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Screening

Place a free charge Q in an environment, and observe its electric field V
far away.
In a material, the electrons reorganize around the charge:

V is reduced



Screening

Macroscopic explanation: Debye-Hückel (ions in liquid) or Thomas-Fermi
(uniform electron gas)

−∆V = f (V ) + ρext

f (V ) =
{
ρ0e−

V
kB T Debye-Hückel

∝ (εF − V )3/2 Thomas-Fermi

Linearize around an equilibrium ρ = cstρ + δρ,V = cstV + δV ,
χ0 = f ′(V )(cstV ):

−∆δV − χ0δV = δρext

δV ∝ ρext ∗
e−
√
−χ0|x |

|x |

δV is short-ranged!
√
−χ0 inverse screening length



Screening

System Potential V (x) Features

Vacuum Q
4π|x | No screening

Insulator Q
4πεr |x |

Partial screening

Conductor (Debye-Hückel, Thomas-Fermi) ∝ Qe−k|x |

|x | Full screening

Metal (Lindhard response) ∝ Q cos(2kF |x |)
|x |3 Friedel oscillations

In insulators, electrons are bound to atoms and do not move much
(partial screening), in conductors (metals, systems at T 6= 0) they are
free to flock towards the charge (full screening).

How does this arise from QM?

Screening interesting on its own, but also: SCF iterations, many-body
perturbation theory, locality, thermodynamic limits...



Isolated systems
DFT of an isolated system:

V︸︷︷︸
total potential

= Vnucl︸ ︷︷ ︸
ext. potential

+ vcFεF (V )︸ ︷︷ ︸
Hartree potential

+ ((((((VXC[FεF (V )]︸ ︷︷ ︸
Exchange-correlationˆ

R3
FεF (V )︸ ︷︷ ︸
density

= Nel︸︷︷︸
number of electrons

where

(vcρ)(x) = 1
4π

ˆ
R3

ρ(y)
|x − y |dy = F−1

(
F(ρ)(q)
|q|2

)
FεF (V ) = fεF (−∆ + V )(x , x)

fεF (ε) =


1

1+exp
(

ε−εF
kB T

) (finite temperature)

1(ε ≤ εF ) (zero temperature)

No exchange-correlation, because it’s hard (non-convex)
Reduced Hartree-Fock, Hartree, Schrödinger-Poisson, RPA...
Fixed-point formulation rather than (free-)energetic: less powerful,
but simpler for perturbation



Periodic system

Assume Wnucl is 2πZ3-periodic

W︸︷︷︸
total potential

= Wnucl︸ ︷︷ ︸
ext. potential

+ vperFεF (W )︸ ︷︷ ︸
Hartree potentialˆ

[0,2π]3
FεF (W )︸ ︷︷ ︸
density

= Nel︸︷︷︸
electrons per unit cell

where vperρ is the unique periodic solution of{
−∆(vperρ) = ρ− 1

(2π)3
´

[0,2π]3 ρ´
[0,2π]3 vperρ = 0

Derived from thermodynamic limit at zero temperature (Catto/Le
Bris/Lions ’01)
Metal or insulator, depending on whether εF ∈ σ(−∆ + W ) or not
Existence theory at finite temperature (Nier ’93)



Defect model

Fix a solution (Wper, εF ) of the periodic rHF equation, and set
Vdef : R3 → R be a defect potential (e.g. Q/|x |)

V︸︷︷︸
screened potential

= Vdef + vcG(V )︸ ︷︷ ︸
reaction potential

with

G(V )︸ ︷︷ ︸
reaction density

= FεF (Wper + V )︸ ︷︷ ︸
perturbed density

− FεF (Wper)︸ ︷︷ ︸
periodic density

=
(
fεF (−∆ + Wper + V )− fεF (−∆ + Wper)

)
(x , x).

(grand-canonical ensemble)
Existence theory and derivation from thermodynamic limit at zero
temperature (Cancès/Deleurence/Lewin ’08)
Derivation from thermodynamic limit in a tight-binding model
(Chen/Lu/Ortner ’17)



Linear response

Linear response, e.g. Vdef(x) = Q/|x | with Q small

“Theorem” (Cancès-Lewin ’10, modulo regularization/homogenization)

For a zero-temperature isotropic insulator, V (x) ≈ Q
εr |x | for large x, for

some εr > 1.

Theorem (Levitt ’18 arxiv)
For any finite-temperature system, V decays faster than any inverse
polynomial.



Screening in insulators and conductors

V = Vdef + vcG(V )

Vdef

V

vcG(V )

G(V )

Vdef

V

vcG(V )

G(V )

Insulators T = 0 Finite temperature

Insulators attract a charge
´
G(V ) < Q, V is long-range

Conductors attract a charge
´
G(V ) = Q, V is short-range

This picture is “homogenized” (ignores lattice-scale oscillations)
Zero-temperature metals still open (Friedel oscillations)
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Bloch matrices

Periodic operators A (that commute with lattice translations) map
Bloch waves e ikxuk(x) to Bloch waves e ikx (Akuk)(x)
In Fourier series representation uk(x) =

∑
K∈Z3 cKe iKx , Bloch

matrices Ak

e i(k+K ′)x 7→ Ak(K ,K ′)e i(k+K)x , K ,K ′ ∈ Z3, k ∈ [0, 1]3.

Examples:

Operator A Bloch fiber Ak Bloch matrix Ak(K ,K ′)
−∆ (−i∇+ k)2 |k + K |2δKK ′

Wper Wper cK−K ′(Wper)
e−iqxAe iqx Ak+q Ak+q(K ,K ′)



The independent-particle polarizability operator χ0

A fundamental quantity is the independent-particle polarizability operator
χ0 = G ′(0)

G(V ) = F (Wper + V )− F (Wper)

=
(
f (−∆ + Wper + V )− f (−∆ + Wper)

)
(x , x).

χ0:
describes the density response δρ = χ0δV of a system of fictional
system of independent electrons to a perturbation δV of the
potential
is the Hessian of the (concave) non-interacting potential-to-energy
map: self-adjoint, non-positive
has the symmetries of Wper (commutes with lattice translations):
χ0,q(K ,K ′)
can be computed from perturbation theory (“sum over states”,
Lindhard ’53, Adler-Wiser ’62)
contains a lot of information, can be generalized to dynamical χ0(ω)
(another story)



Computing χ0

Goal: G ′(0), where

G(V ) =
(
f (H0 + V )− f (H0)

)
(x , x).

with H0 = −∆ + Wper. Classical trick: contour integral representation

f (H) = 1
2πi

˛
C

1
z − H f (z)dz

C σ(H)

εF + iπkBT

εF − iπkBT

G(V ) =
(

1
2πi

˛
C

( 1
z − (H0 + V ) −

1
z − H0

)
f (z)dz

)
(x , x)

=
(

1
2πi

˛
C

1
z − H0

V 1
z − H0

f (z)dz
)

(x , x) + O(‖V ‖2).

with
(

1
z−H0

V 1
z−H0

)
(x , x) ∈ L2(R3) if V ∈ L2(R3) (Kato-Seiler-Simon)



χ0 and χ0,q

χ0V = 1
2πi

˛
C

(
1

z − H0
V 1
z − H0

)
(x , x) f (z)dz .

If V = e iqxW , then(
1

z − H0
e iqxW 1

z − H0

)
(x , x) = e iqx

(
e−iqx 1

z − H0
e iqx︸ ︷︷ ︸

periodic, fibers 1
z−Hk+q

W 1
z − H0

)
(x , x)

It follows that, for all w ∈ L2per,

(χ0)qW = 1
2πi

˛
C
f (z)
ˆ
B

(
1

z − H0,k+q
W 1

z − H0,k

)
(x , x)dkdz

and, inserting H0,k =
∑∞

n=1 εnk |unk〉〈unk | and performing the contour
integral,

χ0,q(K ,K ′) =
ˆ
B

∑
n,m≥0

f (εn,k+q)− f (εm,k)
εn,k+q − εm,k

〈e iKxum,k , unk+q〉〈unk+q, e iK ′xum,k〉dk



Properties of χ0

χ0,q(K ,K ′) =
ˆ
B

∑
n,m≥0

f (εn,k+q)− f (εn,k)
εn,k+q − εm,k

〈e iKxum,k , unk+q〉〈unk+q, e iK ′xum,k〉dk

χ0 is bounded, self-adjoint, non-positive on L2(R3), and

χ0,q=0(K = 0,K ′ = 0) =
ˆ
B

∑
n≥0

f ′(εnk)dk

At zero temperature, this is minus the density of states at the Fermi
level: finite for a metal and zero for an insulator. In fact:

χ0,q(0, 0)
q→0
≈

{
−C1 (T 6= 0)
−C2|q|2 (insulator T = 0)

In a non-interacting conductor, increasing the potential increases the
density; in an insulator, it does not.
Small-q limit of T = 0 metals consistent with
Thomas-Fermi/Debye-Hückel theory (ρ ∝ f (V )⇒ δρ ∝ −δV )



The algebra of linear response

Recall that

V = Vdef + vcG(V )

Linearize for Vdef and V small:

V ≈ Vdef + vcχ0V (Dyson equation)
V ≈ ε−1Vdef

with

ε−1 = (1− vcχ0)−1

the dielectric operator (mimics Q
εr |x | ).



The dielectric operator

(1− vcχ0)−1 = (−∆− χ0)−1︸ ︷︷ ︸
defect charge density → total potential

(−∆).

We split the Bloch matrix (−∆− χ0)−1q in K = 0 and K 6= 0:

(−∆− χ0)q =

|q|2 0
0 |q + K |2δK ,K ′︸ ︷︷ ︸

>0

− (χ0,q(0, 0) χ0,q(0,K )
χ0,q(K , 0) χ0,q(K ,K ′)

)
︸ ︷︷ ︸

≤0

Invertibility of (−∆ + χ0) determined by behavior of χ0,q(0, 0) near
q = 0, i.e. the density of states at εF .

For conductors, χ0,0(0, 0) = −C1 < 0 and so (−∆ + χ0) is
invertible: ε−1 ≈ |q|2

1+|q|2 (modulo bounded invertible operators)

For insulators χ0,q(0, 0) ≈ −C2|q|2 and by a Schur complement one
can show that ε−1 is bounded invertible on L2(R3).



The dielectric operator and screening

V ≈ ε−1Vdef

ε−1q (0, 0)
q→0
≈

{
|q|2 (T 6= 0)
1 (insulator = 0)

When Vdef(x) = Q
4π|x | , V̂def(q) = Q

|q|2 .
At finite temperature, the singularity 1

|q|2 is compensated by ε−1 (full
screening). For insulators at T = 0 it is not (partial screening).

Asymptotic decay at finite temperature: smoothness of q 7→ ε−1q .
Not true at T = 0, singularities in f (εn,k+q)−f (εn,k )

εn,k+q−εm,k
when q connects

points in the Fermi surface: Friedel oscillations.
Nonlinear terms: implicit function theorem on weighted Sobolev
spaces
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Convergence of the SCF cycle

V︸︷︷︸
screened potential

= Vdef + vcG(V )︸ ︷︷ ︸
reaction potential

How to compute this numerically? Truncation to a finite L× L× L
supercell, discretization, then self-consistent algorithms

Vn+1 = Vdef + vcG(Vn)

usually does not converge, so use damped iteration

Vn+1 = Vn + α(Vdef + vcG(Vn)− Vn)

with α > 0.
This is a good idea because it decreases the energy if α > 0 is small
enough. Speed of convergence?



Charge sloshing

Vn+1 = Vn + α(Vdef + vcG(Vn)− Vn)

Linearize for small Vn,Vdef :

Vn+1 = (1− α + αvcχ0)Vn + αVdef

= (1− αε)Vn + αVdef

Speed of convergence of SCF ⇔ ratio of eigenvalues of ε = 1− vcχ0

ε = 1− vcχ0 has eigenvalues ≥ 1: damping works for α > 0 small
enough
For insulators at T = 0, χ0 ≈ |q|2, and vcχ0 is bounded:
convergence rate independent of L
For conductors, χ0 ≈ C , and vcχ0 ≈ C

|q|2 diverges: charge sloshing.
Number of iterations ∝ L2 (∝ L with Anderson/Pulay/DIIS).



Kerker preconditioning

Slow convergence for metals with large unit cells (charge sloshing).
Kerker preconditioning (’81):

Vn+1 = Vn + αK(Vdef + vcG(Vn)− Vn) (1)

with the operator K = |q|2
C+|q|2 (high-pass filter).

Iteration matrix Kε ≈ 1:

Theorem (Levitt ’18)
At finite temperature, the iteration (1) with V0 = 0 is a contraction in
L2(R3) for Vdef ∈ vcH−2 and α > 0 small enough.

Theorem in R3: in practice, convergence rate L−independent.



Extensions

Zero temperature metals: Friedel oscillations
Exchange-correlation (K = vc + dVXC

dρ not necessarily positive, but
χ0K ≤ 1 at energy minimum)
Non-perturbative regime (fixed point ⇒ variational)
Coupling to phonons (do they affect screening?)
Dynamical properties ε−1(q, ω)
Good preconditionners for the SCF cycle



Advertisement: DFTK.jl

Why a new code?
Goal: play with algorithms for DFT, simpler models, etc.
Physicists have large Fortran codebases, mathematicians have
Matlab toy models, computer scientists have artificial kernels
Julia solves the two-language problem (goodbye Fortran+Python)
Well-placed to take advantage of modern compiler technology
(automatic differentiation, GPU, parallelism, mixed precision...)

DFTK (Density Functional ToolKit)
Similar spirit to KSSOLV
Lead developer: Michael Herbst
http://github.com/mfherbst/DFTK.jl, MIT licence:
contributions welcome!
Use third-party libraries as far as possible (FFTs, linear algebra,
eigensolvers, mixing, optimization, libxc...)
Started from scratch Jan. 2019, first “real” result Apr. 2019
(LDA/GTH band structure of Silicon), 2kLOC
Contact us if you’re interested!
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