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Electronic structure theory

The behavior of “ordinary” matter is driven by the behavior of nuclei
and electrons
Nuclei can be considered classical point particles, but electrons must
be modeled with quantum mechanics

Water is a good solvent because its electron
distribution gives it a dipole moment



Quantum mechanics of a single electron
In atomic units, no spin, ψ(t, ·) ∈ L2(R3,C)

i∂tψ = Hψ

(Hψ)(x) =

(
−1
2∆ψ(x)

)
︸ ︷︷ ︸

kinetic

+ V (x)ψ(x)︸ ︷︷ ︸
potential

|ψ(x)|2 is the probability density of finding the particle at position x
Stationary states: ψ(t) = e−iλtψ, Hψ = λψ

When V is “nice”, H self-adjoint on L2(R3)

V = 0⇒ continuous spectrum (generalized eigenvectors), wave
propagation
V 6= 0⇒ possible bound states (eigenvectors in L2(R3))
Ex: Hydrogen atom V (x) = − 1

|x |

Scattering states (continuous spectrum)
Ground state

Excited states



Quantum mechanics of non-interacting electrons

Hψn = λnψn λ1 ≤ λ2 ≤ . . .

Pauli exclusion principle: two electrons cannot be in the same
quantum state
Ground state: electrons fill first N energy states (Aufbau principle)
Total energy:

E =
N∑

n=1
λn

Total electronic density:

ρ(x) =
N∑

n=1
|ψn|2(x)



Quantum mechanics of a molecule

Nuclei with charges zk at positions Rk :

Vat(x) = −
M∑

k=1

zk
|x − Rk |

Electrons at positions x and y interact through the Coulomb
interaction 1

|x−y |

True laws of (many-body) quantum mechanics described by
functions of 3N variables: much too complicated, need
approximations
One reasonable-looking approximation, the mean-field reduced
Hartree-Fock (rHF) model: independent electrons under the
mean-field

VH[ρ](x) =

ˆ
R3

ρ(y)

|x − y |dy



rHF and DFT

Mean-field Hamiltonian

Hρ = −1
2∆ + Vat(x) +

ˆ
R3

ρ(y)

|x − y |dy

self-adjoint on L2(R3).
rHF model:

Hρψn = λnψn

ρ(x) =
N∑

n=1
|ψn|2(x)

Eigenvector-dependent eigenvalue problem (A[x1, . . . , xN ]xn = λnxn)
Contains both the Pauli exclusion principle and electron-electron
interaction, but mean-field approximation badly wrong (eg N = 1!)
Good starting point for corrections



rHF and DFT

Mean-field Hamiltonian

Hρ = −1
2∆ + Vat(x) +

ˆ
R3

ρ(y)

|x − y |dy+Vxc[ρ](x)

self-adjoint on L2(R3).
DFT model:

Hρψn = λnψn

ρ(x) =
N∑

n=1
|ψn|2(x)

Eigenvector-dependent eigenvalue problem (A[x1, . . . , xN ]xn = λnxn)
Contains both the Pauli exclusion principle and electron-electron
interaction, but mean-field approximation badly wrong (eg N = 1!)
Good starting point for corrections: Density Functional Theory



Crystal properties
DFT gives access to E (a), energy per unit volume

a ?

Lattice constant: argminE (a)

Pressure: related to dE
da

Young’s modulus (speed of sound): related to d2E
da2

Anharmonic effects: d3E
da3

Many other static and dynamic properties, purely ab initio



DFT in practice

Methodological developments since the ’90s (pseudopotentials,
numerical methods, HPC...): routinely solved for hundreds of atoms
Workhorse of condensed matter physics and quantum chemistry

Equation of state of Si, Söderlind, Per, and David A. Young, Computation 6.1 (2018). Equation of state of MgO, Root, Seth, et al., Physical Review Letters 115.19 (2015).

... but severe deficiencies (excited states, strongly correlated materials)



Applications

From fundamental physics to practical applications

Dissociation energy of adsorbed CO, Andersson, Martin P., et al. Journal of Catalysis 239.2 (2006)



Electronic structure for mathematicians

Complex equations
Need for reliable, automatic, accurate and fast methods
Involves many branches of mathematics

Analysis Computing ”Pure” math
PDEs Linear algebra Probability

Spectral theory Optimization Group theory
Complex analysis Numerical analysis Topology
Nonlinear analysis HPC Differential geometry

Underexplored mathematically

Keyword Web of Science MathSciNet Ratio
Maxwell equations 19,459 2,055 10%
Boltzmann equation 24,519 2,268 10%

Navier Stokes 47,341 9,436 20%
Density Functional Theory 142,374 171 0.1%



This talk

Mathematical theory of periodic quantum systems
Insulators and metals
The supercell method

Response properties
Time-dependent response: electrical conductivity
Time-independent response: electric screening
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DFT for crystals

A perfect crystal is defined by
Lattice R ⊂ R3 (say 2πZ3 wlog)
R-periodic atomic potential Vat

Ncell electrons per unit cell
Mathematically: define a finite-size system, and let the size tend to
infinity (thermodynamic limit). Subtleties [Catto/Le Bris/Lions ’01]:

Infinite number of electrons
Symmetry breaking (non-uniqueness)
Coulomb non-summability
Surface effects

This talk: thermodynamic limit of non-interacting electrons with the
supercell method
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Translational invariance and (generalized) eigenvectors
Forget about electron-electron interaction:

H = −1
2∆ + Vat

with Vat periodic, self-adjoint on L2(R3). Symmetries

τRH = HτR for R ∈ 2πZ3,

τR translation operator by R.
Commuting operators preserve each other’s eigenspaces (if AB = BA and
Ax = λx , then A(Bx) = BAx = λ(Bx)). A family of commuting
self-adjoint operators can all be diagonalized in a basis of common
(generalized) eigenvectors.

Example: fully translation-invariant operators and the Fourier transform
τRHTI = HTIτR for all R ∈ R3

Common eigenvectors of {τR}R∈R3? Plane waves e iqx .
HTI is fully diagonal in Fourier domain

HTIe iqx = HTI(q)e iqx



Lattice translational invariance and Bloch waves

τRH = HτR for R ∈ 2πZ3

What are the common eigenvectors of {τR}R∈2πZ3? Bloch waves
ψ(x) = e ikx u(x), u periodic, k ∈ [0, 1]3

H is partially diagonalized by Bloch waves

(Hψ)(x) = e ikx

[(
1
2 (−i∇+ k)2 + Vat

)
u
]

︸ ︷︷ ︸
:=Hk u, Hk acts on L2([0, 2π]3)

(x)

Reduce to a (parametrized) unit cell problem (much simpler !)
ψnk(x) = e ikx unk(x)



Band structure

ψnk(x) = e ikx unk(x)

Hkunk(x) = εnkunk(x)

σ(H) = {εnk , n ∈ N, k ∈ [0, 1]3}

Possible gaps in the spectrum



The supercell method
Supercell method: take L× L× L copies of the unit cell

ΓL = [0, 2πL]3

with periodic boundary conditions (' torus).
0 ∼ 6π 2π 4π 6π ∼ 0

Need to solve the Schrödinger equation HLψ = λψ for L3Ncell
electrons in ΓL
(usual) diagonalization scales cubically: O(L9)!
The supercell method preserves periodicity:
HLτR = τRHL for R ∈ 2πZ3.
Seek eigenvectors as ψnk(x) = e ikx unk(x), but supercell boundary
conditions impose

k ∈
{
0, 1L , . . . ,

L− 1
L

}3

Uncoupled problems in the discretized Brillouin zone with step 1/L.
O(L3)!



Electrons in a supercell
Recall that in the ground state, N non-interacting electrons will occupy
the first N energy levels of the Hamiltonian.
Total energy of the supercell:

EL =

L3Ncell∑
i=1

λi

=
∑

k∈{0, 1
L ,...,

L−1
L }3,n∈N

εnk1(εnk ≤ εF )

where the Fermi level εF is determined by

L3Ncell =
∑

k∈{0, 1
L ,...,

L−1
L }3,n∈N

1(εnk ≤ εF )

Thermodynamic limit:

lim
L→∞

EL
L3 =

ˆ
[0,1]3

∑
n∈N

εnk1(εnk ≤ εF )dk, with

ˆ
[0,1]3

∑
n∈N

εnk1(εnk ≤ εF )dk = Ncell



Insulators, semiconductors and metals
If

sup
k∈[0,1]3

εNcellk < inf
k∈[0,1]3

εNcell+1,k ,

we have

lim
L→∞

EL
L3 =

ˆ
[0,1]3

Ncell∑
n=1

εnkdk

and the system is an insulator (or semiconductor); otherwise it is a metal.

Tin (metal) Silicon (semiconductor)
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Speed of convergence with respect to L: insulators
Insulators:

1
L3

∑
k∈{0, 1

L ,...,
L−1

L }3

Ncell∑
n=1

εnk →
ˆ

[0,1]3

(Ncell∑
n=1

εnk

)
dk

Usual estimates: O(1/L), but massive error cancellation: quadrature
exact for e i2πnx , |n| < L

0 1 2 3 4 5 6
x

1.0

0.5

0.0

0.5

1.0

Speed of convergence related to decay of the Fourier coefficients of∑Ncell
n=1 εnk : exponential convergence (proof by analytic eigenvalue

perturbation theory + Paley-Wiener) [Gontier-Lahbabi ’16]



Speed of convergence with respect to L: metals

EL
L3 =

1
L3

∑
k∈{0, 1

L ,...,
L−1

L }3,n∈N

εnk1(εnk ≤ εF )

Ncell =
1
L3

∑
k∈{0, 1

L ,...,
L−1

L }3,n∈N

1(εnk ≤ εF )

Slow 1/L (in good cases...) convergence
In practice, often regularized by finite (artificial) temperature:

1(εnk ≤ εF ) 
1

1 + e
εnk−εF

kB T

Theorem (Cancès, Ehrlacher, Gontier, Levitt, Lombardi ’19)
Under regularity assumptions on the Fermi surface, there are
C > 0, η > 0 such that

|EL,T − E | ≤ C(T 2 + T−4e−ηTL)

Huge challenge in practice!
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Response properties
In practice materials are characterized by their response properties:
mechanical, electrical, magnetic, optical, thermal, chemical...

Mathematically: perturbation theory for F (X , ε) around equilibrium

F (X∗, 0) = 0

Time-independent:

F (X , ε) = 0.

Implicit function theorem:

X (ε) = X∗ − ε(∂X F )−1∂εF + O(ε2)

Time-dependent:

Ẋ = F (X , εI(t)),X (0) = X∗.

Duhamel formula:

X (ε, t) = X0 + ε

ˆ t

0
e(t−t′)∂X F (∂εF )I(t ′)dt ′ + O(ε2)

(“fluctuation-dissipation”)



Response and numerical analysis
The same objects appear in numerical analysis at ε = 0

Error control

X − X∗︸ ︷︷ ︸
error

≈ (∂X F )−1 F (X )︸ ︷︷ ︸
residual

Iterative algorithms

Xn+1 = Xn + αF (Xn) ⇒ Xn − X∗ ≈ (1 + α∂X F )n(X0 − X∗)

Need to understand ∂X F and its divergences (= function spaces)

Application to DFT:
Need to formulate problem of interest as a well-posed perturbation
(∂X F invertible)
Hρψn = λnψn has invariances ⇒ density matrices γ =

∑
n |ψn〉〈ψn|

Constraints: γ2 = γ∗ = γ,Tr γ = N: ⇒ differential geometry
∂X F is a complicated object
Contains a huge amount of physics



Electrical conductivity

Minimal quantum model for the conductivity of a crystal [Cancès
Fermanian Levitt Siraj-Dine ’20]

i∂tγ
ε =

[(
1
2∆ + Vat − εxβ

)
, γε
]

γε(0) = 1

(
1
2∆ + Vat ≤ εF

)
Neglect electron-electron, electron-lattice interaction: no dissipation
mechanism, expect infinite conductivity for metals.
Current per unit cell:

jε(t) = Tr(−i∂αγε(t))

where the trace per unit cell is (when well-defined)

TrA = lim
L→∞

1
L3 Tr(1ΓLA1ΓL )

Behavior of jε(t)?



Electrical conductivity
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Proof technique: reduction to a unit cell problem

i∂tγ
ε =

[(
1
2∆ + Vat − εxβ

)
, γε
]

γε(0) = 1

(
1
2∆ + Vat ≤ εF

)
If the operator A is periodic (commutes with lattice translation), use
Bloch theory to block-diagonalize A into its fibers Ak : operators on
L2([0, 2π]3) for k ∈ [0, 1]3.
γε(0) is periodic but 1

2 ∆ + Vat − εxβ is not: cannot use Bloch
theory?
But [xβ ,A] is periodic with fibers i∂βAk (the potential not periodic,
but the field is)

i∂tγk + i∂βγk = [Hk , γk ]

Method of characteristics γ̃εk(t) = γεk+εeβt(t) (change of gauge)
Turn time-independent space-dependent scalar potential into
time-dependent space-independent vector potential
(E = −∇V − ∂A/∂t)



Proof technique: time-dependent perturbation theory

i∂t γ̃
ε
k = [Hk+εeβt , γ̃

ε
k ]

≈ [Hk + εt∂βHk , γ̃
ε
k ]

Use time-dependent perturbation theory to compute γ̃εk then

jε(t) =

ˆ
[0,1]3

Tr(∂αHk+εeβt γ̃
ε
k(t))dk

to first order (regularization needed to smooth out oscillations).

Interpretation: in response theory, an external perturbation δV coupling
occupied state i and empty state j creates a response ∝ e i(εi−εj )t〈i |δV |j〉

In insulators, gap between occupied and empty states: purely
oscillatory response, no net current
In metals, xβ couples neighboring k points: static response on the
Fermi surface

Towards more realistic models: electron-electron, electron-impurity,
electron-phonon.



Summary

1 Introduction

2 Crystals

3 Convergence of the supercell method

4 Response properties: conductivity

5 Response properties: screening



Screening: phenomenology

Phenomenologically, response to a point charge Vpert = Q
|x | :

System Veff Features

Vacuum Q
|x | No screening

Insulator/semiconductor Q
εr |x |

Partial screening

Uniform electron gas (Thomas-Fermi) ∝ Qe−kTF|x |

|x | Full screening

Uniform electron gas (Lindhard) ∝ Q cos(2kF|x |)
|x |3 Friedel oscillations



Screening: the dielectric operator

Consider a finite system in the reduced Hartree-Fock approximation with
perturbation:

Hγ,ε = −1
2∆ + Vat + εVpert + ργ ∗

1
|x |

Assume an Aufbau equilibrium property: γ∗ is the projector on the first N
eigenstates of Hγ∗,0.
Let F : V → ργ(V ) where γ(V ) is the ground state density matrix of
− 1

2 ∆ + V . Then

V = Vat + εVpert + F (V ) ∗ 1
|x |

V ≈ V∗ + ε

(
1− F ′(V∗)

(
· ∗ 1
|x |

))−1

︸ ︷︷ ︸
dielectric operator

Vpert + O(ε2)

Large-scale behavior of F ′ related to density of free electrons: zero for
insulators, non-zero for metals



Dielectric operator and SCF convergence

V = Vat + εVpert + F (V ) ∗ 1
|x |

The convergence of fixed-point schemes (SCF) depend on the
properties of the dielectric operator
Need good approximations to design cheap preconditioners for
heterogeneous systems

“Homogenization” [Herbst, Levitt ’20]ˆ
F ′(V∗)(x , y)V (y)dy ≈ V (x)

ˆ
F ′(V∗)(x , y)dy

= V (x) LDOS(x)



Preconditioners for SCF


	Introduction
	Crystals
	Convergence of the supercell method
	Response properties: conductivity
	Response properties: screening

