Model selection and estimator selection for statistical learning

Sylvain Arlot
${ }^{1}$ CNRS

${ }^{2}$ École Normale Supérieure (Paris), Liens, Équipe Sierra
Scuola Normale Superiore di Pisa, 14-23 February 2011

Outline of the 5 lectures

(1) Monday 14, 14:00-16:00: Statistical learning
(2) Tuesday 15, 9:00-11:00: Model selection for least-squares regression
(3) Thursday 17, 14:00-16:00: Linear estimator selection for least-squares regression
(3) Tuesday 22, 14:00-16:00: Resampling and model selection
(5) Wednesday 23, 9:00-11:00: Cross-validation and model/estimator selection

Part I

Statistical learning

Outline

(1) The statistical learning problem
(2) Which estimators?
(3) Estimator selection
(4) Interactions within mathematics
(5) Conclusion

Outline

(1) The statistical learning problem
(2) Which estimators?
(3) Estimator selection

4 Interactions within mathematics
(5) Conclusion

General framework

- Data: $\xi_{1}, \ldots, \xi_{n} \in$ i.i.d. $\sim P$
- Goal: estimate a feature $s^{\star} \in \mathbb{S}$ of P
- Quality measure: loss function

$$
\forall t \in \mathbb{S}, \quad \mathcal{L}_{P}(t)=\mathbb{E}_{\xi \sim P}[\gamma(t ; \xi)]=P \gamma(t)
$$

minimal at $t=s^{\star}$
Contrast function: $\gamma: \mathbb{S} \times \equiv \mapsto[0,+\infty)$

- Excess loss

$$
\ell\left(s^{\star}, t\right)=P \gamma(t)-P \gamma\left(s^{\star}\right)
$$

Example: prediction

- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \in \Xi=\mathcal{X} \times \mathcal{Y}$
- Goal: predict Y given X with $(X, Y)=\xi \sim P$
- $s^{\star}(X)$ is the "best predictor" of Y given X, i.e., s^{\star} minimizes the loss function

$$
P \gamma(t) \quad \text { with } \quad \gamma(t ;(x, y))=d(t(x), y)
$$

measuring some "distance" between y and the prediction $t(x)$.

Example: regression: data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$

Goal: find the signal (denoising)

Example: regression

- prediction with $\mathcal{Y}=\mathbb{R}$
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.

$$
Y_{i}=\eta\left(X_{i}\right)+\varepsilon_{i} \quad \text { with } \quad \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0
$$

Example: regression

- prediction with $\mathcal{Y}=\mathbb{R}$
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.

$$
Y_{i}=\eta\left(X_{i}\right)+\varepsilon_{i} \quad \text { with } \quad \mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0
$$

- least-squares contrast: $\gamma(t ;(x, y))=(t(x)-y)^{2}$

$$
\Rightarrow \quad s^{\star}=\eta \quad \text { and } \quad \ell\left(s^{\star}, t\right)=\|t-\eta\|_{2}^{2}=\mathbb{E}\left[(t(X)-\eta(X))^{2}\right]
$$

Example: regression on a fixed design

- $\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ deterministic

$$
Y=F+\varepsilon \in \mathbb{R}^{n} \quad \text { with } \quad F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right) \in \mathbb{R}^{n}
$$

and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ centered and independent.

Example: regression on a fixed design

- $\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ deterministic

$$
Y=F+\varepsilon \in \mathbb{R}^{n} \quad \text { with } \quad F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right) \in \mathbb{R}^{n}
$$

and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ centered and independent.

- Homoscedastic case: $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d.

Example: regression on a fixed design

- $\left(X_{1}, \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ deterministic

$$
Y=F+\varepsilon \in \mathbb{R}^{n} \quad \text { with } \quad F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right) \in \mathbb{R}^{n}
$$

and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ centered and independent.

- Homoscedastic case: $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d.
- Quadratic loss of $t \in \mathbb{S}=\mathbb{R}^{n}$:

$$
\begin{aligned}
& \mathcal{L}_{P}(t)=\mathbb{E}_{Y}\left[\frac{1}{n}\|Y-t\|^{2}\right]=\mathbb{E}_{Y}\left[\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-t_{i}\right)^{2}\right] \\
\Rightarrow & s^{\star}=F \quad \text { and } \quad \ell\left(s^{\star}, t\right)=\frac{1}{n}\|F-t\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\eta\left(x_{i}\right)-t_{i}\right)^{2}
\end{aligned}
$$

Example: regression: fixed vs. random design

Random design

$$
\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n} \text { i.i.d. } \sim P
$$

$$
\left(X_{n+1}, Y_{n+1}\right) \sim P
$$

$$
t: \mathcal{X} \rightarrow \mathbb{R}
$$

$$
\mathbb{E}_{(X, Y) \sim P}\left[(Y-t(X))^{2}\right]
$$

$$
\eta: x \rightarrow \mathbb{E}[Y \mid X=x]
$$

$$
\mathbb{E}_{(X, Y) \sim P}\left[(t(X)-\eta(X))^{2}\right]
$$

Fixed design
$Y=F+\varepsilon \in \mathbb{R}^{n}$
$X_{n+1} \sim \mathcal{U}\left(x_{1}, \ldots, x_{n}\right)$
$t \in \mathbb{R}^{n}$
$E_{Y}\left[\frac{1}{n}\|Y-t\|^{2}\right]$
$F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right)$
$\frac{1}{n}\|F-t\|^{2}$
with $\quad \forall x \in \mathbb{R}^{n}, \quad\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$

Example: regression: fixed vs. random design

Random design
D_{n}

$$
\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n} \text { i.i.d. } \sim P
$$

$$
\left(X_{n+1}, Y_{n+1}\right) \sim P
$$

$$
t: \mathcal{X} \rightarrow \mathbb{R}
$$

$$
\mathbb{E}_{(X, Y) \sim P}\left[(Y-t(X))^{2}\right]
$$

$$
\eta: x \rightarrow \mathbb{E}[Y \mid X=x]
$$

$$
\mathbb{E}_{(X, Y) \sim P}\left[(t(X)-\eta(X))^{2}\right]
$$

Fixed design
$Y=F+\varepsilon \in \mathbb{R}^{n}$
$X_{n+1} \sim \mathcal{U}\left(x_{1}, \ldots, x_{n}\right)$
$t \in \mathbb{R}^{n}$
$E_{Y}\left[\frac{1}{n}\|Y-t\|^{2}\right]$
$F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right)$
$\frac{1}{n}\|F-t\|^{2}$
with $\quad \forall x \in \mathbb{R}^{n}, \quad\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$

Example: regression: fixed vs. random design

Random design
D_{n}

$$
\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n} \text { i.i.d. } \sim P
$$

Fixed design
$Y=F+\varepsilon \in \mathbb{R}^{n}$

$$
\left(X_{n+1}, Y_{n+1}\right) \sim P
$$

$X_{n+1} \sim \mathcal{U}\left(x_{1}, \ldots, x_{n}\right)$

$$
t: \mathcal{X} \rightarrow \mathbb{R}
$$

$t \in \mathbb{R}^{n}$

$$
\begin{gathered}
P \gamma(t) \\
s^{\star}
\end{gathered}
$$

$$
\mathbb{E}_{(X, Y) \sim P}\left[(Y-t(X))^{2}\right]
$$

$$
\eta: x \rightarrow \mathbb{E}[Y \mid X=x]
$$

$$
\ell\left(s^{\star}, t\right) \quad \mathbb{E}_{(X, Y) \sim P}\left[(t(X)-\eta(X))^{2}\right]
$$

$$
\text { with } \quad \forall x \in \mathbb{R}^{n}, \quad\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

Example: density estimation $(\equiv=\mathbb{R})$: data

Example: density estimation $(\equiv=\mathbb{R})$: data and target

Density estimation

- μ reference measure on $\overline{ }$
- f density of P w.r.t. μ

Density estimation

- μ reference measure on $\overline{ }$
- f density of P w.r.t. μ
- $\gamma(t ; \xi)=-\ln (t(\xi))$ $\Rightarrow s^{\star}=f$ and $\ell\left(s^{\star}, t\right)$ Kullback-Leibler distance from s^{\star} to t

Density estimation

- μ reference measure on $\overline{ }$
- f density of P w.r.t. μ
- $\gamma(t ; \xi)=-\ln (t(\xi))$ $\Rightarrow s^{\star}=f$ and $\ell\left(s^{\star}, t\right)$ Kullback-Leibler distance from s^{\star} to t
- $\gamma(t ; \xi)=\|t\|_{L^{2}(\mu)}^{2}-2 t(\xi)$

$$
\Rightarrow s^{\star}=f \text { and } \ell\left(s^{\star}, t\right)=\left\|t-s^{\star}\right\|_{L^{2}(\mu)}^{2}
$$

Example: classification (prediction, $\mathcal{X}=\mathbb{R}, \mathcal{Y}=\{0,1\}$)

000000000000000

Example: classification (prediction, $\mathcal{X}=\mathbb{R}, \mathcal{Y}=\{0,1\}$)

Example: classification (prediction, $\mathcal{X}=\mathbb{R}, \mathcal{Y}=\{0,1\}$)

Example: classification (prediction, $\mathcal{X}=\mathbb{R}, \mathcal{Y}=\{0,1\}$)

Example: binary supervised classification

- Prediction, $\mathcal{X}=\mathbb{R}$ and $\mathcal{Y}=\{0,1\}$
- If $\mathbb{S}=\{$ measurable mappings $\mathcal{X} \mapsto \mathcal{Y}\}$
$0-1$ loss: $\gamma(t ;(x, y))=\mathbb{1}_{t(x) \neq y}$

Example: binary supervised classification

- Prediction, $\mathcal{X}=\mathbb{R}$ and $\mathcal{Y}=\{0,1\}$
- If $\mathbb{S}=\{$ measurable mappings $\mathcal{X} \mapsto \mathcal{Y}\}$
$0-1$ loss: $\gamma(t ;(x, y))=\mathbb{1}_{t(x) \neq y}$
- If $t \in \mathbb{S}=\{$ measurable mappings $\mathcal{X} \mapsto[0,1]\}$,

Convex losses: $\gamma(t ;(x, y))=\varphi(t(x)(1-2 y))$ with $\varphi: \mathbb{R} \mapsto \mathbb{R}$ convex, non-negative, non-increasing.

Outline

(1) The statistical learning problem

(2) Which estimators?
(3) Estimator selection
4. Interactions within mathematics
(5) Conclusion

What is an estimator?

- Statistical algorithm or Learning rule:
$\mathcal{A}: \bigcup_{n \in \mathbb{N}} \Xi^{n} \mapsto \mathbb{S}$
sample $D_{n}=\left(\xi_{1}, \ldots, \xi_{n}\right) \mapsto \mathcal{A}\left(D_{n}\right)$
- $\mathcal{A}\left(D_{n}\right)=\widehat{s}^{\mathcal{A}}\left(D_{n}\right)=\widehat{s}\left(D_{n}\right) \in \mathbb{S}$ is an estimator of s^{\star}

What is an estimator?

- Statistical algorithm or Learning rule:
$\mathcal{A}: \bigcup_{n \in \mathbb{N}} \Xi^{n} \mapsto \mathbb{S}$
sample $D_{n}=\left(\xi_{1}, \ldots, \xi_{n}\right) \mapsto \mathcal{A}\left(D_{n}\right)$
- $\mathcal{A}\left(D_{n}\right)=\widehat{s}^{\mathcal{A}}\left(D_{n}\right)=\widehat{s}\left(D_{n}\right) \in \mathbb{S}$ is an estimator of s^{\star}
- Remark: $\operatorname{P\gamma }\left(\widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)$ and $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)$ are random

What is an estimator?

- Statistical algorithm or Learning rule:

$$
\mathcal{A}: \bigcup_{n \in \mathbb{N}} \bar{\Xi}^{n} \mapsto \mathbb{S}
$$

$$
\text { sample } D_{n}=\left(\xi_{1}, \ldots, \xi_{n}\right) \mapsto \mathcal{A}\left(D_{n}\right)
$$

- $\mathcal{A}\left(D_{n}\right)=\widehat{s}^{\mathcal{A}}\left(D_{n}\right)=\widehat{s}\left(D_{n}\right) \in \mathbb{S}$ is an estimator of s^{\star}
- Remark: $\operatorname{P\gamma }\left(\hat{s}^{\mathcal{A}}\left(D_{n}\right)\right)$ and $\ell\left(s^{\star}, \hat{s}^{\mathcal{A}}\left(D_{n}\right)\right)$ are random
- Risk of $\widehat{s}^{\mathcal{A}}$:

$$
\mathbb{E}_{D_{n} \sim P \otimes n}\left[P \gamma\left(\widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]=\mathcal{R}(\mathcal{A}, n)
$$

- Excess risk of $\widehat{s}^{\mathcal{A}}$:

$$
\mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]=\mathcal{R}(\mathcal{A}, n)-P \gamma\left(s^{\star}\right)
$$

(Universal) consistency, learning rates

- Consistency (P fixed): $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$

(Universal) consistency, learning rates

- Consistency (P fixed): $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$
- Universal consistency:
$\sup _{P}\left\{\varlimsup_{n \rightarrow \infty} \mathbb{E}_{D_{n} \sim P \otimes n}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$

(Universal) consistency, learning rates

- Consistency (P fixed): $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$
- Universal consistency:
$\sup _{P}\left\{\overline{\lim }_{n \rightarrow \infty} \mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \hat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$
- Uniform universal consistency:
$\overline{\lim }_{n \rightarrow \infty} \sup _{P}\left\{\mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$ (uniform learning rate over all distributions).

(Universal) consistency, learning rates

- Consistency (P fixed): $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$
- Universal consistency:
$\sup _{P}\left\{\overline{\lim }_{n \rightarrow \infty} \mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \hat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$
- Uniform universal consistency:
$\overline{\lim }_{n \rightarrow \infty} \sup _{P}\left\{\mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$ (uniform learning rate over all distributions).
- "No Free Lunch" (cf. Devroye, Györfi \& Lugosi, 1996):

(Universal) consistency, learning rates

- Consistency (P fixed): $\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$
- Universal consistency:
$\sup _{P}\left\{\overline{\lim }_{n \rightarrow \infty} \mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \hat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$
- Uniform universal consistency: $\overline{\lim }_{n \rightarrow \infty} \sup _{P}\left\{\mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=0$ (uniform learning rate over all distributions).
- "No Free Lunch" (cf. Devroye, Györfi \& Lugosi, 1996): In binary classification with \mathcal{X} infinite, $\forall \mathcal{A}, \forall n \geq 1$,

$$
\sup _{P}\left\{\mathbb{E}_{D_{n} \sim P^{\otimes n}}\left[\ell\left(s^{\star}, \widehat{s}^{\mathcal{A}}\left(D_{n}\right)\right)\right]\right\}=\frac{1}{2}
$$

\Rightarrow assumptions on P are necessary for having uniform learning rates

Least-squares estimator: regressogram

Least-squares estimator

- Framework: Regression, least-squares contrast

$$
\gamma(t ;(x, y))=(t(x)-y)^{2}
$$

- Natural idea: minimize an estimator of $P \gamma(t)=\mathbb{E}\left[(t(X)-Y)^{2}\right]$

Least-squares estimator

- Framework: Regression, least-squares contrast

$$
\gamma(t ;(x, y))=(t(x)-y)^{2}
$$

- Natural idea: minimize an estimator of $P \gamma(t)=\mathbb{E}\left[(t(X)-Y)^{2}\right]$
- Least-squares criterion:

$$
\begin{gathered}
P_{n} \gamma(t)=\frac{1}{n} \sum_{i=1}^{n}\left(t\left(X_{i}\right)-Y_{i}\right)^{2} \quad \text { with } \quad P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_{i}} \\
\forall t \in \mathbb{S}, \quad \mathbb{E}\left[P_{n} \gamma(t)\right]=P \gamma(t)
\end{gathered}
$$

Least-squares estimator

- Framework: Regression, least-squares contrast

$$
\gamma(t ;(x, y))=(t(x)-y)^{2}
$$

- Natural idea: minimize an estimator of

$$
P \gamma(t)=\mathbb{E}\left[(t(X)-Y)^{2}\right]
$$

- Least-squares criterion:

$$
\begin{gathered}
P_{n} \gamma(t)=\frac{1}{n} \sum_{i=1}^{n}\left(t\left(X_{i}\right)-Y_{i}\right)^{2} \quad \text { with } \quad P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_{i}} \\
\forall t \in \mathbb{S}, \quad \mathbb{E}\left[P_{n} \gamma(t)\right]=P \gamma(t)
\end{gathered}
$$

- Model: $S \subset \mathbb{S} \Rightarrow$ Least-squares estimator on S :

$$
\widehat{s}_{S} \in \arg \min _{t \in S}\left\{P_{n} \gamma(t)\right\}=\arg \min _{t \in S}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(t\left(X_{i}\right)-Y_{i}\right)^{2}\right\}
$$

Model examples in regression

- histograms on some partition \wedge of \mathcal{X}
\Rightarrow the least-squares estimator (regressogram) can be written

$$
\widehat{s}_{m}=\sum_{\lambda \in \Lambda} \widehat{\beta}_{\lambda} \mathbb{1}_{\lambda} \quad \widehat{\beta}_{\lambda}=\frac{1}{\operatorname{Card}\left\{X_{i} \in \lambda\right\}} \sum_{X_{i} \in \lambda} Y_{i}
$$

- subspace generated by a subset of an orthogonal basis of $L^{2}(\mu)$ (Fourier, wavelets, and so on)
- variable selection: $X_{i}=\left(X_{i}^{(1)}, \ldots, X_{i}^{(p)}\right) \in \mathbb{R}^{p}$ gathers p variables that can (linearly) explain Y

$$
\forall m \subset\{1, \ldots, p\}, \quad S_{m}=\left\{t: x \in \mathcal{X} \mapsto \sum_{j \in m} \beta_{j} x^{(j)} \text { s.t. } \beta \in \mathbb{R}^{m}\right\}
$$

Regression: fixed vs. random design

$$
\begin{array}{ccc}
& \text { Random design } & \text { Fixed design } \\
D_{n} & \left(X_{i}, Y_{i}\right)_{1 \leq i \leq n} \text { i.i.d. } \sim P & Y=F+\varepsilon \in \mathbb{R}^{n} \\
& \left(X_{n+1}, Y_{n+1}\right) \sim P & X_{n+1} \sim \mathcal{U}\left(x_{1}, \ldots, x_{n}\right) \\
\mathbb{S} & t: \mathcal{X} \rightarrow \mathbb{R} & t \in \mathbb{R}^{n} \\
P \gamma(t) & \mathbb{E}_{(X, Y) \sim P}\left[(Y-t(X))^{2}\right] & E_{Y}\left[\frac{1}{n}\|Y-t\|^{2}\right] \\
s^{\star} & \eta: x \rightarrow \mathbb{E}[Y \mid X=x] & F=\left(\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)\right) \\
\ell\left(s^{\star}, t\right) & \mathbb{E}_{(X, Y) \sim P}\left[(t(X)-\eta(X))^{2}\right] & \frac{1}{n}\|F-t\|^{2} \\
& P_{n} \gamma(t)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-t\left(X_{i}\right)\right)^{2} & \frac{1}{n}\|Y-t\|^{2}
\end{array}
$$

with $\forall x \in \mathbb{R}^{n}$,

$$
\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

Minimum contrast estimators

- Empirical risk (or empirical contrast)

$$
P_{n} \gamma(t)=\frac{1}{n} \sum_{i=1}^{n} \gamma\left(t ; \xi_{i}\right)
$$

- $\forall t \in \mathbb{S}, \mathbb{E}\left[P_{n} \gamma(t)\right]=P \gamma(t)$
- Minimum contrast estimator (empirical risk minimizer) on some model $S \subset \mathbb{S}$:

$$
\widehat{s}_{S} \in \arg \min _{t \in S} P_{n} \gamma(t) \quad \text { with } \quad P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_{i}}
$$

- Another example: maximum-likelihood in density estimation:

$$
\gamma(t ; \xi)=-\ln (t(\xi))
$$

Regularized estimator: kernel ridge regression

- Idea: control the estimator norm in some functional space \mathcal{F}

Regularized estimator: kernel ridge regression

- Idea: control the estimator norm in some functional space \mathcal{F}
- $\mathcal{F} \subset \mathbb{S}$ is the Reproducing Kernel Hilbert Space (RKHS) associated with a positive definite kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

$$
\widehat{f} \in \arg \min _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{F}}^{2}\right\}
$$

Regularized estimator: kernel ridge regression

- Idea: control the estimator norm in some functional space \mathcal{F}
- $\mathcal{F} \subset \mathbb{S}$ is the Reproducing Kernel Hilbert Space (RKHS) associated with a positive definite kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

$$
\widehat{f} \in \arg \min _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{F}}^{2}\right\}
$$

- Representer theorem $\Rightarrow \widehat{f}=\sum_{i=1}^{n} \widehat{\alpha}_{i} k\left(X_{i}, \cdot\right)$
- Fixed design: $\left(\widehat{f}\left(x_{i}\right)\right)_{1 \leq i \leq n}=\widehat{F}=K\left(K+n \lambda I_{n}\right)^{-1} Y$

Regularized estimator: kernel ridge regression

- Idea: control the estimator norm in some functional space \mathcal{F}
- $\mathcal{F} \subset \mathbb{S}$ is the Reproducing Kernel Hilbert Space (RKHS) associated with a positive definite kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

$$
\widehat{f} \in \arg \min _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{F}}^{2}\right\}
$$

- Representer theorem $\Rightarrow \widehat{f}=\sum_{i=1}^{n} \widehat{\alpha}_{i} k\left(X_{i}, \cdot\right)$
- Fixed design: $\left(\widehat{f}\left(x_{i}\right)\right)_{1 \leq i \leq n}=\widehat{F}=K\left(K+n \lambda I_{n}\right)^{-1} Y$
- An example of linear estimator $\widehat{F}=A Y$ Other examples: least-squares, k-nearest-neighbours (in regression), Nadaraya-Watson, and so on

Other regularized estimators

- Support Vector Machines (SVM) in classification:

$$
\arg \min _{f \in \mathcal{F}}\left\{P_{n} \gamma_{\text {hinge }}(f)+\lambda\|f\|_{\mathcal{F}}^{2}\right\}
$$

- Lasso (Tibshirani 1996): regression, $\mathcal{X}=\mathbb{R}^{p}$

$$
\arg \min _{w \in \mathbb{R}^{p}}\left\{\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i}-w^{\top} X_{i}\right)^{2}+\lambda\|w\|_{1}\right\}
$$

- Structured Lasso

$$
\begin{aligned}
& \qquad \arg \min _{w \in \mathbb{R}^{p}}\left\{\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i}-w^{\top} X_{i}\right)^{2}+\lambda \Omega(w)\right\} \\
& \text { e.g., group Lasso (Yuan \& Lin 2006): } \Omega(w)=\sum_{g \in \mathcal{G}}\left\|w_{g}\right\|_{2}
\end{aligned}
$$

Classification $(\mathcal{X}=\mathbb{R})$

Nearest neighbour rule

k-nearest neighbours rule $(k=20)$

20-nearest neighbours rule: regression

Outline

(1) The statistical learning problem

(2) Which estimators?
(3) Estimator selection
4. Interactions within mathematics
(5) Conclusion

How to choose the dimension D ?

How to choose the number k of neighbours?

Estimator selection problem

- Collection of statistical algorithms given: $\left(\mathcal{A}_{m}\right)_{m \in \mathcal{M}}$
- Problem: choosing among $\left(\mathcal{A}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}}=\left(\widehat{s}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}}$

Estimator selection problem

- Collection of statistical algorithms given: $\left(\mathcal{A}_{m}\right)_{m \in \mathcal{M}}$
- Problem: choosing among $\left(\mathcal{A}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}}=\left(\widehat{s}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}}$
- Examples:
- model selection
- calibration (choice of k or of the distance for $k-N N$, choice of the regularization parameter, choice of some kernel, and so on)
- choosing among algorithms of different nature, e.g., $k-\mathrm{NN}$ and SVM

Goal: estimation or prediction

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star}, \widehat{s}_{\widehat{m}\left(D_{n}\right)}\left(D_{n}\right)\right)$
- Oracle: $m^{\star} \in \arg \min _{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right\}$

Goal: estimation or prediction

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star}, \widehat{s}_{\widehat{m}\left(D_{n}\right)}\left(D_{n}\right)\right)$
- Oracle: $m^{\star} \in \arg \min _{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right\}$
- Oracle inequality (in expectation or with high probability):

$$
\ell\left(s^{\star}, \widehat{s}_{\widehat{m}}\right) \leq C \inf _{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right\}+R_{n}
$$

- Non-asymptotic: all parameters can vary with n, in particular the collection $\mathcal{M}=\mathcal{M}_{n}$

Goal: estimation or prediction

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star}, \widehat{s}_{\widehat{m}\left(D_{n}\right)}\left(D_{n}\right)\right)$
- Oracle: $m^{\star} \in \arg \min _{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right\}$
- Oracle inequality (in expectation or with high probability):

$$
\ell\left(s^{\star}, \widehat{s}_{\widehat{m}}\right) \leq C \inf _{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right\}+R_{n}
$$

- Non-asymptotic: all parameters can vary with n, in particular the collection $\mathcal{M}=\mathcal{M}_{n}$
- Adaptation (e.g., in the minimax sense) to the regularity of s^{\star}, to variations of $\mathbb{E}\left[\varepsilon^{2} \mid X\right]$, and so on (if $\left(\mathcal{A}_{m}\right)_{m \in \mathcal{M}_{n}}$ is well chosen)

Goal: identification

- Additional assumption (model selection case): $s^{\star} \in S_{m_{0}}$ for some $m_{0} \in \mathcal{M}_{n}$
- Additional goal: select $\widehat{m}=m_{0}$ with a maximal probability
- Consistency:

$$
\mathbb{P}\left(\widehat{m}=m_{0}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1
$$

Goal: identification

- Additional assumption (model selection case): $s^{\star} \in S_{m_{0}}$ for some $m_{0} \in \mathcal{M}_{n}$
- Additional goal: select $\widehat{m}=m_{0}$ with a maximal probability
- Consistency:

$$
\mathbb{P}\left(\widehat{m}=m_{0}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1
$$

- Estimation and identification (AIC-BIC dilemma)?

Contradictory goals in general (Yang, 2005)
Sometimes possible to share the strengths of both approaches (e.g., Yang, 2005; van Erven et al., 2008)

Model selection: bias and variance

$\mathbb{E}\left[\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right]=$ Bias + Variance
Bias or Approximation error

$$
\ell\left(s^{\star}, s_{m}^{\star}\right):=\inf _{t \in S_{m}}\left\{\ell\left(s^{\star}, t\right)\right\}
$$

Variance or Estimation error

$$
\mathbb{E}\left[P \gamma\left(\widehat{s}_{m}\left(D_{n}\right)\right)\right]-P \gamma\left(s_{m}^{\star}\right)
$$

Model selection: bias and variance

$\mathbb{E}\left[\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right]=$ Bias + Variance
Bias or Approximation error

$$
\ell\left(s^{\star}, s_{m}^{\star}\right):=\inf _{t \in S_{m}}\left\{\ell\left(s^{\star}, t\right)\right\}
$$

Variance or Estimation error

$$
\mathbb{E}\left[P \gamma\left(\widehat{s}_{m}\left(D_{n}\right)\right)\right]-P \gamma\left(s_{m}^{\star}\right)
$$

Bias-variance trade-off

\Rightarrow avoid over-fitting and under-fitting

Bias-variance trade-off

Example: homoscedastic regression on a fixed design

$$
Y=F+\varepsilon \quad \text { with } \quad \mathbb{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}
$$

$\widehat{F}_{m}=A_{m} Y$ with $A_{m}=A_{m}^{\top}=A_{m}^{2} \quad$ and $\quad \operatorname{tr}\left(A_{m}\right)=\operatorname{dim}\left(S_{m}\right)$
\Rightarrow Bias-variance decomposition of the risk

Example: homoscedastic regression on a fixed design

$$
Y=F+\varepsilon \quad \text { with } \quad \mathbb{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}
$$

$$
\widehat{F}_{m}=A_{m} Y \quad \text { with } \quad A_{m}=A_{m}^{\top}=A_{m}^{2} \quad \text { and } \quad \operatorname{tr}\left(A_{m}\right)=\operatorname{dim}\left(S_{m}\right)
$$

\Rightarrow Bias-variance decomposition of the risk

$$
\begin{aligned}
F_{m} & =\arg \min _{t \in S_{m}}\left\{\|t-F\|^{2}\right\}=A_{m} F \\
\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right] & =\frac{1}{n}\left\|\left(A_{m}-I\right) F\right\|^{2}+\frac{\sigma^{2} \operatorname{dim}\left(S_{m}\right)}{n} \\
& =\text { Bias }+ \text { Variance }
\end{aligned}
$$

Unbiased risk estimation principle

$$
\begin{gathered}
\widehat{m} \in \arg \min _{m \in \mathcal{M}_{n}}\{\operatorname{crit}(m)\} \\
\operatorname{crit}_{\mathrm{id}}(m)=\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)
\end{gathered}
$$

Heuristics:

$$
\operatorname{crit}(m) \approx \mathbb{E}\left[\ell\left(s^{\star}, \widehat{s}_{m}\left(D_{n}\right)\right)\right]
$$

\Rightarrow valid if $\operatorname{Card}\left(\mathcal{M}_{n}\right)$ is not too large (+ concentration inequalities)

000000000000000

Why should the empirical risk be penalized?

Penalization

- Penalization: $\operatorname{crit}(m)=P_{n} \gamma\left(\widehat{s}_{m}\right)+\operatorname{pen}(m)$

$$
\widehat{m} \in \arg \min _{m \in \mathcal{M}_{n}}\left\{P_{n} \gamma\left(\widehat{s}_{m}\right)+\operatorname{pen}(m)\right\}
$$

Penalization

- Penalization: $\operatorname{crit}(m)=P_{n} \gamma\left(\widehat{s}_{m}\right)+\operatorname{pen}(m)$

$$
\widehat{m} \in \arg \min _{m \in \mathcal{M}_{n}}\left\{P_{n} \gamma\left(\widehat{s}_{m}\right)+\operatorname{pen}(m)\right\}
$$

- Ideal penalty:

$$
\operatorname{pen}_{\mathrm{id}}(m)=\left(P-P_{n}\right) \gamma\left(\widehat{s}_{m}\right)
$$

- Mallows' heuristics:

$$
\operatorname{pen}(m) \approx \mathbb{E}\left[\operatorname{pen}_{\mathrm{id}}(m)\right] \Rightarrow \text { oracle inequality }
$$

Example: homoscedastic regression on a fixed design

Recall that

$$
Y=F+\varepsilon \quad \text { with } \quad \mathbb{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}
$$

$$
\widehat{F}_{m}=A_{m} Y \quad \text { with } \quad A_{m}=A_{m}^{\top}=A_{m}^{2} \quad \text { and } \quad \operatorname{tr}\left(A_{m}\right)=\operatorname{dim}\left(S_{m}\right)
$$

$$
\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right]=\frac{1}{n}\left\|\left(A_{m}-I\right) F\right\|^{2}+\frac{\sigma^{2} \operatorname{dim}\left(S_{m}\right)}{n}
$$

\Rightarrow Empirical risk? Ideal penalty? Expectations?

Example: homoscedastic regression on a fixed design

Recall that

$$
\begin{gathered}
Y=F+\varepsilon \quad \text { with } \mathbb{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2} \\
\widehat{F}_{m}=A_{m} Y \text { with } A_{m}=A_{m}^{\top}=A_{m}^{2} \quad \text { and } \quad \operatorname{tr}\left(A_{m}\right)=\operatorname{dim}\left(S_{m}\right) \\
\mathbb{E}\left[\frac{1}{n}\left\|\widehat{F}_{m}-F\right\|^{2}\right]=\frac{1}{n}\left\|\left(A_{m}-I\right) F\right\|^{2}+\frac{\sigma^{2} \operatorname{dim}\left(S_{m}\right)}{n}
\end{gathered}
$$

\Rightarrow Empirical risk? Ideal penalty? Expectations?

$$
\begin{gathered}
\operatorname{pen}_{\mathrm{id}}(m)=\frac{2}{n}\left\langle A_{m} \varepsilon, \varepsilon\right\rangle+\frac{2}{n}\left\langle\left(A_{m}-I_{n}\right) F, \varepsilon\right\rangle \\
\mathbb{E}\left[\operatorname{pen}_{\mathrm{id}}(m)\right]=\frac{2 \sigma^{2} D_{m}}{n} \Rightarrow C_{p} \text { (Mallows, 1973) }
\end{gathered}
$$

Classical penalties

- C_{p} (Mallows, 1973; regression, least-squares estimator):

$$
2 \sigma^{2} D_{m} / n
$$

- C_{L} (Mallows, 1973; regression, linear estimator $\widehat{F}_{m}=A_{m} Y$):

$$
2 \sigma^{2} \operatorname{tr}\left(A_{m}\right) / n
$$

- AIC (Akaike, 1973; log-likelihood, p degrees of freedom):

$$
2 p / n
$$

- BIC (Schwarz, 1978; log-likelihood, identification goal):

$$
\ln (n) p / n
$$

Hold-out

Hold-out: training sample

Hold-out: training sample

Hold-out: validation sample

Hold-out: validation sample

Unbiased risk estimation principle

Heuristics:

$$
\mathbb{E}[\operatorname{crit}(m)] \approx \mathbb{E}\left[P \gamma\left(\widehat{s}_{m}\right)\right] \quad \Leftrightarrow \quad \mathbb{E}[\operatorname{pen}(m)] \approx \mathbb{E}\left[\operatorname{pen}_{\mathrm{id}}(m)\right]
$$

Examples:

- FPE (Akaike, 1970), SURE (Stein, 1981)
- some kinds of cross-validation (e.g., leave- p-out, $p \ll n$)
- log-likelihood: AIC (Akaike, 1973), AICc (Sugiura, 1978; Hurvich \& Tsai, 1989)
- least-squares: C_{p}, C_{L} (Mallows, 1973), GCV (Craven \& Wahba, 1979)
- covariance penalties (Efron, 2004)
- bootstrap penalty (Efron, 1983), resampling (A., 2009)
- ...

Outline

(1) The statistical learning problem

(2) Which estimators?
(3) Estimator selection
(4) Interactions within mathematics
(5) Conclusion

Probability theory: measure concentration

- Empirical processes:

$$
\left(P_{n}-P\right) \gamma(t) \quad \text { or } \sup _{t \in S}\left\{\left(P_{n}-P\right) \gamma(t)\right\}
$$

- Concentration of quadratic terms, $\|M \varepsilon\|^{2}, \chi^{2}$-type statistics (writting them as a sup, or through the general problem of concentration of U-statistics)
- More complex quantities, such as the "ideal penalty"

$$
\left(P-P_{n}\right) \gamma\left(\widehat{s}_{m}\left(D_{n}\right)\right)
$$

Probability theory

- Exact computation or upper bounds on expectations:

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{t \in S}\left\{\left(P_{n}-P\right) \gamma(t)\right\}\right] \\
& \mathbb{E}\left[\left(P-P_{n}\right) \gamma\left(\widehat{s}_{m}\left(D_{n}\right)\right)\right]
\end{aligned}
$$

- Understanding the risk as a function of n

$$
\mathbb{E}\left[P \gamma\left(\widehat{s}_{m}\left(D_{n}\right)\right)\right]
$$

- Resampling process
- Control of remainder terms (variance, deviations, ...) compared to expectations
- ...

Approximation theory

- Bias term $\ell\left(s^{\star}, S_{m}\right)$
- Necessary to control it for deducing an adaptation result from an oracle inequality
- Conversely, how should we choose $\left(S_{m}\right)_{m \in \mathcal{M}_{n}}$ knowing that $P \in \mathcal{P}$?
- Control of $\ell\left(s^{\star}, S_{m}\right)$ (upper and lower bound) useful for controlling $\operatorname{dim}\left(S_{\widehat{m}}\right)$ and $\operatorname{dim}\left(S_{m^{\star}}\right)$

Optimization: for practical reasons

- $\widehat{s}_{m}\left(D_{n}\right)$ often defined as an arg min
\Rightarrow Computing $\widehat{s}_{m}\left(D_{n}\right)$ for every m (approximately or not)?
\Rightarrow Direct computation of $\left(\widehat{s}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}_{n}}$ (regularization path, e.g. LARS-Lasso)?

Optimization: for practical reasons

- $\widehat{s}_{m}\left(D_{n}\right)$ often defined as an arg min
\Rightarrow Computing $\widehat{s}_{m}\left(D_{n}\right)$ for every m (approximately or not)?
\Rightarrow Direct computation of $\left(\widehat{s}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}_{n}}$ (regularization path, e.g. LARS-Lasso)?
- Computing $\widehat{m} \in \arg \min _{m \in \mathcal{M}_{n}}\{\operatorname{crit}(m)\}$ without going through all $m \in \mathcal{M}_{n}$? (e.g., dynamic programming for change-point detection: Bellman \& Dreyfus, 1962; Rigaill, 2010)

Optimization: for practical reasons

- $\widehat{s}_{m}\left(D_{n}\right)$ often defined as an arg min
\Rightarrow Computing $\widehat{s}_{m}\left(D_{n}\right)$ for every m (approximately or not)?
\Rightarrow Direct computation of $\left(\widehat{s}_{m}\left(D_{n}\right)\right)_{m \in \mathcal{M}_{n}}$ (regularization path, e.g. LARS-Lasso)?
- Computing $\widehat{m} \in \arg \min _{m \in \mathcal{M}_{n}}\{\operatorname{crit}(m)\}$ without going through all $m \in \mathcal{M}_{n}$? (e.g., dynamic programming for change-point detection: Bellman \& Dreyfus, 1962; Rigaill, 2010)
- The most interesting procedures to study are the ones for which efficient algorithms exist.

Optimization: for theoretical reasons

- $\widehat{s}_{m}\left(D_{n}\right)$ often defined as an arg min
\Rightarrow KKT conditions can caracterize it
- Ex: ideal penalty for the Lasso (Efron et al. 2004; Zou, Hastie \& Tibshirani 2007)
- RKHS and kernel methods: representer theorem
- ...

Outline

(1) The statistical learning problem
(2) Which estimators?
(3) Estimator selection

4 Interactions within mathematics
(5) Conclusion

61/62

Results we are looking for

- guarantees for practical procedures
- theory precise enough for explaining differences observed experimentally
- "non-asymptotic" results
- use theory for designing new procedures, that do not have the drawbacks of existing procedures

Results we are looking for

- guarantees for practical procedures
- theory precise enough for explaining differences observed experimentally
- "non-asymptotic" results
- use theory for designing new procedures, that do not have the drawbacks of existing procedures
http://www.di.ens.fr/~arlot/2011pisa.htm

