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The Schur complement is a simple technique in linear algebra which reduces the number of
degrees of freedom of a problem by explicitly solving a part of it. It is at the heart of a very large
number of seemingly unrelated techniques in various fields of mathematics and applications. This
short note aims at presenting some of these many techniques in a unified way. Nothing here is
new, and much more detail can be found in specialized sources. This note is by nature incomplete
and biased towards my own interests. Please contact me if you have additional examples!

For simplicity most results are stated in finite-dimensional spaces and in a somewhat careless
fashion, but the analysis can be conducted rigorously. It also extends to infinite-dimensional spaces
with the appropriate hypotheses (and in fact the concept of Schur complement is often used to
reduce a problem from an infinite-dimensional setting to a finite-dimensional one).

1. The Schur complement

The basic framework of Schur complements is that of an operator A acting on a space X =
X1 ⊕X2 (that is, a partitioning of the degrees of freedom in two disjoint subsets 1 and 2). Often
this decomposition is orthogonal but it needs not be. We can write the operator A in block form
as

A =

(
A11 A12

A21 A22

)
.(1)

Assume now that we want to solve the linear system Ax = b. Then we can write it as

A11x1 +A12x2 = b1

A21x1 +A22x2 = b2

Assuming that A22 is invertible, we can solve x2 as a function of x1:

x2 = A−1
22 (b2 −A21x1)

and replace in the first equation to obtain

(A11 −A12A
−1
22 A21)x1 = b1 −A12A

−1
22 b2(2)

The operator

S = A11 −A12A
−1
22 A21(3)

is called the Schur complement.
It follows from the steps above that, assuming that A22 is invertible, A is invertible if and only

if S is. This can be strengthened in various ways. For instance, since Ax = b is the optimality
condition of the functional 1

2x
TAx − bTx, it follows that if A22 is symmetric definite positive, A
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is symmetric definite positive if and only if S is; in this case, x2 = A−1
22 (b2 − A21x1) is the result

of minimizing the functional with respect to x2, at fixed x1. Another useful generalization is the
Haynsworth inertia formula, which relates the number of positive and negative eigenvalues of A to
those of S and A22.

2. Linear algebra: block Gaussian elimination

The Schur complement can be viewed as a block generalization of the venerable Gaussian elim-
ination. Recall that Gaussian elimination in the 2× 2 case starts from the equations

A11x1 +A12x2 = b1

A21x1 +A22x2 = b2

where Aij are scalars, and modifies the first equation (usually this process is done in reverse; we
reverse it here for consistency) by

L1 ← L1 −A12A
−1
22 L2

to remove x2 from the first equation, simply leaving (2).

3. Linear algebra: the Sherman-Morrison formula

This is not a straightforward Schur complement formula, but has a very similar flavor. Assume
that A is invertible, and let u be a vector. What is the inverse of the rank-1 update A + uuT ?
Write the linear system as

Ax+ uuTx = b

Following the idea of the Schur complement, we try to solve parts of the equation as a function of
other parts of the solution itself:

x = A−1(b− uuTx)

The solution is known up to the scalar s = uTx (which plays the same role as x1 in the Schur
complement). To determine this scalar, we take the inner product with u and obtain

s = uTA−1b− suTA−1u

s =
uTA−1b

1 + uTA−1u

and therefore

(A+ uuT )−1 = A−1 − A−1uuTA−1

1 + uTA−1u

This can be extended to rank-n (where it is known as the Woodbury formula) and non-symmetric
updates by the same method.

4. Nonlinear analysis: the Lyapunov-Schmidt reduction

The Lyapunov-Schmidt reduction locally reduces the study of a branch of solutions to a nonlinear
equation to a nonlinear system of dimension as small as possible. It is a nonlinear form of Schur
complementation.

Consider the equation

f(x, λ) = 0

where f : Rn × R → Rn is smooth. Assume that f(0, 0) = 0; we are interested in the behavior of
the solutions of this equation close to (0, 0). From the implicit function theorem, when J = ∂xf is
invertible the equation f(x, λ) = 0 has a locally unique solution for λ small. What happens when
this is not true?

Partition the input space as X1 ⊕ X2 where X1 = Ker(J), and the output space as F1 ⊕ F2

where F2 = RanJ . Then

J =

(
0 0
0 JX2F2

)
.
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The operator JX2F2
is injective and surjective from X2 to X2, and therefore invertible. Write

f(x, λ) = 0 as

PF1
f(x1 + x2, λ) = 0

PF2
f(x1 + x2, λ) = 0

From the implicit function theorem, the second equation can be locally solved for x2 as a function
of x1: x2(x1). Plugging back into the first equation, we get

PF1f(x1 + x2(x1), λ) = 0

where PFi are the projections on Fi with respect to the decomposition F = F1 ⊕ F2. This is
now a purely nonlinear equation (no linear terms) for x1 only. For instance, when X1 = kerJ is
of dimension 1, this is a scalar equation, known as the bifurcation equation. The study of this
scalar equation (usually through the higher derivatives) yields the local behavior of the solutions
(saddle-node, pitchfork, etc.)

5. Spectral theory: the Feshbach-Schur method

This method can be seen as a special case of the Lyapunov-Schmidt reduction applied to the
spectral problem Aµx = λx, where µ is a parameter. Assuming that Aµ,22 − λ is invertible, λ is
an eigenvalue of Aµ if and only if the “Feshbach-Schur map”

Sµ(λ) = Aµ,11 − λ−Aµ,12(Aµ,22 − λ)−1Aµ,21

is singular. Assume for instance that A is hermitian and that x0 is a simple eigenvector of A0.
Then, choosing X1 = Span(x0), Sµ(λ) = 0 is a scalar equation which can be studied using regular
finite-dimensional perturbation theory.

6. Optimization: saddle point problems

Consider the following optimization problem:

min f(x)

s.t. g(x) = 0

Then if the jacobian of g at a constrained minimum x∗ is full-rank, there is a set of Lagrange
multipliers λ∗ such that (x∗, λ∗) is a critical point of the Lagrangian

L(x, λ) = f(x)− λT g(x)

The Hessian is

∇2L(x, λ) =

(
∇2f − λT∇2g −∇g
−∇gT 0

)
Assume now that ∇2f−λT∇2g is positive definite at (x∗, λ∗). It follows from the implicit function
theorem that the map

h(λ) = min
x
L(x, λ)

is defined for λ close to λ∗, where in this formula the search for x is reduced to a neighborhood of
x∗. By the Hellmann-Feynmann/envelope theorem, ∇h(λ∗) = g(x∗) = 0, and

∇2h(λ∗) = −∇gT (∇2f − λT∇2g)−1∇g

which is nothing but the Schur complement of ∇2L(x, λ). This is a negative definite matrix, which
shows that λ∗ is a local maximum for h(λ) (a saddle point structure).

7. Electrical engineering: equivalent circuits

The problem of solving a circuit composed of resistors, inductors, capacitances and current
sources in the harmonic regime reduces to solving an equation

A(ω)x(ω) = b(ω)

where x are the voltages at the nodes of the circuit, b is the current sources, A is the conductance
matrix and ω is the frequency. Assume now that a part of this circuit is a subcircuit, which has
a number of nodes (“ports”) by which it communicates to the rest of the circuit, and a number
of internal nodes that do not communicate with the rest. Let X2 be the space corresponding to
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these internal nodes. Then one can solve for the internal nodes as a function of the values of the
voltages at the ports. The resulting equation for the non-internal nodes x1 is

(A11(ω)−A12(ω)A22(ω)−1A21(ω))S(ω)x1(ω) = b1(ω)−A12(ω)A22(ω)−1b2(ω)

Therefore, the subcircuit can equivalently be thought of as an equivalent circuit that links the ports
with a conductance matrix A12(ω)A22(ω)−1A21(ω) and a current source A12(ω)A22(ω)−1b2(ω).
This is known as the Kron reduction.

8. Quantum mechanics: the self-energy

This is an application of the Feshbach-Schur technique. Let H be the Hamiltonian of a quantum
system 1 in interaction with an “environment” 2. Then the Schrödinger equation Hψ = λψ can
be rewritten as

(H11 + Σ(λ))ψ1 = λψ1

where

Σ(λ) = −H12(H22 − λ)−1H21

is called the “self-energy”. The physical interpretation is that, through coupling with the system 2,
the system 1 acquires an effective additional energy. The total Hamiltonian H11 + Σ(λ) describes
a “dressed” system 1, which includes the reaction of the environment. In particular, when H22 has
continuous spectrum, limη→0+

∑
(ω + iη) can have a non-self-adjoint part, which describes (in a

specific regime) irreversible transfer from the system 1 to the environment (Fermi golden rule).

9. Partial differential equations: the Stokes equation

Consider a bounded domain Ω, and the stationary adimensional Stokes equation for the velocity
u and pressure p

∇ · u = 0

∇p−∆u = 0

with appropriate boundary conditions. In matrix form, this is

A =

(
0 ∇T
∇ −∆

)
If −∆ is invertible (which is the case for example with Dirichlet boundary conditions), the Schur
complement reduces the study of the original problem to that of the operator ∇T (−∆)−1∇ on
pressure variables; its invertibility is sometimes called the inf-sup condition, and plays an important
role in the study of finite element discretizations.

10. Partial differential equations: the Dirichlet-to-Neumann map

Consider the problem of solving an elliptic partial differential equation

Lu = f

on the whole space. Assume f is zero outside a domain Ω of interest. Two types of boundary
data can be prescribed on ∂Ω: Dirichlet data u|∂Ω, and Neumann data (∂u/∂n)|∂Ω, where n is
the outgoing normal to Ω. Call 1 the degrees of freedom inside of Ω, and 2 those outside. If
the Dirichlet data of u is known on Ω, then the equation Lu2 = 0, u2|∂Ω = g can be solved for
all functions g on ∂Ω. Let S be the Dirichlet-to-Neumann map, the operator that to g maps
(∂u2/∂n)∂Ω. Then u1 satisfies the equation

Lu1 = f, (∂u1/∂n)|∂Ω = Su1

which is posed on the inside of Ω, at the price of a modified (possibly nonlocal) boundary condition.
The connection to Schur complements is even more manifest at the discrete level. The degrees

of freedom can then be partitioned into those inside Ω and those outside. The Schur complement
L11−L12L

−1
22 L21 is a nonzero modification of L11 only on the boundary, which can be interpreted

as a modified boundary condition. This is the basis of some domain decomposition schemes.
Similar schemes can be used to reduce the solution of a volumic problem to that of a surface

problem (e.g. boundary element method). In all cases it is important to be able to solve the
exterior problem more or less explicitly, for instance through its Green function.
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