Ewald summation

April 15, 2019

We omit factors 1/2 in front of all terms.
Let T" be the unit cell of a periodic crystal, L be its lattice and L* its reciprocal lattice. We
want to compute the energy per unit cell
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when V(r) = 1/r, and p = p, + pe is the total density of charge (modulo corrections to account for
self-interaction of point charges, ie prime sums). This integral is not summable and therefore does
not make sense. However, if V(r) = e7°"/r is a Yukawa interaction with ¢ > 0, then the integral is
summable, and it turns out that this has a well-defined limit as ¢ — 0. The strategy is to evaluate
the € — 0 by rewriting the terms in absolutely convergent integrals/sums. We consider here the
DFT case of p, as an array of point charges and p. as a smooth function, but the formalism can
be easily extended to e.g. Madelung constants (both positive and negative discrete charges).

1 Continuous p

We start by computing the ¢ — 0 limit when p = ;. cqe'“” is a smooth density of charge:
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and so
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We see that if p is not neutral, then the limit ¢ — 0 diverge. Otherwise, it converges to
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If we want to compute [ ps p(2)p(y)V(lz —y|) = Re [ gs p(@)p(y)V (|2 — y]), the result is
2.

the same with Re(cg(p)ca(p’)) instead of |eq(p)

2 Discrete p

Let Z,,zq be the charges and positions of the nuclei in the unit cell, p, = >~ Z,0,, and p. the
electronic charge, with fr Pn + pe = 0. We want to compute the total sum
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where the prime indicates that we don’t sum identical atoms.

Again, we will take V' to be the Yukawa interaction and let ¢ — 0 in the end. The first two
terms can be computed as before, with a divergence when ¢ — 0 because of non-neutrality. For
the third term, we cannot use the formalism above for the third term because the charge density
is not smooth and so the real-space sum is not convergent. We split the Yukawa potential into two
parts: a short-range Vi, . = Vi (r)e™°", and a long-range Vi, . = Vir(r)e™°".

For the long-range part, we want to drop the prime in the summation, but V;, (0) = ¥,(0) # 0,
and so
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(we have extended the formalism of section 1 to the case of smooth interaction of periodic distri-
butions)

The ¢ — 0 limit carries through without difficulty for all terms except the G = 0 terms.
Collecting them all, we get, if Z =3 Z, = — [ pe,
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which must have a convergent limit as ¢ — 0 because Vj, is assumed to capture the long-range
Coulomb interaction.
We finally arrive at the final total energy
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Note that when electrons are considered discrete and we are computing a purely discrete sum,
as in e.g. Madelung constants, the last term does not appear (because Z = 0).

3 Erf based splitting

Ewald summation employs a particular form of the short- and long-range splitting, based on the
error function:
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The Fourier transform of 1, is obtained by noting that 14, is the potential created by a Gaussian
charge distribution:
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This also gives an alternative derivation of Ewald summation, by writing p, = pn — pu * G+ pn * G,
where G is an appropriate Gaussian. The first two terms contribute a short-range potential, the
last a long-range potential.

We get for the final expression
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