p—l) b(g”,g”)

= <,u(p)7 d(p)> <wi(p) - <Oé(8)>wi(p)> - <Oé(p71) a(p))) b*
since wi(p) commutes with all roots of o and o} and since

(cor-1€_op-1)) (Co(9)€_o(9)) 14 ¥
Clu(p)7u<p71) a (S+1> N() b o) €als )b,u a/)ea(p 1 b( "oty = b ) .
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wt(p, o) = (N(p)vd( )> ((P; a<p>> - <a(s),wi(p)> - <0‘(p71)awﬁ <p>>> Wt(:“? )

(a) If (u®,a®) = 1 then P = B, 4, for some j = 2,...,r. Observe that if

(aP=1), wa<p)> =1 then (o, wi@)) = 0, and vice versa. Thus,

wt (@) = ({p, k) — Dwi(p, )7,

(b) Assume that (u® &®) = —1 then a!P) = 3;, for some i = 1,...,r. Observe that
(oz(pfl),wi(p)) = lor2 If (a®V, wi(p)> = 2, it means that aPY = ¢, + ¢,k =
1,...,5, whence (a®), @ (p>> 0.
Otherwise (=Y, wi@)) =1, and so aP™Y =g +¢;,k > j, whence (a(s),wi(m) =1.
Hence,

wh(p, @) = (2 = (p, =) ) wt(p, @) 7.

]

We summarize the results that we obtained in Lemma 4.2, Lemma 4.3, Lemma 4.4,

Lemma 4.8 and Lemma 4.6, in the following proposition:

Proposition 4.9. Let m € Zs1, p € P(6), i € ZTy and (p,a) € Poo(p);. Set
p:=p(i) and q := q(1).
1. Assume P~ 4 oP) £ 0.
(a) If foralls € {1,...,p—2}, either o +a® € —~A, ora®+a® ¢ AU{0}

then there is a constant Kgipa) and a scalar K such that

wt(p, a) = [A(Kipg)wt(ﬂ, a)#?

(b) If for some s € {1,...,p — 2}, o' +a® € A, then there are some
constants K(ﬁp) K

o

o) and scalar K such that
N
wt(p, @) = K (K(#” ywi(p, @ #”+ZK oy W(1, a)* ) ,
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with (p, a)* is a weighted path of length strictly smaller than m.

(c) If for some s € {1,...,p—2}, a® = —a® then there are some constants

K(u )’ K(*“a) and a scalar K such that

wt(pu, ) = K <Kif’a)wt(/_¢,g) + (ht(a®) — ¢, ZK(/W wt (g, a)” ) )

with cg = (oY &),
2. Assume a® Y 4 o®) = (.

(a) If iy ="---=1iy,_o=0, orif p=2, then

Wt (1, @) = (Cau-n)? ht(@P~ V) wt(u, a)*?,

with c,w-1) as in Definition 1.14.
(b) Otherwise,

i. If for all s € {1,...,p— 2}, either o +a® € —A, or a!® +a® ¢
A U{0} then there is a scalar K such that

wi(p, a) = K(cqo-1)® (ht(@?V) — 1) wt(p, a)*?,

with cyw-1 as in Definition 1.14 and c,—1 is an integer as in (4.1).
i. If for some s € {1,...,p—2}, a® +a® € A then there are some

constants Ka‘ja) and a scalar K such that

wh(p, @) = K((ht( D) — ¢, 1) wt(p, @) #”JrZK(W)Wt(M, a)” )

N a=1
with (u, a)* is a weighted path of length strictly smaller than m and
cp—1 1s an integer as in (4.1).

iii. If for some s € {1,...,p — 2}, a® = —a'?) then there are some

constants Ka‘ja) and a scalar K such that

wi(p, a) = K(ht(a"™) — ¢, 1 )wi(p, o)

N
+K ) — ¢s) ZK Wt u, ,
a=1
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*a

with (p, a)* is a weighted path of length strictly smaller than m, c,

is an integer as in (4.1), and c, := (a*™V &),
3. Assume p < q, then

wt(p, a) = (u?,6P) ((p, @ ) — cp1)Wh(p, @) #7,

with c,—1 is an integer as in (4.1).

Note that (p, )** is a weighted path as in Lemma 4.3 or Lemma 4.4, depending on
different cases, and N the number of possible paths of (i**, &™) as in Lemma 4.3 or
Lemma 4.4. Note also that what we mean by “constant” is a complex number which
only depends on constant structures (nqs, a(Ab’)M), but not on the height of a. Moreover,

the scalar K is described in Lemma 4.6.

4.1.4 Proof of Theorem 4.1

We are now in a position to prove Theorem 4.1 for g = sp,, and § = w;.

Proof of Theorem 4.1. Let (i, a) as in the theorem and set i := ht(u). First of all,
we observe that for all ¢ € AR there exists 1 < p < m such that i1 =i, = ... =
ip-1 = 0,4, < 0. So
b?ﬁ&) = aﬁvgb?&g),l s ?g7g)7p—lb?g,g),p s ?H,g),m € n*U<g)'

Hence he(b?, ,) = 0 and so the theorem is clear for i € Z7,.

We prove the statement by induction on m. Necessarily, m > 2.
* If m = 2, then the hypothesis implies that i € Z; and so the statement is true.
* Assume m > 3 and that for all weighted paths (4',a') € Py (1), with m’ < m,
such that for some i’ € {1,...,m'}, /@) > p, we have wt(y/,a’) = 0.

If : € Z7, the statement is true. So we can assume that i € ZT, and by the
assumption, necessarily, i € ZT. Set p := p(i) and ¢ := ¢(i). By Proposition 4.9

there are some scalars K#P and K** such that

wt(p, @) = K*Pwt(p, @)

or

N
wt(p, @) = K#Pwt(p, 0)# + 3 K**wt(p, 0)*.

a=1
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Assume wt(p, o) = K#Pwt(p, a)*. We observe that the weighted path (u, a)#?
satisfies the hypothesis of the theorem and it is not empty. Hence by our induction
hypothesis and Proposition 4.9 we get the statement.

Assume that

N
wi(p, @) = K#Pwt(p, 0)# + ) K**wt(p, )™

a=1

Let us take as an example the path (u, )** as in Lemma 4.3 (1) as follows :

(1, )" = (1, ) % (8, 05); (@) + a®)) = (", &) * (4", "),

where,
(W) = ((uD, .., nE 0 = 5); (@M, el D)y,

(W) = ((6; = p*V o ) (P L o)),

and (2, &) is a path of length < p — s between §; and 6; whose roots (&**)®) have
height 0 or strictly positive height. We can similarly argue for the other cases.
Let ¢ be the smallest integer such that ¥ > p. Since the root o®) + a® and

~ka X ka

all roots in path (¢, /), (#**, &) have height 0 or strictly positive, then ¢ > p and

)=

o) is belongs to o”. Observe that the weighted paths (u, a)#? and (u”, ") satisfy
the hypothesis of the theorem and it is not empty. Note that the path (u”, ") have

length m — p for each case. Hence by our induction hypothesis we have

wt(p, )™ =0 and  wt(y”, ") = 0.

By Proposition 4.9 we get the statement. O

4.2 An equivalence relation on the set of weighted

paths

Let « € Ay and o = pp—v. We say that a has type I if the admissible triple (v, u, )
(see §2.4) has type I, a has type II if the admissible triple («a, i, v) has type II, and
« has type III if the admissible triple (a, i, v) has type III (a) or III (b). The type
of o depends only on a. We will use this notion in the whole section.

Recall that for A\, u € P(4), [\, u] denotes the set of v € P(d) such that A < v < p.
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4.2.1 Definitions and first properties

This paragraph is devoted to the proof of the following result.

Lemma 4.10. Let m € Z~q. There are polynomials TALm and sz in C[X] of degree
at most m such that for all k € {1,... 1},

Z wt(p, @) = Thm(k),

(1,0) € P (6,)
pneld1,6;]

Z Wt(ﬂa@) = TZ,m(k)'

(11:02)€ P (3y,) a
pE1,5,]
According to Theorem 4.1, the weighted paths which starting from d;, have weights

entirely contained in [41,d;]. So the sum

>, wilpa)

(1,2) € P (3y,)
pneldy,6;]

can be computed exactly as in the sl case.

So it remains to consider the paths starting from &), and contained in [0,, d;]. This
is our purpose. Thus we have to show that the corresponding sum is a polynomial in
k of degree < m — 1.

Next, we introduce an equivalence relation on paths.

Since we cannot here argue only on the heights of roots, as for sl,.,;, we intro-
duce an equivalence relation directly on such paths as follows. This definition is a

generalization of Definition 3.6.

Definition 4.11 (equivalence relation on the paths for sp,,.). We define an equiva-

lence relation ~ on P, by induction on m as follows.

1. If m = 1, there is only one equivalence class represented by the trivial path of
length 0.

2. If m = 2, then two paths (p, ), (¢, ') in P, are equivalent if the following

condition holds:

(a) there is (e1,€2) € {0,1} such that ht(p) € €17, X 227 and ht(y') €

m m
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(b) the roots o'V € a and o/ € o/ have same types.

3. If m > 2, then two paths (p, ), (i, ) in P, are equivalent if the following

conditions hold, in the notations of Proposition 4.9:

(a) foralli € {1,...,m}, thereis (e1,...,6m) € {—1,0,1}™ such that ht(u); €
| &7, and ht(p'); € I, &LTy;

(b) we have p(i) = p(i') =: p, with i = ht(u), 7 = ht(y'), and the weighted
paths (p, )# and (', a/)#? are equivalent,

(c) if there is an s € {1,...,p — 2} such that o) + o' € A, U {0}, with
q = q(i) = q(t'), then s is the unique integer of {1,...,p — 2} such that
o' + o@D e Ay U{0}. Morcover, all paths (u,a)* and (i, a')** are

equivalent,

(d) we have Kgipg) = K(ﬁ’,?g/), and if an s as in (c) exists, then for all the N
a * — K*a

possible paths (p, a)* K(£7g) (W)

Remark 4.12. If (u, ) € P, is a weighted path starting at 8, and contained in [0, 6k]
or starting at dj, and contained in [0y, 0;], then Definition 3.6 and Definition 4.11 are

equivalent.

By the above remark, the paths as above can be dealt as in sl ;. Thus, one can use
the results for the weights of the paths as for s[,1. We denote by [(x, @)]f5, 4,7 the class
of a weighted paths of length m which is contained in [d1, dx], &, the set of equivalence
classes [(p, @)]5, 4,0 and &, the set of elements of &,, whose representative are not
contained in [4,., dx].

We observe that an equivalent class in &, can simply be described by the sequence

. Hence, we will often write (D). ™) or simply by w for the class [(1, @)l5, 5,7

Lemma 4.13. Let (p, o) € Pn(6r) and a, B € a such that « + 8 € A. We have
(nap)? = 4 if and only if the roots v and B are of the following form:

a=0—08; and B =0, —0;, i # j,
a=06—0;and B=08;—08;, i #]
Moreover, in those cases ng g = —2.
Proof. Clear by formula (2.1) (see Section 2.1.2). O
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4.2 An equivalence relation on the set of weighted paths

Example 4.14. 1. Assume m = 2, then there are four equivalence classes :

[0k, 0k); [0k, 0] [0k: 05 b < 73 [0k, 05), k # J.
There are two elements of &,,.

. Assume m = 3, we will seek the elements of &,,.

Recall that for o=V + o) £ 0

(come_om) (c m-1e_ p-1)
pe+1) () ) gy (p=1)

KPP =m0 0w
(n2) P (C(r-1) 0 (P) € (r—1) _o(p))
M(P‘Fl)’u(l’*l)

Thus there are 16 elements of &,,, with 6 elements with loops as follows:

[0k, 0k, O); [0k, Oy O4), b # 53 [0k, Oy O );
[5kagja5k]7k7éj7 [5k‘73k78k]7 [51673]76]}7]67&]7

and 10 elements without loops as follows:

- . Ok i1 o
[0k, Ok, 6], k < j, represented by e " .
3 5j 2
- ) O i1 gk
[0k, Ok, 04, k < j, represented by e : .
13 g] 12 B
— . Og i1 5]‘
[0k, 04,0k],7 < k, represented by e A .

13 5k 12

~
=
=)
<.

_ )
[0k, 05,01],7 # k,1 # k,j <, represented by .

i3 gl 92

N
=
(=2
<.

[ ]

< é
[0k, 04, 01), 7 # k1 # j,k <, represented by . ~ :
i3 0 2
< T s . o, @i 05 i 0
[0k,0,01], 5 # k,1 # k,1 < j, represented by e——-e—s—-s;

i3

) 1) % 0 i )
[0 05,01, 1 # k., 1 # k. k < j, represented by ok—>1—0]—>2—ol;

23
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_ S, @ 0j i 0
[0k, 5, 0k], k < j, represented by P B

3

- S, @i 0j i 0
[0k, 05, 0k], k < j, represented by A G S o

3

< 5 O i1 O iz 05
[5k> Js5, 53’}, k < j, represented by .k—f—.k—f—.]

i3

One easily verifies that the above paths are pairwise non-equivalent. For exam-
ple, let (u, ) and (¢, @) be the weighted paths with p = (61 Ok, 05, 0k), k < j
and ' = (61, 05,01, 0%),J # k,1 # j,k < I. Condition 3(a) and 3(b) hold, but
KZZL) =1x2=2 # K(fig’) =1x & =1. So the condition 3(d) does not
hold, therefore they are not equivalent.

Meanwhile, the weighted paths (i, a) and (i, /) with g = (dx,6;,6;,8x) and
o= (5k,3k,6j,5k),k < 7, are equivalent, since their heights have same sign,
(p, @) ~ (', a/)#? and KT = K07 ) = 2.

Let m € Z+o and p := [(g, @)] € &,. The number n of zero values of i := ht ()
does not depend on (1', ') in p. We adopt the terminology of paths with zeroes and
without zero as in Definition 3.8. By definition, the position p(i) of the first returning
back does not depend on (i, a) € p. Similarly, the integers ¢(i) and s € {1,...,p—2}
(if such an s exists), such that o/ + (@ € A, U {0}, do not depend on (u, a) € p.
Furthermore, the class of (y1,a)#? and the class of (u,a)** only depend on p. We
denote by H# and p** these equivalence classes, respectively. Moreover, we denote
by Kf the scalar Kipa) and, if an s as in (c) exists, we denote by K} the scalar
Ko N *

o)

We denote by £(p'

m' € Z~o. We have /¢

) := m/ the length of p’ for some equivalence class p € &y,
() = m, lp*) =m—1if i, +ipy # 0, ((p?) = m -2 if
“)

ip+ip—1 =0, and {(u**) <mforalla e {l,...,N}.

4.2.2 Elements of &,, without zero

This subsection is devoted to the study of the elements of &, that has no zero. Note

that if g has no zero then g# and p** has no zero, too.

Lemma 4.15. Let p € &, without zero, and set p := p(p).
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4.2 An equivalence relation on the set of weighted paths

1. There is a polynomial A, € C[Xy,..., Xp 1] of total degree < [ ] such that
for all weighted paths (p, ) such that [(p, @)lf5, 5, = K-

Wt(,u,g) = Aﬁ(ila .- 7Z‘m71)-

Here, the integer i; denotes the heights of al) . Moreover, Ay is a sum of

monomials of the form X; --- X, with1 < j1 <--- < ji <m.

2. The polynomial A, is defined by induction as follows.

(a) Assume m = 2

A[5k,5j],k<j(X1) = X;
A[(Sk,gj](Xl) — Xl + 1

(b) Assume m = 3

Ay 0,87 k<1< (X1, Xo) = X
A[5kv5zy5j]7k<j<l(XlaX2) = X; + Xy

Aps, 50, 5, ke (X1, X2) = 2(X5 + Xp);
Aps, 50, 51k<j (X1, X5) =2(X; + Xy + 1);
A, 05,0 }j<k<XlaX2) =2(X1 + Xy + 1);
A[ 0 3}J¢k1¢k3<l(X17X2) X1+ Xo+ 1,
Alsess00irmiziha(X1, X2) = X1+ Xo;
Alsy 6,500 (X1, X2) = 2X7;

Al 5, 50k<i (X1, X2) = 2(X51 +1);
Atse 55,15<1(X1, X2) = 2(X1 +1);
A[5k 51,05],57#k, l;ékg<l(X17X2) X1+ 1

Als, 503,10kt (X1, X2) = X
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(c) Assume m > 4. Set P,(X) a polynomial of degree 1 by :

% if  « has type I,
Po(X) =4 X +1 if a has type II, (4.11)
X if « has type III,

Let m** := ((u**) and a** be a sequence of roots as in Lemma 4.3 and
Lemma /.4. We will denote by X** the sequence of variables associated
with () € a*@, j = 1,...,m* — 1, where (a**)V) is replaced by X;.
Let N denotes the number of possible paths p**.

i. Assume that a® + P~ £ 0.

x If for all s € {1,...,p—2}, either ') +a® € —A, ora® +a® ¢
AU {0}, then

Au(Xy, o X)) = KFAU(X o X, X + X Xona).

 If for some s € {1,...,p— 2}, a® +a® € A, then
Ap(X1, . X)) = KjAE#(Xl, o X0, Xy 1+ Xy X )

N
3 K A (X,
a=1

 If for some s € {1,...,p— 2}, a® = —aP) € A, then

Ap(Xis o X 1) = KA (X1, X0, X1 4+ Xy, X 1)
N
+ (P (Xs) — ¢s) Z K;‘IAEM (X*).

a=1

. Assume a® 4 o~ = Q.
x If for all s € {1,...,p—2}, either o' +a® € —A, ora® +a® ¢
A U{0}, then

Ap(X1, o Xine1) = (Cao0)* (Paton (Xpo1) = 65m1)
X AE#<X17 . 7Xp727Xp+17 A 7Xm71)-
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4.2 An equivalence relation on the set of weighted paths

 If for some s € {1,...,p— 2}, a® +a® € AL, then

Ap(Xq, .o, Xo)

= (P (P*U(prl) - Cpfl)AH# (Xh cee 7Xp727 Xp+17 cee 7Xm71)

[0}

N
+ D K A (X),
a=1

* If for some s € {1,...,p— 2}, a® = —a®) € A, then

Ap(Xq, .o, Xmo)

= (P (P*U(prl) - Cpfl)AH# (Xh s 7Xp727 Xp+17 cee 7Xm71)

a
N

+ (P (X)) =€) D K Ay (X79),

a=1

where Kﬁ, K} are some constants, c,w-1) i a constant as in Defini-

tion 1.14, cp,liis an integer as in equation (4.1) and c, == (a*=Y &),
Proof. Let a € A.

i) If @ = 2¢; has type I, then ht(a) = 2(r + 1 — i) — 1 and ht(a&) = ht((2¢;)Y) =

ht(e;) =7 +1—i = 2L

ii) If @ = ¢;+¢; has type II, then ht(a) = 2r—i—j+1and ht(a) = 2r—i—j+2 =
ht(a) 4 1.

iii) If o = ¢; — ¢; has type I1I, then ht(a) = j — i and ht(&) = j — ¢ = ht(«).

We prove the statements by induction on m.
*x Assume m = 2. According to Example 4.14, there are three equivalence classes

without zero as follows :

1. For p = [0y, 3],

hC(b*’ ) _ a(Qezsk)a2(ef2sk)e2€k672% _ 4672%62% + 4((28k)V) _ 4((28k)V)

€ky—€k  —EkEk

Hence wt(u,a) = 4ht((2e4)Y) = 4(%) = 2(i1 + 1), and so Apo50(X1) =

2(X; +1).

129



Chapter 4. Proof of Theorem 7 for sp,,

2. For pp = [0,0;],k < j, since p is entirely contained in [d,,d,], then by sl
case we have A, 5, k<j(X1) = X1.

3. For p = [0, 9;],

(ecpte;) (e—cp—e;)
he(b), o) = aE}mIiEjJ a/*Ej,I;k "oyt Coci—e; = ((E0 + gj)’)-

Hence wt(p, a) = ht((ex +¢;)") = ht(ep+¢;) +1 = i1+ 1, and so Ay, 5,(X1) =
X1+1. Thus for all p € & without zero, A, is polynomial of degree 1 in C[X4].

x Assume m = 3. On account of Example 4.14, there are 12 equivalence classes

without zero as follows.

1. For pu = [0,0,0;],k <1 < jand p = [0, 01,6;],k < j < I, since those p are

entirely contained in [0, dx], then according to the s, case, we have

A[(Sk,(sl,5j},k<l<j(X17 X2) = Xl a‘nd A[5k,5l,5j],k<j<l<X17 XQ) = Xl + XQ'

2. For pu = [0y, 01,05, k < j, we have p = 2, p# = [6;,6;], o = (oY) + @, o)
and 7P = (i + 4y, 43). We get

(€sp+e;) (2e—
entey) o (2e-2ep) 2% 1
K#* =n AN — R I
© 26k, —Ek—E; (ecj—cp) 1

Qe ey,

=2.

Hence wt(u, @) = Kffwt(p, a)# = 2(if") = 2(i; + i), and so

A[5k,3k75j],k<j(X17X2> = 2(X1 -+ XQ)

3. For p = [0k, Ok, 04], k < 7, thus p = 2, H# = [0k, 0], @ = (@M 4+ ) o)
and 7P = (i + 4y, 43). We get

(eskfsj) (25—25k)

—E€5, €k T EKEk
K# =ng. . _ ! = —1x
" 2ek,£j =€k a(esj_sk) 1

—E5,Ek

Hence wt(p, a) = Kjfwt(u, a)# = 27" + 1) = 2(iy + iy + 1), and so

A[5kvgkygj},k<j(X17X2) =2(X;+ Xy +1).
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4.2 An equivalence relation on the set of weighted paths

4. For K= [5k7gja5k]7k < ja thus p= 2, H# = [5ka3k]7 Q#p = (a(l) + &(2)704(3))
and 77 = (iy + iy, 13). We get

(esjfsk) (efsjfsk)

K gy —e; O ciey 5 5 —1x1 1
v n€k+sj75k_€j (267%) - 9 — 4
—€kEk

Hence wt(u, a) = Kjfwt(p, a)# =1 x 2(i%7 4+ 1) = 2(i1 4 iy + 1), and so

A[‘Sk:gk7gj],k<j(X17X2) = 2(X1 + X5+ 1)_

5. For p = [0k,0,01),5 # kI # k,j < I, thus p = 2, H# = [0k, 01], o =
(M) 4+ a® o)) and #P = (i) + iy,13). We get

(eejfel) (efekfaj)

a
—51,—83' —Ej sk
K# =ng e cfe, = —1x
I EktEj,E1—E; (efslfsk) 1

—€1,€k

Hence wt(p, a) = KJwt(p, ) = i*? + 1 =iy + i3+ 1, and so

A[5k,3j,él],j¢k,z¢k,j<z(Xla Xp)=X1+ X+ 1.

6. For p = [6,0;,0],5 # k,l # j.k < I, thus p = 2, p# = [§,8], o =
(@ +a® a®)) and i*P = (i) + iy, i3). We get

(66l+6j) (6—5]'—51)

el 1x1
€;,—¢ €55€1
K# =n e . ! =1x = 1.
123 ektej —e1—¢; (ee;—ey) 1
E1H,EEk

Hence wt(p, a) = K} wt(p, a)# = i#*? = iy 4 iy, and so
A[ak,sj,al},#k,z;éj,kz(Xla Xo) = X1 + Xy

7. For p = [0k,6;,0x], k < j, thus p = 3, p# = [0, 6;], o = (oY, a® + o)
and P = (iy, iy + i3). We get

(2625k) (e—sk—sj)

a
Eky— €k TEKE;
K# =n. 1. _ I —=1x
© gjter,—2ek (efk_gj) 1

a:’:‘k,t’:‘j
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10.

11.

132

Hence wt(p, a) = K} wt(p, o) = 2(i*7) = 2(i1), and so

A[5k75j,gk],k<j (X17 X2> = 2X1

For g = [6k,0;,04), k < j, thus p = 3, p# =[5, 6,], o = (aV,a® + o)
and 7P = (i1, i + i3). We get

(2625k) (eéj—sk)
Eky—€k  —Ek,—Ej

2x -1
:—1)( =

(65k+5j) 1
Eky,—Ej

2.

#
KIJ, - nsqu,f%k

Hence wt(u, @) = Kffwt(p,a)#? = 2(i7” + 1) = 2(i; + 1), and so

A5, 5urey (X1, X2) = 2X1 + 1.

For p = [0k, Ok, 05], 5 < k, thus p = 3, E# = [0k, 0k, &P = (o), o 4 o)
and %P = (i1, iy + i3). We get

(efk+fj) (eﬁkfij)

el Qg _ 1x—1
# . Eky—Ej5 €5, €k _ —
KE = Ne;—ep—en—e; @en) =—-2X 5 1.
€k €k

Hence wt(u, a) = Kjfwt(p, a)* = 2(i) + 1), and so

A[5k73kagj],j<k(XlaX2) =2(X;+1).

For H = [5k73l55j]7j 7é k,l 7é k,j <, thus p = 3, H# = [5k>3l]7 Q#p =
(@M a® + o)) and #P = (i, 4y + i3). We get

(65k+5j) (eilfsj)

€k, —Ej —€5,7€] .
(eEkJrEl) ]_
€k, €l

Kz = nsj—sl,—ek—aj
Hence wt(p, a) = Kfwt(p, a)* = (%7 + 1) = (i1 + 1), and so
A[ék,gl,gj],j;ék,l;ék,j<l(X17 X2) =X+ 1

For H = [5k75lagj]aj 7£ k7l 7£ j?k < la thus p =3, E# = [5k75l]7 Q#p =
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(a(l)’ O{(Q) + 04(3)) and Z#p = (ila i2 + 23) We get

(eékJrEj) (6*6]' 7€l)
€y —Ej —€5,61

(€ep—ep)
€kyEl

K =nepie; e =1x =1

Hence wt(u, a) = K}fwt(pu, a)# = i#? = iy, and so

Als, 65,12k k< (X1, X2) = X3,

Thus for all p € & without zero, A, is polynomial of degree 1 in C[X, X5].

* Let m > 4 and assume the proposition true for any m’ € {2,...,m — 1} and any
HI € &. Let p € &, and (H7 a) € p. For al) € a, let P be a polynomial as in
(4.11). Observe that P, is a polynomial of degree 1.

Let 7** denotes the sequence of heights ((a**)™®), ... (o)™ =1),
Recall the constants c,,-1) as in Definition 1.14, ¢, as in equation (4.1) and ¢ :=
(=D, 43)y.

(i) Assume that a®=Y + o) £ 0.
 If for all s € {1,...,p— 2}, either a® +a® € —A, or o/ +a® ¢ AU{0},
then by Proposition 4.9 there is a constant K Zi pg) such that

wt(p, @) = K*Pwt(u, ).

We have (y, a)?P e H# and by our induction hypothesis, there exists a polyno-
mial A+ € C[Y7,...,Y,, 5] of total degree < [™-1] such that

wt(, o) = K@f’g)wt(g,g)#p — Kifg)AE#(il, ety iy e et

Hence the polynomial
Au(Xy, o X)) = KZAH#(Xl, oy Xpon Xp 1+ Xy, X 1)

satisfies the conditions of the lemma.

% If for some s € {1,...,p—2}, a®® +a® € A, then by Proposition 4.9 there

#p *Q
are some constants K (n.c0) and K () such that

N
Wi @) = K37 wi(p, ) #7 + 3 K wi(p, ).

a=1
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134

We have (p, a)*” € p# and (p, @)** € p*®. By our induction hypothesis, there
are polynomials A+ € ClYy,..., Y o], and Aywe € C[Y1, ..., Yy o] of total
degree < [51] such that

wt(p, ) = K#p VAs (it i1+, im1)
-3 R

where K i pa) and K¢ ) are some constants.

(e

Set

Ap(Xy, o X)) = K#A wt (X1 X0, Xp 14+ Xy, Xa)

+ Z K*aA X*a)

By our computation above, the polynomial A, satisfies the condition of the
lemma.
* If for some s € {1,...,p — 2}, a® = —a® then

wt(p, @) = K77 wi(, 0)# + Z K aywh(p, @)™

We have (u,a)*? € p# and (u,a)* € p**. By our induction hypothesis,
there are polynomials A+ € C[Yi,.... Y- ] of total degree < || and

Apra € C[Y1, ..., Yy 3] of total degree | 2] such that

wt(p, a) :K#P VA#(in, it gy i)

+( als) Zs — ZK(;U'O‘)A *a )

#p *a : :
where K (1.0)’ K (ea) and ¢y are some constants, whereas P, (s is a polynomial

of degree 1.

Set

Ap(Xy, o Xor) == K A (X1, X2, X + X, X)
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+ ( a<5> — ¢, ZK*aA X*a)

Thus A, has total degree < 1+ [52] = [2|. Hence this polynomial satisfies

the conditions of the lemma.

(ii) Assume that a®=1 4 o) = 0.
« If for all s € {1,...,p— 2}, either a®®) +a® € —A, or ¥ +a® ¢ AU{0},
By Proposition 4.9 we have

wt(p, @) = (Caun)® (ht(G"Y) = cpor)wh(p, a) 7.

We have (p, a)#P g# and by our induction hypothesis, there is a polynomial

Ay € CY1, ..., Vi3] of total degree < | 2] such that

Wt(#ﬂg) = (CQ(P—U)Q (Pa(P—l)(ip—l) - Cp—l)AE# (ilv ce 7'L.p—2a Z'p-‘rl) cee 7Z.m—1)7

where ¢,_; is a constant and P, -1 is a polynomial of degree 1. Set

(67

A&(Xl, e ,Xm_l) = (P (p—l)(Xp_l)_CP_l)Ag# (Xl, e ,Xp_g, Xp+1, e aXm—l)'

Thus A, has total degree < 1+ |%52] = |%2]. Hence the polynomial A,
satisfies the condition of the lemma
s If for some s € {1,...,p—2}, a® +a® € A, then by Proposition 4.9 there

are some constants K7? . and K*® . such that
(p,0) (p,2)

wt(p, a) = (ht(a?V) — ¢, 1)wi(p, a #”+ZK W1, 0)*.

We have (u,a)?? € p# and (p,a)* € p**. By our induction hypothesis,
there are polynomials A+ € C[Yi,.... Y, 5] of total degree < |”52] and
Apra € C[Y1, ..., Y, o] of total degree < | 2=L] such that

Wt(/’L?Q) = (Pa(P*U(ipfl) - Cpfl)A #(ila s 7Z-p727 ierla s 7im71)

+ Z Koy Ao (i),
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where K (*5a), cp—1 are some constants and P, -1 is a polynomial of degree 1.
Set -

«

AH<X1’ e 7Xm71) = (P (pfl)(prl) — Cp*l)AE# (X17 e ,Xp,Q, Xerl; e 7Xm71)

+ Z K*aA X*a)

By our computation above, A, has total degree < 1+ LT_QJ = [%], hence it

satisfies the conditions of the lemma.
* If for some s € {1,...,p — 2}, a® = —a® then

wh(u, @) = (ht(@P) = ¢y )wh(n, @) + (ht(a) — c, ZK(W)wt o)

By our induction hypothesis, there are polynomials A,,+ € C[Y7,...,Y,,_3] and

Ayra € C[Y1, ..., Yy 3] of total degree < [™52] such that

Wt(H, Q) == (Pa(p—l)(/l:p_l) — cp—l)AE# (il, N 7ip—1 + ip7 e ;im—l)
N

+ (P (is) — ¢s) ZK ),

where ¢,_; and ¢, are some constants, whereas P ,-1) and P, are polynomials

of degree 1. Hence the polynomial
AE<X17 “oe ,Xm_l) = (Pa(p—l)(Xp_l) - Cp_l)A (Xl, Cee ,Xp_Q, Xp+1, vee ,Xm_l)

+ (Poo (X5) — e ZK*“A (X*)

satisfies the conditions of the lemma.

Ezample 4.16. Let p € &, without zero.

1. Assume m = 4, and p = [0k, 04,01, 0;], with k < < j.

Ok o) 0 o®

a® 6 o®



4.2 An equivalence relation on the set of weighted paths

Thus p = 3 and there is an integer s = 1 such that a® + a®) € A,. We get

/,l,# = [(Sk,gj,éj],k’ < g~ [5k75k75j]7k <7,

(6€j+€l> (e—sl—6j>

a
# — TR TELTE Ix=1 _
and KE = Ney—e;—e1—e; ;) =-2x ==L

£5,—€;

Since s+ 1=p—1then N = 1 ‘and W = [0, 01, 05], k < 1 < j, with

a

(65j+51) (8*81*5:,') (6*8]'*616)

K — gj,—er V—ep—e; Y—ejep —1 Ix—-1x1 -
p = Neptej—e—¢; (e ) =1l X———=—-1
= €5 €1 (661*%) 1x1

€5,€1 E1,€k

Hence by Lemma 4.15 (2¢ (i)) we get

AH(X17X27X3) = KjAM# (X1, Xo+ X3) + K;“Au*a (X1 + X3, Xo)
=1x 2(X1+X2+X3)+(—1) X (X1+X3) :X1+2X2+X3

So A[5k7gj,3l,6j]7k<l<j<Xl’ XQ, Xg) = Xl + 2X2 + Xg.

2. Assume m =4, and p = [0k, 0,0k, 0;], with k < [ < j.

Sk o) 05 4@ O

Thus p = 3 and there is an integer s = 1 such that o?) = —a(*). We get H# as
in (1), P, (Xs) = X5+ 1 and

«

W= (6 6]k < g Ky = al e =

é‘j,—Ek —Ek,—Ej
Hence by Lemma 4.15 we get

=1x 2(X1 +X2 +X3> + (Xl —+ 1) X (—1) X (XQ)
=2Xy — X1 Xo — Xo = Xy — X1 X,

AE<X17 X27 X3) = KjAH# (Xla XQ + X3) + (P (S)(XS))K;CLAH*& (XQ)

since X1 = —Xg. Hence A[Jk,gj,gk,ﬁj],k<l<j(X17X27X3) = X2 — XlXQ.
3. Assume m = 6 and pu = (61, 63, 01,04, 04,05], with k < < j <.

137



Chapter 4. Proof of Theorem 7 for sp,,

3)

.

=
e
Q

=

>
»

Sl
o9 >l

a® 3‘1

o)

Thus p = 5 and there is an integer s = 2 such that o® + a? € A,. We have

p >
o
=
o>
Q
S
Sgl
S
&
o >

Hence by Lemma 4.15,

AE# (X17 X27 X3) = (Kz)#A(B#)# (Xl’ X2)

(€5k+5j) (esl—sj)

. [ ] —€j,—€] B
= Nej—ey,—ej—ex (ecpte;) A[5k75i76117k<i<l<X1’ Xa)
askvf‘gl
1x -1
=—-1x 1 (Xl) = Xl.

The root oY has type 1L So P,e-1 (X, 1) = Xy and ¢, 1 = (¥ a®) +
(@@ @y 4 (oM aW) = ~1+1+—-1=—1.

Note that a® + o =& +¢; = § — 0;. The several new paths (p)** that are
generated by “reversing the order” as in Lemma 4.4 are the following

(a‘) “*l = [5k75i75l75j]7

®
[ 4

S a8 a® La® 8 o® 1 aB) d;

N0

In this path,

Ag*l (Xl,Xg + X4,X2 + X5) = (K;l)#A(Eﬂ)# (Xl,Xg + X4)

(65k+5j) (6—5]'—51)
Eky—Ej —E5,€1

= Nertej,—ej—ex (ecp—e;) A[5k75i,5z](X17X3 + X4) = (_1)(X1) = =X,
€k»El
and
(eai—aj) (eaj—ai) (esl—aj)a(e—sl—aj)
K =n o on. 3 . —E&j,—€i  —Eiy,—&j &5, €1 —EE;
© a(2) ,a(5)100,(3) o(4) (e—ey—e) (ee )
—€4,E1 €1,€4
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4.2 An equivalence relation on the set of weighted paths

—1><—1><—1><1_
1x1 N

=1x—-1x

(b) /1'*2 = [57%51'75]']3

5k a(l) 52 O[(Z) + a(5) + a(S) + a(4)

L WSl

RE

In this path, AE*2(X1,X2 —|—X5 —|—X3 —|—X4) = A[5k75l,gj](X17X2 +X5 +X3+
X4) = Xy, and

(esi—sj) (esj—si) (esl—sj) (5—61—6]')
—€j,—€; '—Ei,—Ej —E€j,—E —E,E
(e—sj—si)
—E&5,&;

*2
K" = 102 06)Na) £06) ) £a@

—1><—1><—1><1_
: —

—1.

=1x1x

(C) H*?’ = [5k75i7gl75j]

S a0 a®1al® La® § 4B

® Py
@ @

Mgl

(6)

In this path AH*3(X1, X2 + X5 + X4,X3) = A“#(Xl, XQ, X3) = X1 and

*3 (eeyre') (35-761-)
KH’ _na(2)7a(5)na(2)+a(5)7a(4)a—5j7—f’;‘i —83,—8]‘

=1lx1x—-1x-1=1.

(d) p** = [0, 6i, 85,61, 05].

6]{: a(l) 67, a(4) J 04(3) (5[ a(2)+a(5) S]

In this path,

1x1

AE*4(X1,X4,X3,X2 -+ X5> =—1x A(H*4)#(X1,X4,X3)

= (_1)(X1) = —Xi,
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since (u**)# ~ [1,1,1,—3] and

a(65i*5j) (eEj*Ei) (661*5]') (e*El*Ej)
S ¢
K*4 =n @) o(5) 7 7 (3] J
n a?) o

—ej,—&1 P —e,E -1
= (675].751) (eslfsj) (esjfsi) )
a*Ej,El €1,E5 €j,€4

(e> E*E) - [6k7 0i, 5j7gj]

N

=%
Bl
Q
=
* >

a® 0 a® 1 al) yol® 0
(6
In this path,

Ao (X1, X, Xo + X + X3) = (K50)7 Aoy (X1, X4)

Contes) g Peey) 1x2
- (Jea 75')37 ’ A[ék’(;ivgj’(sk}(Xl’XZl) =1x 1 (Xl) = 2X1a
aEk,lgj !

- n25j,—aj—ak

and

K*5

(esifsj) (esjfei) (eslfej) (efslfsj)
H - na(Q)7a(5)na(2)+a(5)’a(3)

—€j,—E€; " —E€4,—E; —Ej,—€ " —E,E;
(26*28j) (eejfﬁi)
—E€5,E5 a5j75i

—1x—-1x-1x1
=1x-2x =
2x1

By Lemma 4.15, we have
Ap(Xy, ..o, X5)

5
= (Catr-)* (Patr- (Xp-1) = cpo1) Ay (X1, Xo, Xa) + D> K5 Appea (X
a=1

= (X4 + 1)(X1) + (1 X _Xl) + (—1 X Xl) + (1 X Xl) + (—1 X _Xl) + (1 X 2X1)
:X4X1+X1—X1—X1+X1+X1+2X1:X1X4+3X1.

Remark 4.17. Let m € Zs and p € &, without zero. There are some classes

Ky, By, Without zero of length ¢ := E(Hh) < m such that
N
wt(p, o) = Z Ky Ap (i1, iy, 1)
h=1
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4.2 An equivalence relation on the set of weighted paths

-/

where ht(p, ) = (¢, ..., 1, ).

4.2.3 A key lemma

We start this paragraph with the following useful result that will be needed to prove
the key lemma (Lemma 4.20).

Lemma 4.18. Let S € Zsq, l1,...,0s be a family of stricty positive integers. For
each 1 < j < 4, let d;j € Zso. Set L = (¢y,...,0s) and d = (d;j). Then there is a
polynomial Qs gq € C[X1,..., Xs| of degree <3, ; dij + Zle(& — 1) such that

Z H (Clij)dij - QS,M(nl, R ,ns).

Proof. First of all we consider the case where S = 1. We prove the lemma by
induction on ¢. For ¢ = 1, the result is clear.

We assume that the lemma is true for some ¢ > 1 and we prove the statement for
¢+ 1. By the induction hypothesis there exists a polynomial (1,4 € C[X] of degree
<dy+---+dg+ ¢ — 1 such that

Ql,é,d(n) - Z (&1>d1 e (ag)dé.

Write Qqpq4(X) = S04t 0 (X)i. Thus,

=0
n—~{
Z (a1)™ ... (ag)™(aesr)" = Z Z ()% (ar)™ ... (ag)™
Shrpe =l
n—~{ n—¢ dy+-+dg+0—1
=Y 0" Quealn—0) =) " > Cin—a)
1=1 =1 j=0
n—{ di+-+de+0-1 J j
— dey1 . J=t(_1\t(,\t
Yo Y 63 (])mreo
1=1 7=0 t=0
di+--Ade+L-1 J . n—t
S s
7=0 t=0 1=1
dyttdg+0-1 j i ‘
= > G (t) (Y (=1)" S0 = £).
=0 =0
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Sa,,,+¢ 18 a polynomial of degree dyy+t+1 with leading term (dgy1+t+1)""! ndetitt,
Set d' = (di,...,dgy1), thus there exists a polynomial Q4 € C[X] of degree
<di+...+d+l0—1+dp1+1=di+...+de+dp1 + (£+ 1) — 1 such that

Q1,4+17d/(n) = Z (al)dl o (az)dl(ae-f—l)d“l.

a;€Z~0
Z£+l a;=n

i=1 "1

And so the lemma is true for £ + 1. By induction, it is true for all ¢ > 2

Now we consider the case when S > 2. We get

Yo ™= 3 (@)™ ()t Y (as)® - (ase)™™s

a;; €Z>0 i, ay;€Z>0 agj €EL>0
1<i<8, 154, 1<5<ey, 1<5<es,
zﬁizl ajj=n; Tyl ar=n1 z§i1 agj=ng
= Q17€1,41 (nl) Q1a£2:dz (n2> T Ql,fs,ds (ns) = QS,ﬁ,d(nlv no, ... 7n5>7

where ¢ = ((1,...,0s) and d = (d;;). Hence, Qg 4 is a polynomial of degree
Zi,j dij + Zf:l(éi - 1)‘

Remark 4.19. The polynomial Qg4 has degree ;. d;; + Zle(& —1), for 1 <
S, 1 < j < ¥¢;, with leading term

N O N

|
5 glj o Xy dit i (b1,
[T (Zf:1 dij + 4; — 1)!

Lemma 4.20. Let m € Zso, d € Zx, and p € &, without zero. Let d =
(dy,...,dm1) with dy + -+ + dp_1 = d. Then for some polynomial Tapu € C[X]
of degree < d+m — deg Ay, we have

§ : .d d—1
VkE{l,,T}, /Lll~~-/me_1 :Td7u<k)
(g;g)eg‘?’m(ak),
HELSY,8, ] (me)Ep

Here, the integer i;, for 5 = 1,...,m — 1, denotes the height of a9 . In particular,

if for some k € {1,...,r}, the set {(u,a) € P61 | w € [01,04], (1, @) € p} is
empty, we have Ty, (k) = 0.

The lemma implies that, with the same arguments as in Lemma 3.14, for all
ke{l,...,r},
i i A, i)

(1,0) € P (83,)
peld1,8,],(pa)ep
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4.2 An equivalence relation on the set of weighted paths

is a polynomial of degree d 4+ m.

Proof. We prove the lemma by induction on m. More precisely, we prove by induction
on m the following;:

For all p € &, without zero and all d = (dy, ..., dp_1) with dy + -+ +d,_1 = d,
d € Zy,
Set

VeEe{l,...ry, Tyuk)= > i

(1,2) € P (),
HE[S1, 6], (ma)eEp

Then there exists a polynomial Ty, € ClX] of degree < d+m — deg Ay such that for
allke{1,...,r},
Tap(k) = Tgpu(k).

In particular, if for some k € {1,...,r}, the set {(u,a) € Pn(61) | wE [61, 6], (1) €
p} is empty, we have Ty (k) = 0.
The case m = 1 is empty.

Assume m = 2, and let p € & without zero. The equivalence classes in & without
zero are [0y, Ox), [0k, 0], [0k, ;] with j # k. Let d = dy € Zo.

o We first compute for p = [0y, 0.
Let k € {1,...,r}. Then the set {(y, o) € Po(82) | p € [61,04], (1, a) € p}is

nonempty. Observe that there is only one path in this class. Thus, we get

i =i =20 — k) + 1"
(1,0)€ P (5,),
pElo1,6,], (pa)ER
Hence, the polynomial Ty ,(k) := (2r + 1 —2X)* has degree d; =d < d+2 —
deg A, = d + 1, since A,(X1) = 2(X;) + 1 has degree 1 by Lemma 4.15.

o Assume p = [0y, 6;],7 # k.
For k € {1,...,r}, the set {(n,a) € Prn(61) | p € [61,6:], (p,) € p}is
nonempty. Observe that the height of «" run through {r — k+1,...2r — k}.

Thus, we get
2r—k
-d -d d
g i = g it = (2r—k+1)*%
(1,0) € P (5y,), i=r—k+1
neldy,8;1,
(p,a)epm

=S4, (2r —k) — Sy (r—k+1)— (2(r —k) +1)™,

143



Chapter 4. Proof of Theorem 7 for sp,,

By Lemma 3.13 (1), the polynomial Ty, (k) := Sg, (2r — k) — Sa, (r =k + 1) —
(2(r—k)+1)" has degree d, = d < d+2—deg A, = d+1, since A, (X1) = X;+1
has degree 1 by Lemma 4.15.

o Assume p = [0y, 0;], k < j.
Let k € {1,...,r—1}. Then the set {(1, o) € Prn(61) | € [61,6], (p, ) € p}
is nonempty. It is empty for k = r. We get

r+1-—k
Yo=Y i =S+ 1 k),

(1,2)€ Pm (8,), 11=1
pE[81,8], (ma)ep

By Lemma 3.13 (1), the polynomial

Td,g(X) = Sdl(T‘ +1-— X),
has degree d; +1 = d + 2 — deg A, since A,(X1) = X; has degree 1 by
Lemma 4.15. For k = r, the equality still holds since T ,.(r) = S4(0) = 0.

These prove the claim for m = 2.

Assume m > 3 and the formula holds for any m’ € {1,...,m — 1}.

Let p € &, without zero, set p := p(u), and let d = (di,...,d,,—1) with
dy+ - +dn1 =d. Let k€ {l,...,r} such that the set {(1,a) € Pn(6) | RS
[01,0k], (1, ) € p} is nonempty. Then the sets {(1/,a/) € Pru1(61) | Woe
[61,0k], (¢, 0)' € p#} and {(t,@') € Pma(0) | ¢ € [61,0], (1, 0) € p*} are
nonempty, too.

Let p € [01, ;] such that (p, ) € p and let i := ht(p).

We first assume that u® € [§,,6;]. By Lemma 2.7 the admissible triple of —a/(?)
has type III (a) and so this case can be dealt similarly as in sl ;. Then the results
are known by Lemma 3.14.

Assume p® € [6,,0,] and let s € {1,...,p — 2} be a positive integer.

If p = 2 or if for all s, either a'® + a® € —A, or a® + a® ¢ AU {0}, then by
Lemma 4.15, the degree of polynomial A, only depends on the degree of polynomial
A,#. Let i* := ht(u#). Then one can argue as for the sl case (cf. Lemma 3.14)
and the height i can be express in term of . By doing the same kind of reasoning,
we get the statement.

Hence it remains to verify the case when there is a positive integer s € {1,...,p—
2} such that either a(® +a® € A, or a®) = —a).
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4.2 An equivalence relation on the set of weighted paths

I. Assume a® 4+ a® ¢ AN
Lemma 4.15 shows that

Ap(Xty oo Xpt) = K A (X, Xpoo, Xpot + X, Xty -, Xon)
N
+ ) KR A (X, (4.12)
a=1
_ K# if a®=D 4+ a® £,
where Kzf = £

(P (Xpo1) —cpo1)  if P~V +a® =0,
If deg A, < deg Ay (respectively, deg Ay, < degAys + 1) for aP=) 4 o £
(respectively, o~V 4+ a?) = 0) then using the same strategy as in Lemma 3.14,
which is by expressing the heights of i in term of i, we get the statement.
Therefore we can assume that deg A, > deg A&# (vespectively, deg A,, > deg Ag# +1)
if o=V + o) £ 0 (respectively, P~ + aP) = 0). This assumption means that for
some a € {1,..., N}, deg Aywa > deg A,,.

By Lemma 2.7, the possibilities for —a® and a(®) which satisfy the assumption

a® + o) € AL are the following:
(1) aP =§; — §; and ¥ =6, — §;, with | < j < i,

(2) aP) = Sj —¢; and a® = d; — 0;, with j <1 <1,

(3) a® =§; —§; and a®) = §; — 6;, with i < j and i < [,
(4) o' =§; —§; and ¥ = §; — 6, with i < j < [,
(5) aP =§; —§; and a® = & — §;, with | <i < j.

Note that in all those cases, for all @ € {1,...,N}, m —p+s < ht(u**) <
m — 1. Possibly changing the numbering of the equivalence class p*¢, one can assume
throughout this proof that p*' = [(u*', o*")] is the equivalence class of the star paths
with the longest length and set 4 := ht(u) and 7’ := ht(p*").

(1) First we give the proof for the case when o) = 5]- —§; and a®) = §, — §;, with
I<j<i.
Recall from Lemma 4.3, for all (p, a)** € p*, a € {1,..., N},

() = (1, ) ((00,65), (@) + a®)) o (@, &™) * (u”", "),
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where (1, &) is a path of length < p—s — 1 between §; and §; whose roots &** are

sums among (=Y ... attY) o = (@ ... atV) and o’ = (ot ... ™).
We have ht(/ll*l) = (’il, e ,7;371, 7;3 -+ ip,'l»pfl, R 77:s+177:p+17 e 77/m)

Set i’ = (i},...,i' ), so i, =i, +1i,. Note that a? =4§; — §; and a® = 6, — 3;,
with [ < 7 < 4. Thus,

l=k+iy+--+i,,j=1+d,and i=k+i| 4+ +i, .

Hence, for all (1, a) € p the heights in i can be expressed in term of i’ as follows (see

Figure 4.9 for an illustration) :

7:1 :le, ey is—lzi;_la i5+1:i;_1, ey ip—l :i;+1, ip+1:i/p, ey im—l :Z.fm_Q,
Ge=2r =2k —(i+0)+1=2r+1—-2k =20y +--- 41, _,) = (t, 4+ +1,,),
i =1y, — g =2k = 2r = 1428y +--- 4 4,) + (i + -+ 1,_1).

5k 51 6j 5@ 5r (57« (52 (5j (5[ (51
i1 Ts—1 is Z'5+1 ..-ip71
ip+1 ip
@t iy il =ds +ipily, iy
...... y <_

FIGURE 4.9 — i =ht(u) and i’ := ht(p*') where alP) =5, — 5, al) =6 -8, 1 <j<i.
We get,

— -dl 'dmfl
Tau(k) = E bty
(ﬁvﬁ)e-@vn(ék)v
HE[S1, 6], (ma)eEp

= ) ()P ()@ L= 2k = 200 i) = (i i)
() P, _1(5y),

w*lelsy,65],

(ﬁ,g)*leg*l

DB (@) B (26 = 20 = T 20 i) (i i)

X (i;)dﬁl N P

X (i,
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4.2 An equivalence relation on the set of weighted paths

= Z (1) (1 smr) B (i) P e (i) (i) P (i ) Pt

(o) e, _1(51),
p*lersy ol
() lep*t

dy)! B . .
3 e

geNP
lg|=ds

A o /
X Z qi'(p)q”(Q)%-i-...-i-qs(Qk o = 1)) (1)
ooalq)
ld' |=dp

d ' d ' / / !
_ Z Z ‘( 8) ' /'( p) ,'(_1)d5(2)q1+--~+qs—1+ql+-~-+qs (2/{:—27’— 1)f1p+qp
q1 qp ql' v qp'

q€NP ¢/ enP
lgl=ds \L/\:dp

% Z (Z-ll)d1+q1+q/1 .. (i/s_l)ds_1+qs_1+q;71 (i/s>qs+q;
(w)*t ey, _1(5k),

w*leldy.651,
(pa)*tep*t

% (i/s+1)dp71+qs+1+q;+l . (Z-/p_l)d5+1+qp71+q;,_l (i/p)dp+1 . (i/m_z)dmfl- (4.13)

Assume that for some a’ € {1,..., N} the equivalence class p** = [(u**, a**)]

satisfies deg A .. > deg A,. According to the proof of Lemma 4.3, there exists a
partition (t1,...,t.),t; > 0, of p — s — 1 such that

.* o ., ./
Zs—i—l - ZS+1 +oe At Zs—i—tl?

“x _ . -/
boy2 = Usppg1 T T Uopti 140

. Y ce !
bspn! = Ustybott, g +1) + T Yp-1)-

Hence ht(ﬂ*a/) = (1, Ty, i

s—17 sy

’i§+4ﬂ7 ;,-. .7i;1_1) ‘Vit}l tlle lellgtll Of Lf*ax

denoted by m*, is equal to m — p + s +n’. Here i} +; denotes the height of the root
(&) (s+9),

By Lemma 4.18, for each d' = (d,,,,..., 1) there is a polynomial Qs €
ClXy, ..., Xw], t = (t1,...,tw), of degree d,,; +---+d, ; + (p—s—1) —n' such
that

Z (ifpr) o - (2';9—1)%’1 = Qupa (T541s -5 U )-

1<i<n’
Ity t-dty g SIStp+oo+ty

v —a*
Tt =it
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! _ / ! ' 7 .
Set dy g = (dp—1 + Qo1 + Qo1 -+ dsir + Qo1 + @), dy o = |dg | and write
— E J1 In!
inéad; q <X17 et 7Xn/> - Cle o X’I’L/
T G=01send )
lil<d; +p—s—1-n'

It is a polynomial of degree dj, 1 +qs11+ ¢+ +ds1+qpa1+q, +p—s—1-n'

Hence,

(dp)! (_1)d3(2)q1+~~-+q571+q’1+~~+qé (2]{: — 9 — 1)61p+q;

_ (d,)!
Ty (k) =
IMOEDIDY ol )

g€NP g’ enP
lal=ds |q'|=d)p

% Z (ill)d1+QI+q/1 ..

’ Py
(1, )** €2, + (5k),
! —
#* €[61,6,],
’ ’
(ﬁ,g)*a Eﬁ*a

X Z Cj (i:+1>j1 T (Z:Jrn')j"l (i/p)de T (Z'/mfZ

. (Z'/S_l)dsfl‘f'qgsfl'*'q;,l (Z'/S)Qs-i-q;

)dmfl X

3=01,-d 1)

131< ;)q/+p—s—1—n’

Set C_Zg,g/ = (dl +Q1+QL <o 7dsfl—i_q‘sfl_kq;—DQS—i_q‘/gajla cee 7jn/7dp+17 R ?dmfl% with

|c_lg7g,|:d+(p—8—1)—n’

fd ,ﬁ*a/(k) _ Z (Z'/l)d1+q1+qi ..

’ -
(pe)* €2, 5 (5,),
!/ -
w* el8y,85],
(ﬁ,g)*aéﬁ*a
./ )dm_l

X () () ()7 (e

— qp — q,, and

X (i/871)ds_1+Qs—1+q;,1 (iIS)QS+q‘IS

Then

(dS)! (dp)! i j(_l)ds (2)q1+~--+qs_1+qi+~~+q§

Tauk) =" > 2 ql!~--qp!qi!---qp0

g€eNP g’ enP =01, Jpt)
lal=ds |4’ |=a,, \l\gd; q/+p—sfl—n/
a 4.4

x (2k —2r — 1)+ % T,

4

e () (4.14)

By the induction hypothesis applied to m* and E*“/, there exist polynomials
Td /’u*a/ E (C[Xl,.--7Xm*_1] Wlth

deg(Ty o) Sd+(p—s—1)— n'—q,—qy+m"—deg A,

<d+m—q,—q,—1—degA, <d+m—q,—q,—degA,,
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4.2 An equivalence relation on the set of weighted paths

since deg A .o > deg A, such that T, /N*a/(k) = Td , w (k) for all k such that

-9,9

{(1:0) € Poe(6) | 1 € Br,8e]. (10)™ € ™} is nonempty.
Set

(do)! (dp)! d o At
Typu(k Z Z Z T !q/!.”q/!cl(_l) (2)m a1+t
=(41 p 1 p

qeNP  g’ent  j=01.---1d,
lal=ds |q/|=dp |3 <d’ +p—s—1—n'
a lq'|=dyp 13I< 0.0’ 1P

X (2k—2r = 1)#FETy (k).

Then by the induction hypothesis and (4.14), we have Ty ,(k) = &< ) and Ty, is
a polynomial of degree < d + m — deg A, for all k such that {(u,a) € P (61) | uE
[01,6k], (1, @) € pu} is nonempty.

It remains to verify that Ty, (k) = 0 when

{(1, Q) € Pu(64) | p € [01,04], (1, 0) € p} = 2.

Observe that this set is never empty if the set {(p,a)*' € Prn1(61) | wtoe
[01,0k], (1, @)** € p*'} is nonempty. For any (u,a)* € p*' where ht(u*') = ¢/, we

have i, = 0, —; = &, —¢;, the source of i, | is §; = ¢; and the target of 7/, is §; = &;.
Thus we can always reconstruct the initial path (H7 a) by taking iy =6, —0; = ¢, +¢;
and i, = §; — §; = —¢; — &;. This is possible since (a*!)M) ... (a*!)?~V is entirely
contained in [0, dx].

Hence, the set {(y,a) € Po(6) | 1 € [61,6k], (1, ) € p} is empty if the set
{(a)™t € Ppi(0) | 1 € [0, 5k]],( ,a)* € p'} = @. Furthermore, the set
{(p, @) € P (0) | W € [61,04], (p, @) € p*'} is empty too. Our induction

hypothesis says that, in this case,

Tysu(k) = Ty o (k) = 0,

for any d' € Z'7;. This proves the lemma for case I(1).

Observe that our above strategy works for case 1(5) as well, since by Lemma 4.3

we also have

(Ha@)m _ (M/7g/) « ((5l’5j)7 (O[(S) + a(p))) % (ﬁ*&);*a) (H //)7

and so the arguments are quite similar. Since the calculations are similar, we omit

the detail. Hence we conclude the case 1(5) as in the first case.
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Chapter 4. Proof of Theorem 7 for sp,,

(2) Assume that a® = §; — §; and a® = §; — &, with j < | < i. Recall from
Lemma 4.3, for all (u,a)** € p**, a € {1,..., N},

(,U,Q)*a — (H/’g/) % (E*G’Q*a> * (H//’g//)’

where (fi**,&**) is a path of length < p — s between ; and J; whose roots &*

are sums among (a®V ... alt) o £ a®) o = (aM ... V) and o =
(a®D . al™). We have ht(ﬁ*l) = (s ey sty Ity e e vy sty Bs 4 Tpy lpt1y - - oy im)-
Set &' = (4}, ... ,7, 1), 80 i,y = is+1i,. Note that alP) = §;—§; and o'®) = §; -4,

with 7 <[ <. Thus,

j:/{:—l—i/1+"'—|-i;_1,i:l+i;)—1 andl:k,‘—l—ill—l—...—{—i;_g.

Hence, for all (p,«) € p the heights i := ht(u) can be expressed in term of i’ as

follows (see Figure 4.10 for an illustration) :

. -/ . -/ . -/ . -/ . -/ . -/
11 =0, ooy ls—1 = 15 1y ls41 = Zp—l? vy bp1 = gy, pt1 = Zp7 ey tm—1 = 19,

is=2r =2k — (J+ 1) +1=2r+1—2k =2 + -+, ) — (i, + -+l y),
By =i =iy =2k = 2r — 120 i)+ (4 ).

—s- e . i L T I
5k 5] 5l 4 5r (ST 51 (5[ (SJ
" a1 is i3+1 ............. _)_.ip71
......................... — -
i Uy g i_o iy =is+ip
......................... (_

FIGURE 4.10 — i =ht(y) and i’ := ht(p*!) where aP) =§; — §;, al®) =6; —§;, j <1 < i.

With the same manner as in (4.13) we get,

fd,g(k) — Z Z Cg,g’ (2k — 2r — 1)qp71+q§, Z (ill)d1+q1+q’1

qenP=1 g’en? (w,0)*r e, _1(5y),
lal=ds |q'|=dp w*leldy,o,],
(ﬁ,g)*leg*l
o \d,_1+qs+q" -/ a1 (0 \dpi1 -/ dm_1
X oo (i) et (e () et (i, o) dmet (4.15)
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4.2 An equivalence relation on the set of weighted paths

Assume that the equivalence class p** = [(1**', o*')] satisfies deg A e = deg Ay,
for some o’ € {1,..., N}. By Lemma 4.3, there exists a partition (t1,...,%,),t; >0,
of p — s such that

kel -/
Zs _Zs+"'+7’s+t17

x f— ., .« .. ./

bsbn/—2 = Ustti ot _g)+1 ot bty
-k o I -/

Uspn/—1 = Usity ot 41 T Tl

-/

Hence ht(p*®) = (), ..., i, 65,85 40 iy, iy -0y, 1) and the length of T
denoted by m*, is equal to m — (p — s) +n’ — 2. Here i%,; denotes the height of the
root (&*)(s+7),

By Lemma 4.18 and (4.15) we get,

Tt = ¥ Y Cuy (k-2 -1t Y (e

1 4/enp r
q‘e‘NT'd -z ‘EN (p,2)*® €2, % (8,
a s |d"|=d -

i P n*e €[81.641,

’ ’
(may @ epra

X (ils—l)ds_lJrqs_lJrqgil Qn’,ﬁ,d;’q/ (Z:7 <. 7i:+n/—1)<i/p)dp+l T (i/me)dm_1>

where Qn’,t,d;,q/ is a polynomial of degree ds41 + -+ +dp—1 +¢s + -+ G2+ ¢, +
-+ +q,  +p—s—n'. Repeated steps as in [(1) enables us to write

=22 X Gl Ch=2r )Ty ()

qenP—1 g’enp =(1s--2d )
lal=ds |a’|=dp |J|<d’ ,+p—s—1—n’

By the same kind of reasoning as in first case , we have Ty , (k) = Tdﬂ(k‘) and Ty ,, is
a polynomial of degree < d +m — deg A, for all k such that {(u,a) € P (64) | uE
[01,0k], (1, ) € pu} is nonempty.

It remains to verify that Ty, (k) = 0 when

{(p.a) € P61 | wE [61,04], () € p} = 2.

Observe that this set is never empty if {(11,a)*' € Pp_1(6x) | g € [01, 0], (1, )** €
@'} is nonempty. For any (u, a)*' € p*! where ht(p*') = i, we have i, | = 6§, —0; =

€, — €j, the source of i, is 0; = €;. Thus we can always reconstruct the initial path
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Chapter 4. Proof of Theorem 7 for sp,,

(1, @) by taking i, = §; — 0, = gj+ ¢ and i, = Sj —§; = —¢j —¢;. This is possible
since (a*)M) ..., (a*!)®P) is entirely contained in [d,, 6]

Hence, the set {(u, ) € P61 | € [61, 6], (1, ) € p} is empty if {(u, a)*' €
Prn1(61) | wr € [01,64], (1, 0)*' € p*'} = @. Furthermore, the set {(H,g)*“/ €
P (62) | w € [01,04], (1, @)* € p*'} is empty too. Our induction hypothesis
says that, in this case,

Tau(k) = Ty yoo (k) = 0,

for any d' € Z7;. This proves the lemma for case 1(2).

(3) Assume that o?) = §; — Sj and o®) =6, — 6, with ¢ < j and i < [.
Recall from Lemma 4.3, for all (p, a)** € p**, a € {1,..., N},

*a’Q*a) * (H//7QII),

=

(1, 0)* = (i, ') = (

where (f**,&**) is a path of length < p — s between ; and J; whose roots &**
are sums among (a®V ... alt) o £ a®) o = (aM, ... V) and o =
(a®PD) . alm),

Note that the order of roots in a*! in this case may differ than in the case 1(2),
depending on the situation of «?~Y and a(?) as described in the proof of Lemma 4.3(3)
and (4). But in all that events {o,..., o/} = {a@V .. ot ol + o)} So
we can always express the heights in ¢ in term of ¢/. With the same arguments as in
(4.15) we get similar equation and so we omit the detail.

Assume that for some o' € {1,..., N} the equivalence class u** = [(**, )]

/

satisfies deg A . > deg A,. Note also that in this case the roots in @™ is a sum
amongs (ay,...,a, ;), but not necessary in the sequential order. Then we are doing
the similar calculation and so we omit the detail. Hence we conclude as in I(2).

Observe that our method above will work for case 1(4) as well and so we omit the
detail. Hence we conclude for this case as in 1(2).

It remains to verify that Ty, (k) = 0 when

{(Hag) € «@m(ék) |E € [[Slaék]], (H,g) c E} = .

First, we consider the case where ht (p1*!) = (i1, ..., G5 1,%p 1+ - bss1, bsHips bpits - - s dm)-
The other case will work similarly and so we omit the detail.
Observe that the set in the statement is never empty if the set {(u,a)*" €

*1

D) | ' € [61,04], (m,@)*' € p*'} is nonempty. For any (u, )" € p
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4.2 An equivalence relation on the set of weighted paths

where ht(p*') = i, we have i, | = 0, — 6; = €j — &, the source of i, is §; = ¢; and
the target of i, , is 6, = —&;. Thus we can always reconstruct the initial path (u, a)
by taking is = 0; — & = €, — ; and 17, :Si_gj =£; — &;.

Hence, the set {(u,a) € Pon(61) | w € [01,6k], (1, ) € p} is empty if {(p, @)™ €
Pa(0) | pt € [01,6:], (1, )" € p'} = @. Furthermore, the set {(u, o) €
P (62) | € [01,04], (1, @)* € p*'} is empty too. Our induction hypothesis
says that, in this case,

Tau(k) =Ty (k) =0,

= a,p

for any d' € Z7;.

II. Assume o(®) = —a®),
Lemma 4.15 shows that

Aﬁﬂxh.”,X%kl):akgAﬁ#LXh.”,)%_%)%_l+J&””.rXﬁ_ﬂ
N

+ (P (X)) =€) D K Ay (X9), (4.16)
a=1
K} if aP=D 4+l £,

where l_(z‘f =
N (P (Xp1) — cpe1)  if @D 4 a®) =0,

If deg A, < deg A, (respectively, deg A, < deg Apr + 1) for aP=D + a® £ 0
(respectively, oY + a(P) = 0) then using the same strategy as in Lemma 3.14,
which is by expressing the heights of i in term of i#, we get the statement.
Therefore we can assume that deg A, > deg A,# (respectively, deg A, > deg Apr+ 1)
if a1 + o) £ 0 (respectively, o~V + oP) = 0). This assumption means that for
some a € {1,..., N}, deg Ay +1 > deg Ay,

By Lemma 2.7, the possibilities for o and o®) which satisfying the assumptions

a® + o) =0 are the following:
(1) a® =§; — & and o' = §; — §;, with j < i,
(2) o =§; —§; and a®) = §; — §;, with i < j.

Note that in all those cases, for all @ € {1,...,N}, m —p+s < ht(u*?) <
m — 2. Possibly changing the numbering of the equivalence class p**, one can assume
throughout this proof that pu*' = [(u*', a*")] is the equivalence class of the star paths
with the longest length and set 4 := ht(p) and ¢’ := ht(u*").

(1) We consider the case where a'?) = §; — §; and o(®) = §; — §;, with j < 1.
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Chapter 4. Proof of Theorem 7 for sp,,

Recall from Lemma 4.4, for all (y, a)* € p**, a € {1,..., N},

*a &*a> * (H//,g//)7

) =

=2

(u,g)*a — (Hlvg/) *(

where (1, &) is a path of length < p— s — 1 between §; and J; whose roots &** are
,Oz(s_l)) and o = (a(p+l)7 o ’a(m))'

Lot o = (o))

RN TRIE SPTRRE FOT S
). Note that a® = §; — §; and o® = §; — §;, with j < .

-1
sums among (a/P~Y .
ey lm)-

We have ht(u*) = (44, .

-/

<) -/
Set @' = (i,...,1,

Thus,
j=k+i,+--+i, , and i=k+i\+---+i o

Hence, for all (4, a) € p the heights in i can be expressed in term of i’ as follows (see

Figure 4.11 for an illustration) :
. _ -/ . _ -/ . _ -/ . _ -/ . _ -/ . _ -/
=11, «..y ls—1 = ls_q, ls41 = Zp—27 cey lp—1 =g, lpp1 = Zp—l’ vy =1 = U3,
/
p—2)7

bs=2r+1—2k—2(+---+di_)— (@, +--+i
—ig =2k —2r — 14200y 4 i) + (i + - i ).

iy =
H ......... = ......... = ...%... 3 ......... _= ..._.
6’6 5] (51 61” 57» (5, 5]' 6k
11 ......... ib71 lS /[/‘5+1 ......... Zp71
.................. — ——
by G, o
.................. <—.
l;)—l
FIGURE 4.11 - i =ht(y) and i’ := ht(H*l) where a(P) = 0j— 04y 0l =6, —8;, j <.
With the same arguments as in (4.13) we get,
Taulk)= D > Cpq @k—2r 1)@ F7 (p)htata
qeNP~ 1 g/ enp—1 (,e)* e, o (o),
lal=ds |q’|=dp p*lelsy 8,1,
(ﬁ,g)*leﬁ*l
1) ()P (4.17)

N (z’ls)dp_l—i_qs—i_qg o (i/p_Z)ds+1+qP72+q;—2 (’L p—
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4.2 An equivalence relation on the set of weighted paths

Assume that the equivalence class p* = [(u**, a*)] satisfies deg Aper +1 2
deg A, for some @' € {1,..., N}. According to the proof of Lemma 4.4, there exists
a partition (¢1,...,t,),t; > 0, of p — s — 1 such that

kel -/
Zs _Zs+"'+7’s+t17

-k o . -/
Usbn/ =2 = Ustty ot _g)+1 ot bty

- o -/
Uspn/—1 = Usity ot 41 T Tl

*a'\ _ (s 2/ Sk k S :/ :/
Hence ht(p**) = (i}, 0 1,05 Uhis - Gapm 150y 15+ -+, 0p,_3) and the length of

H*a/, denoted by m*, is equal to m — p + s +n’ — 1. Here iy, ; denotes the height of
the root (&*@)(+9),

On account of Lemma 4.18 and (4.17) and from the arguments of above cases it
follows that

Tdﬂ(k) - Z Z Coq (2k —2r — 1)1+ Z (i )di+ata .

—1 s -1 o

ﬂﬂ“"d gENP () * €D, 5 (51),
ql=dsg =d [

qa s lall=dp w*e’ e[5y,65],

’ ’
(p,@)** ep*®

A Yo GV () ) (i)

where d’g’g, =dsp1+Gp2+q, o+ +dp 1+qs+q;. Set dyy = (di+qa+4q, .., ds 1+
Qs—1 Q1,915 s Jnrs dpi1s - ooy A1), With |c_lg7g,| =d+(p—s—1)—n"—q1—q, 4,
and

Ty o (K) 3 ()OI @ (i P ()P (),

- ’ N
(p,2)*® €2, % (8),
’ _
u* e[8y,6,1,
’ ’
(u,0)* epra

Then

Tauk)= Y Y Y. CiCyg(2k=2r = 1)t 6Ty (k). (4.18)
qenP—1 g/ enp—1 3=01,-dpr)

=d /= j|1<d’ ,4+p—s—1-n'
lal=ds |g'|=dp lil<dy 1 +P

By the induction hypothesis applied to m* and E*“/, there exist polynomials
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Chapter 4. Proof of Theorem 7 for sp,,

Td *a' S C[X1,...,Xm*_1 with

“q.a"

deg(Ty o) Sd+(p=s=1)=n"=gp1 = ¢ +m" —deg A

Sd+m—qy1—¢q, 1 —2—degA, <d+m—q, 1 — —deg Ay,

since deg A . +1 > deg A, by the assumption, such that qu o (k) = qu o (k)
for all k such that {(y, a)* € P (5) | € [01,04], (1, @)™ € w*'} is nonempty.

Set

Tuuk)= > > CiCyq (2k — 2r — 1)1 Ty, e (6).
toma o iy
Then by the induction hypothesis and (4.18), we have Ty ,(k) = “( ) and Ty, is

a polynomial of degree < d +m — deg A, for all k& such that {(p, )E Prn(61) | uE
[01,6k], (1, @) € p} is nonempty.

If {(p, ) € Pn(01) | p € [61,0], (1,@) € p} = @ then by the same kind of
reasoning as in the proof for case I(1), we get T, ,(k) = 0. This proves the lemma
for case I1(1). -

Observe that our strategy above works for case I1(2) as well, and so the arguments
are quite similar. Since the calculations are similar, we omit the detail. Hence we

conclude the case II(2) as in the first case. O

4.2.4 Elements of &, with zeroes

We consider in this subsection the elements of &, with zeroes. We adopt all the
notations and definition as in Section 3.2.4.

This paragraph is about the computation of the sum of all paths (g, Q) 5 that

27
are obtained from (fi, &) by “gluing the loop” as in Section 3.2.4.

Lemma 4.21. Letm € Z~q and p € &, with n zeroes in positions ji, . .., jn (n < m).
There are some classes B Py without zero of length ¢}, = é(gh) <m—n and

polynomial By, of degree < n such that

=

D Wt <(E’ Q)zﬁé) = Bu(k) ZKE,LAgh(Eb el —1),

e h=1
B WD
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4.2 An equivalence relation on the set of weighted paths

where ht(4, ) = (i1, ... ,ig,). Moreover, we have
Bu(X) =Y Co (i, 1) X,
=0

where CE)) = (—1)" and C’g) € C[Xy,..., X—n-1] has total degree < I for | =
L,...,n. In particular, if n =0, we have B,(X) = 1.

Proof. We prove the statement by induction on the number of the loops n. Set
j=(j1,--,jn) and let 3 := (BW, ..., ™) be in HM@.
First of all, observe that if n = 0, then the result is known by Lemma 4.15 and

Remark 4.17.
If n = m then either (1, &) = ((6x); (IL5,)™) or (g, @) = ((0x); (Hgk)m). By Lemma 2.4,

there is a polynomial B,, of degree m such that

and so the lemma is true for n = m. Hence it remains to prove forn =1,...,m — 1.

For n = 1, we have j = (j;) for some j; = 1,...,m.

e Assume j; = 1 then pb) = §,.
For some k € {2,...,r}, we have Il = {Bk_1, Br}. Hence by Lemma 4.6,
Lemma 2.3 and Remark 4.17, -

> wt ((2, Q)g;g) = wt (&) @sgay) + Wt (7 Qs
BEIL ()

= (~tp. @t + (b)) (@) = ((p, ok — ) ) Wil d)

=

N
= (r—k+D)wt(@,a) = (r+1—k) > Ku Ap (i1, .75, 1)-
h=1

For k = 1, we have Il ) = {f1}. Hence by Lemma 4.6, Lemma 2.3 and Re-
mark 4.17, -

S wi () ) = wh () yean) = (o, 4) Wil &)

— (%(27» —1+ 1)) wt(f, &) = (1) wt(fi, &)
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Chapter 4. Proof of Theorem 7 for sp,,
KE;LAE;L (51, Ce ,Zgh_l).

M) =

=(r+1-k)

h=1

Hence by setting B,(X) := 7+ 1 — X, we get the statement.
g’

e Assume pUt) = 4, for some s € {2,...,r} and s # k. Note that s = k+
and Hu@ = {fs-1, fs}. By Lemma 4.6, Lemma 2.3 and Remark 4.17,

) =wt ((27 )(j1)§{6571}) +wt ((B, @)(jl);{ﬂs})

> wi ()
BEl ()
= (<t + 1+ o, =h) Wi ) = (oo - =
Jji—1 N
r—k—> i+ 2) Y K Ag (i1, 0, 1)-
h=1

Note that
Z /L.t = Z 1,

where j = j; — 1. Set
j
Bu(X)i=r—X=) %+2
t=1

Then we prove the statement in this case.

o Assume pUt) =4
For s € {2,...,r — 1}, note that

Ji—1
s=2r—k—=) d+1 and I = {81 B}
t=1
By Lemma 4.6, Lemma 2.3 and Remark 4.17, we have

) = wt ((fa
8) = ((p.whoy — =) + 1) Wi )
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4.2 An equivalence relation on the set of weighted paths

Ji—1

= (s —r) wt(j1,&) :(r—k th—i-l) ZK Ap zl,...,igh,l).

For s =1, Hﬁ@ = {f}, thus

> wt (@Q)z;ﬂ) = wt (71 @) ygny) = ((—p, @1)) wi(, @)

= (1) W@8) = (o= 1= 1) i
:<r—k iy Zt+1) ZK Ag 21,...,@%,1).

Note that

where j = j; — 1. By setting

:
Bu(X)=r—X-=) i+1,
t=1

we prove the statement in this case.

e Assume plt) =g,
Note that II ;) = {Br-1,B-}. By Lemma 4.6, Lemma 2.3 and Remark 4.17, we

have

> wt ((ﬁa Q)g;g) = wt (7 @) (j1)sf6,-13) + Wb (& @) Gysisy)
= ((p=l) —1=(pwh +2) wi(@d) = ((pwh, - =) +1) Wi

Since 0 is a polynomial of degree < n then we get the statement.

By the above observation, the lemma is true for n = 1. Let n > 2 and assume the
lemma is true for any n’ € {1,...,n —1}.
Set j := (j1,-..,Jn) the position of loops and let 8 := (BW, ..., B™) be in IL ;). We
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are doing the similar calculation as Lemma 4.6, thus

S ow(@an) = T 0he) () ) | D (o).

QEHH@ a(h)eH#(jl) E/EH t0)

where j' = (ja2,...,Jn), Cotin) := Sl

with n — 1 loops. Set p' := [(fi,&);,5]. So, the induction hypothesis applied to g’

a®, ) and (fi, &) is a weighted path

(i)

gives,

e T)

I
—~
=

=

Q

=3
=

/N
—~
RS
S
)
Q.
N
v
Y
—~
oy
~
3
b
=
=~
—
Sl
oy

N
— S (et (<p, @t ) — ca(j1)> By (k)Y Kp A (i1, -, 1)
h=1

aUDEll ()

sinceézzgh,hzl,...,]\f. Set

Bub)=| 3 (wa) <<p,wim>>—ca(jl>) By (k).

O‘(jl)enu(h)

With the same arguments as for the case n = 1 and the induction hypothesis applied
to p', we see that there exists a polynomial B, of degree < n with leading term is
(=1)"X™, and the coefficient of B, (X) in X7, fg n, is a polynomial in the variable
Wy im-n_1, of total degree < n — 7 such that Bﬁ(k) = B(k). O

Ezample 4.22. Let n € Zxo, with n € {1,...,m}, and p € &, with n zeroes in
positions j; < -+ < jp.

1. Let (j1,&) be a weighted path without loop, with ji = (8, 05, 01, 65, 61) with
k <l < s <r. By Example 4.16, there are some classes B, and ©, such that
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4.2 An equivalence relation on the set of weighted paths

Set j = (2,5
= (B @)jp}pen )
We have -
> wt ((Ba @gg) ((E Q) j5{Be-1,5s 1}> + wt ((2, Q) ji{Bar &})
Be ()
 wt (@) 8,01 ) + 0t ( (s @400 )
With the same arguments as Lemma 4.8, we have
wt (0 @);05, 10.1)) = (1) = 1)(=(p,Ey) + 1wt (&)
wb (@45, 1,0,y ) = ((E0) = D({p, ) wt(, &)
wt (0 @)05..-11) = (2= (o, @8 (— (p, Ey) + 1wt (1, G);
wt (i @)j5,. ) = (2= (p, =8 ({p, &) wi(i @)
Hence by Lemma 2.3, we get
> wt (@ a)s) = (=i — @b +1) (o = =) + 1) wili &)
BeEM )
=((s =7)(r—s+2)) wt(fi, &)
3
=(r—k—7+1) (r—k—zit—i-Q) wt(fi, &)
t=1
(2r +3)i1 — (r+ 1o — (r + 1)iz 4+ 1§ + 0alz + 0173) k

( r+1)(r+2)—
+ (—(2r +3) — 25 + 7 +3) k' +k2> (ZK Ap, (11, g, 1))
Zl,... )k’] <K A~1(il’z2)+Kﬁ2A, (11712)>
By setting
B,(X):=) Cri(i,...,15)X7,
we get that B, is a polynomial of degree 2 with leading term X? and the
2, is a polynomial in the variable 7, ...,73 of
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total degree < 2 — j. Thus,

5

wt (fi, &) = (is + 1) Ay (i1, 7, 73) + Z Ky Ap (11,70, 1),
h=1

E# = [5k75875l75j]; El = [5k75875l75j]; 22 = [5k75875j]7
E3 = [614775875175[75]']; 24 - [5k,53,(5j,5l,5j]; ES = [5k763753753]

Observe that (74 + 1)AB# (11,22, 73) = Als, 6,508,000, (115 - -+ 5 T5).-
Set p = [Ok, G5, 01, 05, 6i, 0;], We get

WE

wt (E,Q) == KEhAEh(%l"“’ZEh—l)‘

h=1

Set l = (1,4, 7) and let é € Hﬁ(l) with HBQ) = {Bk*laﬁk} X {ﬁlfl,ﬂl} X

{68—17/88}’ Set H = {(E)Q)l,é}éenﬂ(y
With the same arguments as Lemma 4.8 and Lemma 4.6 and by Lemma 2.3,

we get

— (ot — =) (o why — =D + 1) (o =hy — ) +1) wi(, )

=(r=k+ DU =7)(s =) wt(i,a)

=(r—k+1) (r—k‘—zft-i—l) (r—k—ziﬂrl)wt(ﬁ,é)

= ((r+ 1+ (r +1)*(=201 — 20, — T3 — )
+(r 4+ 1)(] + 20172 + G175 + Tl + 5 + Gals + i2ls)) K°
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4.2 An equivalence relation on the set of weighted paths

+ (=3(r + )% + (r + 1)(431 + 4 + 233 + 214)
(=77 — 20y — 103 — T1la — 15 — Dol — Goly) k'
+ (3(r+1) — 21 — 212 — 03— 1) K+ (1K)
3

:ZC Zl;--- ]{ZJZK A Zl,...,@vghfl)),

J=0

where the K Eh’s are some constants. By setting

we get that B, is a polynomial of degree 3 with leading term (—1)X 3 and the
coefficient of B, (X) in X7, j < 3, is a polynomial in the variable 7, ...,7; of
total degree < 3 — j. Thus,

3wt ((g,@)ﬁ) (ZK Ap zl,...,zgh_l))

. Let r =4 and (E, @) be a weighted path without loop with = (02, 4, 92).

Set j :=(2) and let 3 € IL,» with Il = {Bs, Bs}-
We have - -

> wt ((2, Q)g;g) = wt (71, &) 2):(803) + Wt (2 &) (23054 -

)i

|2

<(g(2 x4—3+1))— 1) wt(fi, @) = 8 wt(fi,
wt (1 &) @)5(p,y) = (04, Ba) ({p, ) — (), @h) )W (fi, &)
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= —({p. ) — 2)wt(j1, )

= ((%(2 Xx4—4+1)— 2)) wh(f2, &) = —8 wt(fi, &).

Hence,

Corollary 4.23. Letm € Z~o andn € {0,...,m}. Let p € &, withn < m zeroes in
positions ji,. .., jn, and g as in Lemma 4.21. Then for some polynomial T,, € C[X]
of degree at most m, for all k € {1,...,r},

XY wi((a)s) = Tulkh).

(Ba)ep BELL ; (1,8)€ P —n(5y),
B pelsy,0p ), (e
If n = 0 has no zero, then T, is the polynomial provided by Lemma 4.20. If
n = m, then ht(p) = (0) and T, = T, is the polynomial provided by Lemma 2.4. So,
in these two cases, the statement is known. Also, our notations is compatible with

the notation of what follows Lemma 4.20.

Proof. Let k € {1,...,r}. By Lemma4.15, Remark 4.17, Lemma 4.20 and Lemma 4.21,

we have,

> X X wi(ma)y)

(&) Ef BEIL j ()€ Py_n (5),
= pe[81,8,], (B.a)ep

(E'Q_)egsznwk);
BES1,6,], (R.&)ER

N
- ) E CO D, imn )WY K A (i1, 7, 1)
(18)€ Py (8. =0 h=1

AE[81,05), (ma)En

= ) Z Z Ca T T Ap (@ Tnnn)-

(&) € Py —n (63), J=0 dj=(d1,sdm_n_1),
BE[S1,05], (R.8)ER d1+ Adp—p—1Sn—7J
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4.3 Proof of Theorem 7

Set

5 dy  sdmen—1 4 (s ~

Tu,u = E 0y ATy Ten)
(B-8)€ P —n (5y),
#eEld1,0,], (B.a)ER

Then by Lemma 4.20, there are some polynomials Ty z of degree at most (n — j) +

(m —n) =m — j, such that

> > > wt ((E’ Q)M) =) > Ca K Ty, a(k).

(B,a)ep BEIL j (2,8)€ P _n (k) J=0 dj=(d1dm—_n-1),
= peldy8l (a)ep ditetdm_p_15n—J

Moreover, if j < n, then Ta,a has degree < m — j. By setting
Tu(X) =) > Cai X' Ta, 5 (X)),
we have that 7, is a polynomial of degree at most m — j +j = m. O]

4.3 Proof of Theorem 7

We first prove Lemma 4.10 as a consequence of Corollary 4.23.

Proof of Lemma 4.10. According to Theorem 4.1, the paths starting from 6, have

weights entirely contained in [1,0%]. So the sum

()€ -@m(gk)
peldy,6;]

can be computed exactly as in the sl ; case, and the result are known by Lemma 3.19.

Hence there is a polynomial T27m of degree at most m such that for all k € {1,...,7},

> wt(ga) = Tom(k).
(g,g)efy_n(gk)
pEls1,0;]

So it remains to consider the paths starting from & and contained in [d;, &;].
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By Corollary 4.23, we have for all k € {1,...,r},

> owpa)= Y Y wira)= Y L)

(1-2) € Pm (5 BEEm  (1,2)€ Pm (), HESER
RES1,0] pe€ldq,0k], (ma)ep

Set
Tim = » T,€C[X

gegm

By Corollary 4.23, T}, has degree at most m. Therefore Tl,m has degree at most m

and satisfies the condition of the lemma. O]
We are now in a position to prove Theorem 7

Proof of Theorem 7. By Lemma 1.19, we have

v dpnp) = Y. Y. wilua){u, B

HEP@)k (p,0)€ P (1) -

Remember from Section 2.3 that
P((S)k = {5ka5k‘+1a5k7gk+l}7 k‘: 1,...,7"—1, and P((S)T = {(5,,5,}.
Hence, for k=1,...,r—1

v dp) = . wima)— > wi(p.a)

(1.0) € Prm (61 (1,0) € Prm (S 41)
+ Z wt(p, a) — Z wt(p, @),
(ﬁvg)ggjm(slﬁ—l) (ﬁvg)eggjm(gk)

and

evy(dp,,) = > wtpa)— > wi(pa).
&P (57) ,

(ma)€

Let Tl,m and Tg,m be as in Lemma 4.10 and set

Qm = Tin(X) = Ty (X + 1) + To (X + 1) = T n(X) (4.19)

(Note that Ty, (r 4+ 1) = Thm(r +1) = 0). Then Q,, is a polynomial of degree at
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4.3 Proof of Theorem 7

most m — 1, and we have

—~ 1 &~ 1 O —~ 1 -
ev,(dp,,) = ev, <% dem,k ® wlﬁg) =32 (dpmk) w,ﬁc = Qmwi.
T k=1 T k=1 " k=1

Moreover, Ql = 2. ]
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Résumé : il existe plusieurs filtrations intéressantes définies sur la sous-algébre de Cartan
d’une algebre de Lie simple complexe issues de contextes trés variés : 1'une est la filtration
principale qui provient du dual de Langlands, une autre provient de 1’algébre de Clifford asso-
ciée a une forme bilinéaire invariante non-dégénérée, une autre encore provient de l’algébre
symétrique et la projection de Chevalley, deux autres enfin proviennent de l’algébre en-
veloppante et des projections de Harish-Chandra. Il est connu que toutes ces filtrations
coincident. Ceci résulte des travaux de Rohr, Joseph et Alekseev-Moreau. La relation re-
marquable entre les filtrations principale et de Clifford fut essentiellement conjecturée par
Kostant. L’objectif de ce mémoire de thése est de proposer une nouvelle démonstration de
I’égalité entre les filtrations symétrique et enveloppante pour une algébre de Lie simple de
type A ou C. Conjointement au résultat et Rohr et le théoréeme d’Alekseev-Moreau, ceci
fournit une nouvelle démonstration de la conjecture de Kostant, c’est-a-dire une nouvelle dé-
monstration du théoréme de Joseph. Notre démonstration est trés différente de la sienne. Le
point clé est d’utiliser une description explicite des invariants via la représentation standard,
ce qui est possible en types A et C'. Nous décrivons alors les images de leurs différentielles
en termes d’objects combinatoires, appelés des chemins pondérés, dans le graphe cristallin
de la représentation standard. Les démonstrations pour les types A et C' sont assez simi-
laires, mais de nouveaux phénomeénes apparaissent en type C, ce qui rend la démonstration
nettement plus délicate dans ce cas.

Mots-clé : filtration principale, projections de Chevalley et de Harish-Chandra, chemins

pondérés.

Abstract : There are several interesting filtrations on the Cartan subalgebra of a com-
plex simple Lie algebra coming from very different contexts: one is the principal filtration
coming from the Langlands dual, one is coming from the Clifford algebra associated with
a non-degenerate invariant bilinear form, one is coming from the symmetric algebra and
the Chevalley projection, and two other ones are coming from the enveloping algebra and
Harish-Chandra projections. It is known that all these filtrations coincide. This results from
a combination of works of several authors (Rohr, Joseph, Alekseev-Moreau). The remarkable
connection between the principal filtration and the Clifford filtration was essentially conjec-
tured by Kostant. The purpose of this thesis is to establish a new correspondence between
the enveloping filtration and the symmetric filtration for a simple Lie algebra of type A or
C. Together with Rohr’s result and Alekseev-Moreau theorem, this provides another proof
of Kostant’s conjecture for these types, that is, a new proof of Joseph’s theorem. Our proof
is very different from his approach. The starting point is to use an explicit description of
invariants via the standard representation which is possible in types A and C. Then we
describe the images of their differentials by the generalised Chevalley and Harish-Chandra
projections in term of combinatorial objects, called weighted paths, in the crystal graph of
the standard representation. The proofs for types A and C are quite similar, but there are
new phenomenons in type C' which makes the proof much more tricky in this case.

Keywords : principal filtration, Chevalley and Harish-Chandra projections, weighted paths.
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