Metals vs insulators: screening and charge sloshing

Antoine Levitt

Inria Paris & CERMICS, ENPC

16 July 2019, Valencia

Place a free charge Q in an environment, and observe its electric field V far away.

In a material, the electrons reorganize around the charge:

V is reduced

Macroscopic explanation: Debye-Hückel (ions in liquid) or Thomas-Fermi (uniform electron gas)

$$\begin{split} -\Delta V &= f(V) + \rho_{\text{ext}} \\ f(V) &= \begin{cases} \rho_0 e^{-\frac{V}{k_B T}} & \text{Debye-Hückel} \\ \propto (\varepsilon_F - V)^{3/2} & \text{Thomas-Fermi} \end{cases} \end{split}$$

Linearize around an equilibrium $\rho = \operatorname{cst}_{\rho} + \delta\rho$, $V = \operatorname{cst}_{V} + \delta V$, $\chi_0 = f'(V)(\operatorname{cst}_{V})$:

$$\begin{split} -\Delta \delta V - \chi_0 \delta V &= \delta \rho_{\rm ext} \\ \delta V \propto \rho_{\rm ext} * \frac{e^{-\sqrt{-\chi_0}|x|}}{|x|} \end{split}$$

 δV is short-ranged! $\sqrt{-\chi_0}$ inverse screening length

System	Potential $V(x)$	Features
Vacuum	$\frac{Q}{4\pi x }$	No screening
Insulator	$\frac{Q}{4\pi\varepsilon_r x }$	Partial screening
Conductor (Debye-Hückel, Thomas-Fermi)	$\propto rac{Qe^{-k x }}{ x }$	Full screening
Metal (Lindhard response)	$\propto rac{Q\cos(2k_F x)}{ x ^3}$	Friedel oscillations

In insulators, electrons are bound to atoms and do not move much (partial screening), in conductors (metals, systems at $T \neq 0$) they are free to flock towards the charge (full screening).

How does this arise from QM?

Screening interesting on its own, but also: SCF iterations, many-body perturbation theory, locality, thermodynamic limits...

Isolated systems

DFT of an isolated system:

where

$$(v_{c}\rho)(x) = \frac{1}{4\pi} \int_{\mathbb{R}^{3}} \frac{\rho(y)}{|x-y|} dy = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\rho)(q)}{|q|^{2}} \right)$$

$$\mathcal{F}_{\varepsilon_{F}}(V) = f_{\varepsilon_{F}}(-\Delta + V)(x,x)$$

$$f_{\varepsilon_{F}}(\varepsilon) = \begin{cases} \frac{1}{1 + \exp\left(\frac{\varepsilon - \varepsilon_{F}}{k_{B}T}\right)} & \text{(finite temperature)} \\ 1(\varepsilon \le \varepsilon_{F}) & \text{(zero temperature)} \end{cases}$$

- No exchange-correlation, because it's hard (non-convex)
- Reduced Hartree-Fock, Hartree, Schrödinger-Poisson, RPA...
- Fixed-point formulation rather than (free-)energetic: less powerful, but simpler for perturbation

Periodic system

Assume $W_{\rm nucl}$ is $2\pi\mathbb{Z}^3$ -periodic

where $v_{\rm per}
ho$ is the unique periodic solution of

$$\begin{cases} -\Delta(v_{\rm per}\rho) &= \rho - \frac{1}{(2\pi)^3} \int_{[0,2\pi]^3} \rho \\ \int_{[0,2\pi]^3} v_{\rm per}\rho &= 0 \end{cases}$$

- Derived from thermodynamic limit at zero temperature (Catto/Le Bris/Lions '01)
- Metal or insulator, depending on whether $\varepsilon_F \in \sigma(-\Delta + W)$ or not
- Existence theory at finite temperature (Nier '93)

Defect model

Fix a solution $(W_{\text{per}}, \varepsilon_F)$ of the periodic rHF equation, and set $V_{\text{def}} : \mathbb{R}^3 \to \mathbb{R}$ be a defect potential (e.g. Q/|x|)

$$\overbrace{V_{\rm screened potential}}^{V} = V_{\rm def} + \underbrace{v_{\rm c} G(V)}_{\rm reaction potential}$$

with

$$\underbrace{\underline{G(V)}}_{\text{reaction density}} = \underbrace{\underline{F_{\varepsilon_F}(W_{\text{per}} + V)}}_{\text{perturbed density}} - \underbrace{\underline{F_{\varepsilon_F}(W_{\text{per}})}}_{\text{periodic density}}$$
$$= \left(f_{\varepsilon_F}(-\Delta + W_{\text{per}} + V) - f_{\varepsilon_F}(-\Delta + W_{\text{per}})\right)(x, x).$$

(grand-canonical ensemble)

- Existence theory and derivation from thermodynamic limit at zero temperature (Cancès/Deleurence/Lewin '08)
- Derivation from thermodynamic limit in a tight-binding model (Chen/Lu/Ortner '17)

Linear response, e.g. $V_{def}(x) = Q/|x|$ with Q small

"Theorem" (Cancès-Lewin '10, modulo regularization/homogenization)

For a zero-temperature isotropic insulator, $V(x) \approx \frac{Q}{\varepsilon_r |x|}$ for large x, for some $\varepsilon_r > 1$.

Theorem (Levitt '18 arxiv)

For any finite-temperature system, V decays faster than any inverse polynomial.

Screening in insulators and conductors

Insulators T = 0

Finite temperature

- Insulators attract a charge $\int G(V) < Q$, V is long-range
- Conductors attract a charge $\int G(V) = Q$, V is short-range
- This picture is "homogenized" (ignores lattice-scale oscillations)
- Zero-temperature metals still open (Friedel oscillations)

Defects and screening

2 Linear response

3 Convergence of the SCF cycle

Bloch matrices

- **Periodic operators** A (that commute with lattice translations) map Bloch waves $e^{ikx}u_k(x)$ to Bloch waves $e^{ikx}(A_ku_k)(x)$
- In Fourier series representation u_k(x) = ∑_{K∈Z³} c_K e^{iKx}, Bloch matrices A_k

$$e^{i(k+K')x}\mapsto A_k(K,K')e^{i(k+K)x}, \quad K,K'\in\mathbb{Z}^3, k\in[0,1]^3$$

• Examples:

Operator A	Bloch fiber A_k	Bloch matrix $A_k(K, K')$
$-\Delta$	$(-i\nabla + k)^2$	$ k+K ^2 \delta_{KK'}$
$W_{ m per}$	$W_{\rm per}$	$c_{\mathcal{K}-\mathcal{K}'}(\mathcal{W}_{\mathrm{per}})$
e ^{-iqx} Ae ^{iqx}	A_{k+q}	$A_{k+q}(K,K')$

The independent-particle polarizability operator χ_0

A fundamental quantity is the independent-particle polarizability operator $\chi_0 = G'(0)$

$$egin{aligned} G(V) &= F(W_{ ext{per}}+V) - F(W_{ ext{per}}) \ &= \Bigl(f(-\Delta+W_{ ext{per}}+V) - f(-\Delta+W_{ ext{per}})\Bigr)(x,x). \end{aligned}$$

 χ_0 :

- describes the density response $\delta \rho = \chi_0 \delta V$ of a system of **fictional** system of **independent** electrons to a perturbation δV of the potential
- is the Hessian of the (concave) non-interacting potential-to-energy map: self-adjoint, non-positive
- has the symmetries of W_{per} (commutes with lattice translations): $\chi_{0,q}(K,K')$
- can be computed from perturbation theory ("sum over states", Lindhard '53, Adler-Wiser '62)
- contains a lot of information, can be generalized to dynamical $\chi_0(\omega)$ (another story)

Computing χ_0

Goal: G'(0), where

$$G(V) = \left(f(H_0+V)-f(H_0)\right)(x,x).$$

with $\textit{H}_{0}=-\Delta+\textit{W}_{\rm per}.$ Classical trick: contour integral representation

$$f(H) = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z - H} f(z) dz$$

•
$$\varepsilon_F - i\pi k_B T$$

$$G(V) = \left(\frac{1}{2\pi i} \oint_{\mathcal{C}} \left(\frac{1}{z - (H_0 + V)} - \frac{1}{z - H_0}\right) f(z) dz\right)(x, x)$$

= $\left(\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z - H_0} V \frac{1}{z - H_0} f(z) dz\right)(x, x) + O(||V||^2).$
with $\left(\frac{1}{z - H_0} V \frac{1}{z - H_0}\right)(x, x) \in L^2(\mathbb{R}^3)$ if $V \in L^2(\mathbb{R}^3)$ (Kato-Seiler-Simon

 χ_0 and $\chi_{0,q}$

$$\chi_0 V = \frac{1}{2\pi i} \oint_{\mathcal{C}} \left(\frac{1}{z - H_0} V \frac{1}{z - H_0} \right) (x, x) f(z) dz$$

If $V = e^{iq_X}W$, then

$$\left(\frac{1}{z-H_0}e^{iqx}W\frac{1}{z-H_0}\right)(x,x) = e^{iqx}\left(\underbrace{e^{-iqx}\frac{1}{z-H_0}e^{iqx}}_{\text{periodic, fibers }\frac{1}{z-H_0}}W\frac{1}{z-H_0}\right)(x,x)$$

It follows that, for all $w \in L^2_{
m per}$,

$$(\chi_0)_q W = \frac{1}{2\pi i} \oint_{\mathcal{C}} f(z) \int_{\mathcal{B}} \left(\frac{1}{z - H_{0,k+q}} W \frac{1}{z - H_{0,k}} \right) (x, x) dk dz$$

and, inserting $H_{0,k} = \sum_{n=1}^{\infty} \varepsilon_{nk} |u_{nk}\rangle \langle u_{nk}|$ and performing the contour integral,

$$\chi_{0,q}(K,K') = \int_{\mathcal{B}} \sum_{n,m\geq 0} \frac{f(\varepsilon_{n,k+q}) - f(\varepsilon_{m,k})}{\varepsilon_{n,k+q} - \varepsilon_{m,k}} \langle e^{iKx} u_{m,k}, u_{nk+q} \rangle \langle u_{nk+q}, e^{iK'x} u_{m,k} \rangle dk$$

$$\chi_{0,q}(K,K') = \int_{\mathcal{B}} \sum_{n,m\geq 0} \frac{f(\varepsilon_{n,k+q}) - f(\varepsilon_{n,k})}{\varepsilon_{n,k+q} - \varepsilon_{m,k}} \langle e^{iKx} u_{m,k}, u_{nk+q} \rangle \langle u_{nk+q}, e^{iK'x} u_{m,k} \rangle dk$$

• χ_0 is bounded, self-adjoint, non-positive on $L^2(\mathbb{R}^3)$, and

$$\chi_{0,q=0}(K=0,K'=0) = \int_{\mathcal{B}} \sum_{n\geq 0} f'(\varepsilon_{nk}) dk$$

At zero temperature, this is minus the density of states at the Fermi level: finite for a metal and zero for an insulator. In fact:

$$\chi_{0,q}(0,0) \stackrel{q \to 0}{\approx} \begin{cases} -C_1 & (T \neq 0) \\ -C_2 |q|^2 & (\text{insulator } T = 0) \end{cases}$$

- In a non-interacting conductor, increasing the potential increases the density; in an insulator, it does not.
- Small-q limit of T = 0 metals consistent with Thomas-Fermi/Debye-Hückel theory ($\rho \propto f(V) \Rightarrow \delta \rho \propto -\delta V$)

Recall that

$$V = V_{\rm def} + v_{\rm c} G(V)$$

Linearize for V_{def} and V small:

$$egin{aligned} &Vpprox V_{
m def}+v_{
m c}\chi_{0}V & (ext{Dyson equation}) \ &Vpproxarepsilon^{-1}V_{
m def} \end{aligned}$$

with

$$\varepsilon^{-1} = (1 - \mathsf{v}_{\mathrm{c}}\chi_0)^{-1}$$

the dielectric operator (mimics $\frac{Q}{\varepsilon_r|x|}$).

The dielectric operator

$$(1 - v_c \chi_0)^{-1} = (-\Delta - \chi_0)^{-1}$$
 (- Δ).

defect charge density \rightarrow total potential

We split the Bloch matrix $(-\Delta - \chi_0)_q^{-1}$ in K = 0 and $K \neq 0$:

$$(-\Delta - \chi_0)_q = \begin{pmatrix} |q|^2 & 0\\ 0 & \underline{|q+K|^2 \delta_{K,K'}} \\ & > 0 \end{pmatrix} - \underbrace{\begin{pmatrix} \chi_{0,q}(0,0) & \chi_{0,q}(0,K)\\ \chi_{0,q}(K,0) & \chi_{0,q}(K,K') \end{pmatrix}}_{\leq 0}$$

Invertibility of $(-\Delta + \chi_0)$ determined by behavior of $\chi_{0,q}(0,0)$ near q = 0, i.e. the density of states at ε_F .

- For conductors, $\chi_{0,0}(0,0) = -C_1 < 0$ and so $(-\Delta + \chi_0)$ is invertible: $\varepsilon^{-1} \approx \frac{|q|^2}{1+|q|^2}$ (modulo bounded invertible operators)
- For insulators $\chi_{0,q}(0,0) \approx -C_2 |q|^2$ and by a Schur complement one can show that ε^{-1} is bounded invertible on $L^2(\mathbb{R}^3)$.

The dielectric operator and screening

$$egin{aligned} &Vpproxarepsilon^{-1}V_{
m def}\ &arepsilon_q^{-1}(0,0) \stackrel{q
ightarrow 0}{pprox} egin{cases} &|q|^2 &(\mathcal{T}
eq 0)\ &1 &(ext{insulator}=0) \end{aligned}$$

When $V_{\text{def}}(x) = \frac{Q}{4\pi |x|}$, $\widehat{V_{\text{def}}}(q) = \frac{Q}{|q|^2}$. At finite temperature, the singularity $\frac{1}{|q|^2}$ is compensated by ε^{-1} (full screening). For insulators at T = 0 it is not (partial screening).

- Asymptotic decay at finite temperature: smoothness of q → ε_q⁻¹. Not true at T = 0, singularities in ^{f(ε_{n,k+q})-f(ε_{n,k})}/_{ε_{n,k+q}-ε_{m,k}} when q connects points in the Fermi surface: Friedel oscillations.
- Nonlinear terms: implicit function theorem on weighted Sobolev spaces

Defects and screening

2 Linear response

3 Convergence of the SCF cycle

Convergence of the SCF cycle

How to compute this numerically? Truncation to a finite $L \times L \times L$ supercell, discretization, then self-consistent algorithms

$$V_{n+1} = V_{\rm def} + v_{\rm c} G(V_n)$$

usually does not converge, so use damped iteration

$$V_{n+1} = V_n + \alpha (V_{def} + v_c G(V_n) - V_n)$$

with $\alpha > 0$.

This is a good idea because it decreases the energy if $\alpha > 0$ is small enough. Speed of convergence?

$$V_{n+1} = V_n + \alpha (V_{def} + v_c G(V_n) - V_n)$$

Linearize for small V_n , V_{def} :

$$V_{n+1} = (1 - \alpha + \alpha v_c \chi_0) V_n + \alpha V_{def}$$
$$= (1 - \alpha \varepsilon) V_n + \alpha V_{def}$$

Speed of convergence of SCF \Leftrightarrow ratio of eigenvalues of $\varepsilon = 1 - \textit{v}_{c}\chi_{0}$

- $\varepsilon = 1 v_c \chi_0$ has eigenvalues ≥ 1 : damping works for $\alpha > 0$ small enough
- For insulators at T = 0, $\chi_0 \approx |q|^2$, and $v_c \chi_0$ is bounded: convergence rate independent of L
- For conductors, $\chi_0 \approx C$, and $v_c \chi_0 \approx \frac{C}{|q|^2}$ diverges: charge sloshing. Number of iterations $\propto L^2$ ($\propto L$ with Anderson/Pulay/DIIS).

Slow convergence for metals with large unit cells (*charge sloshing*). Kerker preconditioning ('81):

$$V_{n+1} = V_n + \alpha \mathcal{K} (V_{\text{def}} + v_c G(V_n) - V_n)$$
(1)

with the operator $\mathcal{K} = \frac{|q|^2}{C+|q|^2}$ (high-pass filter).

Iteration matrix $\mathcal{K}\varepsilon \approx 1$:

Theorem (Levitt '18)

At finite temperature, the iteration (1) with $V_0 = 0$ is a contraction in $L^2(\mathbb{R}^3)$ for $V_{def} \in v_c H^{-2}$ and $\alpha > 0$ small enough.

Theorem in \mathbb{R}^3 : in practice, convergence rate *L*-independent.

- Zero temperature metals: Friedel oscillations
- Exchange-correlation ($K = v_c + \frac{dV_{\rm XC}}{d\rho}$ not necessarily positive, but $\chi_0 K \leq 1$ at energy minimum)
- Non-perturbative regime (fixed point \Rightarrow variational)
- Coupling to phonons (do they affect screening?)
- Dynamical properties $arepsilon^{-1}(q,\omega)$
- Good preconditionners for the SCF cycle

Why a new code?

- Goal: play with algorithms for DFT, simpler models, etc.
- Physicists have large Fortran codebases, mathematicians have Matlab toy models, computer scientists have artificial kernels
- Julia solves the two-language problem (goodbye Fortran+Python)
- Well-placed to take advantage of modern compiler technology (automatic differentiation, GPU, parallelism, mixed precision...)
- DFTK (Density Functional ToolKit)
 - Similar spirit to KSSOLV
 - Lead developer: Michael Herbst
 - http://github.com/mfherbst/DFTK.jl, MIT licence: contributions welcome!
 - Use third-party libraries as far as possible (FFTs, linear algebra, eigensolvers, mixing, optimization, libxc...)
 - Started from scratch Jan. 2019, first "real" result Apr. 2019 (LDA/GTH band structure of Silicon), 2kLOC
 - Contact us if you're interested!