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Electronic structure theory

The behavior of “ordinary” matter is driven by the behavior of nuclei
and electrons
Nuclei can be considered point particles, but electrons must be
modeled with quantum mechanics

Water is a good solvent because its electron
distribution gives it a dipole moment



The Schrödinger equation (1926)
In atomic units (no spin):

i∂tψ = Hψ

H =
N∑

n=1

−1
2∆xn︸ ︷︷ ︸

Kinetic

+ Vext(xn)︸ ︷︷ ︸
El-nucl Coulomb

+
N∑

n=1

∑
m 6=n

1
|xn − xm|︸ ︷︷ ︸

El-el Coulomb

|ψ(t, x1, . . . , xN)|2: probability of finding electrons at positions
x1, . . . , xN

Electrons are fermions: ψ changes sign under coordinate
permutation
Stationary states Hψ = Eψ. Lowest E is the ground state
Entanglement because of el-el interaction: the state of an electron
depends parametrically on the state of all other electrons!
Complexity explosion

Conceptual: the wave function is too rich to be directly useful
Computational: solve a PDE in dimension 3N



Need for approximations (1929)

i∂tψ = Hψ
ψ(t) ∈ L2(R3N)

Dirac:
“The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus
completely known...
...and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.
It therefore becomes desirable that approximate practical methods
of applying quantum mechanics should be developed, which can lead
to an explanation of the main features of complex atomic systems
without too much computation.”



An approximation: KSDFT (1965)
Kohn-Sham density functional theory for the ground state

−1
2∆φn + Vextφn + VHXC[ρ]φn = λnφn, 〈φn, φm〉L2(R3) = δmn

ρ(x) =
N∑

n=1
|φn(x)|2

VHXC[ρ] =
1
|x | ∗ ρ+ VXC[ρ]

VXC is an approximation of the true exchange-correlation potential;
e.g. LDA: (VXC[ρ])(x) = vxc(ρ(x))

N nonlinear coupled PDEs in dimension 3
Aufbau principle: {λn}n=1,...,N are the lowest eigenvalues of

Hρ = −1
2∆ + Vext + VHXC[ρ]

Equivalent reformulation with density matrices γ =
∑N

n=1 |φn〉〈φn|:

γ = 1(Hργ ≤ εF )



DFT for crystals

A perfect crystal is defined by
Lattice R ⊂ R3

R-periodic atomic potential Vext

N electrons per unit cell: γ is an infinite-rank projector, Tr(γ) = N

γ = 1(Hργ ≤ εF )

Subtleties of thermodynamic limit: Coulomb non-summability, symmetry
breaking, fractional occupations [Catto/Le Bris/Lions ’01]



Bloch theory, insulators and conductors
Hργ is a periodic operator, can be studied using Bloch theory
Generalized eigenvectors: Bloch waves

ψnk(x) = e ik·xunk(x)

where the unk are periodic functions satisfying(
1
2 (−i∇+ k)2 + Vext + VHXC[ργ ]

)
unk = εnkunk

k 7→ εnk : dispersion relation/band structure
R∗-periodic: plot in the Brillouin zone B = R3 \ R∗

Tin (metal) Silicon (semiconductor)



Crystal properties
DFT gives access to E (a), energy per unit volume

a ?

Lattice constant: argminE (a)

Pressure: related to dE
da

Young’s modulus (speed of sound): related to d2E
da2

Anharmonic effects: d3E
da3

Many other static and dynamic properties, purely ab initio



DFT in practice

Methodological developments since the ’90s (pseudopotentials,
numerical methods, HPC...): routinely solved for hundreds of atoms
Workhorse of condensed matter physics and quantum chemistry

Equation of state of Si, Söderlind, Per, and David A. Young, Computation 6.1 (2018).

Equation of state of MgO, Root, Seth, et al., Physical Review Letters 115.19 (2015).

... but severe deficiencies (excited states, strongly correlated materials)



Applications

From fundamental physics to practical applications

Dissociation energy of adsorbed CO, Andersson, Martin P., et al. Journal of Catalysis 239.2 (2006)



Electronic structure for mathematicians

Complex equations
Need for reliable, automatic, accurate and fast methods
Involves many branches of mathematics

Analysis Computing ”Pure” math
PDEs Linear algebra Probability

Spectral theory Optimization Group theory
Complex analysis Numerical analysis Topology
Nonlinear analysis HPC Differential geometry

Underexplored mathematically

Keyword Web of Science MathSciNet Ratio
Maxwell equations 19,459 2,055 10%
Boltzmann equation 24,519 2,268 10%

Navier Stokes 47,341 9,436 20%
Density Functional Theory 142,374 171 0.1%



Mathematicians for electronic structure

Applied mathematics: rigorous results on structure, asymptotics,
numerical methods.
Informs the choice of numerical methods that are robust, adaptive
and free of divergences (“two infinities”: mesh and box size)
Main difficulty: pre-asymptotic regime often dictated by physics
more than mathematics...

My work:
Physics, mathematical analysis, numerical analysis, implementation

Strongly linked concepts, radically different language and viewpoints
Ultraviolet/infrared divergence, Sobolev spaces, preconditioning
Self-energy, Feshbach-Schur map, block inversion
Dyson expansion, fixed-point theorem, Neumann series
...
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Screening

Phenomenologically, response to a point charge Vext = Q
|x | :

System Veff Features

Vacuum Q
|x | No screening

Insulator/semiconductor Q
εr |x |

Partial screening

Uniform electron gas (Thomas-Fermi) ∝ Qe−kTF|x |

|x | Full screening

Uniform electron gas (Lindhard) ∝ Q cos(2kF|x |)
|x |3 Friedel oscillations

Goal: understand this mathematically



Full screening

Introduce a defect potential Vdef into a periodic background (Hper, εF ):

γdef = 1 (Hper + Veff − εF )− 1 (Hper − εF )

Veff = Vdef + VHXC[ργdef ]

For finite temperature T : replace 1(x ≤ εF ) with the Fermi-Dirac
function

fT (x − εF ) =
1

1 + e
x−εF

T

For insulators (with a gap) at T = 0, partial screening studied in
[Cancès/Lewin ’10]; full screening known in Thomas-Fermi models

Theorem (A. Levitt, ARMA, 2020)
Assume that Vper is L2

per, εF ∈ R, T > 0. Then for Vdef small enough in
∆−1H−2(R3), there is a (locally unique) solution of the defect problem,
and Veff ∈ L2(R3).



Sketch of proof
Linearized equation (implicit function theorem):

Veff = Vdef + vcχ0Veff + O
(
‖Veff‖2)

where
vc = 1

|x | ∗ · = −4π∆−1 is a multiplication by 4π
|q|2 in Fourier space:

singular at small q (long range)
χ0 is the independent-particle susceptibility operator: derivative at 0
of the map

F : V 7→ ρ
(
fT (Hper + V − εF )− fT (Hper − εF )

)
Therefore

Veff ≈ ε−1Vdef

where

ε = 1− vcχ0

vc ≥ 0, χ0 ≤ 0: ε invertible. Properties (function spaces)?



Sketch of proof

χ0(x , x ′) for a 1D metal-insulator junction

“Homogenized” behavior of χ0 for a periodic system:

lim
R→∞

〈
φ
( ·

R
)
, χ0 φ

( ·
R
)〉〈

φ
( ·

R
)
, φ
( ·

R
)〉 = −D

the density of states per unit volume at the Fermi level, for φ ∈ C∞c (R3).
For insulators, D = 0⇒ ε−1 = O(1) : partial screening
For conductors, D 6= 0⇒ ε−1 = O(|q|2) : full screening



SCF iterations
How to solve

Veff = Vdef + vcF (Veff)

in practice? Damped SCF iteration

Vn+1 = Vn + α(Vdef + vcF (Vn)− Vn)

Jacobian of this iteration at convergence:

Jα = 1− α(1− vcχ0) = 1− αε

Local convergence OK for α small enough but vc = 4π
|q|2 : rate dependent

on box size for metals
For metals: Kerker preconditioning α→ β |q|2

|q|2+4πD .

Theorem (A. Levitt, ARMA, 2020)
In the above setup, the Kerker-preconditioned SCF iteration is
well-defined and locally convergent in L2(R3) for β > 0 small enough.

Preconditioner = metric : mathematical analysis = numerical analysis
What to do for heterogeneous systems?



Local density of states based preconditioning

M. Herbst, A. Levitt. (not in the HDR)
Black-box inhomogeneous preconditioning for self-consistent field
iterations in density functional theory.
Submitted, 2020.

“Mass lumping”
ˆ
χ0(x , x ′)V (x ′)dx ′ ≈ V (x)

ˆ
χ0(x , x ′)dx ′

= V (x) LDOS(x)



Local density of states based preconditioning
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Wannier functions

⇒
Orbitals φn coming from DFT computations are delocalized over the
whole system

Need localized orbitals for
Physical interpretation (polarization, bonding...)
Band structure interpolation
Sparsifying computations



Wannier functions for periodic crystals
Assume an insulator, with occupied Bloch waves

ψnk(x) = e ik·xunk(x)

for n = 1, . . . ,N, k ∈ B. Define Wannier functions by

wn0(x) =
1
|B|

ˆ
B
ψnk(x)dk wnR(x) = wn0(x − R),R ∈ R

{wnR}n=1,...,N,R∈R is an orthogonal basis of the occupied subspace
Localization of wn0 ⇔ smoothness and periodicity of k 7→ ψnk

ψnk is only determined up to a phase
ψnk cannot be chosen smooth at eigenvalue crossings

Generalized Wannier functions w̃nR with

ψ̃nk(x) =
N∑

m=1
ψnk(x)Umn(k)

Can we find Umn(k) so that ψ̃nk is smooth and R∗-periodic?



A detour through topology

Can we find a smooth and periodic basis of Span{ψ1k , . . . , ψNk}?

Asking for smooth and periodic bases is dangerous...

Existence depends on the vanishing of topological invariants



Topology and Wannier functions

Theorem (G. Panati, ’07)

Assume that V is continuous and periodic in Rd , d ≤ 3, and

inf
k∈B

εN+1,k > sup
k∈B

εN,k .

Then there exists exponentially-localized Wannier functions
{wnR , n = 1, . . . ,N,R ∈ R}.

Proof: the symmetry H−k = Hk implies the vanishing of the appropriate
topological invariants (Chern class)

Symmetry broken with magnetic fields ⇒ non-existence of localized
Wannier functions, quantum Hall effect (Nobel prize ’85)
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Hall current in the Haldane model, [Cancès/Fermanian/Levitt/Siraj-Dine, submitted ’20]



Numerical methods for finding Wannier functions

In practice, how to compute localized Wannier functions?

Marzari-Vanderbilt scheme (’97)
Starting from a physically reasonable initial guess, optimize the total
variance iteratively

Ω =
N∑

n=1

(ˆ
|x |2|wn0(x)|2dx −

∣∣∣∣ˆ x |wn0(x)|2dx
∣∣∣∣2
)

Problem:
Need manual guess for the initial Wannier functions
Non-convex optimization problem
Topological vortices if the initial guess is not good enough



Automated Wannier functions

E. Cancès, A. Levitt, G. Panati, and G. Stoltz.
Robust determination of maximally localized Wannier functions.
Physical Review B, 2017.

Numerical construction of Wannier functions following the theoretical
proof of existence.
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Our algorithm

Bond-centered

Random positions

Great for simple materials with small unit cells, not so much for others...



Wannier functions for topological insulators

D. Gontier, A. Levitt, and S. Siraj-Dine.
Numerical construction of Wannier functions through homotopy.
Journal of Mathematical Physics, 2019.

Extension of the previous methodology to spin-orbit coupling (topological
insulators).

Numerical homotopy problem
Given a loop [0, 1] 3 k 7→ V (k) ∈ SU(N), deform it to a point in SU(N)
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Wannier functions for metals

[Souza/Marzari/Vanderbilt ’01]
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How does this work?

Theorem (H. Cornean, D. Gontier, A. Levitt, D. Monaco, AHP ’19)
Under generic conditions, even without a gap there exists an
almost-exponentially localized orthonormal family
{wnR , n = 1, . . . ,N + 1,R ∈ R} spanning a superset of the space
spanned by the first N bands.

but the ones found in practice are only algebraically localized
[Damle/Levitt/Lin, SIAM MMS ’19]
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Perspectives: mathematical physics

U Transport properties of electrons in crystals
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(a) Normal insulator phase.
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(b) Chern insulator phase, transverse
current.
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(c) Metallic phase.
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(d) Graphene.

Figure: Current response to a constant electric field as a function of time in the
linear response regime [Cancès/Fermanian/Levitt/Siraj-Dine submitted ’20]

Towards imperfect crystals: impurities, electron-phonon coupling
Plasmons (with É. Cancès, J. Sabin)
...



Perspectives: numerical analysis
U Brillouin zone integration (with É. Cancès, V. Ehrlacher, D.
Gontier, D. Lombardi)
Approximation of response functions above the ionization threshold
(with M-S. Dupuy, S. Behr)
Direct minimization vs SCF (with É. Cancès, G. Kemlin)
U A posteriori error analysis (with É. Cancès, G. Dusson, M. Herbst,
G. Kemlin)

Figure: Band structure of Silicon (without electronic interaction) with fully
guaranteed error bars [Cancès/Herbst/Levitt, Faraday Discussions ’20]

...



Perspectives: algorithms

With M. Herbst

https://dftk.org

Robust and efficient SCF
Approximating ε = 1− (vc + KXC)χ0 and understanding its three
sources of ill-conditioning:

U Coulomb interaction
XC-induced electronic phase transitions (e.g. ferromagnetism)
Large modes of χ0 (e.g. localized states)

Multiple solutions of Kohn-Sham equations (bifurcation analysis)
(Time-dependent) linear response
DFTK development (HPC, automatic differentiation...)
...

https://dftk.org

