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Preface

This is the lecture notes for the course “Outils mathématiques pour l’ingénieur”, the first applied
mathematics course at École des Ponts. Its purpose is to introduce basic tools in the analysis of
functions, and to act as an introduction to further lectures in applied mathematics. The three-day
lectures will cover the material in Chapters 1, 2 and 3. The appendices, for interested students,
contain proofs of some statements that are assumed in the main text, as well as the Banach
fixed-point theorem and its applications in differential equations, geometry and optimization.

Central formal mathematical definitions are in bold. Important or subtle points are highlighted
in italics.

This is the first edition of these lecture notes, and as such very likely contain numerous typos
and errors. Feedback and corrections are very welcome!
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Completeness and Banach spaces

It is of great interest in practical problems to be able to manipulate functions as if they were
vectors, and to apply to functions the powerful techniques of vector calculus and linear algebra.
For instance, we want to be able to solve equations whose unknowns are functions, minimize over
a set of functions, project a function onto a subspace of functions, etc. Spaces of functions are
however infinite-dimensional (because functions have an infinite number of degrees of freedom),
and a number of properties true in the finite-dimensional setting (completeness, compactness of
closed bounded sets, boundedness of linear maps...) do not carry over. The goal of functional
analysis is to identify those that do. Possibly the most important is the notion of completeness
and Banach spaces.

1.1 Completeness

The real numbers are a central concept of elementary mathematics, and are usually manipulated
without thought about their rigorous properties, or indeed their definition. The main conceptual
problem is that the easily understood rational numbers are not sufficient to represent all interesting
numbers: for instance,

√
2 is not a rational number. Consider the decimal expansion of

√
2 with

n digits, which converges to
√

2 in R. However, if we do not know what real numbers are and
only know about rationals, all we see is a sequence of rationals that does not converge, although
it “ought to” converge to something: Q has “holes”. We formalize this with the notion of Cauchy
sequence: a sequence of numbers xn is Cauchy if and only if�

lim
N→∞

sup
n>N,m>N

|xn − xm| = 0.

A set X whose Cauchy sequences all converge is called complete: Q is not complete, R is�.
Completeness is a fundamental concept because it allows the construction of objects using

limit processes; completeness is almost always used in some way in the theorems that guarantee
that a certain object exists.

Exercise 1.1. Using only the fact that R is complete, show

� That a bounded non-decreasing sequence converges
� The intermediate value theorem
� That a series that converges absolutely converges

† When there is no potential for confusion, we will write “the sequence xn” for “the sequence (xn)n∈N”.
‡ This last statement is strictly speaking non-mathematical because we have not defined the real numbers.

However, all definitions are equivalent and this property is true no matter what definition is chosen. In
fact, one standard way to define R is as the completion of Q (the equivalence class of the set of Cauchy
sequences with values in Q, quotiented by the relation that two Cauchy sequences are equivalent if the
difference between them tends to zero).
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In particular, using the intermediate value theorem one can define
√

2 as the only positive
number such that (

√
2)2 = 2. This is impossible to do in Q, which is not complete. In the same

way, by identifying which infinite-dimensional spaces are complete, we will be able to construct
by approximation solutions to various problems.

1.2 Banach spaces

In the following, the field K will generally be that of real or complex numbers; the exception
will be when we discuss differentiation, where we will require K = R. Recall that a normed
K-vector space is a K-vector space E together with a norm ‖ · ‖ : E → R+ satisfying the
axioms of homogeneity (‖λu‖ = |λ|‖u‖), definiteness (‖u‖ = 0 ⇒ u = 0) and triangle inequality
(‖u + v‖ 6 ‖u‖ + ‖v‖). A subset U of E is said to be open if for all x ∈ U, there is r > 0 such
that B(x, r) = {y ∈ E, ‖y − x‖ < r} ⊂ U . A subset Z of E is said to be closed if E \ Z is
open; equivalently, if every sequence of elements of Z that converges in E has its limit in Z. A
neighborhood of a point x in a normed vector space in an open set containing x.

If N1 and N2 are two norms on E with a constant C > 0 such that, for all u ∈ E, N1(u) 6
CN2(u), the norm N2 is said to be stronger than N1: a sequence converging for N2 converges for
N1. Two norms N1 and N2 are said to be equivalent if N1 is both stronger and weaker than N2;
explicitly, if there are two constants c, C > 0 such that, for all u ∈ E,

cN1(u) 6 N2(u) 6 CN1(u).

If N1 and N2 are equivalent, sequences converging for N1 converge for N2, and vice-versa: equiv-
alent norms yield the same topology (notion of convergence).

The definition of Cauchy sequences seen above extends naturally to the case of normed vector
spaces:

Definition 1.2. Let (E, ‖ · ‖) be a normed vector space. A sequence (un)n∈N in E is said to be a
Cauchy sequence if

lim
N→∞

sup
n>N,m>N

‖un − um‖ = 0.

Explicitly, this means that for every ε > 0, there is N ∈ N such that, for all n > N,m > N ,

‖un − um‖ 6 ε.

If all Cauchy sequences converge (in E), (E, ‖ · ‖) is said to be complete. The vector space E is
said to be a Banach space (for its norm).

We emphasize that the Banach property refers to a pair (E, ‖ · ‖) of a space and a norm; some
spaces might be Banach for a norm but not for another.

Exercise 1.3. Prove that

� A convergent sequence is Cauchy
� A Cauchy sequence is bounded
� If a Cauchy sequence has a converging subsequence, it converges
� A closed subspace of a Banach space is a Banach space

The elements of a Cauchy sequence get arbitrarily close together as the sequence progresses.
They are sequences that “ought to converge” to something, and indeed they usually do, at least in
a generalized sense. However, their limit might not belong to E (for instance, when E is a space of
functions or sequences with certain properties that are not satisfied by the limit); as we will see,
not all infinite-dimensional normed spaces are Banach spaces. The notion of Banach spaces is an
extremely useful one, because a sequence (for instance, the iterations of an algorithm) can often
be shown to be Cauchy, without reference to the (unknown) limit. Once a space is shown to be a
Banach space, this implies convergence of the sequence.
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1.2.1 The finite-dimensional case

The basis example of a finite-dimensional space is Kd. The three basic norms� on Kd are

‖u‖1 =

d∑
i=1

|ui|, ‖u‖2 =

√ ∑
i=1,...,d

|ui|2, ‖u‖∞ = max
i=1,...,d

|ui|

Exercise 1.4. Prove that these are norms.

In finite dimensions, all norms are equivalent (see Appendix 5 for a proof). Therefore, one can
simply talk about convergent, Cauchy sequences, complete vector spaces, etc. without having to
specify the norm.

Note that in this chapter we will discuss the properties of spaces of vectors (or sequences);
these notions require handling sequences of vectors. If (un)n∈N is a sequence in Rd, then we denote
by un,i = (un)i the i-th component of un.

Proposition 1.5. If E is finite-dimensional, it is complete.

Proof. Let us first treat the case K = R. Using a basis and the equivalence of norms, we can
assume that E = Rd equipped with the infinity norm. Let un be a Cauchy sequence in Rd. For
any i = 1, . . . , d, n ∈ N,m ∈ N,

|un,i − um,i| 6 ‖un − um‖∞

and therefore the sequence (un,i)n∈N is Cauchy in R. By completeness of R, it converges to some
u∗,i. Now,

‖un − u∗‖∞ = max
i=1,...,d

|un,i − u∗,i| → 0

and so un converges to u∗.
The same proof together with the identification of C to R2 shows that C is complete, and the

proof of the result follows in the case K = C.

This statement is not true in infinite-dimensional spaces.

1.3 Examples of Banach and non-Banach spaces

1.3.1 Spaces of sequences

The simplest infinite-dimensional spaces are the spaces of sequences KN: (ui)i∈N. On KN, one can
try to define the three usual norms in the same way as before:

‖u‖1 =
∑
i∈N
|ui|, ‖u‖2 =

√∑
i∈N
|ui|2, ‖u‖∞ = sup

i∈N
|ui|

The difference now is that these quantities (always well-defined as positive or infinite numbers, as
sums or sups of non-negative numbers) can be infinite, and therefore are not norms on KN. We
must restrict the space:

`p = {u ∈ KN, ‖u‖p <∞}.

† These are by no means the only possible norms. Other commonly-used norms are the p-norm ‖u‖p =(∑d
i=1 |ui|p

)1/p
, and the change-of-variable norms ‖Av‖ with A an invertible matrix.
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Clearly, we have

‖u‖∞ 6 ‖u‖2 6 ‖u‖1

but there are no reverse inequalities: the norms are not equivalent. The norm ‖ · ‖1 is the strongest
of the three: we have `1 ⊂ `2 ⊂ `∞, and if a sequence of sequences converges in the ‖ · ‖1 norm, it
converges also in the ‖ · ‖2 and ‖ · ‖∞ norm.

Proposition 1.6. The space (`p, ‖·‖q) is either not a normed space, a non-Banach normed vector
space or a Banach space, according to the following table:

Space p/Norm q 1 2 ∞
`1 Banach Non-Banach normed Non-Banach normed
`2 Not normed Banach Non-Banach normed
`∞ Not normed Not normed Banach

Proof. � The diagonal: p = q. It is clear that ‖·‖p defines a norm on `p, just as in finite dimension.
Case p =∞. Let un be a Cauchy sequence in (`∞, ‖ · ‖∞). For all i ∈ N,

|un,i − um,i| 6 ‖un − um‖∞,

and so (un,i)n∈N is Cauchy in K. Let u∗,i be its limit.
Let ε > 0. There is N > 0 such that, for all i ∈ N, n > N,m > N ,

|un,i − um,i| 6 ε.

We pass to the limit m→∞ and obtain

|un,i − u∗,i| 6 ε.

This proves that u ∈ `∞, and that un → u in (`∞, ‖ · ‖∞).
Case p = 1, 2. We prove the case p = 1; the case p = 2 is similar. We construct ui as in the
case p =∞.
Let ε > 0. There is N ∈ N such that, for all m > N , for all I ∈ N,

I∑
i=1

|uN,i − um,i| 6 ε.

We pass to the limit m→∞ and obtain

I∑
i=1

|uN,i − u∗,i| 6 ε.

We can then pass to the limit I → ∞ and obtain both that u ∈ `1 and that ‖uN − u‖1 6 ε,
which proves the result.

� Lower triangle: (p > q, norm too strong). The sequence ui = 1 is in `∞ but has infinite 1- and
2-norm. The sequence ui = 1/i is in `2 but has infinite 1-norm.

� Upper triangle: (p < q, norm too weak). We show that (`1, ‖ · ‖∞) is not complete; the other
cases are similar. Let un,i = 1/i if i 6 n, 0 otherwise. We have ‖un − um‖∞ 6 1/min(n,m),
so that the sequence un of elements of `1 is Cauchy for the ‖ · ‖∞ norm. If it converged in
(`1, ‖ · ‖∞), it would necessarily converge to the sequence 1/i, which is impossible since this
sequence is not in `1.

This example provides some intuition for Banach spaces: they are spaces whose norm is precisely
adapted to the space. If the norm is too strong, it is not globally defined on the space (it is infinite
on some vectors), and does not define a normed vector space. On the other hand, if the norm
is too weak, it allows sequences that converge to some element outside the space (and therefore,
Cauchy sequences that are non-convergent inside the space).
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1.3.2 Spaces of functions on a bounded interval

Consider functions on a bounded closed interval I, with values in K.
Recall that a sequence of functions un can converge to a function in a variety of senses:

pointwise (for all x ∈ I, un(x) → u(x)), uniformly (supx∈I |un(x) − u(x)| → 0), in L1 (or in
mean,

∫
|un(x)− u(x)|dx→ 0), or in L2 (or in square mean,

∫
I
|un(x)− u(x)|2dx→ 0)�. Uniform

convergence is stronger than (implies) pointwise convergence. On a bounded interval I, uniform
is stronger than L2, which is stronger than L1. All other implications are false.

The norms that correspond to these modes of convergence (L1, L2, uniform) are

‖u‖1 =

∫
I

|u(x)|dx, ‖u‖2 =

√∫
I

|u(x)|2dx, ‖u‖∞ = sup
x∈I
|u (x) |.

When defined, we can easily show that

‖u‖1 6
√
|I| ‖u‖2 6 |I| ‖u‖∞

and therefore the ∞ norm is the strongest of the three. Note that this hierarchy is the reverse
as for sequences. This is because the larger p is, the more emphasis is put where u is large, and
therefore on local spikes; the lower it is, the more it is put where u is small, and therefore on long
tails at infinity. Sequences cannot have arbitrarly narrow local spikes, and therefore the 1 norm is
the strongest; on the other hand, functions on a bounded interval cannot have tails at infinity, and
therefore the∞ norm is the strongest. Functions on unbounded intervals combine both difficulties
(they can have both local spikes and tails at infinity), and there is no hierarchy there.

The definition of the 1 and 2 norms using the Riemann integral requires (piecewise) continu-
ous functions. Unfortunately, these norms are too weak for the space of continuous functions: a
sequence of continuous functions converging in L1 does not necessarily converge to a continuous
function.

Exercise 1.7. Give an example of continuous functions converging for the ‖ · ‖1 norm towards a
discontinuous function. Show that (C0(I), ‖ ·‖1) is a normed vector space, but not a Banach space.

Finding a Banach space adapted to the 1- and 2-norms requires the construction of the Lebesgue
integral and the Lebesgue Lp spaces, which will be the topic of future courses. On the other hand,
since uniformly convergent continuous functions converge towards continuous functions, there is
hope that (C0(I), ‖ · ‖∞) is a Banach space, and indeed this is the case:

Proposition 1.8. (C0(I), ‖ · ‖∞) is a Banach space.

Proof. It is immediate to see that this is a normed vector space. For completeness, we will proceed
in much the same way as for `∞, by constructing the limit object pointwise. Let un be a Cauchy
sequence in (C0(I), ‖ · ‖∞). Let x ∈ I. Then, for all n,m ∈ N,

|un(x)− um(x)| 6 ‖un − um‖∞.

The sequence (un(x))n∈N is Cauchy in K and therefore converges. Let u(x) be its limit.
For all ε > 0, there is N ∈ N such that, for all x ∈ I, m > N , we have

|uN (x)− um(x)| 6 ε

Passing to the limit m→∞ and then taking the supremum over x, we have ‖uN − u‖∞ 6 ε and
therefore (uN )N∈N converges to u uniformly.

We now have to prove that the uniform limit u of the continuous functions un is continuous.
Let x ∈ I, and ε > 0. There is N ∈ N such that

† Note that these notions are distinct from the various modes of convergence usually studied in probability
theory, where the object of interest is a measure rather than a function.
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sup
z∈I
|uN (z)− u(z)| 6 ε.

It follows that, for all y ∈ I,

|u(x)− u(y)| 6 |u(x)− uN (x)|+ |uN (x)− uN (y)|+ |uN (y)− u(y)| 6 2ε+ |uN (x)− uN (y)|.

We can now choose δ such that |uN (x) − uN (y)| 6 ε whenever |x − y| 6 δ, which completes the
proof.

Proposition 1.9. For any function u ∈ C1(I), let

‖u‖C1 = ‖u‖∞ + ‖u′‖∞.

Show that (C1(I), ‖ · ‖C1(I)) is a Banach space.

This immediately generalizes to the space Ck(I) of k times continuously differentiable functions.

Proof. Both un and u′n are Cauchy sequences in (C0(I), ‖ · ‖∞), and therefore converge uniformly
to two continuous functions u and v. We now have to prove the differentiation under the limit
sign: that if un converges uniformly to u and u′n converges uniformly to v, then u is C1 and u′ = v.

For this, let x0 be an arbitrary point in I, and ũ(x) = u(x0) +
∫ x
x0
v(y)dy. Clearly ũ is C1 with

ũ′ = v, so we only have to show that u = ũ. Let x ∈ I and ε > 0. There is N ∈ N such that

sup
z∈I
|uN (z)− u(z)|+ sup

z∈I
|u′N (z)− v(z)| 6 ε.

For any x ∈ I, we have uN (x) = uN (x0) +
∫ x
x0
u′N and so

|u(x)− ũ(x)| 6 ε+

∣∣∣∣uN (x0)− u(x0) +

∫ x

x0

(u′N − v)

∣∣∣∣ 6 2ε+ |x− x0|ε

and the result follows.

Note that the vocabulary of Banach spaces summarizes the “X under the Y sign” theorems
in a concise way. For instance, consider the differentiation under the limit sign theorem, which
says that if un → u uniformly and u′n → v uniformly, then u is C1 and u′ = v. Since un and u′n
converge, they are Cauchy in C0(I), and therefore un is Cauchy in C1(I). Since C1(I) is a Banach
space, there is w ∈ C1(I) such that un → w and u′n → w′ uniformly; by uniqueness of the limit,
u = w and v = w′, which shows that u′ = v.

The examples above generalize to the case where the sequences or functions have values in a
general Banach space F instead of K.

In the case where I is unbounded, the continous functions do not necessarily have finite infinity
norm, and therefore the correct Banach space is the space of bounded continuous functions C0

B(I).
Bounded functions are not necessarily integrable, and so (C0

B(I), ‖ · ‖1) is not a normed vector
space.

1.4 Normal convergence

Definition 1.10. A series
∑
n∈N un in a normed vector space is said to converge normally if∑

n∈N ‖un‖ <∞.

When the underlying Banach space is R or C, norms are simply absolute values, and normal
convergence is accordingly called absolute convergence�.

† Note that in some literature the terminology of normally convergent series is used in the more restrictive
context of the Banach space (C0(I), ‖ · ‖∞).
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Proposition 1.11. Normally convergent series in a normed vector space E are convergent if and
only if E is a Banach space.

Proof. � If E is a Banach space, normally convergent series are convergent. Let

Sn =

n∑
k=0

un.

For N 6 n < m, we have

‖Sn − Sm‖ 6
m∑

k=n+1

‖un‖ 6
∞∑
k=N

‖un‖

which tends to zero as N →∞.
� If normally convergent series are convergent, E is a Banach space. Let un be a Cauchy sequence

in E. We extract from un a “rapidly Cauchy” subsequence in the following way. For all ε > 0,
let N(ε) be an integer such that, for all p > N(ε), q > N(ε), ‖up − uq‖ 6 ε. The sequence
(vn)n∈N defined by

vn = uN( 1
2n )

is a subsequence of un such that

‖vn+1 − vn‖ 6
1

2n

The sequence vn converges normally, and therefore converges. This implies that un converges.

When applicable, the theory of normal convergence allows particularly simple answers to the
question of the convergence and interchange of differentiation and sum signs for series of functions:

Exercise 1.12. Let

SN (x) =

N∑
n=−N

cos(n)

1 + |n|42
einx.

Show that SN converges pointwise to a continuously differentiable function S(x) and that, for all
x ∈ R,

S′(x) = lim
N→∞

S′N (x).

What can we say about higher-order derivatives?

1.5 Summary

Infinite-dimensional vector spaces are important tools for the analysis of functions. Unless the
vector spaces are chosen carefully, there is the risk that the space has “holes”: Cauchy sequences
that “ought to converge” but do not (often because they converge to an element outside the space).
Working in Banach spaces prevents such issues, and allows many tools of finite-dimensional vector
calculus to be used. The vocabulary of Banach function spaces unify the maze of “X under the Y
sign” type theorems, where X is limit or differentiation, and Y is sum or limit. Banach spaces for
integral norms (Lebesgue Lp spaces) can be constructed, but this requires the tool of the Lebesgue
integral, which will be introduced in later lectures. Anticipating slightly on this and with an abuse
of notation in the case p =∞, the following table summarizes the important Banach spaces.
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Nature Space Norm Comments

Vectors (Kd, ‖ · ‖p) ‖u‖p = (
∑d
i=1 |ui|p)1/p Finite dimensional

Sequences `p ‖u‖p = (
∑∞
i=1 |ui|p)1/p `1 ⊂ `2 ⊂ `∞

Continuous functions C0(I) ‖u‖∞ = supx∈I |u(x)| Summarizes continuity of limits/sums

Ck functions Ck(I) ‖u‖Ck =
∑k
l=0 ‖u(l)‖∞ Summarizes differentiability of limits/sums

Measurable functions Lp(I) ‖u‖p = (
∫
I
|u|p)1/p I bounded ⇒ L∞ ⊂ L2 ⊂ L1
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Maps between Banach spaces

2.1 Linear maps

A linear map (or linear operator) between two vector spaces E and F is a mapping A : E → F
such that A(λu+ µv) = λA(u) + µA(v) for all u, v ∈ E, λ, µ ∈ K.

Definition 2.1. A linear map A : E → F is said to be bounded if

~A~ := sup
u∈E,u 6=0

‖Au‖
‖u‖

<∞

We write L(E,F ) the set of bounded linear maps from E to F . Note that this sense of bounded
is specific to linear maps, and distinct from that of bounded functions (linear maps that are not
identically zero can never define bounded functions).

Exercise 2.2. Prove that:

� A linear map is bounded if and only if it is continuous
� ~ · ~ is a norm on L(E,F )
� If A ∈ L(E,F ) and B ∈ L(F,G), then AB ∈ L(E,G) and ~AB~ 6 ~A~~B~

Just as for matrices, a bounded linear map A : E → F is said to be invertible if there is
another bounded linear map B such that AB = BA = Id: in this case we write A−1 = B.

In finite dimension, linear maps can be represented by matrices: if (ej)j=1,...,dE is a basis for
E, (fi)i=1,...,dF a basis for F , and A is linear from E to F , then

A

dE∑
j=1

xjej =

dF∑
i=1

 dE∑
j=1

Aijxj

 fi

for some coefficients Aij . The matrix (Aij)i=1,...,dF ,j=1,...,dE is the representation of A in the chosen
bases. From the triangular inequality it is easy to see that all finite-dimensional linear maps are
bounded.

Exercise 2.3. Let Aij ∈ K be an infinite matrix, acting on sequences by

(Au)i =
∑
j∈N

Aijuj .

Show that if supi∈N
∑
j∈N |Aij | < ∞, A defines a bounded linear map from `∞(N) to itself. Give

an example of infinite matrix with bounded coefficients that does not define a bounded operator
from `∞(N) to itself.
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Exercise 2.4. Let I be a bounded and closed interval, and K : I × I → R be continuous. Show
that the linear map K acting on C0(I) as

(Ku)(x) =

∫
I

K(x, y)u(y)dy

is a bounded linear map.

Exercise 2.5. Show that the linear map A defined by (Au)(x) = u(−x) is bounded on C0([−1, 1]).
Show that the linear map u→ u′ is bounded from C1([−1, 1]) to C0([−1, 1]).

Unlike in the finite-dimensional case, not all linear maps are bounded�:

Exercise 2.6. Show that the map u 7→ u(0) is not bounded from (C0([−1, 1]), ‖ · ‖1) to R. Show
that the map u 7→ u is not bounded from (C0([−1, 1]), ‖ · ‖1) to (C0([−1, 1]), ‖ · ‖∞).

In practice, many linear operations of interest (for instance, differentiation u→ u′) can not be
defined as bounded linear maps on a single Banach space (for instance, from C0(I) to itself), but
only on a subset of the Banach space (for instance, from C1(I) to C0(I)). This is an important
complication in the theory of differential equations.

2.2 Functional calculus

Proposition 2.7. When E and F are Banach spaces, the set L(E,F ) of linear maps from E to
F together with the norm ~ · ~ is a Banach space.

Proof. It is easily seen that this space is a normed vector space. Let An be a Cauchy sequence in
L(E,F ). As usual, our first task is to construct the limit “pointwise”. For all u ∈ E,

‖Anu−Amu‖ 6 ~An −Am~‖u‖

and so (Anu)n∈N is Cauchy and therefore converges. We call Au its limit. The map u 7→ Au is
clearly linear. For all ε > 0, there is N > 0 such that, for all m > N , u ∈ E,

‖(AN −Am)u‖ 6 ε‖u‖.

Using the triangular inequality and passing to the limit m→∞, we see that ‖ANu−Au‖ 6 ε‖u‖,
which shows both that A is bounded and that that AN → A in L(E,F ).

In particular, the set L(E) = L(E,E) of bounded operators on a Banach space to itself is
a Banach algebra (an algebra which is also a Banach space, with ~AB~ 6 ~A~~B~). Several
techniques of real calculus, and in particular power series, generalize to this setting. Recall that
to a formal power series f(z) =

∑
anz

n we can associate a radius of convergence r ∈ R+. When
|z| < r, the series converges absolutely, i.e.

∑
n∈N |an||z|n <∞. If now A is a linear map between

Banach spaces such that ‖A‖ < r, then the series∑
n∈N

anA
n

converges normally (and therefore in norm) to a bounded operator which we call f(A).

Exercise 2.8. Let A ∈ L(E) with E a Banach space.

† Note that these counter-examples rely on the fact that (C0([−1, 1]), ‖ · ‖1) is not a Banach space.
Linear maps between Banach spaces may also be unbounded, but there are no simple examples of
such maps because their existence relies on subtle arguments involving the axiom of choice. See https:

//en.wikipedia.org/wiki/Discontinuous_linear_map or [1] for more details.

https://en.wikipedia.org/wiki/Discontinuous_linear_map
https://en.wikipedia.org/wiki/Discontinuous_linear_map
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� Show that if ‖A‖ < 1, then Id−A is invertible, and

(Id−A)−1 =
∑
n∈N

An

(the Neumann series). Using this result, show that small perturbations of invertible bounded
linear operators are invertible.

� Show that the map R→ L(E) given by e(t) = etA =
∑
n>0

(tA)n

n! is continuous.
� Show that

lim
n→∞

(
Id +

A

n

)n
= eA.

Exercise 2.9. Let I be a bounded interval, and let f : I → R and K : I × I → R be continuous.
Show that the equation

u(x) = f(x) + ε

∫
I

K(x, y)u(y)dy

has a unique solution for ε small enough. Link this result with the “expansion in powers of ε”
method of writing u(x) = u0(x) + εu1(x) + ε2u2(x) + . . . , replacing in the equation and identifying
powers of ε.

2.3 Nonlinear maps and differentials

Definition 2.10. Let f : E → F be a nonlinear map, with E and F real normed vector spaces. We
say that f is (Fréchet-)differentiable at x if and only if there is a bounded linear map Ax : E → F
such that

‖f(x+ h)− (f(x) +Axh)‖ = o(‖h‖).

The (unique) linear map Ax is called the differential of f at x, noted df(x).
f is continuously differentiable (C1) at x ∈ E if f is differentiable in a neighborhood of x and

if df is continuous from a neighborhood of x to L(E,F ).

The usual tools of vector calculus apply; for instance, the chain rule is

d(f ◦ g)(x) = df(g(x))dg(x).

Consider now the case where both E and F are finite-dimensional. The matrix representation
of the differential of a nonlinear map is called the Jacobian, a dF ×dE matrix, often also denoted
df(x). If f : RdE → RdF is C1 and has components fi for i = 1, . . . , dF , then we have the Taylor
expansion

fi(x1 + h1, . . . , xdE + hdE ) =

dE∑
j=1

∂fi
∂xj

(x1, . . . , xdE )hj + o(‖h‖).

from where it follows that the Jacobian J of f at x is the matrix of partial derivatives Jij =
∂fi
∂xj

(x).

When dE = dF = 1, the Jacobian is a single number, the derivative. When dE > 1 but
dF = 1, f is called a functional. Its differential is a linear map from E to R, a linear form. Its
jacobian is a 1 × dE matrix (row vector); the transpose of this vector (an element of E) is the
gradient�: ∇f(x) = df(x)T .

† Note that the definition of the gradient depends on the choice of basis. More generally, in infinite
dimensions, the gradient can be defined using an inner product structure, in Hilbert spaces.
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When it exists, the differential of the differential d2f(x) is a linear map from E to L(E,R).
This can also be seen as a bilinear form: B(h1, h2) = (d2f(x) · h1) · h2, which is symmetric by the
Schwarz theorem. The matrix representation of this bilinear form, i.e. the matrix H defined by

B(h1, h2) = hT1Hh2,

is called the Hessian; it is the matrix of second derivatives.

Exercise 2.11. Compute the differential, gradient and Hessian of the following nonlinear map
from Rd to R:

F (x) =
1

2
xTAx− bTx

where A ∈ Rd×d and b ∈ Rd.

Exercise 2.12. Let E be a Banach space, and A ∈ L(E). Show that the map R→ L(E) given by
e(t) = etA is continuously differentiable, with e′(t) = Ae(t).

Exercise 2.13. Show that the following maps are differentiable from C0([−1, 1]) to itself, and
compute their differentials

� f1(u)(x) = u(0) cos(x)

� f2(u)(x)→
(∫ 1

0
u
)2
ex

� f3(u)(x) =
∫ x
0
eu(y)dy

Exercise 2.14. For all α ∈ R, let Tα be the map

(Tαu)(x) = u(x− α)

defined from (C2(R), ‖·‖∞+‖·′‖∞+‖·′′‖∞) to (C0(R), ‖·‖∞). Show that T : R→ L(C2(R), C0(R))
is differentiable, and compute its differential.

2.4 Summary

Bounded linear maps between Banach spaces extend the notion of matrices to infinite-dimensional
spaces. They provide a generalization of the notion of derivative to Banach spaces, in the form
of differentials. Bounded operators of interest include infinite matrices of the spaces of sequences,
and integral operators on C0(I). They share many of the properties of matrices, and one can
talk for instance of the exponential of an operator, or solve linear equations with operators. Many
interesting operators, such as differential operators, are not bounded from a Banach space to itself,
and will require special tools to be developed in later lectures.
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Ordinary differential equations

3.1 Classification of differential equations

Differential equations are generally separated in two major types: initial value problems (IVP)
such as Newton’s equations or the heat equation where the initial state of a system and a set of
evolution laws are specified, and boundary value problems (BVP) such as the Laplace equation
where a differential equation is specified in the interior of a region of space, together with a set of
boundary conditions. Equations in a single dimension (either time or space) are called ordinary
differential equations (ODE); equations in more dimensions are called partial differential
equations (PDE). An equation is linear if linear combinations of solutions are still solutions. An
IVP is called autonomous if the evolution law does not depend explicitly on time.

3.2 Linear ordinary differential equations

We will focus here on linear autonomous IVP ODEs, of the form

x′ = Ax, x(0) = x0, (3.1)

where x0 ∈ E and A ∈ L(E), with E a Banach space. The theory of such equations is very
similar whether E is finite- or infinite-dimensional; however, it is important that A ∈ L(E), which
excludes for instance the case of the heat equation.

Theorem 3.1. The function

x(t) = etAx0

is the unique solution in C1(R, E) of (3.1).

Proof. From Exercice 2.12, it is immediate to see that x(t) is a solution. Now let y(t) be another
solution, and set y(t) = etAỹ(t); ỹ(t) satisfies the equation ỹ′ = 0, and therefore ỹ(t) = x0, hence
the result.

Assume now that E = Rd, and A is diagonalizable : A = PDP−1 with D diagonal. Then we
can change variables into the eigenbasis: x(t) = Py(t). y(t) satisfies the equation

y′(t) = Dy, y(0) = P−1x0

These equations are now decoupled : for all i = 1, . . . , d,

y′i = λiyi, yi(0) = yi,0

where the eigenvalue λi is the i−th element of the diagonal of D. The solution is
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yi(t) = eλityi,0

(this result can also be obtained by showing that etA = PetDP−1).
It is then apparent from eλit = eRe(λi)teIm(λi)t that the eigenvalues, and in particular the sign

of their real parts, determines the nature of the dynamics. If all eigenvalues have a strictly negative
real part, all trajectories converge to zero exponentially, possibly in a spiral if the eigenvalues have
a nonzero imaginary part. If all eigenvalues have a strictly positive real part, all trajectories diverge
to infinity, again possibly in a spiral. If at least one eigenvalue λi has a strictly positive real part,
almost all trajectories diverge, but some (those for which yi,0 = 0) can remain bounded. If all
eigenvalues have a zero real part, all trajectories are oscillatory.

In the non-diagonalizable case, the solutions are of a similar form, but can acquire an additional
polynomial prefactor:

Exercise 3.2. Solve the equation (3.1) in the case

A =

(
λ 1
0 λ

)
,

either by solving the differential equation directly or by computing the exponential.

3.3 Introduction to nonlinear systems

The existence and uniqueness of nonlinear systems is a much more subtle question. The major
existence result is the Cauchy-Lipschitz theorem�:

Theorem 3.3. Suppose that f ∈ C1(Rd,Rd), and let x0 ∈ Rd. There is T > 0 such that the
equation

x′ = f(x), x(0) = x0 (3.2)

has a unique solution in the interval [0, T ].

When f is not C1, uniqueness might fail; when f grows too fast with x, the solution might
only exist up to a finite time T <∞. This is illustrated by the following two examples:

Exercise 3.4. Solve the equations

x′ =
√
x, x(0) = 0

x′ = x2, x(0) = 1

The global behavior of nonlinear dynamics can be much more complicated than for linear
systems. For instance, nonlinear dynamics can be chaotic (extremely sensitive to initial conditions).
The local behavior on the other hand can be studied using linear theory. Zeros of f are stationary
points of the dynamics. Near a stationary point x∗, f can be linearized :

x′ = df(x∗)(x− x∗) +O
(
‖x− x∗‖2

)
.

The study of the dynamics of the linear ODE (x − x∗)
′ = df(x∗)(x − x∗) then yields useful

information on the nonlinear dynamics close to the stationary point; a representative result is

Theorem 3.5. Let f be C1 in a neighborhood U of x∗ ∈ Rd, with f(x∗) = 0, and assume that the
eigenvalues of df(x∗) all have a negative real part. Then, for all x0 in a neighborhood V ⊂ U of x∗,
the differential equation x′ = f(x), x(0) = x0 has a unique solution in R+, and limt→∞ x = x∗.

† This theorem further generalizes to the case where f is not C1 but only Lipschitz in a neighborhood of
x0, and depends on time in a continuous way, but this version will suffice for our purposes.



3.4 Numerical integration 15

Similarly one can show that when an eigenvalue of df(x∗) has a positive real part, almost all
trajectories starting close to x∗ go away from it. In the other cases (involving eigenvalues of df(x∗)
zero real part), the behavior of the system is not determined by the linearization and depends on
the higher-order terms.

Exercise 3.6. Consider the spread of an epidemic in a population. The simplest model is the SIR
model, where the total population N(t) is split between susceptibles S(t), infected I(t) and recovered
R(t). Susceptible people get infected with some probability when they come in contact with infected
people; infected people recover at a constant rate.

� Show that this can be modeled by the equations

dS

dt
= −βIS

N
dI

dt
=
βIS

N
− γI

dR

dt
= γI

� What are the fixed-points and the eigenvalues of their jacobians? What does this imply?
� If S(0) > 0, I(0) > 0, R(0) > 0, assuming the existence of a solution, show that S, I and R

stay non-negative and bounded for all positive times.
� Under the above condition on S(0), I(0), R(0), show that the equation has a unique solution

for all positive times. Hint: generalize the proof of the Cauchy-Lipschitz theorem to show that
T can be taken to be uniformly bounded away from zero.

3.4 Numerical integration

How to compute the solution of ordinary differential equations like (3.2) in practice? In the case
of linear, autonomous systems we can simply expand etA in series, but this does not generalize to
more complicated (non-autonomous, non-linear) systems. A much more general algorithm is the
explicit Euler method, where we subdivide a time interval [0, T ] into discrete times tn = nT

N

for n = 0, . . . , N , and use a finite difference approximation for x′(tn) ≈ xn+1−xn

∆t , which leads to

xn+1 = xn +∆tf(xn)

with ∆t = T
N

�.

Exercise 3.7. Assume that f(x) = Ax on Rd. Show that, for all T ∈ R, there is a constant CT
such that, for all N ∈ N,

‖xN − eTAx0‖ 6 CT∆t

Note here that the total error at time T is of order ∆t, while the local error e∆tA− (Id +∆tA)
(the one introduced by the finite difference approximation at each step) is of order (∆t)2. The
fact that the total error is bounded by a multiple of N times the local error reflects the stability
(non-catastrophic amplification) of errors along the dynamics; this is easy to prove in our context,
but non-trivial for complicated non-linear dynamics.

† Note that this method is presented here for pedagogical reasons, but should almost never be used
directly: much more sophisticated (higher-order, and with automatic selection of the time-step) are
implemented in well-established software, and should be used in practice.
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3.5 Summary

Linear autonomous equations with bounded operators can be solved using exponentials, and allow
a complete existence and uniqueness theory. In finite dimension, the eigenvalues determine the
type of dynamics (divergent, convergent, oscillatory). The fixed-points or nonlinear differential
equations can be studied by linearization. Differential equations can be solved numerically using
the explicit Euler method.
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French-English differences in mathematical notation

Most terms are transparent. Some non-obvious translations or faux amis:

French English

application map
borne bound

calcul différentiel calculus
démonstration proof
dénombrable countable

dérivée derivative
dériver differentiate

ensemble set
inversible invertible

Jacobienne Jacobian
Jacobien Jacobian determinant

suite sequence
suite extraite subsequence

vectoriel vector

Notations are mostly the same, with a few notable exceptions:

� Open intervals use open brackets in French [a, b[, parentheses in English [a, b).
� Transposes of matrices are still sometimes denoted tA in French (mostly by CPGE teachers...),

but always AT in English.
� Inequalities in English are strict by default:

Math French English
x > 0 x est positif x is non-negative
x > 0 x est strictement positif x is positive
x > y x est plus grand que y x is greater or equal to y
x > y x est strictement plus grand que y x is greater than y

∀n > m, xn > xm xn est croissante xn is non-decreasing
∀n > m, xn > xm xn est strictement croissante xn is increasing
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Appendix A: Compactness

5.1 Compactness

A sequence (ym)m∈N is said to be a subsequence of (xn)n∈N if there is a (strictly) increasing
sequence of integers (nm)m∈N such that ym = xnm

for all m ∈ N.

Definition 5.1. A subset X of a normed vector space E is compact� if and only if all sequences
in X have a convergent subsequence with a limit in X.

Compact subsets are bounded (because divergent sequences do not have convergent subse-
quences) and closed (because if a sequence is converging, all its subsequences converge to the same
limit).

The motivation for compactness is

Theorem 5.2 (Bolzano-Weierstrass). In a finite-dimensional vector space, closed and bounded
sets are compact.

Proof. We first prove the result for subsets of R. Let X ⊂ I0 = [a0, b0] be a closed and bounded
set in R, and xn a sequence in X. We use a dichotomy process. At least one of [a0, (a0 + b0)/2]
or [(a0 + b0)/2, b0] must necessarily contain an infinite number of terms of xn. We set I1 to be
one such interval, and (x1n)n∈N be the subsequence of terms of xn that belong to I1. Repeating
the process, we obtain a sequence of nested intervals Ik = [ak, bk] and of nested subsequences
(xkn)n∈N of xn in Ik such that bk − ak = b0−a0

2k
. The sequence ak is non-decreasing and bounded

and therefore converges; so does bk, to the same limit x∗. The subsequence (xk0)k∈N converges to
x∗, which by closedness belongs to X.

Now for a subset X of Rd, we extract a subsequence yn of xn such that (yn,1)n∈N converges.
From this subsequence, we extract another subsequence zn such that (zn,2)n∈N converges, and
repeat this process d times.

Importantly, this is not true in infinite dimension, even in Banach spaces:

Exercise 5.3. Find a bounded sequence in `∞ with no convergent subsequence.

5.2 Applications: optimization and equivalence of norms

A classical application of compactness is in optimization

Proposition 5.4. A real-valued continuous function on a compact set is bounded and attains its
bounds.

† Strictly speaking, our definition is that of sequential compactness. There are alternative definitions of
compactness, equivalent in the case of normed vector spaces. This definition will suffice for our purposes.
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Proof. Let X be compact, and f : X → R a continuous function. Assume that f is not bounded
on X: this means that there exists a sequence xn of elements of X such that f(xn) > n. By
compactness, we can extract a subsequence yn which converges to some x∗ ∈ X. By continuity,
limn→∞ f(yn) = f(x∗), which is impossible.

Now let xn be a minimizing sequence, i.e. a sequence of elements of X such that f(xn) →
infx∈X f(x) (such a sequence exists by definition of the infinimum). By compactness, we can
extract a converging subsequence; by continuity, f at that limit is equal to infx∈X f(x), hence f
attains its minimum. We repeat the same argument for the maximum.

This gives a particularly simple proof of the important

Proposition 5.5. If E is finite-dimensional, all norms are equivalent.

Proof. Using a basis, we can assume that E = Kd. Let N be a norm. We will show that N is
equivalent to the infinity norm, which will by transitivity show that all norms are equivalent. We
have for all u =

∑d
i=1 uiei ∈ E

N(u) = N

(
d∑
i=1

uiei

)
6

d∑
i=1

|ui|N(ei) 6

(
d∑
i=1

N(ei)

)
‖u‖∞.

By the triangle inequality, N is continuous from (E, ‖ · ‖∞) to R. By the Bolzano-Weierstrass
theorem, the unit sphere S = {u ∈ E, ‖u‖∞ = 1} is compact (for the infinity norm). It follows
that N is bounded on S and attains its bounds. Assume that infu∈S N(u) = 0: this would imply
the existence of a nonzero u ∈ S with N(u) = 0, which is impossible. It follows that there are
c, C > 0 such that, for all u ∈ S, c‖u‖∞ 6 N(u) 6 C‖u‖∞. The result follows by homogeneity.
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Appendix B: The Banach fixed-point theorem and
applications

We prove the fundamental Banach fixed-point theorem, and apply it to two striking results of
large practical importance: the Cauchy-Lipschitz theorem for ODEs, and the method of Lagrange
multipliers for constrained optimization.

6.1 The Banach fixed-point theorem

In the following, E is a Banach space.

Theorem 6.1. Let U a closed set in E, and let F : E → E be contractive in U , in the sense that
there is α < 1 such that, for all x, y ∈ U ,

‖F (x)− F (y)‖ 6 α‖x− y‖.

There is a unique fixed-point x∗ of F in U . For all x0 ∈ U , the iteration

xn+1 = F (xn)

converges to x∗.

Proof. Let x0 ∈ U , and define xn as above. Then we have

‖xn+1 − xn‖ 6 α‖xn − xn−1‖

from which it follows that the telescopic series
∑
n∈N xn+1−xn converges normally, and therefore

that xn converges to some x∗. Contractivity implies continuity; passing to the limit in xn+1 =
F (xn) shows that x∗ is a fixed-point of F . Uniqueness follows from contractivity.

Contractivity can usually be proven from the following criterion:

Proposition 6.2. Let U be a convex closed set, and F a C1 map from U to U with α < 1 such
that, for all x ∈ U , ~df(x)~ 6 α. Then F is contractive.

Proof. Let x, y ∈ U . By the fundamental theorem of calculus applied to the C1 function φ(t) =
F (x+ t(y − x)), we have

F (y)− F (x) =

∫ 1

0

df(x+ t(y − x))(y − x)dt

‖F (y)− F (x)‖ 6 α‖y − x‖.

Exercise 6.3. Let A ∈ L(E) with ~A~ < 1. Prove that Id− A is invertible, and link the iterates
of the fixed-point iteration with the Neumann series.

It is hard to overstate the importance of the Banach fixed-point theorem: it is one of the few
ways to prove the existence of solutions to nonlinear equations. Furthermore, it is constructive,
and provides an iterative algorithm that converges to the solution.
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6.2 The Cauchy-Lipschitz theorem

Theorem 6.4 (Cauchy-Lipschitz). Suppose that f ∈ C1(Rd,Rd), and let x0 ∈ Rd. There is
T > 0 such that the equation

x′ = f(x), x(0) = x0

has a unique solution in the interval [0, T ).

Proof. We first reformulate the ODE as an integral equation by integrating:

x(t) = x0 +

∫ t

0

f(x(t′))dt′

We show that this equation has a unique solution in X = C0([0, T ),Rd) for T small enough. Let
F : X → X be the application defined by

(F (y))(t) = x0 +

∫ t

0

f(y(t′))dt′.

We try to find fixed points of this equation. Fix an arbitrary r ∈ R. Note first that, if ‖y−x0‖X 6 r
then, for all t ∈ [0, T ), |y(t)− x0| 6 r and so

‖F (y)− x0‖X 6 T sup
x∈B(x0,r)

|f(x)|.

It follows that, for T small enough, F maps U = B(x0, r) to itself. Now we compute the differential
of F :

(F (y + h))(t) = x0 +

∫ t

0

f(y(t′) + h(t′))dt′ = F (y)(t) +

∫ t

0

(
f ′(y(t′))h(t′) +O(h(t′)2)

)
dt′

F (y + h) = F (y) + F ′(y)h+O(‖h‖2X)

with

(F ′(y)h)(t′) =

∫ t

0

f ′(y(t′))h(t′)dt′

There is a constant C > 0 such that, for all y ∈ U , we have ‖F ′(y)‖ 6 TC. Choosing T small
enough, F is a contraction on U and the result follows from the Banach fixed-point theorem.

6.3 The implicit function theorem

Theorem 6.5 (Implicit function theorem). Let E be a Banach space, and G : E ×R→ E be
C1. Assume that there is x0, α0 such that G(x0, α0) = 0, and that ∂xG

′(x0, α0) is invertible. Then
there is a neighborhood I of α0 and a neighborhood U of x0 with a C1 curve x(α) from I to U
such that

G(x(α), α) = 0

for all α ∈ I. x(α) is the unique solution of the equation G(x, α) = 0 in U .

Proof. We give the proof in the case where G is C2, where the connection to the Newton method
is clearer. The proof in the C1 case is a slight modification of the arguments below.

When G is C2, the exercise 2.8 on perturbations of invertible operators shows that the mapping
x→ ∂xG(x, α)−1 is C1 on U×I for some neighborhoods U and I. Inspired by the Newton method
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xn+1 = xn − f ′(xn)−1f(xn)

for finding zeros of a function f : E → E, we define for all α ∈ I a mapping

Fα(x) = x− ∂xG(x, α)−1G(x, α)

This mapping is C1 from U to E, and Fα0
(x0) = x0 Furthermore,

F ′α(x) = Id− JG(x, α)− Id,

where J is the differential at x of the mapping x 7→ ∂xG(x, α)−1. It follows that F ′α0
(x0) = 0, and

therefore that ‖Fα(x)−x0‖ = O(|α−α0|(1 + ‖x−x0‖) + ‖x−x0‖2). By restricting the diameters
of U and I appropriately, we can ensure that for all α ∈ I, Fα is a contraction from U to itself.
The result follows by the Banach fixed-point theorem.

Note that this shows as a byproduct the convergence of the Newton method. This theorem
generalizes easily to the case where α is a vector. As an easy consequence, taking G(x, y) = f(x)−y
we obtain the inverse function: a function f with an invertible differentiable is locally invertible.
Another typical application of the implicit function theorem is to weakly nonlinear equations:

Exercise 6.6. Let I be a bounded interval, f continuous on I and K continuous on I × I. Show
that the equation

u(x) = f(x) + εu(x)2 + δ

∫
I

K(x, y)u(y)dy

has a unique solution for ε, δ small enough.

6.4 Local parametrizations and constrained optimization

When E = RN , the implicit function theorem states that, locally, d non-degenerate equations in
d unknowns specify a unique solution. We can generalize to the case of k < d equations. For this
we need the following deep but elementary linear algebra result, which gives conditions on b for
Ax = b to have solutions when A is non-square or non-invertible.

Lemma 6.7 (“Fundamental theorem of linear algebra”). If A is a (not necessarily square)
matrix, then Im(A) = Ker(AT )⊥.

Proof. Note that

zT (Ax) = (AT z)Tx.

It follows that if z ∈ Ker(AT ), then z ⊥ Im(A). Vice-versa, if z ⊥ Im(A), AT z is orthogonal to
every vector, and so z ∈ Ker(AT ).

Proposition 6.8 (Local parametrization). Let x0 ∈ Rd and g : Rd → Rk, with k 6 d be C2 in
a neighborhood of x0, and such that g(x0) = 0 and g′(x0) : Rd → Rk is surjective. Then there exists
a mapping x from a neighborhood U of 0 in Rd−k to a neighborhood E of x0 such that g(x(t)) = 0
for all t ∈ U , and the set x(U) contains all the solutions of g(x) = 0 in E.

Proof. Split the space Rd as the orthogonal sum E1 + E2, where E1 = Im(g′(x0)T ) and E2 =
Im(g′(x0)T )⊥ = Ker(g′(x0)). The columns of the matrix U1 = g′(x0)T form a basis of E1. Let U2

be an orthogonal basis of E2. In a linear approximation, g′(x0)(x − x0) = 0: the constraint g(x)
forces x−x0 to be of the form U2t for some t = UT2 (x−x0) ∈ Rd−k, and the variable t enumerates
all solutions.

In the non-linear regime, we set out to solve the system of d = k + (d− k) equations in the d
unknowns x
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g(x) = 0

UT2 (x− x0) = t

for all values of t ∈ Rd−k small enough. The jacobian at x0 of this system of equations with respect
to x is the d× d matrix (

g′(x0)
UT2

)
This is the transpose of the matrix (U1, U2), whose columns form a basis of Rd. Therefore, this
matrix is invertible, and the result follows from the implicit function theorem.

Theorem 6.9 (Lagrange multipliers). Let x∗ ∈ Rd be a local minimum of the optimization
problem

min f(x)

g(x) = 0

where f : Rd → R is C1, g : Rd → R is C1, and g′(x∗) 6= 0. Then there is λ ∈ R such that
∇f(x∗) = λ∇g(x∗).

Proof. By the local parametrization theorem, there is a parametrization x(t) of the solutions of
g(x) = 0 for t in a neighborhood of 0 in Rd−1. t = 0 is an unconstrained local minimum of f(x(t)),
and so x′(0)T∇f(x∗) = 0. From the considerations in the proof of the local parametrization
theorem, the columns of x′(0) are a basis for Ker(g′(x∗)) = ∇g(x∗)

⊥. It follows that ∇f(x∗) ∈
(∇g(x∗)

⊥)⊥, hence the result.

This easily generalizes to several constraints, as long as their gradients are linearly independent.
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