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Interpolation of eigenvalues

Given H(k) Hermitian matrix, very large, smooth and periodic in a 3D
box, how can we efficiently interpolate some of its eigenvalues λn(k)?

Application of interest: periodic quantum system.
H(k) = (−i∇+ k)2 + V with periodic boundary conditions on the unit
cell. Box = Brillouin zone
(H(k) is not periodic, but almost; pretend it is for simplicity)

For a smooth function f (k):

Fourier interpolation
Compute f at Nd equispaced points, expand f in Fourier series and fit its
first Fourier coefficients.

Efficient (FFTs) and accurate (smoothness ⇔ decay of Fourier
coefficients ⇔ interpolation accuracy)

⇒ Fourier interpolation on λn(k) for all n of interest?



Eigenvalue crossings
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)
Eigenvalue crossings destroy regularity and produce Gibbs-like
oscillations. “Connecting bands” is impossible in d ≥ 2
⇒ Interpolate H directly. But H is too big...



Wannier functions without Wannier functions

Suppose we are interested in the first N eigenvalues λn of H(k),
N � dimH(k). If we can find vn(k) orthogonal basis of the spectral
subspace associated with λn(k), then

H̃mn(k) = 〈vm(k),H(k)vn(k)〉

has eigenvalues λ1(k), . . . , λN(k).
⇒ Form the NxN matrix H̃, interpolate its elements, and diagonalize the
interpolated matrices

The vn are not eigenvectors
The vn are highly non-unique: gauge choice
v ′n(k) =

∑N
m=1 vm(k)Umn(k) with a unitary U(k)

The interpolation will be accurate if vn(k) is smooth and periodic
This implies that the eigenvalues λ1, . . . , λN are isolated from
λN+1, . . . for all k (e.g. occupied bands of an insulator)
By Bloch transform, vn ⇔ Wannier functions, H̃mn ⇔ tight-binding
model, smoothness ⇔ locality



Smooth continuous eigenvectors and topology

Case N = 1: given a smooth and periodic H(k) whose first eigenvalue is
separated from the others, can one find a normalized, smooth and
periodic eigenvector v1(k)?

Not always! For instance, if we require v1(k) to be real:

Simplest example of a topological obstruction: real eigenvectors

H(k) =
(
− cos(2πk) sin(2πk)

sin(2πk) cos(2πk)

)
λ1(k) = −1, v1(k) = (cos(πk), sin(πk))

v1(0) = −v1(1)!

Allowing complex eigenvectors, one can choose
v(k) = e iπk(cos(πk), sin(πk)) to cancel the flip with a phase.
OK in 1D, not in d ≥ 2: Chern numbers.
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Topological obstructions

Theorem
Let P be a smooth finite-rank projector on a two-dimensional compact
connected surface S. Then the following are equivalent

There exists a smooth orthogonal basis vn spanning RanP
The Chern number

Ch(P,S) := 1
2π

ˆ
S
F ∈ Z

vanishes, where F := −i Tr(P dP ∧ dP) is the Berry curvature
2-form

Application to periodic Schrödinger operators: S = T 2 2-torus
For −∆ + V systems (no magnetic field): F(−k) = −F(k)
Localized Wannier functions ⇔ smooth and periodic vn ⇔ zero
Chern number ⇔ no quantum Hall effect [TKNN ’82, Panati ’07, ...]
Two insulators with different Chern numbers cannot be connected
smoothly: topological phases of matter (Nobel 2016)



⇒, with S = T 2

If v1, . . . , vN is smooth and periodic, let Amn := −i 〈vm,∇vn〉 be its
Berry connection, then

F := −i Tr(P[∂xP, ∂yP]) = curl TrA

A is gauge-dependent (depends on v), F is not (depends only on P)
By Stokes

2πCh(P,S) =
ˆ

T 2
Fds =

ˆ
∂T 2
A · dl = 0

0 2πx

y

2π

∫
T 2 Fds

∫
∂T 2 A · dl



⇐, with S = T 1

Begin with the 1D case, S = T 1 ' [0, 1]
Pick v1, . . . , vN at 0
Propagate to [0, 1] by parallel transport

dv
dx = (1− P)dPdx v

v(1) 6= v(0), but both span the same space RanP(0) = RanP(1):
there is U ∈ U(N) such that

vi (1) =
N∑

j=1
vj(0)Uji

v(1) = v(0)U

Set

ṽ(x) = v(x)e−x log U

and we have

ṽ(1) = v(1)U∗ = v(0) = ṽ(0)



⇐, with S = T 2

Now with S = T 2

We know how to solve the problem in 1D (see before), so assume v
is continuous and periodic on y = 0
Use parallel transport in y : dv

dy = (1− P) dP
dy v

v is continuous on [0, 1]× (0, 1), but v(x , 1) 6= v(x , 0)

v(x , 1) = v(x , 0)U(x)

U(1) = U(0), but trouble if U(x) winds, e.g. U(x) = e2πix

We compute

Ax (x , 1) = −iU(x)∗U ′(x) + U(x)∗Ax (x , 0)U(x)

and by Stokes

W (detU) = 1
2πi

ˆ 1

0
Tr(U(x)∗U ′(x))dx

= 1
2π

ˆ
∂T 2
A · dl = 1

2π

ˆ
T 2
Fds = 0



⇐, with S = T 2

v(x , 1) = v(x , 0)U(x)
W (detU) = 0

If N = 1, we are done: U ∈ C does not wind and so U(x) = e2πiθ(x)

with θ(x) continuous and periodic:
ṽ(x , y) = v(x , y)e−2πiyθ(x)

is continuous and periodic.
Otherwise, use U(x) = detU(x) U(x)

det U(x) and the
simple-connectedness of SU(N)
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Wannier functions in practice
In practice, how to find good vn on a discrete grid?

[Marzari/Vanderbilt ’97]: maximally-localized Wannier functions
Define a smoothness functional Ω on the vn, and optimize iteratively
Very efficient in practice if a good starting point is known (guessed
from chemical properties of the system) ⇒ often tricky...
Recent work on alternative schemes to automatically get a good
starting point

1 pick good columns of the density matrix [Damle/Lin/Ying ’15]
2 mimic the proof of the above theorem [Cancès/Levitt/Stoltz/Panati

’17], [Gontier/Levitt/Siraj-Dine ’18]
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Metals

As we’ve seen, one can get smooth vn as long as λ1, . . . , λN are isolated
from the rest.
And yet... [Souza/Marzari/Vanderbilt ’01]
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Even the subspace is not smooth! How does this work?



Wannier functions for metals

Using the same definition as before will not yield smooth vn, we have to
generalize

Disentangled Wannier functions
Find v1, . . . , vN+Nextra that are smooth and span the spectral subspace
RanPN associated with λ1, . . . , λN

If λ1, . . . , λN+Nextra are isolated from the rest, then this is the same
problem as before.
If not, can this be done? How big must Nextra be?

Theorem (Cornean/Gontier/Levitt/Monaco ’18)
Let d = 3, assume time-reversal symmetry, and let

Kn = {k, λn(k) = λn+1(k)}

If KN and KN+1 are unions of points and curves, and KN ∩ KN+1 = ∅,
then there exist such vn, with Nextra = 1.
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Continuation of projectors

To build the vn, first build P smooth such that RanPN ⊂ RanP,
and then find a basis of that. Problem: crossings

Kn = {k, λn(k) = λn+1(k)}

PN is smooth outside of KN , PN+1 is smooth outside of KN+1

⇒ choose P = PN+1 outside of neighborhoods of KN+1, and
continue it inside

KN

KN+1

P = PN+1

P =?
Ω



Continuation of projectors

Problem in 3D
Let Ω be a connected open set in R3. Then, if P is smooth on Ω,
Ch(P, ∂Ω) = 0.

Proof:
´
∂Ω F =

´
Ω dF = 0.

Nonzero Chern numbers are typical at generic crossings (Weyl points)

H(k) = k · σ =
(

k3 k1 − ik2
k1 + ik2 −k3

)
, λ±(k) = ±|k|

The projector P− on the first eigenvector on ∂Ω = {|k| = 1} has Chern
number (Weyl charge) Ch(P−, ∂Ω) = −1: it cannot be continued inside!

In fact this is a characterization:

Theorem
Let P be smoothly defined on ∂Ω. The following are equivalent:

Ch(P, ∂Ω) = 0 (recall ⇔ P has a smooth orthogonal basis on ∂Ω)
P has a smooth continuation to Ω



Sketch of proof

Strategy of proof when Ω is a ball: build a smooth basis on the sphere,
and continue it inside
When RankP = 1,

Lemma (π2(S2M−1) is trivial)

If v ∈ S2M−1 = {u ∈ CM , |u| = 1} is smoothly defined on the sphere,
then it can be smoothly continued inside

Proof for M ≥ 2: 2M − 1 > 2, so there is v∗ ∈ S2M−1 such that
v(ω) 6= −v∗ for ω on the sphere. For k = rω, let

v(k) = rv(ω) + (1− r)v∗
|rv(ω) + (1− r)v∗|

General proof by induction on RankP



Back to our problem
We can only continue PN+1 inside Ω when Ch(PN+1, ∂Ω) = 0, which is
not the case at crossings

KN

KN+1

P = PN+1

P =?
Ω

Impossible to continue P

Then, Ch(PN+1, ∂Ω) = − 1
2π
´

Ωc dF(PN+1) = 0 because PN+1 is
well-defined outside of Ω, and so PN+1 can be extended to Ω.
It remains to make sure that RanPN ⊂ RanPN+1 on Ω (not shown but
possible because PN also has Chern 0).
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Difficulties and extensions

We’ve built P, we now need to make sure we can find a basis of it:
do the construction while respecting time-reversal symmetry
Need to be careful when the crossing sets are lines, and when they
are at time-reversal invariant points
Can we also impose that RanP ⊂ RanPN+2? Yes, if KN+2 is
composed of points and curves, and KN+1 ∩ KN+2 = ∅
Can we do this with analytic functions (push from
almost-exponential to exponential localization)? No, because P and
all its derivatives have to match with PN on KN !

What do we do in practice?



The Marzari-Vanderbilt scheme for insulators

Want to reproduce bands 1, . . . ,N by computing N Wannier functions
At each point in the discretized Brillouin zone, solve H(k) for its
eigenvectors un(k), n = 1, . . . ,N
Let vn(k) =

∑N
n=1 um(k)Umn(k), where U(k) is unitary

Optimize smoothness of vn(k) with respect to U(k)
Reconstruct H̃mn(k) = 〈vm(k),H(k)vn(k)〉
Interpolate H̃mn(k) to a finer grid
Diagonalize H̃mn(k) on the finer grid



The Souza-Marzari-Vanderbilt scheme for metals

Want to reproduce bands 1, . . . ,Nf (frozen window) by computing Nw
Wannier functions in the span of the first No bands (outer window)

At each point in the discretized Brillouin zone, solve H(k) for its
eigenvectors un(k), n = 1, . . . ,No

Let vn(k) =
∑No

n=1 um(k)Umn(k) for n = 1, . . . ,Nw , where U(k) has
orthogonal columns
Optimize smoothness of vn(k) with respect to U(k)
Reconstruct H̃mn(k) = 〈vm(k),H(k)vn(k)〉
Interpolate H̃mn(k) to a finer grid
Diagonalize H̃mn(k) on the finer grid

How to ensure that bands 1, . . . ,Nf are reproduced exactly?



Minimization of the MV functional for metals
Souza-Marzari-Vanderbilt scheme: Ω = ΩI + Ω̃, where ΩI depends
only on the space spanned by the WF (gauge-independent).

1 Minimize ΩI by a self-consistent procedure on UU∗

2 Minimize Ω̃ as in the isolated case
This is suboptimal because it does not minimize Ω.
Combined scheme [Thygesen/Hansen/Jacobsen ’05],
[Damle/Levitt/Lin ’18]:

U(k) =
(
INf 0
0 Y (k)

)
X (k)

where X is Nw × Nw unitary, and Y is (No − Nf )× (Nw − Nf ) with
orthogonal columns.
Redundant but convenient for optimization: can be minimized by
standard methods for optimization under orthogonality constraints
(LBFGS on the Stiefel manifold: Optim.jl Julia library)
More robust and efficient than SMV/Wannier90 scheme, results
more compact (but qualitatively similar)
Initial guess: SCDM on a pseudo-density matrix [Damle/Lin ’17]

code online: https://github.com/antoine-levitt/wannier https://github.com/asdamle/SCDM



Decay properties of Wannier functions
Simple (but highly non-generic) model: free electron gas. Two Wannier
functions spanning the first band
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Decay properties of Wannier functions

Analogous results in 2D: decay as r−2, in contrast to the isolated
case (exponential decay, cf [Panati/Pisante ’11])
The discontinuous constraints RanPN ⊂ RanP prevent better
regularity than that imposed explicitly by the functional
pulling on a rope smoothens it, but if you hold one point there is a kink
Can be fixed in an ad-hoc way for this system with cutoff functions:
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Conclusion and perspectives

Isolated band structure: clear theory, efficient and robust algorithms
Disentangled band structure

Almost-exponentially localized Wannier functions exist
[Cornean/Gontier/Levitt/Monaco ’18]...
... but maximally-localized Wannier functions are only algebraically
localized [Damle/Levitt/Lin ’18]
Robust algorithms

Perspectives
Weyl semimetals, Z2 topological insulators?
How to find WF that are localized asymptotically as well as
pre-asymptotically?
Beyond Wannier interpolation?


