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We omit factors 1/2 in front of all terms.
Let Γ be the unit cell of a periodic crystal, L be its lattice and L∗ its reciprocal lattice. We

want to compute the energy per unit cell∫
Γ×R3

ρ(x)ρ(y)V (|x− y|)dxdy

when V (r) = 1/r, and ρ = ρn +ρe is the total density of charge (modulo corrections to account for
self-interaction of point charges, ie prime sums). This integral is not summable and therefore does
not make sense. However, if V (r) = e−εr/r is a Yukawa interaction with ε > 0, then the integral is
summable, and it turns out that this has a well-de�ned limit as ε→ 0. The strategy is to evaluate
the ε → 0 by rewriting the terms in absolutely convergent integrals/sums. We consider here the
DFT case of ρn as an array of point charges and ρe as a smooth function, but the formalism can
be easily extended to e.g. Madelung constants (both positive and negative discrete charges).

1 Continuous ρ

We start by computing the ε→ 0 limit when ρ =
∑
G∈L∗ cGe

iGx is a smooth density of charge:∫
R3

ρ(y)V (|x− y|)dy =
∑
G∈L∗

cG

∫
R3

eiGyV (|x− y|)dy

=
∑
G∈L∗

cGe
iGx

∫
R3

e−iG(x−y)V (|x− y|)dy

=
∑
G∈L∗

cGV̂ (G)eiGx

and so ∫
Γ×R3

ρ(x)ρ(y)V (|x− y|)dxdy = |Γ|
∑
G∈L∗

|cG|2V̂ (G)

= |Γ|
∑
G∈L∗

|cG|2
4π

|G|2 + ε2

We see that if ρ is not neutral, then the limit ε → 0 diverge. Otherwise, it converges to∑
G∈L∗ |cG|2

4π
|G|2 .

If we want to compute
∫

Γ×R3 ρ(x)ρ(y)V (|x − y|) = Re
∫

Γ×R3 ρ(x)ρ(y)V (|x − y|), the result is

the same with Re(cG(ρ)cG(ρ′)) instead of |cG(ρ)|2.

2 Discrete ρ

Let Zα, xα be the charges and positions of the nuclei in the unit cell, ρn =
∑
α Zαδxα and ρe the

electronic charge, with
∫

Γ
ρn + ρe = 0. We want to compute the total sum∫

Γ×R3

(
ρe(x)ρe(y)V (|x− y|) + 2ρe(x)ρn(y)V (|x− y|)

)
dxdy +

∑
R∈L

′∑
α,β

ZαZβV (|xα − xβ −R|)
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where the prime indicates that we don't sum identical atoms.
Again, we will take V to be the Yukawa interaction and let ε → 0 in the end. The �rst two

terms can be computed as before, with a divergence when ε → 0 because of non-neutrality. For
the third term, we cannot use the formalism above for the third term because the charge density
is not smooth and so the real-space sum is not convergent. We split the Yukawa potential into two
parts: a short-range Vsr,ε = Vsr(r)e

−εr, and a long-range Vlr,ε = Vlr(r)e
−εr.

For the long-range part, we want to drop the prime in the summation, but Vlr,ε(0) = Vlr(0) 6= 0,
and so∑

R∈L

′∑
α,β

ZαZβVlr,ε(|xα − xβ −R|) =
∑
R∈L

∑
α,β

ZαZβVlr,ε(|xα − xβ −R|)−
∑
α

Z2
αVlr(0)

=

∫
Γ×R3

ρn(x)ρn(y)Vlr,ε(|x− y|)dxdy −
∑
α

Z2
αVlr(0)

= |Γ|
∑
G∈L∗

|cG(ρn)|2V̂lr,ε(G)−
∑
α

Z2
αVlr(0)

(we have extended the formalism of section 1 to the case of smooth interaction of periodic distri-
butions)

The ε → 0 limit carries through without di�culty for all terms except the G = 0 terms.
Collecting them all, we get, if Z =

∑
α Zα = −

∫
Γ
ρe,

1

|Γ|

(
(Z2 − 2Z2)

4π

ε2
+ Z2V̂lr,ε(0)

)
=
Z2

|Γ|

(
V̂lr,ε(0)− 4π

ε2

)
which must have a convergent limit as ε → 0 because Vlr is assumed to capture the long-range
Coulomb interaction.

We �nally arrive at the �nal total energy

D(ρe, ρe) + 2D(ρe, ρn) +Dlr(ρn, ρn) +
∑
R∈L

′∑
α,β

ZαZβVsr(|xα − xβ −R|)

−
∑
α

Z2
αVlr(0) +

Z2

|Γ|
lim
ε→0

(
V̂lr,ε(0)− 4π

ε2

)
where

D(ρ, ρ′) = |Γ|
∑
G 6=0

Re(cG(ρ)cG(ρ′))
4π

|G|2

Dlr(ρ, ρ
′) = |Γ|

∑
G 6=0

Re(cG(ρ)cG(ρ′))V̂lr(G)

Note that when electrons are considered discrete and we are computing a purely discrete sum,
as in e.g. Madelung constants, the last term does not appear (because Z = 0).

3 Erf based splitting

Ewald summation employs a particular form of the short- and long-range splitting, based on the
error function:

V (r) =
1

r
=

erfc(ηr)

r
+

erf(ηr)

r
= Vsr(r) + Vlr(r).

We have

V̂lr,ε(0) =

∫
R3

erf(ηr)

r
e−εrdr = 4π

∫ ∞
0

r erf(ηr) e−εrdr =
4π

η2

∫ ∞
0

r erf(r) e−εr/η =
4π

η2
I(ε/η)

with

I(α) =

∫ ∞
0

r erf(r) e−αrdr
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Numerically (TODO check with Mathematica), I(α) = 1
α2 − 1

4 +O(α), so

V̂lr,ε(0) =
4π

ε2
− π

η2
+O(ε)

and

lim
ε→0

(
V̂lr,ε(0)− 4π

ε2

)
= − π

η2

The Fourier transform of Vlr is obtained by noting that Vlr is the potential created by a Gaussian
charge distribution:

∆Vlr =
1

r2

∂

∂r

(
r2 ∂

∂r

erf(ηr)

r

)
= −4η3

√
π
e−η

2r2

V̂lr(q) =
4πe
− |q|

2

4η2

|q|2

This also gives an alternative derivation of Ewald summation, by writing ρn = ρn−ρn ∗G+ρn ∗G,
where G is an appropriate Gaussian. The �rst two terms contribute a short-range potential, the
last a long-range potential.

We get for the �nal expression

D(ρe, ρe) + 2D(ρe, ρn) +Dlr(ρn, ρn) +
∑
R∈L

′∑
α,β

ZαZβVsr(|xα − xβ −R|)

− 2η√
π

∑
α

Z2
α −

πZ2

|Γ|η2

with

D(ρ, ρ′) = |Γ|
∑
G 6=0

Re(cG(ρ)cG(ρ′))
4π

|G|2

Dlr(ρ, ρ
′) = |Γ|

∑
G 6=0

Re(cG(ρ)cG(ρ′))
4πe
− |G|

2

4η2

|G|2
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