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1. The response function

The purpose of this short note is to clarify some conceptual issues around the linear response
of non-dissipative systems (mathematically: the Fourier transform of causal functions). This is an
elementary problem, but with a remarkably deep structure. In the literature on response functions
in quantum mechanics, these technical issues are often glossed over, or treated in an ad-hoc way.
We will consider very general models, in order to separate general statements from details of specific
physical systems.

Consider a nonlinear time-invariant (autonomous) system

ẋ = F (x)

near an equilibrium x∗. We perturb this system with an external time-dependent source with
intensity I(t), resulting in the non-autonomous system

ẋ = F (x, I(t)).

In a neighborhood of x∗ we can linearize1 in the displacement with respect to equilibrium δx =
x− x∗:

δ̇x = ∂xFδx+ ∂IFI(t) +O(|δx|2 + |I(t)|2)

where the derivatives of F are evaluated at (x∗, 0).
Assume that the system is at rest (δx = 0) at t = −∞, and that I is switched on at a finite

time (I(t) = 0 for t < t0). Ignoring the remainder terms, we get

δx =

∫ t

−∞
e(t−t

′)∂xF∂IFI(t′)dt′

which is a convolution between I and the impulse response function. If O(x) is an output quantity
of interest, then its displacement with respect to equilibrium δO = O(x(t)) − O(x∗) is (again to
first order)

δO(t) =

∫ t

−∞
〈∇O, e(t−t

′)∂xF∂IF 〉I(t′)dt′

= (R ∗ I)(t)

where R is the response function

R(t) = θ(t)〈∇O, et∂xF∂IF 〉(1)

with θ the Heaviside function (θ(t) = 1 for t ≥ 0, θ(t) = 0 for t < 0). This is also called the
impulse response, because when I is a Dirac impulse at time 0, δO = R. Characteristically of
linear time-invariant systems, knowing the response to a single impulse allows us to reconstruct
the full response to any signal by convolution. This response function is causal (R(t) = 0 for
t < 0). In the rest of this document, we will consider response functions of the form (1).
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1Note that we assume here that the problem is real, or, if complex, that F is holomorphic, so that ∂IF is a

complex-linear map. If this is not the case, one needs to split real and imaginary parts.
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2. Stable responses

It is clear that the properties of the operator L = ∂xF are crucial. If L has spectrum with
purely negative real part, then the system is stable: R(t) goes to zero exponentially fast. It is then
possible to take the Fourier transform of R

R̂(ω) =

∫ +∞

0

R(t)eiωtdt(2)

as a well-defined integral. The unusual convention of taking eiωt instead of e−iωt (and, therefore,
e−iωt as the elementary oscillation instead of eiωt) is done for consistency with quantum mechanics
(where the elementary solution of the Schrödinger equation is e−iEt). The Fourier transform
represents the oscillatory (AC) response to an applied periodic perturbation. To see this, it is

convenient to rewrite R̂(ω) as

R̂(ω) = lim
T→∞

eiωT
∫ T

0

R(t)eiω(t−T )dt = lim
T→∞

eiωT
∫ T

0

R(T − t)eiωtdt

= lim
T→∞

eiωT (R ∗ θ(t)eiωt)(T )(3)

which means that when the input is a pure oscillation I(t) = θ(t)eiωt, the output is asymptotic for

large times to R̂(ω)e−iωT .
Assume that the system is finite-dimensional and that L is diagonalizable: L = PDP−1. De-

noting by ui and vi the columns of P and P−1 respectively, we can write

L =

N∑
i=1

λi|ui〉〈vi|

with 〈ui, vj〉 = δij . It follows that

R(t) = θ(t)

N∑
i=1

etλi〈∇O, ui〉〈vi, ∂IF 〉

R̂(ω) = −
N∑
i=1

1

λi + iω
〈∇O, ui〉〈vi, ∂IF 〉(4)

This function is naturally defined in the upper complex plane and the real axis (as this is where
the integral (2) makes sense). In this case it even extends to a meromorphic function on the whole
complex plane (with poles at ω = iλi in the lower complex plane), but this is not necessarily the
case for response functions of infinite-dimensional systems, which can have a more complicated
analytic structure.

Example 1 (Damped harmonic oscillator). Consider the equation

ẍ+ ηẋ+ ω2
0x = I(t)(5)

with η > 0, equilibrium x = 0 and observable O = x. The response function has two components
with exponents λ solutions of λ2 + ηλ+ω2

0λ = 0, which are located in the left-hand complex plane,
and converge towards ±iω0 as η → 0+. The Fourier transform, defined on the real axis and above,
has two poles in the lower complex plane which approach the real axis as η → 0+.

3. Oscillatory responses

The expression of R̂(ω) is informative as to the frequency content of the response. It can however
not be defined as such for for systems that are not stable: in these situations, R is not decaying,
and therefore neither (2) nor (3) are defined. For truly unstable systems (with eigenvalues with
positive real part) the Fourier transform for real ω is not really meaningful, and one has to be
content with the Laplace transform (Fourier transform for ω in the upper complex plane). An
intermediate case of particular interest in quantum mechanics (and more generally Hamiltonian
systems) is when all the eigenvalues of L have zero real part (purely oscillatory dynamics). This is
in particular the case of Hamiltonian systems at energy minima. In this case, (2) does not make
sense, as the integral is not convergent (the various oscillation modes do not decay). It is however
possible to give a meaning to the Fourier transform in various ways.

Throughout, we will illustrate using the following example:
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Example 2 (Linearized Schrödinger equation, 1 degree of freedom). Consider the equation with
source term

iẋ = Ex+ I(t).(6)

with equilibrium x = 0 and O(x) = x. The response function in time is easily calculated as

f(t) = −iθ(t)e−iEt.(7)

This example is an extremely simplified version of the Schrödinger equation, with major differ-
ences with respect to actual quantum mechanics: it is 1D, has a dissipation, and the perturbation
acts as a source term, not multiplicatively on the state as in quantum mechanics. It is best seen
as a slightly simpler variant of the forced harmonic oscillator, with one (complex) degree of free-
dom instead of two (real). It serves as a useful intermediate stepping stone towards the linearized
Schrödinger equation.

3.1. Method 0: steady state. If R̂(ω) it to be interpreted as the steady-state response of the
system to an oscillatory input e−iωt (recall the unusual sign of the Fourier transform), we can just
set I to that value and look for a steady state in δx. This is appealing, but not precise enough.

For instance, on the example above, by setting I(t) = eiωt and x(t) = R̂(ω)eiωt, we find

f̂(ω) =
1

ω − E
?

This result is almost correct, but is insufficiently precise in describing what is going on at
ω = E. For instance, it appears to lead to the (incorrect) conclusion that the imaginary part

of f̂ is identically zero (which contradicts various general statements, for instance sum rules or
Kramers-Kronig relations). It also gives a divergent result for systems with infinitely many degrees
of freedom, as we will see later.

3.2. Method 1: physical dissipation. Often Hamiltonian systems are idealizations of dissi-
pative systems where dissipative effects are neglected. In the case of mechanical systems this is
usually easy to see: for instance the harmonic oscillator ẍ+ω2

0x = 0 is the limit case of the damped
oscillator ẍ+ ηẋ+ ω2

0x = 0. It is also easy in linearized dynamics, by simply adding a dissipative
term: in the example above, we can modify it to iẋ = Ex− iηx+ I(t).

In (not linearized) quantum systems this is harder as dissipation is more complicated to build in
the framework of quantum theory (this can be ultimately justified using the theory of open quantum
systems, which we will not go into here). Using this, one can compute the Fourier transform of
the dissipative system, then take the dissipationless limit η → 0+ (η goes to 0 through positive
values). This is perhaps the most insightful and physically relevant method, but we will not discuss
it further because it modifies R in a system-dependent way, and is not “black-box”, in contrast to
the next methods.

3.3. Method 2: artificial dissipation. This method just adds dissipation artificially to R:

R̂2(ω) := lim
η→0+

∫ +∞

0

R(t)eiωte−ηtdt = lim
η→0+

R̂(ω + iη)(8)

In the example above, we obtain

f̂(ω) = lim
η→0+

1

ω + iη − E
.(9)

We will discuss this limit later. Note that R̂1(ω + iη) is a Laplace transform: this method defines
the Fourier transform as the limit of the Laplace transform as the frequency parameter approaches
the real axis.

3.4. Method 3: Cesaro regularization. The problem in definingR(ω) = limt→+∞
∫ t
0
R(t′)eiωt

′
dt′

is that this integral typically oscillates with t. We can regularize these oscillations by looking at
the average behavior of this function of t:

R̂3(ω) := lim
T→+∞

1

T

∫ T

0

∫ t

0

R(t′)eiωt
′
dt′dt
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3.5. Method 4: adiabatic switching. The oscillations come from the fact that we perturbed
our system brutally (with an impulse). This triggers oscillations that would not have occured
had the system been disturbed more gently (think of a water surface set in motion brutally). To
compute the Fourier transform of R at frequency ω (which we think of as the steady-state response
of the system to an input e−iωt), we ramp up the input gradually:

I(t) =

{
e−iωteηt for t < 0

e−iωt for t ≥ 0

This results in

δOη(t) =

∫ t

−∞
e(−iω+η)t

′
R(t− t′)dt′.

We then hope that the output looks like R̂(ω)e−iωt for t ≥ 0, and so set

R̂4(ω) = lim
η→0+

δOη(0) = lim
η→0+

eiωt
∫ t

−∞
e(−iω+η)t

′
R(t− t′)dt′(10)

= lim
η→0+

eηt
∫ 0

−∞
e(−iω+η)t

′′
R(−t′′)dt′′ = lim

η→0+
eηt
∫ +∞

0

e(iω−η)t
′′
R(t′′)dt′′.

In the limit η → 0 this is independent on t and directly equivalent to method 2.

3.6. Method 5: distributional Fourier transform. It is possible to give a weak sense to the
Fourier transform of a continuous non-decaying function, as long as that function does not grow

faster than polynomially at infinity. To do so, we give up the idea of defining R̂(ω) pointwise, but
rather only measure averages. This makes sense as measurements never observe an exact frequency
(which would correspond to measuring a system for an infinite time), but rather near a frequency
ω with accuracy δω (related to the observation time by T ≈ 1

δω ). Therefore we have to give a

meaning to
∫
R R̂(ω)φ̂(ω)dω for test functions φ̂(ω). We require the test functions to form a set rich

enough that such integrals can identify R̂ uniquely, but restricted to smooth and decaying functions
(so that their Fourier transforms are decaying and smooth); technically we use the Schwartz class,
see any textbook covering distribution theory. Using the formula∫

R
f̂(ω)ĝ(ω)dω = 2π

∫
f(t)g(t)dt,

which is valid for functions f and g that decay, one can define

“

∫
R
R̂4(ω)φ̂(ω)dω” := 2π

∫
R(t)φ(t)dt,(11)

this last integral converging because φ is local in time. This definition of distributional Fourier
transform allows many formal statements (such as the Fourier transform of e−iωt being 2πδω) to
have a rigorous mathematical meaning, and it is the one in which singular limits make sense.

4. General equivalences

We have seen that method 0 (steady state) is incorrect. Method 1 (physical dissipation) is
system-dependent (but is equivalent to method 2, artificial dissipation). Method 4 (adiabatic
switching) is equivalent to method 2. We then have to clarify the relationship between methods 2
(artificial dissipation), 3 (Cesaro regularization) and 5 (distributional transform).

4.1. Distributional sense. In the distributional sense, all methods work and give the same result

Theorem. If R is causal, continuous and of polynomial growth (there are C, p > 0 such that
|R(t)| ≤ C(1+|t|p)), then method 5 (distributional transform) is well-defined. The limits in methods
2 (artificial dissipation) and 3 (Cesaro regularization) are well-defined in the distributional sense,
and all the methods agree in the distributional sense.

Proof. If the function is of polynomial growth, it defines a tempered distribution and its distribu-
tional transform is well-defined (see any textbook on distribution theory).

The sequence R(t)e−ηt converges in the sense of distributions to R(t) as η → 0+ (recall that
R is causal), and so the distributional Fourier transform of R(t)e−ηt converges to that of R(t). It
follows that methods 2 and 5 agree.
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Let φ ∈ S(R). We have∫
R
dωφ̂(ω)

1

T

∫ T

0

dt

∫ t

0

dt′R(t′)e−iωt
′

=
2π

T

∫ T

0

dt

∫ t

0

dt′R(t′)φ(t′)→
∫ +∞

0

R(t)φ(t)dt

which is the definition of the convergence of the Cesaro regularization of R̂ towards R̂ in the sense
of distributions, and therefore methods 3 and 5 agree. �

4.2. Pointwise sense. Recall that convergence in the sense of distributions does not imply point-
wise convergence (for instance, in the sense of distributions, einx converges to zero as n → ∞).
When pointwise values are of interest, the theory of distribution is not of much use, but the Cesaro
and dissipation methods still give the same result, with the dissipation method being “stronger”
(applies in more cases).

Theorem. Let R be continuous and causal. For a given ω ∈ R, if method 3 converges, then method
2 converges, and both give the same result.

Proof. We use the following lemma, establishing the link between the Cesaro and Abel methods
of regularizing limt→∞ F (t) (this type of results are called “Abelian-Tauberian theorems”).

Lemma. Let F be continuous. If the Cesaro limit

lim
T→+∞

1

T

∫ T

0

F (t)dt

converges, then so does the Abel limit

lim
η→0+

η

∫ +∞

0

e−ηtF (t)dt

and both results are equal.

Assuming the lemma and defining F (t) =
∫ t
0
R(t′)dt′, we have

η

∫ +∞

0

e−ηtF (t)dt =

∫ +∞

0

e−ηtR(t)dt

which proves the theorem.
The lemma is classical (see for instance Widder ’71, An Introduction to Transform Theory,

Chap. 8, Theorem 2.3); we reproduce the sketch of the proof here. Let C be the Cesaro sum. We
write

η

∫ +∞

0

e−ηtF (t)dt = η2
∫ +∞

0

e−ηt
(∫ t

0

F (t′)dt′
)
dt

Now we have
∫ t
0
F (t′)dt′ = Ct + r(t) where r(t)

t → 0. From the formula
∫ +∞
0

te−ηtdt = η−2 it
follows that we only have to prove that

η2
∫ +∞

0

e−ηtr(t)dt→ 0.

For all ε > 0, there is a Cε > 0 such that r(t) ≤ Cε + εt. Then, using
∫ +∞
0

e−ηtdt = η−1 and∫ +∞
0

te−ηtdt = η−2, we get ∣∣∣∣η2 ∫ +∞

0

e−ηtr(t)dt

∣∣∣∣ ≤ Cεη + ε

and the result follows. �

5. The Plemelj-Sokhotski formula

We have seen above that the limit limη→0+ R̂(ω + iη) makes sense in the sense of distributions
(when integrated against test functions). It is instructive to make the limit more explicit in the
example f(t) = −iθ(t)e−iEt, where

f̂(ω) = lim
η→0+

1

ω − E + iη
.

At finite η, we have

1

ω − E + iη
=

ω − E
(ω − E)2 + η2

− ηi

(ω − E)2 + η2
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The real part is a regularized 1/(ω − E) function, and the imaginary part is a regularized Dirac
delta (see Figure 1). It is an easy exercise in the theory of distributions to show that, in the sense
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Figure 1. The Plemelj-Sokhotski formula: real and imaginary parts of 1
x+iη (here

for η = 0.1).

of distributions,

lim
η→0+

1

ω − E + iη
= P

1

ω − E
− iπδ(ω − E)(12)

where P denotes the Cauchy principal value (note that taking the limit η → 0− reverses the sign
of the imaginary part). This equation is sometimes known as the Plemelj-Sokhotski formula.

6. Towards more complex systems

We will consider progressively more complicated refinements of the very simple example 2 above.

6.1. N degrees of freedom. Consider first the equation

iẋ = Lx+ I(t)c(13)

with equilibrium x = 0, observable O(x) = 〈b, x〉, where b and c are N -dimensional vectors and L
a N -dimensional Hermitian matrix. The response function is

R(t) = 〈b, e−iLxc〉
By decomposing on an orthonormal set of eigenvectors vn and eigenvalues En of L, we see that

R̂(ω) = lim
η→0+

N∑
n=1

〈b, vn〉〈vn, c〉
ω − En + iη

=

N∑
n=1

〈b, vn〉〈vn, c〉
(
P

1

ω − En
− iπδ(ω − En)

)
(14)

in the sense of distributions. This has singularities at each of the energies En.

6.2. Identity multiplication operator. Now consider an infinite-dimensional model. To start
with, consider L to be a simple multiplication operator:

iẋ(E, t) = Ex(E, t) + I(t)c(E)(15)

O(t) =

∫
R
b(E)x(E)dE

for x(E, t). This leads directly to

R(t) = −i
∫
R
b(E)c(E)e−iEtdE

R̂(ω) = lim
η→0+

∫
R

b(E)c(E)

ω − E + iη
dE

= P

∫
R

b(E)c(E)

ω − E + iη
dE − iπb(ω)c(ω).(16)



RESPONSE FUNCTIONS OF OSCILLATORY SYSTEMS 7

Remarkably, the imaginary part is not singular anymore! Seeing this model as the limit case of a
discrete problem, the eigenvalues have densified to a continuum, and the poles have merged to a
continuous function. This is not unusual in complex analysis; consider for instance∫ 1

−1

1

ω − E
dE = log

(
ω − 1

ω + 1

)
.

Characteristically, such functions are multivalued, with branch points at the “spectrum edges”
(here ±1). This makes it important to specify the branch by an appropriate limit process (for
instance, taking the limit η → 0− above would have flipped the sign of the imaginary part of

R̂(ω)). An imperfect physical analogy is the electrostatic potential produced by a surface of
uniform charge, which has a finite but discontinuous value across the surface; this is by contrast
to a discrete array of charges, which produces a continuous potential.

6.3. General multiplication operator. As an additional step in complexity, consider a non-
trivial multiplication operator

iẋ(k, t) = E(k)x(k, t) + I(t)c(k)(17)

O(t) =

∫
R
b(k)x(k)dk

modeling a field of excitations with dispersion relation E(k). We have

R̂(ω) = lim
η→0+

∫
R

b(k)c(k)

ω − E(k) + iη
dk

It is instructive to compute more explicitly the imaginary part with the help of the co-area formula:

− 1

π
Im(R̂(ω)) =

∫
E(k)=ω

b(k)c(k)

|∇E(k)|
dk

The physical picture is that the disturbance at frequency ω excites all the excitations k matching
the frequency E(k) = ω. The quantity

∫
E(k)=ω

1
|∇E(k)| is the density of states at energy ω, which

are here weighted by the “matrix element” b(k)c(k) (with c(k) quantifying how much k couples to
the disturbance, and b(k) the output k produces).

6.4. General case. Finally, the model

iẋ(t) = Lx(t) + I(t)c

where L is a general self-adjoint operator can have a mixed behavior (displaying both a discrete
and a continuous part). The generalization of the previous formulas is

− 1

π
Im(R̂(ω)) = 〈b, πL(ω)c〉

where πL is the projector-valued spectral measure associated with L.

7. Application to quantum mechanics

The main difficulty in applying the above formalism to Schrödinger equations of the form

i∂tψ = (H + I(t)V )ψ(t)

is that the stationary solutions are not naturally solutions of Hψ = 0 but rather of Hψ = Eψ.
This is easily remedied in the interaction picture (also called Duhamel or Dyson formula): changing
variables to ψ(t) = e−iHtφ(t), we get

i∂tφ = eiHtI(t)V e−iHtφ(t)

from where the first-order expansion near an eigenstate can proceed, resulting in a response function
of the form above.

Another solution is to use density matrix (projectors). Setting P = |ψ〉〈ψ|, we obtain

i∂tP = [(H + I(t)V ), P ]

which has an equilibrium when ψ is an eigenfunction of H. In this formalism, the operator L is
the Liouvillian.

Both these methods generalize to nonlinear equations (such as time-dependent density functional
theory). In applying the above theory, we have to take care that these equations are not necessarily
compatible with the complex structure (because the density involves conjugates of the orbitals, or
because the space of Hermitian matrices (and therefore density matrix variations) is not a complex
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vector space): we then have to separate real and imaginary part (or couple frequencies +ω and
−ω), resulting in a 2× 2 block matrix structure.


	1. The response function
	2. Stable responses
	3. Oscillatory responses
	3.1. Method 0: steady state
	3.2. Method 1: physical dissipation
	3.3. Method 2: artificial dissipation
	3.4. Method 3: Cesaro regularization
	3.5. Method 4: adiabatic switching
	3.6. Method 5: distributional Fourier transform

	4. General equivalences
	4.1. Distributional sense
	4.2. Pointwise sense

	5. The Plemelj-Sokhotski formula
	6. Towards more complex systems
	6.1. N degrees of freedom
	6.2. Identity multiplication operator
	6.3. General multiplication operator
	6.4. General case

	7. Application to quantum mechanics

