Model selection and estimator selection for statistical learning

Sylvain Arlot

 $^{1}\mathrm{C}\mathrm{NRS}$

 2 École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Scuola Normale Superiore di Pisa, 14-23 February 2011

- Statistical learning
- Ø Model selection for least-squares regression
- Iinear estimator selection for least-squares regression
- Resampling and model selection
- Oross-validation and model/estimator selection

Part V

Cross-validation and model/estimator selection

Outline

- 2 Cross-validation based estimator selection
- 3 Change-point detection
- 4 V-fold penalization

Outline

Cross-validation

- 2 Cross-validation based estimator selection
- 3 Change-point detection
- 4 V-fold penalization

5 Conclusion

 Change-point detection

V-fold penalization

Conclusion

Reminder

• Data: $D_n = (\xi_1, \dots, \xi_n) \in \Xi^n$, $D_n \sim P^{\otimes n}$

Excess loss

$$\ell(s^{\star},t) = P\gamma(t) - P\gamma(s^{\star})$$

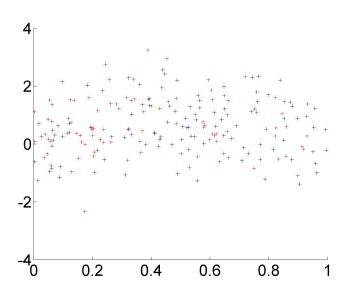
- Statistical algorithms: $\forall m \in \mathcal{M}_n, \mathcal{A}_m: \bigcup_{n \in \mathbb{N}} \Xi^n \mapsto \mathbb{S}$ $\mathcal{A}_m(D_n) = \widehat{s}_m(D_n) \in \mathbb{S}$ is an estimator of s^*
- Estimation/prediction goal: find $\widehat{m}(D_n) \in \mathcal{M}$ such that $\ell(s^*, \widehat{s}_{\widehat{m}(D_n)}(D_n))$ is minimal

Change-point detection

V-fold penalization

Conclusion 000

Hold-out



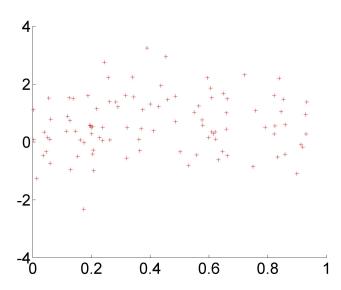
Sylvain Arlot

Change-point detection

V-fold penalizatio

Conclusion 000

Hold-out: training sample

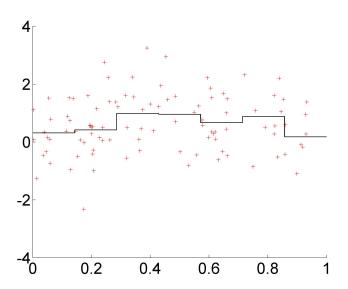


Change-point detection

V-fold penalization

Conclusion 000

Hold-out: training sample



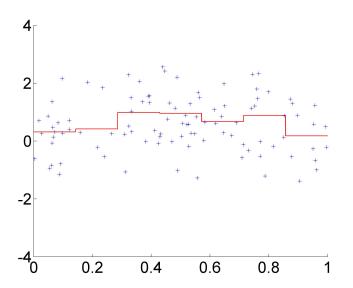
Sylvain Arlot

Change-point detection

V-fold penalizatio

Conclusion 000

Hold-out: validation sample



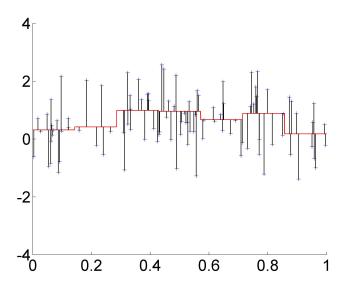
Sylvain Arlot

Change-point detection

V-fold penalizatio

Conclusion 000

Hold-out: validation sample

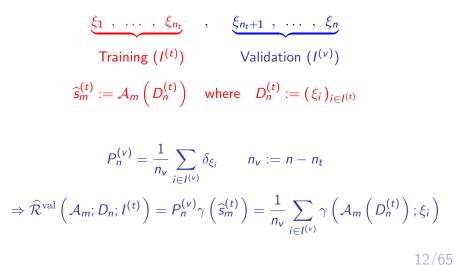


Change-point detection

V-fold penalization

Conclusion 000

Cross-validation heuristics: hold-out



Change-point detection

V-fold penalization

Conclusion 000

General definition of cross-validation

• $B \ge 1$ training sets:

$$I_1^{(t)},\ldots,I_B^{(t)}\subset\{1,\ldots,n\}$$

• Cross-validation estimator of the risk of \mathcal{A}_m :

$$\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right) := \frac{1}{B} \sum_{j=1}^{B} \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; I_{j}^{(t)}\right)$$

• Chosen algorithm:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}} \left(\mathcal{A}_m; D_n; \left(I_j^{(t)} \right)_{1 \leq j \leq B} \right) \right\}$$

• Usually,
$$\forall j$$
, $Card(I_i^{(t)}) = n_t$

Change-point detection

V-fold penalization

Conclusion 000

Example: exhaustive data splitting

• Leave-one-out (LOO), or delete-one CV, or ordinary cross-validation:

$$n_t = n - 1$$
 $B = n$

(Stone, 1974; Allen, 1974; Geisser, 1975)

• Leave-*p*-out (LPO), or delete-*p* CV:

$$n_t = n - p$$
 $B = \begin{pmatrix} n \\ p \end{pmatrix}$

Change-point detection

V-fold penalization

Conclusion 000

Examples: partial data-splitting

• V-fold cross-validation (VFCV, Geisser, 1975): $\mathcal{B} = (B_j)_{1 \le j \le V}$ partition of $\{1, \ldots, n\}$

$$\widehat{\mathcal{R}}^{\mathrm{vf}}\left(\mathcal{A}_{m}; \mathcal{D}_{n}; \mathcal{B}\right) = \frac{1}{V} \sum_{j=1}^{V} \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; \mathcal{D}_{n}; \mathcal{B}_{j}^{c}\right)$$

- Repeated Learning-Testing (RLT, Breiman *et al.*, 1984): $I_1^{(t)}, \ldots, I_B^{(t)} \subset \{1, \ldots, n\}$ of cardinality n_t , sampled uniformly without replacement
- Monte-Carlo cross-validation (MCCV, Picard & Cook, 1984): same with I₁^(t),..., I_B^(t) of cardinality n_t, sampled uniformly with replacement (i.i.d.)

15/65 Sylvain Arlot

Related procedures

- Generalized cross-validation (GCV): rotation-invariant version of LOO for linear regression, closer to C_p and C_L than to cross-validation (Efron, 1986, 2004)
- Analytical approximation to leave-p-out (Shao, 1993)
- Leave-one-out bootstrap (Efron, 1983): stabilized version of leave-one-out heuristical bias-correction ⇒ .632 bootstrap ⇒ .632+ bootstrap (Efron & Tibshirani, 1997)

Change-point detection

V-fold penalization

Conclusion 000

Bias of the cross-validation estimator

• Target:
$$P\gamma(\mathcal{A}_m(D_n))$$

• Bias: if
$$\forall j$$
, Card $(I_j^{(t)}) = n_t$

Change-point detection

V-fold penalization

Conclusion 000

Bias of the cross-validation estimator

Target: Pγ (A_m(D_n))
 Bias: if ∀j, Card(l_i^(t)) = n_t

$$\mathbb{E}\left[\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right)\right] = \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{t}}\right)\right)\right]$$

$$\Rightarrow bias \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{t}}\right)\right)\right] - \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n}\right)\right)\right]$$

- Smart rule (Devroye, Györfi & Lugosi, 1996): $n \mapsto \mathbb{E} \left[P\gamma \left(\mathcal{A}_m \left(D_n \right) \right) \right]$ non-increasing \Rightarrow the bias is non-negative, minimal for $n_t = n - 1$
- Example: regressogram:

$$\mathbb{E}\left[P\gamma(\widehat{s}_m(D_n))\right] \approx P\gamma(s_m^{\star}) + \frac{1}{n}\sum_{\lambda \in m} \sigma_{\lambda}^2$$

65

Bias-correction

• Corrected V-fold cross-validation (Burman, 1989, 1990):

$$\widehat{\mathcal{R}}^{\mathrm{vf}}(\mathcal{A}_m; \mathcal{D}_n; \mathcal{B}) + P_n \gamma \left(\mathcal{A}_m(\mathcal{D}_n)\right) - \frac{1}{V} \sum_{j=1}^{V} P_n \gamma \left(\mathcal{A}_m\left(\mathcal{D}_n^{(-B_j)}\right)\right)$$

+ the same for Repeated Learning-Testing

• Asymptotical result: bias = $O(n^{-2})$ (Burman, 1989)

Change-point detection

V-fold penalization

Conclusion 000

Variability of the cross-validation estimator

 $\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right)\right]$

Variability sources:

Change-point detection

V-fold penalization

Conclusion 000

Variability of the cross-validation estimator

$$\mathsf{var}\left[\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(t)}\right)_{1 \leq j \leq B}\right)\right]$$

Variability sources:

• (n_t, n_v) : hold-out case (Nadeau & Bengio, 2003)

$$\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m}; D_{n}; I^{(t)}\right)\right] \\ = \mathbb{E}\left[\operatorname{var}\left(P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(t)})\right) \middle| D_{n}^{(t)}\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] \\ = \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s}, \xi\right) \middle| \widehat{s} = \mathcal{A}_{m}(D_{n}^{(t)})\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right]\right]$$

Change-point detection

V-fold penalization

Conclusion 000

Variability of the cross-validation estimator

$$\mathsf{var}\left[\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(t)}\right)_{1 \leq j \leq B}\right)\right]$$

Variability sources:

• (*n_t*, *n_v*): hold-out case (Nadeau & Bengio, 2003)

$$\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m}; D_{n}; I^{(t)}\right)\right] = \mathbb{E}\left[\operatorname{var}\left(P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(t)})\right) \middle| D_{n}^{(t)}\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] = \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s},\xi\right)\right) \left|\widehat{s}\right| = \mathcal{A}_{m}(D_{n}^{(t)})\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right]$$

- Stability of A_m (Bousquet & Elisseff, 2002)
- Number of splits B
- Problem: B, n_t , n_v linked for VFCV and LPO

Change-point detection

Conclusion 000

Results on variability

• Linear regression, least-squares, special case (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[4 + \frac{4}{V-1} + \frac{2}{(V-1)^2} + \frac{1}{(V-1)^3} \right] + o\left(n^{-2}\right)$$

Results on variability

• Linear regression, least-squares, special case (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[4 + \frac{4}{V-1} + \frac{2}{(V-1)^2} + \frac{1}{(V-1)^3} \right] + o(n^{-2})$$

- Explicit quantification in regression (LPO) and density estimation (VFCV, LPO): Celisse (2008)
- LOO quite variable when A_m is unstable (e.g., *k*-NN or CART), much less when A_m is stable (e.g., least-squares estimators; see Molinaro *et al.*, 2005)
- Data-driven estimation of the variability of cross-validation difficult: no universal unbiased estimator (RLT, Nadeau & Bengio, 2003; VFCV, Bengio & Grandvalet, 2004), several estimators proposed (ibid.; Markatou *et al.*, 2005; Celisse & Robin, 2008)

Outline

Cross-validation

2 Cross-validation based estimator selection

- 3 Change-point detection
- 4 V-fold penalization

5 Conclusion

Conclusion 000

Link between risk estimation and estimator selection

- Unbiased risk estimation principle
 - \Rightarrow the important quantity (asymptotically) is the bias
- What is the best criterion?

In principle, the best \widehat{m} is the minimizer of the best risk estimator.

- Sometimes more tricky (Breiman & Spector, 1992):
 - Only m "close" to the oracle m^* really count
 - Overpenalization sometimes necessary (many models or small signal-to-noise ratio)

Change-point detection

V-fold penalization

Conclusion

Reminder: key lemma

Lemma

On the event Ω where for every $m, m' \in \mathcal{M}_n$,

 $(\operatorname{crit}(m) - P\gamma(\widehat{s}_m(D_n))) - (\operatorname{crit}(m') - P\gamma(\widehat{s}_{m'}(D_n)))$ $\leq A(m) + B(m')$

 $\forall \widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \{\operatorname{crit}(m)\} \\ \ell(s^*, \widehat{s}_{\widehat{m}}(D_n)) - B(\widehat{m}) \leq \inf_{m \in \mathcal{M}_n} \{\ell(s^*, \widehat{s}_m(D_n)) + A(m)\}$

23/65 Sylvain Arlot

Conclusion 000

Cross-validation for prediction: key role of n_t

Linear regression framework (Shao, 1997) representative of the general behaviour of cross-validation:

- If $n_t \sim n$, asymptotic optimality (CV $\sim C_p$)
- If n_t ~ κn, κ ∈ (0,1), CV ~ GIC_{1+κ⁻¹} (i.e., overpenalizes from a factor (1 + κ⁻¹)/2 ⇒ asymptotically sub-optimal)

 \Rightarrow valid for LPO (Shao, 1997), RLT (if $B \gg n^2$, Zhang, 1993)

S

Sub-optimality of V-fold cross-validation

- $Y = X + \sigma \varepsilon$ with ε bounded and $\sigma > 0$
- $\mathcal{M} = \mathcal{M}_n^{(\text{reg})}$ (regular histograms over $\mathcal{X} = [0, 1]$)
- \widehat{m} obtained by V-fold cross-validation with a fixed V as n increases

Theorem (A., 2008)

With probability $1 - Ln^{-2}$,

$$\ell(s^{\star}, \widehat{s}_{\widehat{m}}) \geq (1 + \kappa(V)) \inf_{m \in \mathcal{M}_n} \{\ell(s^{\star}, \widehat{s}_m)\}$$

where $\kappa(V) > 0$

Change-point detection

V-fold penalization

Conclusion 000

Oracle inequalities for cross-validation

• If $n_v \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m\in\mathcal{M}_n}\left\{P\gamma\left(\mathcal{A}_m(D_{n_t})\right)\right\}$$

• van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting

Change-point detection

V-fold penalization

Conclusion

Oracle inequalities for cross-validation

• If $n_v \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_t}) \right) \right\}$$

- van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting
- Regressograms: VFCV suboptimal, but still adaptive to heteroscedasticity (up to a multiplicative factor C(V) > 1)
- LPO in regression and density estimation when p/n ∈ [a, b], 0 < a < b < 1 (Celisse, 2008)

Oracle inequalities for cross-validation

• If $n_v \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_t}) \right) \right\}$$

- van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting
- Regressograms: VFCV suboptimal, but still adaptive to heteroscedasticity (up to a multiplicative factor C(V) > 1)
- LPO in regression and density estimation when p/n ∈ [a, b], 0 < a < b < 1 (Celisse, 2008)
- Open problem: theoretical comparison taking *B* into account (hence the variability of cross-validation)

Change-point detection

V-fold penalization

Conclusion

Cross-validation for identification: problem

- Collection of algorithms $(\mathcal{A}_m)_{m\in\mathcal{M}}$
- Goal: identify the best one for analyzing a new sample of size $n' \to \infty$

$$m_0 \in \lim_{n' \to \infty} \operatorname{argmin}_{m \in \mathcal{M}} \left\{ \mathbb{E} \left[P\gamma \left(\mathcal{A}_m(D'_{n'}) \right) \right] \right\}$$

Consistency:

$$\mathbb{P}\left(\widehat{m}(D_n)=m_0\right)\xrightarrow[n\to\infty]{}1$$

• Examples:

- identification of the true model in model selection
- parametric vs. non-parametric algorithm?
- \hat{k} -NN or SVM?

• ...

Conclusion 000

Cross-validation with voting (Yang, 2006)

Two algorithms \mathcal{A}_1 and \mathcal{A}_2

• For m = 1, 2

$$\left(\widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; I_{j}^{(t)}\right)\right)_{1 \leq j \leq B}$$

\Rightarrow majority vote

$$\begin{aligned} \mathcal{V}_{1}(D_{n}) &= \mathsf{Card}\left\{ j \text{ s.t. } \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{1}; D_{n}; l_{j}^{(t)}\right) < \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{2}; D_{n}; l_{j}^{(t)}\right) \right\} \\ \widehat{m} &= \begin{cases} 1 \quad \text{if} \quad \mathcal{V}_{1}(D_{n}) > n/2 \\ 2 \quad \text{otherwise} \end{cases} \end{aligned}$$

• Usual cross-validation: averaging before comparison

Cross-validation for identification: regression

- "Cross-validation paradox" (Yang, 2007)
- $r_{n,m}$: asymptotics of $\mathbb{E} \| \mathcal{A}_m(D_n) s^* \|_2$
- Goal: recover $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Assumption: at least a factor C > 1 between $r_{n,1}$ and $r_{n,2}$

Cross-validation for identification: regression

- "Cross-validation paradox" (Yang, 2007)
- $r_{n,m}$: asymptotics of $\mathbb{E} \| \mathcal{A}_m(D_n) s^* \|_2$
- Goal: recover $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Assumption: at least a factor C > 1 between $r_{n,1}$ and $r_{n,2}$
- VFCV, RLT, LPO (with voting) are (model) consistent if

 $n_v, n_t \to \infty$ and $\sqrt{n_v} \max_{m \in \mathcal{M}} r_{n_t,m} \to \infty$

under some conditions on $(\|\mathcal{A}_m(D_n) - s^\star\|_p)_{p=2,4,\infty}$

29/05 Sylvain Arlot

Cross-validation for identification: regression

- Parametric vs. parametric $(r_{n,m} \propto n^{-1/2})$ \Rightarrow the condition becomes $n_v \gg n_t \to \infty$
- Non-parametric vs. (non-)parametric $(\max_{m \in \mathcal{M}} r_{n,m} \gg n^{-1/2})$ $\Rightarrow n_t/n_v = \mathcal{O}(1)$ is sufficient, and we can have $n_t \sim n$ (not too close)
- Intuition:
 - risk estimated with precision $\propto n_{v}^{-1/2}$
 - difference between risks of order max_{m∈M} r_{nt,m}
 ⇒ easier to distinguish algorithms with n_t small because the difference between the risks is larger (questionable in practice)

Change-point detection

V-fold penalization

Conclusion

Cross-validation in practice: computational complexity

Naive implementation: complexity proportional to B
 ⇒ LPO untractable, LOO sometimes tractable
 ⇒ VFCV, RLT and MCCV often better

Change-point detection

V-fold penalization

Conclusion 000

Cross-validation in practice: computational complexity

- Naive implementation: complexity proportional to B
 ⇒ LPO untractable, LOO sometimes tractable
 ⇒ VFCV, RLT and MCCV often better
- Closed-form formulas for LPO in (least-squares) density estimation and regression (projection or kernel estimators): Celisse & Robin (2008), Celisse (2008)
 ⇒ can be used for instance in change-point detection (with dynamic programming)
- Generalized cross-validation: generalization of a formula for LOO in linear regression

Change-point detection

V-fold penalization

Conclusion 000

Cross-validation in practice: computational complexity

- Naive implementation: complexity proportional to B
 ⇒ LPO untractable, LOO sometimes tractable
 ⇒ VFCV, RLT and MCCV often better
- Closed-form formulas for LPO in (least-squares) density estimation and regression (projection or kernel estimators): Celisse & Robin (2008), Celisse (2008)
 ⇒ can be used for instance in change-point detection (with dynamic programming)
- Generalized cross-validation: generalization of a formula for LOO in linear regression
- Without closed-form formulas, smart algorithms for LOO (linear discriminant analysis, Ripley, 1996; k-NN, Daudin & Mary-Huard, 2008): uses results obtained for previous data splits in order to avoid doing again part of the computations 31

Choosing among cross-validation methods

Trade-off between bias, variability and computational cost:

• Bias: increases as n_t decreases (except for bias-corrected methods)

large SNR: the bias must be minimized

small SNR: a small amount of bias is better ($\Rightarrow n_t = \kappa n$ for some $\kappa \in (0, 1)$)

- Variability: usually a decreasing function of B and with n_v , but it depends on the nature of algorithms considered (stability)
- Computational cost: proportional to *B*, except in some cases

VFCV: *B* and n_t functions of $V \Rightarrow$ complex problem (V = 10 is not always a good choice)

Choosing the training samples

- Usual advice: take into account a possible stratification of data, e.g.,
 - distribution of the X_i in the feature space (regression)
 - distribution of the Y_i among the classes (classification)
 - ...

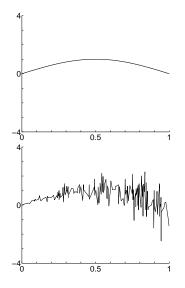
but no clear theoretical result (simulations by Breiman & Spector, 1992: unsignificant difference).

 Dependency between the I_j^(t)? Intuitively, better to give similar roles to all data in the training and validation tasks ⇒ VFCV But no clear comparison between VFCV (strong dependency), RLT (weak dependency) and MCCV (independence).

Change-point detection

Conclusion

VFCV: Simulations: sin, n = 200, $\sigma(x) = x$, 2 bin sizes



Models:	\mathcal{M}_n	$=\mathcal{M}_n^{(\mathrm{reg},1/2)}$	ļ
---------	-----------------	---------------------------------------	---

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

computed with N = 1000 samples

Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	$\begin{array}{c} 3.69 \pm 0.07 \\ 2.54 \pm 0.05 \\ 2.58 \pm 0.06 \\ 2.60 \pm 0.06 \\ 2.58 \pm 0.06 \\ 2.59 \pm 0.06 \end{array}$

34/65 Sylvain Arlot

Universality of cross-validation?

- Almost universal heuristics (i.i.d. data, no other explicit assumption)
- But $D_n \mapsto \mathcal{A}_{\widehat{m}(D_n)}$ still is a learning rule \Rightarrow No Free Lunch Theorems apply
- Implicit assumptions of cross-validation:
 - generalization error well estimated from a finite number of points n_v
 - behaviour of the algorithm with n_t points representative from its behaviour with n points
 - + assumptions of the unbiased risk estimation principle

Dependent data

- cross-validation wrong in principle (assumes i.i.d.)
- Stationary Markov process \Rightarrow CV still works (Burman & Nolan, 1992)
- Positive correlations \Rightarrow can overfit (Hart & Wehrly, 1986; Opsomer *et al.*, 2001)

Dependent data

- cross-validation wrong in principle (assumes i.i.d.)
- Stationary Markov process \Rightarrow CV still works (Burman & Nolan, 1992)
- Positive correlations ⇒ can overfit (Hart & Wehrly, 1986; Opsomer *et al.*, 2001)
- Answer: for short range dependencies, choose $I^{(t)}$ and $I^{(v)}$ such that

$$\min_{i\in I^{(t)}, j\in I^{(v)}}|i-j|\geq h>0$$

 \Rightarrow modified CV (Chu & Marron, 1991), *h*-block CV (can be bias-corrected, Burman *et al.*, 1994), and so on

Change-point detection

V-fold penalization

Conclusion 000

Large collections of models

- Model selection in regression, exponential number of models per dimension ⇒ minimal penalty of order ln(n)D_m/n (Birgé & Massart, 2007)
 - \Rightarrow cross-validation overfits (except maybe if $n_t \ll n$)

37/ Svlvain Arlot

Large collections of models

- Model selection in regression, exponential number of models per dimension ⇒ minimal penalty of order ln(n)D_m/n (Birgé & Massart, 2007)
 - \Rightarrow cross-validation overfits (except maybe if $n_t \ll n$)
- Wegkamp (2003): penalized hold-out
- A. & Celisse (2009): gather models of the same dimension, with application to change-point detection

Outline

Cross-validation

2 Cross-validation based estimator selection

4 V-fold penalization

5 Conclusion

Conclusion 000

Change-point detection and model selection

- $Y_i = \eta(t_i) + \sigma(t_i)\varepsilon_i$ with $\mathbb{E}[\varepsilon_i] = 0$ $\mathbb{E}[\varepsilon_i^2] = 1$
- Goal: detect the change-points of the mean η of the signal Y
- ⇒ Model selection, collection of regressograms with $\mathcal{M}_n = \mathfrak{P}_{interv}(\{t_1, \dots, t_n\})$ (partitions of \mathcal{X} into intervals)
 - Here: no assumption on the variance $\sigma(t_i)^2$

Change-point detection

V-fold penalization

Conclusion 000

Classical approach (Lebarbier, 2005; Lavielle, 2005)

• "Birgé-Massart" penalty (assumes $\sigma(t_i) \equiv \sigma$):

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\sigma^2 D_m}{n} \left(5 + 2\ln\left(\frac{n}{D_m}\right)\right) \right\}$$

• Equivalent to aggregating models of the same dimension:

$$\widetilde{S}_D := \bigcup_{m \in \mathcal{M}_n, D_m = D} S_m$$

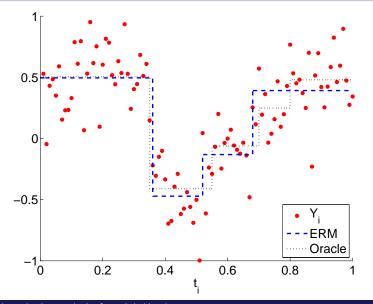
 $\widehat{s}_{D} \in \operatorname{argmin}_{t \in \widetilde{S}_{D}} \{ P_{n}\gamma(t) \} \quad \text{dynamic programming}$ $\widehat{D} \in \operatorname{argmin}_{1 \leq D \leq n} \left\{ P_{n}\gamma(\widehat{s}_{D}) + \frac{C\sigma^{2}D}{n} \left(5 + 2\ln\left(\frac{n}{D}\right) \right) \right\}$

Change-point detection

V-fold penalization

Conclusion 000

D = 4, homoscedastic; n = 100, $\sigma = 0.25$



Model selection and estimator selection for statistical learning

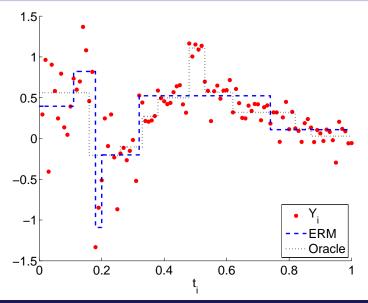
Sylvain Arlot

Change-point detection

V-fold penalization

Conclusion 000

D = 6, heteroscedastic; n = 100, $||\sigma|| = 0.30$



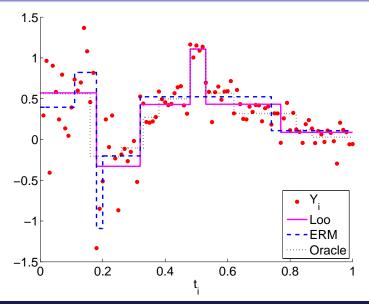
Sylvain Arlot

Change-point detection

V-fold penalization

Conclusion 000

D = 6, heteroscedastic; n = 100, $||\sigma|| = 0.30$

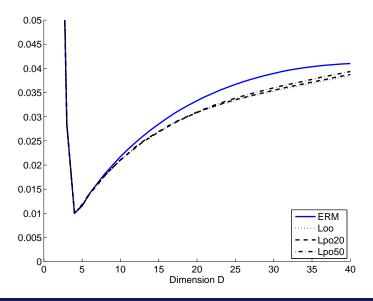


Sylvain Arlot

V-fold penalization

Conclusion 000

Homoscedastic: loss as a function of D

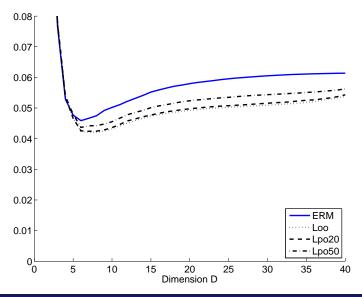


Sylvain Arlot

V-fold penalization

Conclusion 000

Heteroscedastic: loss as a function of D



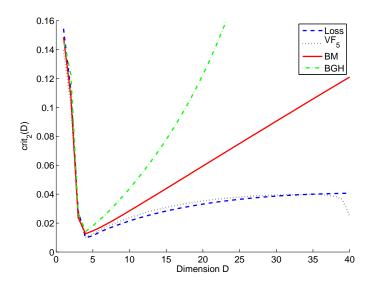
Model selection and estimator selection for statistical learning

Sylvain Arlot

V-fold penalization

Conclusion 000

Homoscedastic: estimate of the loss as a function of D

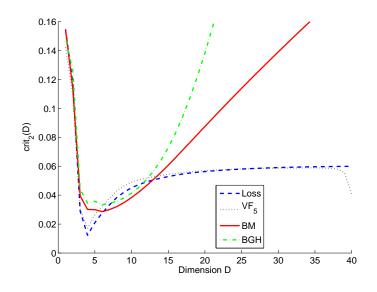


46/65 Sylvain Arlot

V-fold penalization

Conclusion 000

Heteroscedastic: estimate of the loss as a function of D



V-fold penalization

Conclusion 000

Change-point detection algorithms (A. & Celisse, 2010)

• $\forall D \in \{1, \ldots, D_{\max}\}$, select

$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \}$$

Examples for crit₁: empirical risk, or leave-*p*-out or *V*-fold estimators of the risk (dynamic programming)

V-fold penalization

Conclusion 000

Change-point detection algorithms (A. & Celisse, 2010)

• $\forall D \in \{1, \dots, D_{\max}\}$, select

$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \}$$

Examples for crit₁: empirical risk, or leave-*p*-out or *V*-fold estimators of the risk (dynamic programming)

2 Select

$$\widehat{D} \in \operatorname{argmin}_{D \in \{1, \dots, D_{\max}\}} \{\operatorname{crit}_2(D; (t_i, Y_i)_i; \operatorname{crit}_1(\cdot))\}$$

Examples for $crit_2$: penalized empirical criterion, V-fold estimator of the risk

Change-point detection

V-fold penalization

Conclusion 000

Competitors

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log\left(\frac{n}{D_m}\right)\right) \right\}$$

Model selection and estimator selection for statistical learning

Change-point detection

V-fold penalization

Conclusion

Competitors

• [Emp, BM]: assume
$$\sigma(\cdot) \equiv \sigma$$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log\left(\frac{n}{D_m}\right)\right) \right\}$$

• BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot)\equiv\sigma$

$$\operatorname{argmin}_{m\in\mathcal{M}_n}\left\{ P_n\gamma\left(\widehat{s}_m\right)\left[1+rac{\operatorname{\mathsf{pen}}_{\operatorname{BGH}}(m)}{n-D_m}
ight]
ight\}$$

Change-point detection

V-fold penalization

Conclusion

Competitors

• [Emp, BM]: assume
$$\sigma(\cdot) \equiv \sigma$$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log\left(\frac{n}{D_m}\right)\right) \right\}$$

• BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot)\equiv\sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) \left[1 + \frac{\operatorname{pen}_{\mathrm{BGH}}(m)}{n - D_m} \right] \right\}$$

• ZS (Zhang & Siegmund, 2007): modified BIC, $\sigma(\cdot) \equiv \sigma$

Competitors

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log\left(\frac{n}{D_m}\right) \right) \right\}$$

• BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot)\equiv\sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) \left[1 + \frac{\operatorname{pen}_{\mathrm{BGH}}(m)}{n - D_m} \right] \right\}$$

- ZS (Zhang & Siegmund, 2007): modified BIC, $\sigma(\cdot) \equiv \sigma$
- PML (Picard *et al.*, 2005): penalized maximum likelihood, looks for change-points of (η, σ) , assuming a Gaussian model

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \sum_{\lambda \in m} n \widehat{p}_{\lambda} \log \left(\frac{1}{n \widehat{p}_{\lambda}} \sum_{t_i \in \lambda} (Y_i - \widehat{s}_m(t_i))^2 \right) + \widehat{C}'' D_m \right\}$$

V-fold penalization

Conclusion 000

Simulations: comparison to the oracle (quadratic risk)

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

$$N = 10\,000$$
 sample

$\mathcal{L}(\varepsilon)$	Gaussian	Gaussian	Gaussian
$\sigma(\cdot)$	homosc.	heterosc.	heterosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃
$[Loo, VF_5]$	4.02 ± 0.02	4.95 ± 0.05	5.59 ± 0.02
$[\mathrm{Emp},\mathrm{VF}_5]$	3.99 ± 0.02	5.62 ± 0.05	6.13 ± 0.02
[Emp, BM]	3.58 ± 0.02	9.25 ± 0.06	6.24 ± 0.02
BGH	3.52 ± 0.02	10.13 ± 0.07	6.31 ± 0.02
ZS	3.62 ± 0.02	6.50 ± 0.05	6.61 ± 0.02
\mathbf{PML}	4.34 ± 0.02	$\textbf{2.73} \pm 0.03$	$\textbf{4.99} \pm 0.03$

V-fold penalization

Conclusion 000

Simulations: comparison to the oracle (quadratic risk)

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

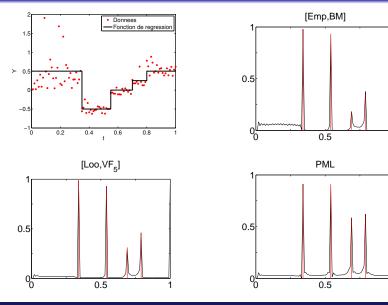
 $N = 10\,000$ sample

$\mathcal{L}(arepsilon) \ \sigma(\cdot)$	Gaussian homosc.	Exponential heterosc.	Exponential heterosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>S</i> 3
$[Loo, VF_5]$	4.02 ± 0.02	$\textbf{4.47}\pm0.05$	$\underline{\textbf{5.11}}\pm\textbf{0.03}$
$[\mathrm{Emp},\mathrm{VF}_5]$	3.99 ± 0.02	5.98 ± 0.07	6.22 ± 0.04
[Emp, BM]	3.58 ± 0.02	10.81 ± 0.09	6.45 ± 0.04
BGH	3.52 ± 0.02	11.67 ± 0.09	6.42 ± 0.04
\mathbf{ZS}	3.62 ± 0.02	9.34 ± 0.09	6.83 ± 0.04
\mathbf{PML}	4.34 ± 0.02	5.04 ± 0.06	5.40 ± 0.03

V-fold penalization

Conclusion 000

Simulations: position of the change-points



Model selection and estimator selection for statistical learning

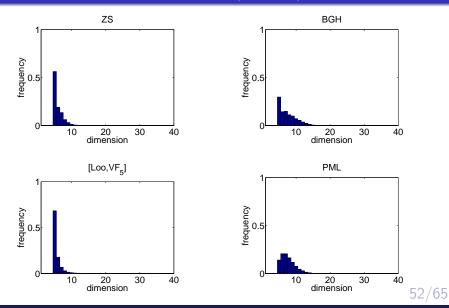
Sylvain Arlot

Change-point detection

V-fold penalization

Conclusion 000

Simulations: selected dimension $(D_0 = 5)$



Model selection and estimator selection for statistical learning

Outline

Cross-validation

- 2 Cross-validation based estimator selection
- 3 Change-point detection
- 4 V-fold penalization

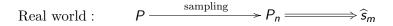
5 Conclusion

Change-point detection

V-fold penalization

Conclusion 000

Resampling heuristics (bootstrap, Efron 1979)



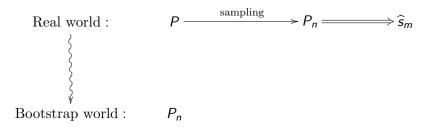
$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$

Change-point detection

V-fold penalization

Conclusion 000

Resampling heuristics (bootstrap, Efron 1979)



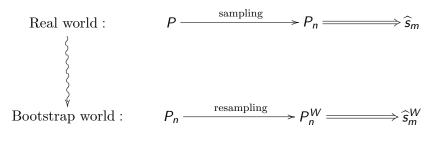
$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$

Change-point detection

V-fold penalization

Conclusion 000

Resampling heuristics (bootstrap, Efron 1979)



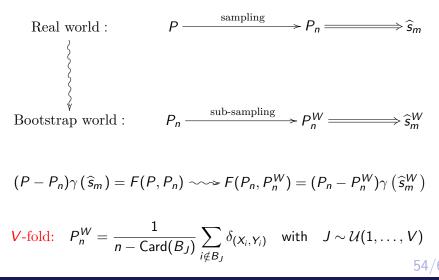
 $(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \longrightarrow F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$

Change-point detection

V-fold penalization

Conclusion 000

Resampling heuristics (bootstrap, Efron 1979)



Model selection and estimator selection for statistical learning

Change-point detection

V-fold penalization

Conclusion 000

V-fold penalties (A. 2008)

Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m(D_n)))$$

• V-fold penalty (A., 2008):

$$\operatorname{pen}_{\operatorname{VF}}(m; D_n; C; \mathcal{B}) = \frac{C}{V} \sum_{j=1}^{V} \left[\left(P_n - P_n^{(-B_j)} \right) \left(\gamma \left(\widehat{s}_m^{(-B_j)} \right) \right) \right]$$

$$\widehat{s}_m^{(-B_j)} = \widehat{s}_m \left(D_n^{(-B_j)} \right)$$

• Selected model:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

55/65 Sylvain Arlot

Computing expectations

Assumptions:

$$\begin{array}{l} \mathcal{B} = (B_j)_{1 \leq j \leq V} \text{ partition of } \{1, \dots, n\} \\ \text{and} \quad \forall j \in \{1, \dots, V\} \ , \qquad \mathsf{Card}(B_j) = \frac{n}{V} \end{array} \right\}$$
 (RegPart)

$$\forall 1 \leq N \leq n \;, \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] = rac{\gamma_m}{N}$$
 (Epenid)

Computing expectations

Assumptions:

$$\begin{array}{l} \mathcal{B} = (B_j)_{1 \leq j \leq V} \text{ partition of } \{1, \dots, n\} \\ \text{and} \quad \forall j \in \{1, \dots, V\} \ , \qquad \mathsf{Card}(B_j) = \frac{n}{V} \end{array} \right\}$$
 (RegPart)

$$\forall 1 \leq N \leq n \;, \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] = rac{\gamma_m}{N}$$
 (Epenid)

Proposition (A. 2011) $\mathbb{E}\left[\operatorname{pen}_{VF}(m; D_n; C; \mathcal{B})\right] = \frac{C}{V-1} \mathbb{E}\left[\operatorname{pen}_{\mathrm{id}}(m; D_n)\right]$

56/65 Sylvain Arlot Change-point detection

V-fold penalization

Conclusion 000

Concentration: additional assumptions

For all $N \in \{1, ..., n\}$,

 $\mathbb{P}\left(\left|p_{1}(m; D_{N}) - \mathbb{E}\left[p_{1}(m; D_{N})\right]\right| \leq w_{N} \mathbb{E}\left[p_{1}(m; D_{N})\right]\right) \geq 1 - q_{N} \quad (\mathbf{C}p_{1})$ $\mathbb{P}\left(\left|p_{2}(m; D_{N}) - \mathbb{E}\left[p_{2}(m; D_{N})\right]\right| \leq w_{N} \mathbb{E}\left[p_{2}(m; D_{N})\right]\right) \geq 1 - q_{N} \quad (\mathbf{C}p_{2})$

$$\left. \begin{array}{l} \exists S_m \subset \mathbb{S} \text{ s.t. } s_m^{\star} \in S_m \ , \ \widehat{s}_m(D_N) \in S_m \quad \text{a.s.} \\ \text{and} \quad \forall t \in S_m \ , \ \forall x \ge 0 \ , \\ \mathbb{P}\left(\left| \delta(t; D_N) - \delta(s^{\star}; D_N) \right| \le \inf_{\eta \in (0,1]} \left\{ \eta \ell\left(s^{\star}, t\right) + \frac{K_{\delta} x}{\eta N} \right\} \right) \\ \ge 1 - 2e^{-x} \end{array} \right\}$$
 (C δ)

$$p_{1}(m; D_{N}) = P\gamma \left(\widehat{s}_{m}(D_{N})\right) - P\gamma \left(s_{m}^{\star}\right)$$
$$p_{2}(m; D_{N}) = P_{N}\gamma \left(s_{m}^{\star}\right) - P_{N}\gamma \left(\widehat{s}_{m}(D_{N})\right)$$
$$\delta(t; D_{N}) = (P_{N} - P)\gamma (t)$$

Change-point detection

V-fold penalization

Conclusion 000

Concentration: result

Proposition (A. 2011)

Assume: $V \ge 2$, (**RegPart**), (**Epenid**), (**C** p_1), (**C** p_2) and (**C** δ) with $\gamma_m \ge 0$, $K_\delta > 0$ and (w_k) , (q_k) non-increasing non-negative. Then, $\forall C > 0, x \ge 0$, with probability $1 - 2V\left(\frac{q_n(v-1)}{V} + 2e^{-x}\right)$, $\forall \eta \in (0, 1]$,

$$|\operatorname{pen}_{\operatorname{VF}}(m; D_n; C; \mathcal{B}) - \mathbb{E}[\operatorname{pen}_{\operatorname{VF}}(m; D_n; C; \mathcal{B})] - \mathcal{Z}|$$

$$\leq \frac{4C}{V} \left(\eta + 2w_{\frac{n(V-1)}{V}}\right) \mathbb{E}[\operatorname{pen}_{\operatorname{id}}(m; D_n)]$$

$$+ \frac{C}{V} \left(2\eta\ell(s^{\star}, s_m^{\star}) + \frac{4K_{\delta}xV}{\eta n}\right)$$

where
$$\mathcal{Z} = \mathcal{Z}(D_n; C; \mathcal{B}) = \frac{C}{V} \sum_{j=1}^{V} \left(\delta\left(s^*; D_n^{(B_j)}\right) - \delta\left(s^*; D_n^{(-B_j)}\right) \right)_{(65)}$$

Oracle inequality for V-fold penalization

Theorem (A. 2008–2011)

Assume also that $w_k \rightarrow 0$, C = V - 1 and $\exists (\kappa_k)_{k \geq 1}$ non-increasing,

 $\forall N \geq 1 \ , \qquad 0 \leq \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] \leq \kappa_N \mathbb{E}\left[\ell\left(s^\star, \widehat{s}_m\left(D_N\right)\right)\right]$

Then, with probability at least $1 - L_1 V \operatorname{Card}(\mathcal{M}_n)(q_{\frac{n(V-1)}{V}} + e^{-x})$, for every $\eta_k \to 0$,

$$\ell\left(s^{\star}, \widehat{s}_{\widehat{m}_{\mathsf{pen}_{\mathsf{VF}}}(D_{n})}\right) \leq \left[1 + L_{2}\left(\eta_{n} + \frac{1}{n} + w_{\frac{n(V-1)}{V}}\right)\right] \\ \times \inf_{m \in \mathcal{M}_{n}}\left\{\ell\left(s^{\star}, \widehat{s}_{m}(D_{n})\right)\right\} + \frac{L_{3}K_{\delta}xV}{\eta_{n}n}$$

Example: regressograms under reasonable assumptions on $(||Y||_{\infty} \leq A, \sigma(\cdot) \geq \sigma_{\min} > 0, ...)$

Model selection and estimator selection for statistical learning

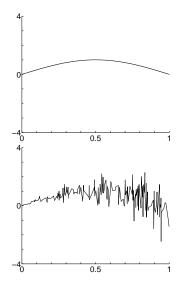
65

Change-point detection

V-fold penalization

Conclusion 000

Simulations: sin, n = 200, $\sigma(x) = x$, $\mathcal{M}_n = \mathcal{M}_n^{(\mathrm{reg}, 1/2)}$



Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows $\times 1.25$	3.17 ± 0.07
pen 2-f $ imes$ 1.25	2.75 ± 0.06
pen 5-f $ imes$ 1.25	2.38 ± 0.06
pen 10-f $\times 1.25$	2.28 ± 0.05
pen Loo $\times 1.25$	$2.21 \pm 0.05 \ 60/65$

Cross-validation CV-based estimator selection Change-point detection V-fold penalization Conce concenses concenses Choice of V: density estimation (A. & Lerasle, 2011)

• Least-squares density estimation: assuming (RegPart),

$$\begin{aligned} &\operatorname{var}\left(\left(\operatorname{pen}_{\operatorname{VF}}(m) - \operatorname{pen}_{\operatorname{id}}(m)\right) - \left(\operatorname{pen}_{\operatorname{VF}}(m') - \operatorname{pen}_{\operatorname{id}}(m')\right)\right) \\ &= \frac{8}{n^2} \left[1 + \frac{1}{V-1}\right] F\left(m, m'\right) + \frac{4}{n} \operatorname{var}_P\left(s_m^\star - s_{m'}^\star\right) \\ &\operatorname{with} F\left(m, m'\right) > 0. \end{aligned}$$

• For regular histograms,

$$F(m,m') \le (D_m + D_{m'}) \|s^{\star}\|^2 + 2 \|s^{\star}\|^4$$

61/65 Sylvain Arlot

Outline

Cross-validation

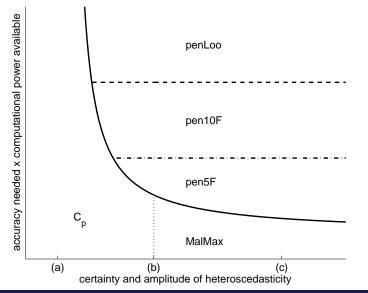
- 2 Cross-validation based estimator selection
- Change-point detection
- 4 V-fold penalization

Change-point detection

V-fold penalization

Conclusion

Choice of an estimator selection procedure



Model selection and estimator selection for statistical learning

63/65

• guarantees for practical procedures:

- "elbow" heuristics on the L-curve, slope heuristics
- resampling(-based penalties)
- cross-validation

64/ 65 Svlvain Arlot

- guarantees for practical procedures:
 - "elbow" heuristics on the L-curve, slope heuristics
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - minimal penalties for linear estimators
 - V-fold penalties for correcting the bias of VFCV

- guarantees for practical procedures:
 - "elbow" heuristics on the L-curve, slope heuristics
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - minimal penalties for linear estimators
 - V-fold penalties for correcting the bias of VFCV
- theory precise enough for explaining differences observed experimentally:
 - compare resampling weights
 - influence of V on V-fold methods

- guarantees for practical procedures:
 - "elbow" heuristics on the L-curve, slope heuristics
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - minimal penalties for linear estimators
 - V-fold penalties for correcting the bias of VFCV
- theory precise enough for explaining differences observed experimentally:
 - compare resampling weights
 - influence of V on V-fold methods
- "non-asymptotic" results

Open problems

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?
 - minimal penalties without the least-squares contrast (SVM, Lasso, and so on)?

Open problems

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?
 - minimal penalties without the least-squares contrast (SVM, Lasso, and so on)?
- theory precise enough for explaining differences observed experimentally:
 - choice of a resampling scheme / a cross-validation method?
 - explain the (non-systematic) variability of leave-one-out?

Open problems

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?
 - minimal penalties without the least-squares contrast (SVM, Lasso, and so on)?
- theory precise enough for explaining differences observed experimentally:
 - choice of a resampling scheme / a cross-validation method?
 - explain the (non-systematic) variability of leave-one-out?
- "non-asymptotic" results:
 - overpenalization phenomenon?

