
THE ADJOINT TRICK

ANTOINE LEVITT

1. Notations and finite differences

This short note is to introduce a trick variously known as “reverse/backard-mode automatic
differentiation” (computer science), “backpropagation” (machine learning), “adjoint method” (dif-
ferential equations), and variations around the word “Lagrangian” (quantum chemistry). The
emphasis is on efficient methods for gradients, and linking the “tricks of the trade” used in differ-
ent scientific communities with the general methodology of automatic differentiation.

Imagine we have a differentiable function F : RNin → RNout whose derivatives we wish to
compute automatically. At a point x ∈ RNin , we will note dFx the differential, a map from RNin

to RNout , which can be identified by its Jacobian JF,x, a Nout ×Nin matrix, with

JF,x[i, j] = 〈ei, dFx · ej〉 .

In the case where Nout = 1, we will write ∇F (x) = (JF,x)T for the gradient of F at x, identifying
Nin×1 matrices with vectors. We will in the following drop the x index, and write JF , dF , ∇F . We
recall that, if L : RNin → RNout is a linear map, its adjoint L∗ is characterized by 〈L∗x, y〉 = 〈x, Ly〉.
If L is represented by the matrix A, L∗ is represented by the matrix AT .

The first reflex is finite differences:

JF [:, j] ≈ F (x+ αej)− F (x)

α

with a small α. This is however imprecise. Assume that F is only known up to an error of εF (e.g.
coming from machine arithmetic, with εF ≈ 10−16 in double precision), and that x, F and F ′ are
of order 1. Then (F (x+ εej)− F (x))/α is in error by about εF /α. On the other hand, the error
made by replacing the derivative by its finite-difference approximation is about α. Balancing the
two terms leads to α =

√
εF , with an error of

√
εF . Using higher-order finite differences improves

this power, but is more expensive.

2. Forward mode

Forward-mode automatic differentiation is a way to compute derivatives exactly (meaning, up to
machine precision). It works by following the flow of the code. At its most basic level, a program
to compute F is a sequence of transformations F1 → F2 → · · · → FI , where Fi : RNi → RNi+1 ,
and N0 = Nin, NI+1 = Nout. We then have F (x1) = FI(. . . (F2(F1(x1)))). The chain rule is

dF · δx1 = dFI · (. . . dF2 · (dF1 · δx1))(1)

We can implement this by keeping track of δxi along the computation. We first compute x2 =
F1(x1) and set δx2 = dF1 · δx1. Then we compute x3 = F2(x2) and set δx3 = dF2 · δx2. We iterate
until we have computed δxI+1 = dF · x1.

This can be interpreted as propagating a perturbation: δxi is the perturbation of xi caused by
the initial perturbation δx1 on x1. This is conveniently implemented using dual numbers: instead
of storing a number (or array) x, we store the pair (x, δx). Operations can be defined on dual
numbers: for instance, if x is a scalar, (x, δx) ∗ (y, δy) = (x ∗ y, x ∗ δy + δx ∗ y).

3. Reverse mode

So far, so boring. The above procedure is exact, so we have managed to compute derivatives
more accurately. But imagine now we want to compute a gradient, i.e. that NI+1 = Nout = 1.
Finite differences require Nin applications of F . With forward-mode automatic differentiation
described above, the procedure needs to be applied for all input perturbations δx1 = e1, . . . , eNin

.
This should make the following extremely surprising

Date: March 6, 2020.

1

2 ANTOINE LEVITT

Claim. Let F : RN → R be a differentiable function. The cost of computing the gradient ∇F is
asymptotically no greater than that of computing F .

By asymptotically we mean that computing ∇F can be slower than computing F by a constant
factor, but that constant factor should not depend on N . This means that the forward method
and finite differences are both asymptotically suboptimal. How can this be?

Note that computing gradients by hand is full of tricks, that are applied manually and often
feel a bit magical. For instance, imagine that F (x) = 〈b, Ax〉 where b is a given vector and
A a sparse matrix. The naive procedure would take for x the unit vectors in order, effectively
computing the full matrix A. However, F (x) = 〈AT b, x〉 and so the gradient is easily computed:
it’s AT b, which can be computed very efficiently (in about the same time as F). More generally,
if F (x) = F2(F1(x)) with F1 : RNin → RNintermediary and F2 : RNintermediary → R, then one can
compute ∇F = (JF1

)T∇F2. In this formulation, only one intermediary vector (∇F2) is used: the
perturbation of the intermediate vectors with respect to all the possible inputs is not needed.

Reverse-mode is a generalization of this idea. It is based on a simplistic but deep trick: taking
the adjoint of (1), to get

(dF)∗ · δxI+1 = (dF1)∗ · ((dF2)∗ · (. . . (dFI)∗ · δxI+1)(2)

Given a δxI+1 ∈ RNout , we compute δxI = (dFI)
∗ · δxI+1. Then, we iterate until we get δx1 =

(dF)∗ · δxI+1.
The great advantage of using this formulation is that to know (dF)∗ completely, δxI+1 only

needs to span RNout . Therefore, when Nout = 1 (and so we want to compute the gradient ∇F
representing the linear operator (dF)∗), only one perturbation (δxI+1 = 1) is needed. This leads
to the claim above.

The reverse delta δx (sometimes noted x in the AD literature) is there to emphasize the dual
status of δx compared to the perturbation δx. The role of δxi is to answer the following question:
assume the computation was stopped at step i, and taken up again, with as input a perturbation
of xi. What is the gradient of F with respect to this perturbation? Unlike δxi, which represented
the perturbation to xi caused by the input δx1, here the chain of causality is reversed. Knowing
the gradient at step i does not help to compute the gradient at step i+ 1; rather, the opposite is
true: if we know the gradient δxi+1 of F with respect to xi+1, we can figure out the gradient δxi
of F with respect to xi by simply acting with dF ∗i .

This is very counter-intuitive because of the reversal of causality, which we are most used to
see in the context of inverses. Computing δxi = dF ∗i δxi+1 has nothing to do with inverting dFi.
For instance, when dFi = 0 (xi+1 is not affected by xi), then δxi = 0 (the final output F is not
affected by xi). δxi can be thought of as the sensitivity of the output F (x) with respect to xi; δxi
can be thought of as the sensitivity of xi with respect to the input x1.

The differential dF takes the sensitivity of the input of F to a parameter, and yields the
sensitivity of the output to that parameter.

The adjoint differential dF ∗ takes the sensitivity of a parameter to the output of F , and yields
the sensitivity of that parameter to the input.

This reversal of causality also has important consequences for implementation: the propagation
of δxi has to be done in reverse compared to the normal flow of the program. This means that
every intermediate computations xi have to be stored. There are techniques to mitigate this, but
the process is considerably less straightforward than forward-mode automatic differentiation. In
practice, this can be helped by defining custom adjoints: defining “by hand” the action of dF ∗ on
a vector, without needing to go into the low-level details of how F is computed

In order to not get lost, it is important to remember that, if j > i, then δxi causes δxj , and δxj
causes δxi. A helpful way to organize computations is the simple-looking (and therefore important)
equation

〈 δxi, δxi〉 = 〈dF ∗i · δxi+1, δxi〉 = 〈 δxi+1, dFi · δxi〉 = 〈 δxi+1, δxi+1〉(3)

This is helpful in the following way: given a perturbation δxi, it is usually straightforward to
propagate it to δxi+1 = dFi · δxi. Then, using (3), given δxi+1, one gets the action of δxi on any
vector δxi, which then determines δxi uniquely.

4. Examples and applications

4.1. Direct adjoints. A direct extension of the trick above example for the gradient of F (x) =
〈b, Ax〉 is the “adjoint equation” for computing gradients of objective functions that depend on the

THE ADJOINT TRICK 3

solution of a linear equation: if Lu = f where u, f ∈ RN , then what is the gradient of F (f) = 〈b, u〉
with respect to f? Of course, F (f) = 〈b, u〉 = 〈b, L−1f〉 = 〈(L−1)T b, f〉 and so the gradient is
L−1)T b. Let us see how we can get that result as an application of the theory above.

The flow of computation is f → u → F , from which we obtain δf → δu → δF : δu = L−1δf ,
and δF = 〈b, δu〉RN . Now we need to reverse the flow: δF → δu→ δf . We use

〈 δu, δu〉RN = 〈 δF, δF 〉R = 〈 δF, 〈b, δu〉RN 〉R = 〈 δFb, δu〉RN

so δu = δFb. Then,

〈 δf, δf〉RN = 〈 δu, δu〉RN = 〈 δu, L−1δf〉RN = 〈(L−1)T δu, δf〉RN

so δf = (L−1)T δu. It follows that ∇F = (LT)−1b. This is also true when u and f are functions,
and L is an operator (the adjoint operator then being defined by

∫
(LTu)v =

∫
u(Lv) for all v).

This also works for nonlinear problems, by solving an equation with the adjoint Jacobian. For
instance, what is the gradient of

F (A) = xTBx, where

Ax = λx, ‖x‖2 = 1,

assuming λ is a simple eigenvalue of A, with A and B belonging to Msym(N), the set of symmetric
matrices size N? The Jacobian of the map (x, λ) 7→ (Ax− λ, ‖x‖2 = 1) is

J =

(
A− λ −x
2xT 0

)
and so (

δx
δλ

)
= −J−1

(
δAx

0

)
which can be computed by a Schur complement as δx = −(A−λ)+δAx with (A−λ)+ the pseudo-
inverse. Therefore, δF = 2Bδx = −2B(A− λ)+δAx.

We have now computed the forward differential, through the sequence δA→ δx→ δF . Now we
go in reverse, ie δF → δx→ δA. We use the relationship

〈 δx, δx〉RN = 〈 δF, δF 〉R = 〈 δF, 〈2Bx, δx〉RN 〉R = 〈 δF2BTx, δx〉RN

for all δx (which determines δF) and δF (which determines δx) to deduce that

δx = δF2BTx.

Then we go further back in the same way (remember that 〈A,B〉Msym(N) = Tr(AB)):

〈 δA, δA〉Msym(N) = 〈 δx, δx〉RN = 〈 δx,−(A− λ)+δAx〉RN = 〈−(A− λ)+ δx, δAx〉RN

= Tr(−x((A− λ)+ δx)T δA) = −
〈(
x((A− λ)+ δx)T + ((A− λ)+ δx)xT

)
, δA

〉
Msym(N)

so

δA = −x((A− λ)+ δx)T − ((A− λ)+ δx)xT

We can then combine this with the equation for δx to compute δA as a function of δF , hence the
gradient.

4.2. Neural networks. Until now we have applied the above procedure to only two levels. The
simplest visualization of multi-level reverse-mode automatic differentiation is to neural networks.
Simple neural networks are defined by functions Fi(xi) = f(Wi ∗ xi + bi) where f is a nonlinear
activation function, Wi is a matrix of weights and bi a vector of biases. The theory above applies
straightforwardly to compute the gradient of F (the loss) with respect to all the Wi and bi: δWi

and δbi. There, the implementation is completely straightforward: each neuron i remembers their
value xi during the evaluation of F (the “forward pass”); then the adjoint equation is used to
update the gradients of the loss function, starting from the last layer (the “backward pass”).

4 ANTOINE LEVITT

4.3. Time integration. A continuous-time version of the neural network case is ODE solving:
imagine we want to compute the gradient of FT (x0) = b(x(T)), where ẋ(t) = f(t, x(t)) and
b : RN → R. The forward differential is

δF = dFT (x0) · δx0 = ∇b(x(T)) · δx(T),

where d
dtδx(t) = ∂f

∂x (t, x(t)) · δx(t). Its adjoint is defined by

〈dFT (x0)∗ · δF, δx0〉 = 〈 δF, dFT (x0) · δx0〉
= 〈 δF,∇b(x(T)) · δx(T)〉
= 〈 δF∇b(x(T)), δx(T)〉

This gives a way to compute individual components

〈 δx0, δx0〉 = 〈dFT (x0)∗ · 1, δx0〉 = 〈∇b(x(T)), δx(T)〉
of δx0 for all δx0, by propagating δx0 to δx(T) (the equivalent of (1)), but that’s not what we
want: we want to compute it for all δx0 in one go (the equivalent of (2)). So we need to reverse the
flow of computation, and introduce the intermediary δx(t), which answers the following question:
suppose we start the ODE at time t with initial condition x(t); what is the gradient of FT with
respect to x(t)? Obviously δx(T) = ∇b(x(T)). But we also have for all t, δx(t),

〈 δx(t), δx(t)〉 = 〈 δx(T), δx(T)〉

where δx(t′) still satisfies the ODE dδx
dt (t′) = ∂FT

∂x f(t′, x(t′)) · δx(t′) with initial condition δx(t).
Differentiating this relationship with respect to t, we get〈

d δx

dt
(t), δx(t)

〉
= −

〈
δx(t),

∂f

∂x
(t, x(t))δx(t)

〉
= −

〈
∂f

∂x
(t, x(t))∗ δx(t), δx(t)

〉
from where it follows that

d

dt
δx(t) =

∂f

∂x
(t, x(t))∗ δx(t)

which is an ODE that can be solved backwards in time from δx(T) to get δx(0).

	1. Notations and finite differences
	2. Forward mode
	3. Reverse mode
	4. Examples and applications
	4.1. Direct adjoints
	4.2. Neural networks
	4.3. Time integration

