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@ Defects and screening
© Linear response

© Convergence of the SCF cycle



Screening

Place a free charge Q in an environment, and observe its electric field V
far away.
In a material, the electrons reorganize around the charge:

V is reduced



Screening

Macroscopic explanation: Debye-Hiickel (ions in liquid) or Thomas-Fermi
(uniform electron gas)

AV = F(V) + pext

o oy
FV) = poe *B Debye-Hiickel
o (e — V)32  Thomas-Fermi
Linearize around an equilibrium p = cst, + ép, V = csty + 46V,
Xo = f'(V)(csty):
—Ad§V —x00V = 0pext
e~V —Xolx|
OV X Pext ¥ —————
X

0V is short-ranged! \/—xo inverse screening length



Screening

System Potential V/(x) Features
Vacuum @ No screening
47|x|
Insulator e Partial screening
4re,|x|
Qe—k|x|
Conductor (Debye-Hiickel, Thomas-Fermi) ] Full screening
X
2k
Metal (Lindhard response) x QCOS|( |3FX) Friedel oscillations
X

In insulators, electrons are bound to atoms and do not move much

(partial screening), in conductors (metals, systems at T # 0) they are
free to flock towards the charge (full screening).

‘ How does this arise from QM? ‘

Screening interesting on its own, but also: SCF iterations, many-body
perturbation theory, locality, thermodynamic limits...



Isolated systems

DFT of an isolated system:

Vo= Ve o+ veFe (V) 4 VaelFAV)]
total potential ext. potential Hartree potential Exchange-correlation
[Ew= N

R3 ~—~— ~~
density number of electrons
where
1 p(y) —1 (F(p)(a)

(o)) = 4 [ Ly (2

¢ 4m Jgs [x —y| EE

Fer(V) = for (A + V)(x, %)

————~ (finite temperature
£r(e) = { tree(r) ( P )
1(e <ef) (zero temperature)

@ No exchange-correlation, because it's hard (non-convex)

@ Reduced Hartree-Fock, Hartree, Schrédinger-Poisson, RPA...

o Fixed-point formulation rather than (free-)energetic: less powerful,
but simpler for perturbation



Periodic system

Assume Wy is 27Z3-periodic

wW = Wiua + Ve (W)
per"ep
~~ ~——
total potential ext. potential  Hartree potential
| Rm=
[0,27]3 N~ ~
density electrons per unit cell

where vperp is the unique periodic solution of

{A(Vperp) =p—- (271r)3 f[072ﬂ.13 p
f[0,2rr]3 Vperp =0

@ Derived from thermodynamic limit at zero temperature (Catto/Le
Bris/Lions '01)

e Metal or insulator, depending on whether e € o(—A + W) or not

e Existence theory at finite temperature (Nier '93)



Defect model

Fix a solution (Wyer,ef) of the periodic rHF equation, and set
Vier : R® — R be a defect potential (e.g. Q/|x|)

\ 4 = Vet + VCG( V)

screened potential reaction potential

with
G(V) = FEF(Wpcr+ V) - FsF(Wpcr)
——" —_—— ——
reaction density perturbed density periodic density

= (£ (D + Wor + V) — For (A + Wher) ) (x, ).

(grand-canonical ensemble)

o Existence theory and derivation from thermodynamic limit at zero
temperature (Cancés/Deleurence/Lewin '08)

@ Derivation from thermodynamic limit in a tight-binding model
(Chen/Lu/Ortner '17)



Linear response

Linear response, e.g. Vier(x) = Q/|x| with

“Theorem” (Cances-Lewin '10, modulo regularization/homogenization)

For a zero-temperature isotropic insulator, V(x) ~ ?QX‘ for large x, for
some e, > 1.

Theorem (Levitt '18 arxiv)

For any finite-temperature system, V' decays faster than any inverse
polynomial.




Screening in insulators and conductors

V = Vdef + VCG(V)

Insulators T =0 Finite temperature

Insulators attract a charge [ G(V) < Q, V is long-range
Conductors attract a charge [ G(V) = Q, V is short-range
This picture is "homogenized” (ignores lattice-scale oscillations)

Zero-temperature metals still open (Friedel oscillations)



© Linear response



Bloch matrices

e Periodic operators A (that commute with lattice translations) map
Bloch waves e u;(x) to Bloch waves (A uy)(x)

o In Fourier series representation ux(x) = 3 xcz: cke™™, Bloch
matrices Ay

KDY Ly AL (K, KD RHRX KK € 73,k € [0, 1]°.

@ Examples:

Operator A | Bloch fiber Ay | Bloch matrix Ax(K, K')
—-A (—iV + k)? |k + K|[*0kk
Woer Woer i (W)

e~ '™ Ae' Ak+q Akrq(K, K')




The independent-particle polarizability operator g

A fundamental quantity is the independent-particle polarizability operator
Xo = G'(0)

G(V) = F(Wper + V) - F(Wper)
- (f(—A + Woer + V) — F(—A + Wper))(x,x).

Xo-
@ describes the density response dp = xodV of a system of fictional
system of independent electrons to a perturbation §V of the
potential

o is the Hessian of the (concave) non-interacting potential-to-energy
map: self-adjoint, non-positive

@ has the symmetries of W, (commutes with lattice translations):
XO-,q(Kv K/)

@ can be computed from perturbation theory (“sum over states”,
Lindhard '53, Adler-Wiser '62)

@ contains a lot of information, can be generalized to dynamical xo(w)
(another story)



Computing Yo

Goal: G'(0), where

G(V) = (f(Ho +V) - f(Ho)) (x, X).

with Hy = —A + W,,.,. Classical trick: contour integral representation
1 1
f(H) = — f(z)d
()= 55§ 521
o € +imkpT
c - o(H)

v

\

e €F 7i7TkBT

(V)= <21m§é (5= (;0 V) 2 —1H0>f(z)dz> (%)
_ <21m 5’% Z%HOVZ _1H0f(z)dz) (x.x) + O(| VI2).

with (szO VZJHO) (x,x) € L2(R3) if V € L?(R3) (Kato-Seiler-Simon)




If V = e®™W, then

1 ; 1 : . 1 . 1
( e'*wW > (x,x) = e’qx< ef’qxiz " e W )(X,x)

Z—Ho Z—Ho

It follows that, for all w € L2

per?’

Z—Ho

eriodic, fibers — 21—
P z—Hyy

1 1 1
W=—Qf w ki
(XO)q 27Tf é (Z)/B (Z — H07k+q zZ — HO,k> (X’X)d dZ

and, inserting Ho x = > o, €nk|Unk) (unk| and performing the contour

integral,

5
Xo’q K K)—/ Z nk+q

n,m>0 Enk+q =

Em.k . .
E( :1 ) <eIKXUm,k7 unk+q><unk+q7 e’K/XUm,k>dk
m,




Properties of xq

6,, k+q f(&n k) iK: iK'
X0,q(K, K") / g (€™ Um i, Unktq) (Unk+q, € “Um i) dk
om0 €nk+q — Em,k

@ Yo is bounded, self-adjoint, non-positive on L?(IR®), and

X0,g=0(K = 0,K" = 0) /Zf’ enk)d

n>0

At zero temperature, this is minus the density of states at the Fermi
level: finite for a metal and zero for an insulator. In fact:

-0 [~ (T #0)
0,0
X04(0,0) = {—C2|q2 (insulator T = 0)

@ In a non-interacting conductor, increasing the potential increases the
density; in an insulator, it does not.

@ Small-g limit of T = 0 metals consistent with
Thomas-Fermi/Debye-Hiickel theory (p o< (V) = dp x —6V)



The algebra of linear response

Recall that
V = Vet + VCG( V)
Linearize for Vger and V small:

V = Vger + vexoV  (Dyson equation)

V ~ 5_1Vdef

with

el = (1 - VCX0)71

the dielectric operator (mimics —-).
er|x|



The dielectric operator

(1—vexo) ' = (-0 = x0) ™" (—A).

defect charge density — total potential

We split the Bloch matrix (—A — xo);* in K =0 and K # 0:

L& 0
0.0)  x04(0. K)
A oY= | 0 g+ KPswk | — (Xoa(© (0,
(=8 =0k, SARAALLS (Rosk ) ot s
>
<0

Invertibility of (—A + xo) determined by behavior of x¢.4(0,0) near
g = 0, i.e. the density of states at ef.

@ For conductors, x0,0(0,0) = —C; <0 and so (—A + xo) is

2
invertible: e~ ~ % (modulo bounded invertible operators)

e For insulators x,4(0,0) &~ —G|q|? and by a Schur complement one
can show that ¢! is bounded invertible on L?(IR3).



The dielectric operator and screening

(0,0) " {|q|2 (T #0)

1 (insulator = 0)

When Vdof(X) = 47r\><\' Vdcf( ) %
At finite temperature, the singularity # is compensated by e~ (full
screening). For insulators at T = 0 it is not (partial screening).

@ Asymptotic decay at finite temperature: smoothness of g +— 5;1

Not true at T = 0, singularities in W when g connects
n,k+q m,

points in the Fermi surface: Friedel oscillations.

@ Nonlinear terms: implicit function theorem on weighted Sobolev
spaces



© Convergence of the SCF cycle



Convergence of the SCF cycle

4 . = Vet + Ve G( V)
screened potential reaction potential

How to compute this numerically? Truncation to a finite L x L x L
supercell, discretization, then self-consistent algorithms

Vn+1 = Vger + Ve G( Vn)

usually does not converge, so use damped iteration

Vn+1 - Vn + 0[( Vdcf + Ve G( Vn) - Vn)

with o > 0.
This is a good idea because it decreases the energy if a > 0 is small
enough. Speed of convergence?



Charge sloshing

Vn+1 =V, + a( Vet + VCG( Vn) - Vn)

Linearize for small V,,, Vget:

Vit1 = (1 — a+ avexo) Ve + aViet
= (1 - CYE)V,, + Vet

Speed of convergence of SCF < ratio of eigenvalues of e = 1 — v. o

@ ¢ =1 — v.xo has eigenvalues > 1: damping works for av > 0 small
enough

e For insulators at T =0, xo ~ |q|?, and v.xo is bounded:
convergence rate independent of L

@ For conductors, xg =~ C, and v.xo = # diverges: charge sloshing.
Number of iterations oc L2 (ox L with Anderson/Pulay/DIIS).



Kerker preconditioning

Slow convergence for metals with large unit cells (charge sloshing).
Kerker preconditioning ('81):

Vn+1 =V,+ CYIC( Vet + VCG(Vn) - Vn) (1)

with the operator K = C+|‘q|2 (high-pass filter).

Iteration matrix Ke ~ 1:

Theorem (Levitt '18)

At finite temperature, the iteration (1) with Vo = 0 is a contraction in
L2(R3) for Vet € veH™2 and o > 0 small enough.

Theorem in R3: in practice, convergence rate L—independent.



Extensions

Zero temperature metals: Friedel oscillations

Exchange-correlation (K = v, + d\g);c not necessarily positive, but

XoK <1 at energy minimum)

Non-perturbative regime (fixed point = variational)
Coupling to phonons (do they affect screening?)
Dynamical properties e~1(q,w)

Good preconditionners for the SCF cycle



Advertisement: DFTK. j1

Why a new code?
@ Goal: play with algorithms for DFT, simpler models, etc.

@ Physicists have large Fortran codebases, mathematicians have
Matlab toy models, computer scientists have artificial kernels

@ Julia solves the two-language problem (goodbye Fortran+Python)

@ Well-placed to take advantage of modern compiler technology
(automatic differentiation, GPU, parallelism, mixed precision...)

DFTK (Density Functional ToolKit)
@ Similar spirit to KSSOLV
@ Lead developer: Michael Herbst

@ http://github.com/mfherbst/DFTK. j1, MIT licence:
contributions welcome!

@ Use third-party libraries as far as possible (FFTs, linear algebra,
eigensolvers, mixing, optimization, libxc...)

@ Started from scratch Jan. 2019, first “real” result Apr. 2019
(LDA/GTH band structure of Silicon), 2kLOC

o Contact us if you're interested!
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